##------------------------------------------------------------## # # The multiple-architecture stuff in this file is pretty # cryptic. Read docs/internals/multiple-architectures.txt # for at least a partial explanation of what is going on. # ##------------------------------------------------------------## # Process this file with autoconf to produce a configure script. AC_INIT([Valgrind],[3.12.0.SVN],[valgrind-users@lists.sourceforge.net]) AC_CONFIG_SRCDIR(coregrind/m_main.c) AC_CONFIG_HEADERS([config.h]) AM_INIT_AUTOMAKE([foreign subdir-objects]) AM_MAINTAINER_MODE #---------------------------------------------------------------------------- # Do NOT modify these flags here. Except in feature tests in which case # the original values must be properly restored. #---------------------------------------------------------------------------- CFLAGS="$CFLAGS" CXXFLAGS="$CXXFLAGS" #---------------------------------------------------------------------------- # Checks for various programs. #---------------------------------------------------------------------------- AC_PROG_LN_S AC_PROG_CC AM_PROG_CC_C_O AC_PROG_CPP AC_PROG_CXX # AC_PROG_OBJC apparently causes problems on older Linux distros (eg. with # autoconf 2.59). If we ever have any Objective-C code in the Valgrind code # base (eg. most likely as Darwin-specific tests) we'll need one of the # following: # - put AC_PROG_OBJC in a Darwin-specific part of this file # - Use AC_PROG_OBJC here and up the minimum autoconf version # - Use the following, which is apparently equivalent: # m4_ifdef([AC_PROG_OBJC], # [AC_PROG_OBJC], # [AC_CHECK_TOOL([OBJC], [gcc]) # AC_SUBST([OBJC]) # AC_SUBST([OBJCFLAGS]) # ]) AC_PROG_RANLIB # provide a very basic definition for AC_PROG_SED if it's not provided by # autoconf (as e.g. in autoconf 2.59). m4_ifndef([AC_PROG_SED], [AC_DEFUN([AC_PROG_SED], [AC_ARG_VAR([SED]) AC_CHECK_PROGS([SED],[gsed sed])])]) AC_PROG_SED # If no AR variable was specified, look up the name of the archiver. Otherwise # do not touch the AR variable. if test "x$AR" = "x"; then AC_PATH_PROGS([AR], [`echo $LD | $SED 's/ld$/ar/'` "ar"], [ar]) fi AC_ARG_VAR([AR],[Archiver command]) # Check for the compiler support if test "${GCC}" != "yes" ; then AC_MSG_ERROR([Valgrind relies on GCC to be compiled]) fi # figure out where perl lives AC_PATH_PROG(PERL, perl) # figure out where gdb lives AC_PATH_PROG(GDB, gdb, "/no/gdb/was/found/at/configure/time") AC_DEFINE_UNQUOTED(GDB_PATH, "$GDB", [path to GDB]) # some older automake's don't have it so try something on our own ifdef([AM_PROG_AS],[AM_PROG_AS], [ AS="${CC}" AC_SUBST(AS) ASFLAGS="" AC_SUBST(ASFLAGS) ]) # Check if 'diff' supports -u (universal diffs) and use it if possible. AC_MSG_CHECKING([for diff -u]) AC_SUBST(DIFF) # Comparing two identical files results in 0. tmpfile="tmp-xxx-yyy-zzz" touch $tmpfile; if diff -u $tmpfile $tmpfile ; then AC_MSG_RESULT([yes]) DIFF="diff -u" else AC_MSG_RESULT([no]) DIFF="diff" fi rm $tmpfile # We don't want gcc < 3.0 AC_MSG_CHECKING([for a supported version of gcc]) # Obtain the compiler version. # # A few examples of how the ${CC} --version output looks like: # # ######## gcc variants ######## # Arch Linux: i686-pc-linux-gnu-gcc (GCC) 4.6.2 # Debian Linux: gcc (Debian 4.3.2-1.1) 4.3.2 # openSUSE: gcc (SUSE Linux) 4.5.1 20101208 [gcc-4_5-branch revision 167585] # Exherbo Linux: x86_64-pc-linux-gnu-gcc (Exherbo gcc-4.6.2) 4.6.2 # MontaVista Linux for ARM: arm-none-linux-gnueabi-gcc (Sourcery G++ Lite 2009q1-203) 4.3.3 # OS/X 10.6: i686-apple-darwin10-gcc-4.2.1 (GCC) 4.2.1 (Apple Inc. build 5666) (dot 3) # OS/X 10.7: i686-apple-darwin11-llvm-gcc-4.2 (GCC) 4.2.1 (Based on Apple Inc. build 5658) (LLVM build 2335.15.00) # # ######## clang variants ######## # Clang: clang version 2.9 (tags/RELEASE_29/final) # Apple clang: Apple clang version 3.1 (tags/Apple/clang-318.0.58) (based on LLVM 3.1svn) # FreeBSD clang: FreeBSD clang version 3.1 (branches/release_31 156863) 20120523 # # ######## Apple LLVM variants ######## # Apple LLVM version 5.1 (clang-503.0.40) (based on LLVM 3.4svn) # Apple LLVM version 6.0 (clang-600.0.51) (based on LLVM 3.5svn) # [ if test "x`${CC} --version | $SED -n -e 's/.*\Apple \(LLVM\) version.*clang.*/\1/p'`" = "xLLVM" ; then is_clang="applellvm" gcc_version=`${CC} --version | $SED -n -e 's/.*LLVM version \([0-9.]*\).*$/\1/p'` elif test "x`${CC} --version | $SED -n -e 's/.*\(clang\) version.*/\1/p'`" = "xclang" ; then is_clang="clang" # Don't use -dumpversion with clang: it will always produce "4.2.1". gcc_version=`${CC} --version | $SED -n -e 's/.*clang version \([0-9.]*\).*$/\1/p'` elif test "x`${CC} --version | $SED -n -e 's/icc.*\(ICC\).*/\1/p'`" = "xICC" ; then is_clang="icc" gcc_version=`${CC} -dumpversion 2>/dev/null` else is_clang="notclang" gcc_version=`${CC} -dumpversion 2>/dev/null` if test "x$gcc_version" = x; then gcc_version=`${CC} --version | $SED -n -e 's/[^ ]*gcc[^ ]* ([^)]*) \([0-9.]*\).*$/\1/p'` fi fi ] AM_CONDITIONAL(COMPILER_IS_CLANG, test $is_clang = clang -o $is_clang = applellvm) AM_CONDITIONAL(COMPILER_IS_ICC, test $is_clang = icc) # Note: m4 arguments are quoted with [ and ] so square brackets in shell # statements have to be quoted. case "${is_clang}-${gcc_version}" in applellvm-5.1|applellvm-6.*|applellvm-7.*) AC_MSG_RESULT([ok (Apple LLVM version ${gcc_version})]) ;; icc-1[[3-9]].*) AC_MSG_RESULT([ok (ICC version ${gcc_version})]) ;; notclang-[[3-9]].*|notclang-[[1-9][0-9]]*) AC_MSG_RESULT([ok (${gcc_version})]) ;; clang-2.9|clang-[[3-9]].*|clang-[[1-9][0-9]]*) AC_MSG_RESULT([ok (clang-${gcc_version})]) ;; *) AC_MSG_RESULT([no (${gcc_version})]) AC_MSG_ERROR([please use gcc >= 3.0 or clang >= 2.9 or icc >= 13.0]) ;; esac #---------------------------------------------------------------------------- # Arch/OS/platform tests. #---------------------------------------------------------------------------- # We create a number of arch/OS/platform-related variables. We prefix them # all with "VGCONF_" which indicates that they are defined at # configure-time, and distinguishes them from the VGA_*/VGO_*/VGP_* # variables used when compiling C files. AC_CANONICAL_HOST AC_MSG_CHECKING([for a supported CPU]) # ARCH_MAX reflects the most that this CPU can do: for example if it # is a 64-bit capable PowerPC, then it must be set to ppc64 and not ppc32. # Ditto for amd64. It is used for more configuration below, but is not used # outside this file. # # Power PC returns powerpc for Big Endian. This was not changed when Little # Endian support was added to the 64-bit architecture. The 64-bit Little # Endian systems explicitly state le in the host_cpu. For clarity in the # Valgrind code, the ARCH_MAX name will state LE or BE for the endianess of # the 64-bit system. Big Endian is the only mode supported on 32-bit Power PC. # The abreviation PPC or ppc refers to 32-bit and 64-bit systems with either # Endianess. The name PPC64 or ppc64 to 64-bit systems of either Endianess. # The names ppc64be or PPC64BE refer to only 64-bit systems that are Big # Endian. Similarly, ppc64le or PPC64LE refer to only 64-bit systems that are # Little Endian. case "${host_cpu}" in i?86) AC_MSG_RESULT([ok (${host_cpu})]) ARCH_MAX="x86" ;; x86_64) AC_MSG_RESULT([ok (${host_cpu})]) ARCH_MAX="amd64" ;; powerpc64) # this only referrs to 64-bit Big Endian AC_MSG_RESULT([ok (${host_cpu})]) ARCH_MAX="ppc64be" ;; powerpc64le) # this only referrs to 64-bit Little Endian AC_MSG_RESULT([ok (${host_cpu})]) ARCH_MAX="ppc64le" ;; powerpc) # On Linux this means only a 32-bit capable CPU. AC_MSG_RESULT([ok (${host_cpu})]) ARCH_MAX="ppc32" ;; s390x) AC_MSG_RESULT([ok (${host_cpu})]) ARCH_MAX="s390x" ;; armv7*) AC_MSG_RESULT([ok (${host_cpu})]) ARCH_MAX="arm" ;; aarch64*) AC_MSG_RESULT([ok (${host_cpu})]) ARCH_MAX="arm64" ;; mips) AC_MSG_RESULT([ok (${host_cpu})]) ARCH_MAX="mips32" ;; mipsel) AC_MSG_RESULT([ok (${host_cpu})]) ARCH_MAX="mips32" ;; mipsisa32r2) AC_MSG_RESULT([ok (${host_cpu})]) ARCH_MAX="mips32" ;; mips64*) AC_MSG_RESULT([ok (${host_cpu})]) ARCH_MAX="mips64" ;; mipsisa64*) AC_MSG_RESULT([ok (${host_cpu})]) ARCH_MAX="mips64" ;; tilegx) AC_MSG_RESULT([ok (${host_cpu})]) ARCH_MAX="tilegx" ;; *) AC_MSG_RESULT([no (${host_cpu})]) AC_MSG_ERROR([Unsupported host architecture. Sorry]) ;; esac #---------------------------------------------------------------------------- # Sometimes it's convenient to subvert the bi-arch build system and # just have a single build even though the underlying platform is # capable of both. Hence handle --enable-only64bit and # --enable-only32bit. Complain if both are issued :-) # [Actually, if either of these options are used, I think both get built, # but only one gets installed. So if you use an in-place build, both can be # used. --njn] # Check if a 64-bit only build has been requested AC_CACHE_CHECK([for a 64-bit only build], vg_cv_only64bit, [AC_ARG_ENABLE(only64bit, [ --enable-only64bit do a 64-bit only build], [vg_cv_only64bit=$enableval], [vg_cv_only64bit=no])]) # Check if a 32-bit only build has been requested AC_CACHE_CHECK([for a 32-bit only build], vg_cv_only32bit, [AC_ARG_ENABLE(only32bit, [ --enable-only32bit do a 32-bit only build], [vg_cv_only32bit=$enableval], [vg_cv_only32bit=no])]) # Stay sane if test x$vg_cv_only64bit = xyes -a x$vg_cv_only32bit = xyes; then AC_MSG_ERROR( [Nonsensical: both --enable-only64bit and --enable-only32bit.]) fi #---------------------------------------------------------------------------- # VGCONF_OS is the primary build OS, eg. "linux". It is passed in to # compilation of many C files via -VGO_$(VGCONF_OS) and # -VGP_$(VGCONF_ARCH_PRI)_$(VGCONF_OS). AC_MSG_CHECKING([for a supported OS]) AC_SUBST(VGCONF_OS) DEFAULT_SUPP="" case "${host_os}" in *linux*) AC_MSG_RESULT([ok (${host_os})]) VGCONF_OS="linux" # Ok, this is linux. Check the kernel version AC_MSG_CHECKING([for the kernel version]) kernel=`uname -r` case "${kernel}" in 0.*|1.*|2.0.*|2.1.*|2.2.*|2.3.*|2.4.*|2.5.*) AC_MSG_RESULT([unsupported (${kernel})]) AC_MSG_ERROR([Valgrind needs a Linux kernel >= 2.6]) ;; *) AC_MSG_RESULT([2.6 or later (${kernel})]) ;; esac ;; *darwin*) AC_MSG_RESULT([ok (${host_os})]) VGCONF_OS="darwin" AC_DEFINE([DARWIN_10_5], 100500, [DARWIN_VERS value for Mac OS X 10.5]) AC_DEFINE([DARWIN_10_6], 100600, [DARWIN_VERS value for Mac OS X 10.6]) AC_DEFINE([DARWIN_10_7], 100700, [DARWIN_VERS value for Mac OS X 10.7]) AC_DEFINE([DARWIN_10_8], 100800, [DARWIN_VERS value for Mac OS X 10.8]) AC_DEFINE([DARWIN_10_9], 100900, [DARWIN_VERS value for Mac OS X 10.9]) AC_DEFINE([DARWIN_10_10], 101000, [DARWIN_VERS value for Mac OS X 10.10]) AC_DEFINE([DARWIN_10_11], 101100, [DARWIN_VERS value for Mac OS X 10.11]) AC_MSG_CHECKING([for the kernel version]) kernel=`uname -r` # Nb: for Darwin we set DEFAULT_SUPP here. That's because Darwin # has only one relevant version, the OS version. The `uname` check # is a good way to get that version (i.e. "Darwin 9.6.0" is Mac OS # X 10.5.6, and "Darwin 10.x" is Mac OS X 10.6.x Snow Leopard, # and possibly "Darwin 11.x" is Mac OS X 10.7.x Lion), # and we don't know of an macros similar to __GLIBC__ to get that info. # # XXX: `uname -r` won't do the right thing for cross-compiles, but # that's not a problem yet. # # jseward 21 Sept 2011: I seriously doubt whether V 3.7.0 will work # on OS X 10.5.x; I haven't tested yet, and only plan to test 3.7.0 # on 10.6.8 and 10.7.1. Although tempted to delete the configure # time support for 10.5 (the 9.* pattern just below), I'll leave it # in for now, just in case anybody wants to give it a try. But I'm # assuming that 3.7.0 is a Snow Leopard and Lion-only release. case "${kernel}" in 9.*) AC_MSG_RESULT([Darwin 9.x (${kernel}) / Mac OS X 10.5 Leopard]) AC_DEFINE([DARWIN_VERS], DARWIN_10_5, [Darwin / Mac OS X version]) DEFAULT_SUPP="darwin9.supp ${DEFAULT_SUPP}" DEFAULT_SUPP="darwin9-drd.supp ${DEFAULT_SUPP}" ;; 10.*) AC_MSG_RESULT([Darwin 10.x (${kernel}) / Mac OS X 10.6 Snow Leopard]) AC_DEFINE([DARWIN_VERS], DARWIN_10_6, [Darwin / Mac OS X version]) DEFAULT_SUPP="darwin10.supp ${DEFAULT_SUPP}" DEFAULT_SUPP="darwin10-drd.supp ${DEFAULT_SUPP}" ;; 11.*) AC_MSG_RESULT([Darwin 11.x (${kernel}) / Mac OS X 10.7 Lion]) AC_DEFINE([DARWIN_VERS], DARWIN_10_7, [Darwin / Mac OS X version]) DEFAULT_SUPP="darwin11.supp ${DEFAULT_SUPP}" DEFAULT_SUPP="darwin10-drd.supp ${DEFAULT_SUPP}" ;; 12.*) AC_MSG_RESULT([Darwin 12.x (${kernel}) / Mac OS X 10.8 Mountain Lion]) AC_DEFINE([DARWIN_VERS], DARWIN_10_8, [Darwin / Mac OS X version]) DEFAULT_SUPP="darwin12.supp ${DEFAULT_SUPP}" DEFAULT_SUPP="darwin10-drd.supp ${DEFAULT_SUPP}" ;; 13.*) AC_MSG_RESULT([Darwin 13.x (${kernel}) / Mac OS X 10.9 Mavericks]) AC_DEFINE([DARWIN_VERS], DARWIN_10_9, [Darwin / Mac OS X version]) DEFAULT_SUPP="darwin13.supp ${DEFAULT_SUPP}" DEFAULT_SUPP="darwin10-drd.supp ${DEFAULT_SUPP}" ;; 14.*) AC_MSG_RESULT([Darwin 14.x (${kernel}) / Mac OS X 10.10 Yosemite]) AC_DEFINE([DARWIN_VERS], DARWIN_10_10, [Darwin / Mac OS X version]) DEFAULT_SUPP="darwin14.supp ${DEFAULT_SUPP}" DEFAULT_SUPP="darwin10-drd.supp ${DEFAULT_SUPP}" ;; 15.*) AC_MSG_RESULT([Darwin 15.x (${kernel}) / Mac OS X 10.11 El Capitan]) AC_DEFINE([DARWIN_VERS], DARWIN_10_11, [Darwin / Mac OS X version]) DEFAULT_SUPP="darwin15.supp ${DEFAULT_SUPP}" DEFAULT_SUPP="darwin10-drd.supp ${DEFAULT_SUPP}" ;; *) AC_MSG_RESULT([unsupported (${kernel})]) AC_MSG_ERROR([Valgrind works on Darwin 10.x, 11.x, 12.x, 13.x, 14.x and 15.x (Mac OS X 10.6/7/8/9/10/11)]) ;; esac ;; solaris2.11*) AC_MSG_RESULT([ok (${host_os})]) VGCONF_OS="solaris" DEFAULT_SUPP="solaris11.supp ${DEFAULT_SUPP}" ;; solaris2.12*) AC_MSG_RESULT([ok (${host_os})]) VGCONF_OS="solaris" DEFAULT_SUPP="solaris12.supp ${DEFAULT_SUPP}" ;; *) AC_MSG_RESULT([no (${host_os})]) AC_MSG_ERROR([Valgrind is operating system specific. Sorry.]) ;; esac #---------------------------------------------------------------------------- # If we are building on a 64 bit platform test to see if the system # supports building 32 bit programs and disable 32 bit support if it # does not support building 32 bit programs case "$ARCH_MAX-$VGCONF_OS" in amd64-linux|ppc64be-linux|arm64-linux|amd64-solaris) AC_MSG_CHECKING([for 32 bit build support]) safe_CFLAGS=$CFLAGS CFLAGS="-m32" AC_LINK_IFELSE([AC_LANG_PROGRAM([[]], [[ return 0; ]])], [ AC_MSG_RESULT([yes]) ], [ vg_cv_only64bit="yes" AC_MSG_RESULT([no]) ]) CFLAGS=$safe_CFLAGS;; esac if test x$vg_cv_only64bit = xyes -a x$vg_cv_only32bit = xyes; then AC_MSG_ERROR( [--enable-only32bit was specified but system does not support 32 bit builds]) fi #---------------------------------------------------------------------------- # VGCONF_ARCH_PRI is the arch for the primary build target, eg. "amd64". By # default it's the same as ARCH_MAX. But if, say, we do a build on an amd64 # machine, but --enable-only32bit has been requested, then ARCH_MAX (see # above) will be "amd64" since that reflects the most that this cpu can do, # but VGCONF_ARCH_PRI will be downgraded to "x86", since that reflects the # arch corresponding to the primary build (VGCONF_PLATFORM_PRI_CAPS). It is # passed in to compilation of many C files via -VGA_$(VGCONF_ARCH_PRI) and # -VGP_$(VGCONF_ARCH_PRI)_$(VGCONF_OS). AC_SUBST(VGCONF_ARCH_PRI) # VGCONF_ARCH_SEC is the arch for the secondary build target, eg. "x86". # It is passed in to compilation of many C files via -VGA_$(VGCONF_ARCH_SEC) # and -VGP_$(VGCONF_ARCH_SEC)_$(VGCONF_OS), if there is a secondary target. # It is empty if there is no secondary target. AC_SUBST(VGCONF_ARCH_SEC) # VGCONF_PLATFORM_PRI_CAPS is the primary build target, eg. "AMD64_LINUX". # The entire system, including regression and performance tests, will be # built for this target. The "_CAPS" indicates that the name is in capital # letters, and it also uses '_' rather than '-' as a separator, because it's # used to create various Makefile variables, which are all in caps by # convention and cannot contain '-' characters. This is in contrast to # VGCONF_ARCH_PRI and VGCONF_OS which are not in caps. AC_SUBST(VGCONF_PLATFORM_PRI_CAPS) # VGCONF_PLATFORM_SEC_CAPS is the secondary build target, if there is one. # Valgrind and tools will also be built for this target, but not the # regression or performance tests. # # By default, the primary arch is the same as the "max" arch, as commented # above (at the definition of ARCH_MAX). We may choose to downgrade it in # the big case statement just below here, in the case where we're building # on a 64 bit machine but have been requested only to do a 32 bit build. AC_SUBST(VGCONF_PLATFORM_SEC_CAPS) AC_MSG_CHECKING([for a supported CPU/OS combination]) # NB. The load address for a given platform may be specified in more # than one place, in some cases, depending on whether we're doing a biarch, # 32-bit only or 64-bit only build. eg see case for amd64-linux below. # Be careful to give consistent values in all subcases. Also, all four # valt_load_addres_{pri,sec}_{norml,inner} values must always be set, # even if it is to "0xUNSET". # case "$ARCH_MAX-$VGCONF_OS" in x86-linux) VGCONF_ARCH_PRI="x86" VGCONF_ARCH_SEC="" VGCONF_PLATFORM_PRI_CAPS="X86_LINUX" VGCONF_PLATFORM_SEC_CAPS="" valt_load_address_pri_norml="0x38000000" valt_load_address_pri_inner="0x28000000" valt_load_address_sec_norml="0xUNSET" valt_load_address_sec_inner="0xUNSET" AC_MSG_RESULT([ok (${ARCH_MAX}-${VGCONF_OS})]) ;; amd64-linux) valt_load_address_sec_norml="0xUNSET" valt_load_address_sec_inner="0xUNSET" if test x$vg_cv_only64bit = xyes; then VGCONF_ARCH_PRI="amd64" VGCONF_ARCH_SEC="" VGCONF_PLATFORM_PRI_CAPS="AMD64_LINUX" VGCONF_PLATFORM_SEC_CAPS="" valt_load_address_pri_norml="0x38000000" valt_load_address_pri_inner="0x28000000" elif test x$vg_cv_only32bit = xyes; then VGCONF_ARCH_PRI="x86" VGCONF_ARCH_SEC="" VGCONF_PLATFORM_PRI_CAPS="X86_LINUX" VGCONF_PLATFORM_SEC_CAPS="" valt_load_address_pri_norml="0x38000000" valt_load_address_pri_inner="0x28000000" else VGCONF_ARCH_PRI="amd64" VGCONF_ARCH_SEC="x86" VGCONF_PLATFORM_PRI_CAPS="AMD64_LINUX" VGCONF_PLATFORM_SEC_CAPS="X86_LINUX" valt_load_address_pri_norml="0x38000000" valt_load_address_pri_inner="0x28000000" valt_load_address_sec_norml="0x38000000" valt_load_address_sec_inner="0x28000000" fi AC_MSG_RESULT([ok (${ARCH_MAX}-${VGCONF_OS})]) ;; ppc32-linux) VGCONF_ARCH_PRI="ppc32" VGCONF_ARCH_SEC="" VGCONF_PLATFORM_PRI_CAPS="PPC32_LINUX" VGCONF_PLATFORM_SEC_CAPS="" valt_load_address_pri_norml="0x38000000" valt_load_address_pri_inner="0x28000000" valt_load_address_sec_norml="0xUNSET" valt_load_address_sec_inner="0xUNSET" AC_MSG_RESULT([ok (${ARCH_MAX}-${VGCONF_OS})]) ;; ppc64be-linux) valt_load_address_sec_norml="0xUNSET" valt_load_address_sec_inner="0xUNSET" if test x$vg_cv_only64bit = xyes; then VGCONF_ARCH_PRI="ppc64be" VGCONF_ARCH_SEC="" VGCONF_PLATFORM_PRI_CAPS="PPC64BE_LINUX" VGCONF_PLATFORM_SEC_CAPS="" valt_load_address_pri_norml="0x38000000" valt_load_address_pri_inner="0x28000000" elif test x$vg_cv_only32bit = xyes; then VGCONF_ARCH_PRI="ppc32" VGCONF_ARCH_SEC="" VGCONF_PLATFORM_PRI_CAPS="PPC32_LINUX" VGCONF_PLATFORM_SEC_CAPS="" valt_load_address_pri_norml="0x38000000" valt_load_address_pri_inner="0x28000000" else VGCONF_ARCH_PRI="ppc64be" VGCONF_ARCH_SEC="ppc32" VGCONF_PLATFORM_PRI_CAPS="PPC64BE_LINUX" VGCONF_PLATFORM_SEC_CAPS="PPC32_LINUX" valt_load_address_pri_norml="0x38000000" valt_load_address_pri_inner="0x28000000" valt_load_address_sec_norml="0x38000000" valt_load_address_sec_inner="0x28000000" fi AC_MSG_RESULT([ok (${ARCH_MAX}-${VGCONF_OS})]) ;; ppc64le-linux) # Little Endian is only supported on PPC64 valt_load_address_sec_norml="0xUNSET" valt_load_address_sec_inner="0xUNSET" VGCONF_ARCH_PRI="ppc64le" VGCONF_ARCH_SEC="" VGCONF_PLATFORM_PRI_CAPS="PPC64LE_LINUX" VGCONF_PLATFORM_SEC_CAPS="" valt_load_address_pri_norml="0x38000000" valt_load_address_pri_inner="0x28000000" AC_MSG_RESULT([ok (${ARCH_MAX}-${VGCONF_OS})]) ;; # Darwin gets identified as 32-bit even when it supports 64-bit. # (Not sure why, possibly because 'uname' returns "i386"?) Just about # all Macs support both 32-bit and 64-bit, so we just build both. If # someone has a really old 32-bit only machine they can (hopefully?) # build with --enable-only32bit. See bug 243362. x86-darwin|amd64-darwin) ARCH_MAX="amd64" valt_load_address_sec_norml="0xUNSET" valt_load_address_sec_inner="0xUNSET" if test x$vg_cv_only64bit = xyes; then VGCONF_ARCH_PRI="amd64" VGCONF_ARCH_SEC="" VGCONF_PLATFORM_PRI_CAPS="AMD64_DARWIN" VGCONF_PLATFORM_SEC_CAPS="" valt_load_address_pri_norml="0x138000000" valt_load_address_pri_inner="0x128000000" elif test x$vg_cv_only32bit = xyes; then VGCONF_ARCH_PRI="x86" VGCONF_ARCH_SEC="" VGCONF_PLATFORM_PRI_CAPS="X86_DARWIN" VGCONF_PLATFORM_SEC_CAPS="" VGCONF_ARCH_PRI_CAPS="x86" valt_load_address_pri_norml="0x38000000" valt_load_address_pri_inner="0x28000000" else VGCONF_ARCH_PRI="amd64" VGCONF_ARCH_SEC="x86" VGCONF_PLATFORM_PRI_CAPS="AMD64_DARWIN" VGCONF_PLATFORM_SEC_CAPS="X86_DARWIN" valt_load_address_pri_norml="0x138000000" valt_load_address_pri_inner="0x128000000" valt_load_address_sec_norml="0x38000000" valt_load_address_sec_inner="0x28000000" fi AC_MSG_RESULT([ok (${ARCH_MAX}-${VGCONF_OS})]) ;; arm-linux) VGCONF_ARCH_PRI="arm" VGCONF_PLATFORM_PRI_CAPS="ARM_LINUX" VGCONF_PLATFORM_SEC_CAPS="" valt_load_address_pri_norml="0x38000000" valt_load_address_pri_inner="0x28000000" valt_load_address_sec_norml="0xUNSET" valt_load_address_sec_inner="0xUNSET" AC_MSG_RESULT([ok (${host_cpu}-${host_os})]) ;; arm64-linux) valt_load_address_sec_norml="0xUNSET" valt_load_address_sec_inner="0xUNSET" if test x$vg_cv_only64bit = xyes; then VGCONF_ARCH_PRI="arm64" VGCONF_ARCH_SEC="" VGCONF_PLATFORM_PRI_CAPS="ARM64_LINUX" VGCONF_PLATFORM_SEC_CAPS="" valt_load_address_pri_norml="0x38000000" valt_load_address_pri_inner="0x28000000" elif test x$vg_cv_only32bit = xyes; then VGCONF_ARCH_PRI="arm" VGCONF_ARCH_SEC="" VGCONF_PLATFORM_PRI_CAPS="ARM_LINUX" VGCONF_PLATFORM_SEC_CAPS="" valt_load_address_pri_norml="0x38000000" valt_load_address_pri_inner="0x28000000" else VGCONF_ARCH_PRI="arm64" VGCONF_ARCH_SEC="arm" VGCONF_PLATFORM_PRI_CAPS="ARM64_LINUX" VGCONF_PLATFORM_SEC_CAPS="ARM_LINUX" valt_load_address_pri_norml="0x38000000" valt_load_address_pri_inner="0x28000000" valt_load_address_sec_norml="0x38000000" valt_load_address_sec_inner="0x28000000" fi AC_MSG_RESULT([ok (${ARCH_MAX}-${VGCONF_OS})]) ;; s390x-linux) VGCONF_ARCH_PRI="s390x" VGCONF_ARCH_SEC="" VGCONF_PLATFORM_PRI_CAPS="S390X_LINUX" VGCONF_PLATFORM_SEC_CAPS="" # To improve branch prediction hit rate we want to have # the generated code close to valgrind (host) code valt_load_address_pri_norml="0x800000000" valt_load_address_pri_inner="0x810000000" valt_load_address_sec_norml="0xUNSET" valt_load_address_sec_inner="0xUNSET" AC_MSG_RESULT([ok (${ARCH_MAX}-${VGCONF_OS})]) ;; mips32-linux) VGCONF_ARCH_PRI="mips32" VGCONF_PLATFORM_PRI_CAPS="MIPS32_LINUX" VGCONF_PLATFORM_SEC_CAPS="" valt_load_address_pri_norml="0x38000000" valt_load_address_pri_inner="0x28000000" valt_load_address_sec_norml="0xUNSET" valt_load_address_sec_inner="0xUNSET" AC_MSG_RESULT([ok (${ARCH_MAX}-${VGCONF_OS})]) ;; mips64-linux) VGCONF_ARCH_PRI="mips64" VGCONF_PLATFORM_PRI_CAPS="MIPS64_LINUX" VGCONF_PLATFORM_SEC_CAPS="" valt_load_address_pri_norml="0x38000000" valt_load_address_pri_inner="0x28000000" valt_load_address_sec_norml="0xUNSET" valt_load_address_sec_inner="0xUNSET" AC_MSG_RESULT([ok (${ARCH_MAX}-${VGCONF_OS})]) ;; tilegx-linux) VGCONF_ARCH_PRI="tilegx" VGCONF_ARCH_SEC="" VGCONF_PLATFORM_PRI_CAPS="TILEGX_LINUX" VGCONF_PLATFORM_SEC_CAPS="" valt_load_address_pri_norml="0x38000000" valt_load_address_pri_inner="0x28000000" valt_load_address_sec_norml="0xUNSET" valt_load_address_sec_inner="0xUNSET" AC_MSG_RESULT([ok (${ARCH_MAX}-${VGCONF_OS})]) ;; x86-solaris) VGCONF_ARCH_PRI="x86" VGCONF_ARCH_SEC="" VGCONF_PLATFORM_PRI_CAPS="X86_SOLARIS" VGCONF_PLATFORM_SEC_CAPS="" valt_load_address_pri_norml="0x38000000" valt_load_address_pri_inner="0x28000000" valt_load_address_sec_norml="0xUNSET" valt_load_address_sec_inner="0xUNSET" AC_MSG_RESULT([ok (${ARCH_MAX}-${VGCONF_OS})]) ;; amd64-solaris) valt_load_address_sec_norml="0xUNSET" valt_load_address_sec_inner="0xUNSET" if test x$vg_cv_only64bit = xyes; then VGCONF_ARCH_PRI="amd64" VGCONF_ARCH_SEC="" VGCONF_PLATFORM_PRI_CAPS="AMD64_SOLARIS" VGCONF_PLATFORM_SEC_CAPS="" valt_load_address_pri_norml="0x38000000" valt_load_address_pri_inner="0x28000000" elif test x$vg_cv_only32bit = xyes; then VGCONF_ARCH_PRI="x86" VGCONF_ARCH_SEC="" VGCONF_PLATFORM_PRI_CAPS="X86_SOLARIS" VGCONF_PLATFORM_SEC_CAPS="" valt_load_address_pri_norml="0x38000000" valt_load_address_pri_inner="0x28000000" else VGCONF_ARCH_PRI="amd64" VGCONF_ARCH_SEC="x86" VGCONF_PLATFORM_PRI_CAPS="AMD64_SOLARIS" VGCONF_PLATFORM_SEC_CAPS="X86_SOLARIS" valt_load_address_pri_norml="0x38000000" valt_load_address_pri_inner="0x28000000" valt_load_address_sec_norml="0x38000000" valt_load_address_sec_inner="0x28000000" fi AC_MSG_RESULT([ok (${ARCH_MAX}-${VGCONF_OS})]) ;; *) VGCONF_ARCH_PRI="unknown" VGCONF_ARCH_SEC="unknown" VGCONF_PLATFORM_PRI_CAPS="UNKNOWN" VGCONF_PLATFORM_SEC_CAPS="UNKNOWN" valt_load_address_pri_norml="0xUNSET" valt_load_address_pri_inner="0xUNSET" valt_load_address_sec_norml="0xUNSET" valt_load_address_sec_inner="0xUNSET" AC_MSG_RESULT([no (${ARCH_MAX}-${VGCONF_OS})]) AC_MSG_ERROR([Valgrind is platform specific. Sorry. Please consider doing a port.]) ;; esac #---------------------------------------------------------------------------- # Set up VGCONF_ARCHS_INCLUDE_. Either one or two of these become # defined. AM_CONDITIONAL(VGCONF_ARCHS_INCLUDE_X86, test x$VGCONF_PLATFORM_PRI_CAPS = xX86_LINUX \ -o x$VGCONF_PLATFORM_SEC_CAPS = xX86_LINUX \ -o x$VGCONF_PLATFORM_PRI_CAPS = xX86_DARWIN \ -o x$VGCONF_PLATFORM_SEC_CAPS = xX86_DARWIN \ -o x$VGCONF_PLATFORM_PRI_CAPS = xX86_SOLARIS \ -o x$VGCONF_PLATFORM_SEC_CAPS = xX86_SOLARIS ) AM_CONDITIONAL(VGCONF_ARCHS_INCLUDE_AMD64, test x$VGCONF_PLATFORM_PRI_CAPS = xAMD64_LINUX \ -o x$VGCONF_PLATFORM_PRI_CAPS = xAMD64_DARWIN \ -o x$VGCONF_PLATFORM_PRI_CAPS = xAMD64_SOLARIS ) AM_CONDITIONAL(VGCONF_ARCHS_INCLUDE_PPC32, test x$VGCONF_PLATFORM_PRI_CAPS = xPPC32_LINUX \ -o x$VGCONF_PLATFORM_SEC_CAPS = xPPC32_LINUX ) AM_CONDITIONAL(VGCONF_ARCHS_INCLUDE_PPC64, test x$VGCONF_PLATFORM_PRI_CAPS = xPPC64BE_LINUX \ -o x$VGCONF_PLATFORM_PRI_CAPS = xPPC64LE_LINUX ) AM_CONDITIONAL(VGCONF_ARCHS_INCLUDE_ARM, test x$VGCONF_PLATFORM_PRI_CAPS = xARM_LINUX \ -o x$VGCONF_PLATFORM_SEC_CAPS = xARM_LINUX ) AM_CONDITIONAL(VGCONF_ARCHS_INCLUDE_ARM64, test x$VGCONF_PLATFORM_PRI_CAPS = xARM64_LINUX ) AM_CONDITIONAL(VGCONF_ARCHS_INCLUDE_S390X, test x$VGCONF_PLATFORM_PRI_CAPS = xS390X_LINUX ) AM_CONDITIONAL(VGCONF_ARCHS_INCLUDE_MIPS32, test x$VGCONF_PLATFORM_PRI_CAPS = xMIPS32_LINUX ) AM_CONDITIONAL(VGCONF_ARCHS_INCLUDE_MIPS64, test x$VGCONF_PLATFORM_PRI_CAPS = xMIPS64_LINUX ) AM_CONDITIONAL(VGCONF_ARCHS_INCLUDE_TILEGX, test x$VGCONF_PLATFORM_PRI_CAPS = xTILEGX_LINUX ) # Set up VGCONF_PLATFORMS_INCLUDE_. Either one or two of these # become defined. AM_CONDITIONAL(VGCONF_PLATFORMS_INCLUDE_X86_LINUX, test x$VGCONF_PLATFORM_PRI_CAPS = xX86_LINUX \ -o x$VGCONF_PLATFORM_SEC_CAPS = xX86_LINUX) AM_CONDITIONAL(VGCONF_PLATFORMS_INCLUDE_AMD64_LINUX, test x$VGCONF_PLATFORM_PRI_CAPS = xAMD64_LINUX) AM_CONDITIONAL(VGCONF_PLATFORMS_INCLUDE_PPC32_LINUX, test x$VGCONF_PLATFORM_PRI_CAPS = xPPC32_LINUX \ -o x$VGCONF_PLATFORM_SEC_CAPS = xPPC32_LINUX) AM_CONDITIONAL(VGCONF_PLATFORMS_INCLUDE_PPC64BE_LINUX, test x$VGCONF_PLATFORM_PRI_CAPS = xPPC64BE_LINUX) AM_CONDITIONAL(VGCONF_PLATFORMS_INCLUDE_PPC64LE_LINUX, test x$VGCONF_PLATFORM_PRI_CAPS = xPPC64LE_LINUX) AM_CONDITIONAL(VGCONF_PLATFORMS_INCLUDE_ARM_LINUX, test x$VGCONF_PLATFORM_PRI_CAPS = xARM_LINUX \ -o x$VGCONF_PLATFORM_SEC_CAPS = xARM_LINUX) AM_CONDITIONAL(VGCONF_PLATFORMS_INCLUDE_ARM64_LINUX, test x$VGCONF_PLATFORM_PRI_CAPS = xARM64_LINUX) AM_CONDITIONAL(VGCONF_PLATFORMS_INCLUDE_S390X_LINUX, test x$VGCONF_PLATFORM_PRI_CAPS = xS390X_LINUX \ -o x$VGCONF_PLATFORM_SEC_CAPS = xS390X_LINUX) AM_CONDITIONAL(VGCONF_PLATFORMS_INCLUDE_MIPS32_LINUX, test x$VGCONF_PLATFORM_PRI_CAPS = xMIPS32_LINUX) AM_CONDITIONAL(VGCONF_PLATFORMS_INCLUDE_MIPS64_LINUX, test x$VGCONF_PLATFORM_PRI_CAPS = xMIPS64_LINUX) AM_CONDITIONAL(VGCONF_PLATFORMS_INCLUDE_TILEGX_LINUX, test x$VGCONF_PLATFORM_PRI_CAPS = xTILEGX_LINUX) AM_CONDITIONAL(VGCONF_PLATFORMS_INCLUDE_X86_DARWIN, test x$VGCONF_PLATFORM_PRI_CAPS = xX86_DARWIN \ -o x$VGCONF_PLATFORM_SEC_CAPS = xX86_DARWIN) AM_CONDITIONAL(VGCONF_PLATFORMS_INCLUDE_AMD64_DARWIN, test x$VGCONF_PLATFORM_PRI_CAPS = xAMD64_DARWIN) AM_CONDITIONAL(VGCONF_PLATFORMS_INCLUDE_X86_SOLARIS, test x$VGCONF_PLATFORM_PRI_CAPS = xX86_SOLARIS \ -o x$VGCONF_PLATFORM_SEC_CAPS = xX86_SOLARIS) AM_CONDITIONAL(VGCONF_PLATFORMS_INCLUDE_AMD64_SOLARIS, test x$VGCONF_PLATFORM_PRI_CAPS = xAMD64_SOLARIS) # Similarly, set up VGCONF_OS_IS_. Exactly one of these becomes defined. # Relies on the assumption that the primary and secondary targets are # for the same OS, so therefore only necessary to test the primary. AM_CONDITIONAL(VGCONF_OS_IS_LINUX, test x$VGCONF_PLATFORM_PRI_CAPS = xX86_LINUX \ -o x$VGCONF_PLATFORM_PRI_CAPS = xAMD64_LINUX \ -o x$VGCONF_PLATFORM_PRI_CAPS = xPPC32_LINUX \ -o x$VGCONF_PLATFORM_PRI_CAPS = xPPC64BE_LINUX \ -o x$VGCONF_PLATFORM_PRI_CAPS = xPPC64LE_LINUX \ -o x$VGCONF_PLATFORM_PRI_CAPS = xARM_LINUX \ -o x$VGCONF_PLATFORM_PRI_CAPS = xARM64_LINUX \ -o x$VGCONF_PLATFORM_PRI_CAPS = xS390X_LINUX \ -o x$VGCONF_PLATFORM_PRI_CAPS = xMIPS32_LINUX \ -o x$VGCONF_PLATFORM_PRI_CAPS = xMIPS64_LINUX \ -o x$VGCONF_PLATFORM_PRI_CAPS = xTILEGX_LINUX) AM_CONDITIONAL(VGCONF_OS_IS_DARWIN, test x$VGCONF_PLATFORM_PRI_CAPS = xX86_DARWIN \ -o x$VGCONF_PLATFORM_PRI_CAPS = xAMD64_DARWIN) AM_CONDITIONAL(VGCONF_OS_IS_SOLARIS, test x$VGCONF_PLATFORM_PRI_CAPS = xX86_SOLARIS \ -o x$VGCONF_PLATFORM_PRI_CAPS = xAMD64_SOLARIS) # Sometimes, in the Makefile.am files, it's useful to know whether or not # there is a secondary target. AM_CONDITIONAL(VGCONF_HAVE_PLATFORM_SEC, test x$VGCONF_PLATFORM_SEC_CAPS != x) dnl automake-1.10 does not have AM_COND_IF (added in 1.11), so we supply a dnl fallback definition dnl The macro is courtesy of Dave Hart: dnl https://lists.gnu.org/archive/html/automake/2010-12/msg00045.html m4_ifndef([AM_COND_IF], [AC_DEFUN([AM_COND_IF], [ if test -z "$$1_TRUE"; then : m4_n([$2])[]dnl m4_ifval([$3], [else $3 ])dnl fi[]dnl ])]) #---------------------------------------------------------------------------- # Inner Valgrind? #---------------------------------------------------------------------------- # Check if this should be built as an inner Valgrind, to be run within # another Valgrind. Choose the load address accordingly. AC_SUBST(VALT_LOAD_ADDRESS_PRI) AC_SUBST(VALT_LOAD_ADDRESS_SEC) AC_CACHE_CHECK([for use as an inner Valgrind], vg_cv_inner, [AC_ARG_ENABLE(inner, [ --enable-inner enables self-hosting], [vg_cv_inner=$enableval], [vg_cv_inner=no])]) if test "$vg_cv_inner" = yes; then AC_DEFINE([ENABLE_INNER], 1, [configured to run as an inner Valgrind]) VALT_LOAD_ADDRESS_PRI=$valt_load_address_pri_inner VALT_LOAD_ADDRESS_SEC=$valt_load_address_sec_inner else VALT_LOAD_ADDRESS_PRI=$valt_load_address_pri_norml VALT_LOAD_ADDRESS_SEC=$valt_load_address_sec_norml fi #---------------------------------------------------------------------------- # Undefined behaviour sanitiser #---------------------------------------------------------------------------- # Check whether we should build with the undefined beahviour sanitiser. AC_CACHE_CHECK([for using the undefined behaviour sanitiser], vg_cv_ubsan, [AC_ARG_ENABLE(ubsan, [ --enable-ubsan enables the undefined behaviour sanitiser], [vg_cv_ubsan=$enableval], [vg_cv_ubsan=no])]) #---------------------------------------------------------------------------- # Define MIPS_PAGE_SHIFT (--with-pagesize) #---------------------------------------------------------------------------- AC_ARG_WITH(pagesize, [ --with-pagesize= override detected page size (4, 16 or 64)], [psize=$withval], [psize=0] ) if test "$psize" = "0"; then psizer=`getconf PAGESIZE` psize=$((${psizer}/1024)) fi if test "$psize" = "4"; then AC_DEFINE([MIPS_PAGE_SHIFT], 12, [configured page size 4k]) elif test "$psize" = "16"; then AC_DEFINE([MIPS_PAGE_SHIFT], 14, [configured page size 16k]) elif test "$psize" = "64"; then AC_DEFINE([MIPS_PAGE_SHIFT], 16, [configured page size 64k]) else AC_DEFINE([MIPS_PAGE_SHIFT], 12, [configured default page size 4k]) fi AC_MSG_RESULT([checking for Pagesize... ${psize}k]) #---------------------------------------------------------------------------- # Extra fine-tuning of installation directories #---------------------------------------------------------------------------- AC_ARG_WITH(tmpdir, [ --with-tmpdir=PATH Specify path for temporary files], tmpdir="$withval", tmpdir="/tmp") AC_DEFINE_UNQUOTED(VG_TMPDIR, "$tmpdir", [Temporary files directory]) AC_SUBST(VG_TMPDIR, [$tmpdir]) #---------------------------------------------------------------------------- # Libc and suppressions #---------------------------------------------------------------------------- # This variable will collect the suppression files to be used. AC_SUBST(DEFAULT_SUPP) AC_CHECK_HEADER([features.h]) if test x$ac_cv_header_features_h = xyes; then rm -f conftest.$ac_ext cat <<_ACEOF >conftest.$ac_ext #include #if defined(__GNU_LIBRARY__) && defined(__GLIBC__) && defined(__GLIBC_MINOR__) glibc version is: __GLIBC__ __GLIBC_MINOR__ #endif _ACEOF GLIBC_VERSION="`$CPP -P conftest.$ac_ext | $SED -n 's/^glibc version is: //p' | $SED 's/ /./g'`" fi # not really a version check AC_EGREP_CPP([DARWIN_LIBC], [ #include #if defined(__DARWIN_VERS_1050) DARWIN_LIBC #endif ], GLIBC_VERSION="darwin") # not really a version check AC_EGREP_CPP([BIONIC_LIBC], [ #if defined(__ANDROID__) BIONIC_LIBC #endif ], GLIBC_VERSION="bionic") # there is only one version of libc on Solaris if test x$VGCONF_PLATFORM_PRI_CAPS = xX86_SOLARIS \ -o x$VGCONF_PLATFORM_PRI_CAPS = xAMD64_SOLARIS; then GLIBC_VERSION="solaris" fi AC_MSG_CHECKING([the glibc version]) case "${GLIBC_VERSION}" in 2.2) AC_MSG_RESULT(${GLIBC_VERSION} family) DEFAULT_SUPP="glibc-2.2.supp ${DEFAULT_SUPP}" DEFAULT_SUPP="glibc-2.2-LinuxThreads-helgrind.supp ${DEFAULT_SUPP}" DEFAULT_SUPP="glibc-2.X-drd.supp ${DEFAULT_SUPP}" ;; 2.[[3-6]]) AC_MSG_RESULT(${GLIBC_VERSION} family) DEFAULT_SUPP="glibc-${GLIBC_VERSION}.supp ${DEFAULT_SUPP}" DEFAULT_SUPP="glibc-2.34567-NPTL-helgrind.supp ${DEFAULT_SUPP}" DEFAULT_SUPP="glibc-2.X-drd.supp ${DEFAULT_SUPP}" ;; 2.[[7-9]]) AC_MSG_RESULT(${GLIBC_VERSION} family) DEFAULT_SUPP="glibc-2.X.supp ${DEFAULT_SUPP}" DEFAULT_SUPP="glibc-2.34567-NPTL-helgrind.supp ${DEFAULT_SUPP}" DEFAULT_SUPP="glibc-2.X-drd.supp ${DEFAULT_SUPP}" ;; 2.10|2.11) AC_MSG_RESULT(${GLIBC_VERSION} family) AC_DEFINE([GLIBC_MANDATORY_STRLEN_REDIRECT], 1, [Define to 1 if strlen() has been optimized heavily (amd64 glibc >= 2.10)]) DEFAULT_SUPP="glibc-2.X.supp ${DEFAULT_SUPP}" DEFAULT_SUPP="glibc-2.34567-NPTL-helgrind.supp ${DEFAULT_SUPP}" DEFAULT_SUPP="glibc-2.X-drd.supp ${DEFAULT_SUPP}" ;; 2.*) AC_MSG_RESULT(${GLIBC_VERSION} family) AC_DEFINE([GLIBC_MANDATORY_STRLEN_REDIRECT], 1, [Define to 1 if strlen() has been optimized heavily (amd64 glibc >= 2.10)]) AC_DEFINE([GLIBC_MANDATORY_INDEX_AND_STRLEN_REDIRECT], 1, [Define to 1 if index() and strlen() have been optimized heavily (x86 glibc >= 2.12)]) DEFAULT_SUPP="glibc-2.X.supp ${DEFAULT_SUPP}" DEFAULT_SUPP="glibc-2.34567-NPTL-helgrind.supp ${DEFAULT_SUPP}" DEFAULT_SUPP="glibc-2.X-drd.supp ${DEFAULT_SUPP}" ;; darwin) AC_MSG_RESULT(Darwin) AC_DEFINE([DARWIN_LIBC], 1, [Define to 1 if you're using Darwin]) # DEFAULT_SUPP set by kernel version check above. ;; bionic) AC_MSG_RESULT(Bionic) AC_DEFINE([BIONIC_LIBC], 1, [Define to 1 if you're using Bionic]) DEFAULT_SUPP="bionic.supp ${DEFAULT_SUPP}" ;; solaris) AC_MSG_RESULT(Solaris) # DEFAULT_SUPP set in host_os switch-case above. # No other suppression file is used. ;; 2.0|2.1|*) AC_MSG_RESULT([unsupported version ${GLIBC_VERSION}]) AC_MSG_ERROR([Valgrind requires glibc version 2.2 or later,]) AC_MSG_ERROR([Darwin libc, Bionic libc or Solaris libc]) ;; esac AC_SUBST(GLIBC_VERSION) if test "$VGCONF_OS" != "solaris"; then # Add default suppressions for the X client libraries. Make no # attempt to detect whether such libraries are installed on the # build machine (or even if any X facilities are present); just # add the suppressions antidisirregardless. DEFAULT_SUPP="xfree-4.supp ${DEFAULT_SUPP}" DEFAULT_SUPP="xfree-3.supp ${DEFAULT_SUPP}" # Add glibc and X11 suppressions for exp-sgcheck DEFAULT_SUPP="exp-sgcheck.supp ${DEFAULT_SUPP}" fi #---------------------------------------------------------------------------- # Platform variants? #---------------------------------------------------------------------------- # Normally the PLAT = (ARCH, OS) characterisation of the platform is enough. # But there are times where we need a bit more control. The motivating # and currently only case is Android: this is almost identical to # {x86,arm,mips}-linux, but not quite. So this introduces the concept of # platform variant tags, which get passed in the compile as # -DVGPV___ along with the main -DVGP__ definition. # # In almost all cases, the bit is "vanilla". But for Android # it is "android" instead. # # Consequently (eg), plain arm-linux would build with # # -DVGP_arm_linux -DVGPV_arm_linux_vanilla # # whilst an Android build would have # # -DVGP_arm_linux -DVGPV_arm_linux_android # # Same for x86. The setup of the platform variant is pushed relatively far # down this file in order that we can inspect any of the variables set above. # In the normal case .. VGCONF_PLATVARIANT="vanilla" # Android ? if test "$GLIBC_VERSION" = "bionic"; then VGCONF_PLATVARIANT="android" fi AC_SUBST(VGCONF_PLATVARIANT) # FIXME: do we also want to define automake variables # VGCONF_PLATVARIANT_IS_, where WHATEVER is (currently) # VANILLA or ANDROID ? This would be in the style of VGCONF_ARCHS_INCLUDE, # VGCONF_PLATFORMS_INCLUDE and VGCONF_OS_IS above? Could easily enough # do that. Problem is that we can't do and-ing in Makefile.am's, but # that's what we'd need to do to use this, since what we'd want to write # is something like # # VGCONF_PLATFORMS_INCLUDE_ARM_LINUX && VGCONF_PLATVARIANT_IS_ANDROID # # Hmm. Can't think of a nice clean solution to this. AM_CONDITIONAL(VGCONF_PLATVARIANT_IS_VANILLA, test x$VGCONF_PLATVARIANT = xvanilla) AM_CONDITIONAL(VGCONF_PLATVARIANT_IS_ANDROID, test x$VGCONF_PLATVARIANT = xandroid) #---------------------------------------------------------------------------- # Checking for various library functions and other definitions #---------------------------------------------------------------------------- # Check for AT_FDCWD AC_MSG_CHECKING([for AT_FDCWD]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ #define _GNU_SOURCE #include #include ]], [[ int a = AT_FDCWD; ]])], [ ac_have_at_fdcwd=yes AC_MSG_RESULT([yes]) ], [ ac_have_at_fdcwd=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL([HAVE_AT_FDCWD], [test x$ac_have_at_fdcwd = xyes]) # Check for stpncpy function definition in string.h # This explicitly checks with _GNU_SOURCE defined since that is also # used in the test case (some systems might define it without anyway # since stpncpy is part of The Open Group Base Specifications Issue 7 # IEEE Std 1003.1-2008. AC_MSG_CHECKING([for stpncpy]) AC_LINK_IFELSE([AC_LANG_PROGRAM([[ #define _GNU_SOURCE #include ]], [[ char *d; char *s; size_t n = 0; char *r = stpncpy(d, s, n); ]])], [ ac_have_gnu_stpncpy=yes AC_MSG_RESULT([yes]) ], [ ac_have_gnu_stpncpy=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL([HAVE_GNU_STPNCPY], [test x$ac_have_gnu_stpncpy = xyes]) # Check for PTRACE_GETREGS AC_MSG_CHECKING([for PTRACE_GETREGS]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ #include #include #include #include ]], [[ void *p; long res = ptrace (PTRACE_GETREGS, 0, p, p); ]])], [ AC_MSG_RESULT([yes]) AC_DEFINE([HAVE_PTRACE_GETREGS], 1, [Define to 1 if you have the `PTRACE_GETREGS' ptrace request.]) ], [ AC_MSG_RESULT([no]) ]) # Check for CLOCK_MONOTONIC AC_MSG_CHECKING([for CLOCK_MONOTONIC]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ #include ]], [[ struct timespec t; clock_gettime(CLOCK_MONOTONIC, &t); return 0; ]])], [ AC_MSG_RESULT([yes]) AC_DEFINE([HAVE_CLOCK_MONOTONIC], 1, [Define to 1 if you have the `CLOCK_MONOTONIC' constant.]) ], [ AC_MSG_RESULT([no]) ]) # Check for PTHREAD_RWLOCK_T AC_MSG_CHECKING([for pthread_rwlock_t]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ #define _GNU_SOURCE #include ]], [[ pthread_rwlock_t rwl; ]])], [ AC_MSG_RESULT([yes]) AC_DEFINE([HAVE_PTHREAD_RWLOCK_T], 1, [Define to 1 if you have the `pthread_rwlock_t' type.]) ], [ AC_MSG_RESULT([no]) ]) # Check for PTHREAD_MUTEX_ADAPTIVE_NP AC_MSG_CHECKING([for PTHREAD_MUTEX_ADAPTIVE_NP]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ #define _GNU_SOURCE #include ]], [[ return (PTHREAD_MUTEX_ADAPTIVE_NP); ]])], [ AC_MSG_RESULT([yes]) AC_DEFINE([HAVE_PTHREAD_MUTEX_ADAPTIVE_NP], 1, [Define to 1 if you have the `PTHREAD_MUTEX_ADAPTIVE_NP' constant.]) ], [ AC_MSG_RESULT([no]) ]) # Check for PTHREAD_MUTEX_ERRORCHECK_NP AC_MSG_CHECKING([for PTHREAD_MUTEX_ERRORCHECK_NP]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ #define _GNU_SOURCE #include ]], [[ return (PTHREAD_MUTEX_ERRORCHECK_NP); ]])], [ AC_MSG_RESULT([yes]) AC_DEFINE([HAVE_PTHREAD_MUTEX_ERRORCHECK_NP], 1, [Define to 1 if you have the `PTHREAD_MUTEX_ERRORCHECK_NP' constant.]) ], [ AC_MSG_RESULT([no]) ]) # Check for PTHREAD_MUTEX_RECURSIVE_NP AC_MSG_CHECKING([for PTHREAD_MUTEX_RECURSIVE_NP]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ #define _GNU_SOURCE #include ]], [[ return (PTHREAD_MUTEX_RECURSIVE_NP); ]])], [ AC_MSG_RESULT([yes]) AC_DEFINE([HAVE_PTHREAD_MUTEX_RECURSIVE_NP], 1, [Define to 1 if you have the `PTHREAD_MUTEX_RECURSIVE_NP' constant.]) ], [ AC_MSG_RESULT([no]) ]) # Check for PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP AC_MSG_CHECKING([for PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ #define _GNU_SOURCE #include ]], [[ pthread_mutex_t m = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP; return 0; ]])], [ AC_MSG_RESULT([yes]) AC_DEFINE([HAVE_PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP], 1, [Define to 1 if you have the `PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP' constant.]) ], [ AC_MSG_RESULT([no]) ]) # Check whether pthread_mutex_t has a member called __m_kind. AC_CHECK_MEMBER([pthread_mutex_t.__m_kind], [AC_DEFINE([HAVE_PTHREAD_MUTEX_T__M_KIND], 1, [Define to 1 if pthread_mutex_t has a member called __m_kind.]) ], [], [#include ]) # Check whether pthread_mutex_t has a member called __data.__kind. AC_CHECK_MEMBER([pthread_mutex_t.__data.__kind], [AC_DEFINE([HAVE_PTHREAD_MUTEX_T__DATA__KIND], 1, [Define to 1 if pthread_mutex_t has a member __data.__kind.]) ], [], [#include ]) # Convenience function. Set flags based on the existing HWCAP entries. # The AT_HWCAP entries are generated by glibc, and are based on # functions supported by the hardware/system/libc. # Subsequent support for whether the capability will actually be utilized # will also be checked against the compiler capabilities. # called as # AC_HWCAP_CONTAINS_FLAG[hwcap_string_to_match],[VARIABLE_TO_SET] AC_DEFUN([AC_HWCAP_CONTAINS_FLAG],[ AUXV_CHECK_FOR=$1 AC_MSG_CHECKING([if AT_HWCAP contains the $AUXV_CHECK_FOR indicator]) if LD_SHOW_AUXV=1 `which true` | grep ^AT_HWCAP | grep -q -w ${AUXV_CHECK_FOR} then AC_MSG_RESULT([yes]) AC_SUBST([$2],[yes]) else AC_MSG_RESULT([no]) AC_SUBST([$2],[]) fi ]) # gather hardware capabilities. (hardware/kernel/libc) AC_HWCAP_CONTAINS_FLAG([altivec],[HWCAP_HAS_ALTIVEC]) AC_HWCAP_CONTAINS_FLAG([vsx],[HWCAP_HAS_VSX]) AC_HWCAP_CONTAINS_FLAG([dfp],[HWCAP_HAS_DFP]) AC_HWCAP_CONTAINS_FLAG([arch_2_05],[HWCAP_HAS_ISA_2_05]) AC_HWCAP_CONTAINS_FLAG([arch_2_06],[HWCAP_HAS_ISA_2_06]) AC_HWCAP_CONTAINS_FLAG([arch_2_07],[HWCAP_HAS_ISA_2_07]) AC_HWCAP_CONTAINS_FLAG([htm],[HWCAP_HAS_HTM]) # ISA Levels AM_CONDITIONAL(HAS_ISA_2_05, [test x$HWCAP_HAS_ISA_2_05 = xyes]) AM_CONDITIONAL(HAS_ISA_2_06, [test x$HWCAP_HAS_ISA_2_06 = xyes]) # compiler support for isa 2.07 level instructions AC_MSG_CHECKING([that assembler knows ISA 2.07 instructions ]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ ]], [[ __asm__ __volatile__("mtvsrd 1,2 "); ]])], [ ac_asm_have_isa_2_07=yes AC_MSG_RESULT([yes]) ], [ ac_asm_have_isa_2_07=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(HAS_ISA_2_07, [test x$ac_asm_have_isa_2_07 = xyes \ -a x$HWCAP_HAS_ISA_2_07 = xyes]) # altivec (vsx) support. # does this compiler support -maltivec and does it have the include file # ? AC_MSG_CHECKING([for Altivec support in the compiler ]) safe_CFLAGS=$CFLAGS CFLAGS="-maltivec -Werror" AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ #include ]], [[ vector unsigned int v; ]])], [ ac_have_altivec=yes AC_MSG_RESULT([yes]) AC_DEFINE([HAS_ALTIVEC], 1, [Define to 1 if gcc/as can do Altivec.]) ], [ ac_have_altivec=no AC_MSG_RESULT([no]) ]) CFLAGS=$safe_CFLAGS AM_CONDITIONAL([HAS_ALTIVEC], [test x$ac_have_altivec = xyes \ -a x$HWCAP_HAS_ALTIVEC = xyes]) # Check that both: the compiler supports -mvsx and that the assembler # understands VSX instructions. If either of those doesn't work, # conclude that we can't do VSX. AC_MSG_CHECKING([for VSX compiler flag support]) safe_CFLAGS=$CFLAGS CFLAGS="-mvsx -Werror" AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ ]], [[ ]])], [ ac_compiler_supports_vsx_flag=yes AC_MSG_RESULT([yes]) ], [ ac_compiler_supports_vsx_flag=no AC_MSG_RESULT([no]) ]) CFLAGS=$safe_CFLAGS AC_MSG_CHECKING([for VSX support in the assembler ]) safe_CFLAGS=$CFLAGS CFLAGS="-mvsx -Werror" AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ #include ]], [[ vector unsigned int v; __asm__ __volatile__("xsmaddadp 32, 32, 33" ::: "memory","cc"); ]])], [ ac_compiler_supports_vsx=yes AC_MSG_RESULT([yes]) ], [ ac_compiler_supports_vsx=no AC_MSG_RESULT([no]) ]) CFLAGS=$safe_CFLAGS AM_CONDITIONAL([HAS_VSX], [test x$ac_compiler_supports_vsx_flag = xyes \ -a x$ac_compiler_supports_vsx = xyes \ -a x$HWCAP_HAS_VSX = xyes ]) # DFP (Decimal Float) AC_MSG_CHECKING([that assembler knows DFP]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ ]], [[ __asm__ __volatile__("dadd 1, 2, 3"); __asm__ __volatile__("dcffix 1, 2"); ]])], [ ac_asm_have_dfp=yes AC_MSG_RESULT([yes]) ], [ ac_asm_have_dfp=no AC_MSG_RESULT([no]) ]) AC_MSG_CHECKING([that compiler knows -mhard-dfp switch]) safe_CFLAGS=$CFLAGS CFLAGS="-mhard-dfp -Werror" AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ ]], [[ __asm__ __volatile__("dadd 1, 2, 3"); __asm__ __volatile__("dcffix 1, 2"); ]])], [ ac_compiler_have_dfp=yes AC_MSG_RESULT([yes]) ], [ ac_compiler_have_dfp=no AC_MSG_RESULT([no]) ]) CFLAGS=$safe_CFLAGS AM_CONDITIONAL(HAS_DFP, test x$ac_asm_have_dfp = xyes \ -a x$ac_compiler_have_dfp = xyes \ -a x$HWCAP_HAS_DFP = xyes ) AC_MSG_CHECKING([that compiler knows DFP datatypes]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ ]], [[ _Decimal64 x = 0.0DD; ]])], [ ac_compiler_have_dfp_type=yes AC_MSG_RESULT([yes]) ], [ ac_compiler_have_dfp_type=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(BUILD_DFP_TESTS, test x$ac_compiler_have_dfp_type = xyes \ -a xHWCAP_$HAS_DFP = xyes ) # HTM (Hardware Transactional Memory) AC_MSG_CHECKING([if compiler accepts the -mhtm flag]) safe_CFLAGS=$CFLAGS CFLAGS="-mhtm -Werror" AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ ]], [[ return 0; ]])], [ AC_MSG_RESULT([yes]) ac_compiler_supports_htm=yes ], [ AC_MSG_RESULT([no]) ac_compiler_supports_htm=no ]) CFLAGS=$safe_CFLAGS AC_MSG_CHECKING([if compiler can find the htm builtins]) safe_CFLAGS=$CFLAGS CFLAGS="-mhtm -Werror" AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ ]], [[ if (__builtin_tbegin (0)) __builtin_tend (0); ]])], [ AC_MSG_RESULT([yes]) ac_compiler_sees_htm_builtins=yes ], [ AC_MSG_RESULT([no]) ac_compiler_sees_htm_builtins=no ]) CFLAGS=$safe_CFLAGS AM_CONDITIONAL(SUPPORTS_HTM, test x$ac_compiler_supports_htm = xyes \ -a x$ac_compiler_sees_htm_builtins = xyes \ -a x$HWCAP_HAS_HTM = xyes ) # Check for pthread_create@GLIBC2.0 AC_MSG_CHECKING([for pthread_create@GLIBC2.0()]) safe_CFLAGS=$CFLAGS CFLAGS="-lpthread -Werror" AC_LINK_IFELSE([AC_LANG_PROGRAM([[ extern int pthread_create_glibc_2_0(void*, const void*, void *(*)(void*), void*); __asm__(".symver pthread_create_glibc_2_0, pthread_create@GLIBC_2.0"); ]], [[ #ifdef __powerpc__ /* * Apparently on PowerPC linking this program succeeds and generates an * executable with the undefined symbol pthread_create@GLIBC_2.0. */ #error This test does not work properly on PowerPC. #else pthread_create_glibc_2_0(0, 0, 0, 0); #endif return 0; ]])], [ ac_have_pthread_create_glibc_2_0=yes AC_MSG_RESULT([yes]) AC_DEFINE([HAVE_PTHREAD_CREATE_GLIBC_2_0], 1, [Define to 1 if you have the `pthread_create@glibc2.0' function.]) ], [ ac_have_pthread_create_glibc_2_0=no AC_MSG_RESULT([no]) ]) CFLAGS=$safe_CFLAGS AM_CONDITIONAL(HAVE_PTHREAD_CREATE_GLIBC_2_0, test x$ac_have_pthread_create_glibc_2_0 = xyes) # Check for dlinfo RTLD_DI_TLS_MODID AC_MSG_CHECKING([for dlinfo RTLD_DI_TLS_MODID]) safe_LIBS="$LIBS" LIBS="-ldl" AC_LINK_IFELSE([AC_LANG_PROGRAM([[ #ifndef _GNU_SOURCE #define _GNU_SOURCE #endif #include #include ]], [[ size_t sizes[10000]; size_t modid_offset; (void) dlinfo ((void*)sizes, RTLD_DI_TLS_MODID, &modid_offset); return 0; ]])], [ ac_have_dlinfo_rtld_di_tls_modid=yes AC_MSG_RESULT([yes]) AC_DEFINE([HAVE_DLINFO_RTLD_DI_TLS_MODID], 1, [Define to 1 if you have a dlinfo that can do RTLD_DI_TLS_MODID.]) ], [ ac_have_dlinfo_rtld_di_tls_modid=no AC_MSG_RESULT([no]) ]) LIBS=$safe_LIBS AM_CONDITIONAL(HAVE_DLINFO_RTLD_DI_TLS_MODID, test x$ac_have_dlinfo_rtld_di_tls_modid = xyes) # Check for eventfd_t, eventfd() and eventfd_read() AC_MSG_CHECKING([for eventfd()]) AC_LINK_IFELSE([AC_LANG_PROGRAM([[ #include ]], [[ eventfd_t ev; int fd; fd = eventfd(5, 0); eventfd_read(fd, &ev); return 0; ]])], [ AC_MSG_RESULT([yes]) AC_DEFINE([HAVE_EVENTFD], 1, [Define to 1 if you have the `eventfd' function.]) AC_DEFINE([HAVE_EVENTFD_READ], 1, [Define to 1 if you have the `eventfd_read' function.]) ], [ AC_MSG_RESULT([no]) ]) # Check whether compiler can process #include without errors # clang 3.3 cannot process from e.g. # gcc (Ubuntu/Linaro 4.6.3-1ubuntu5) 4.6.3 AC_MSG_CHECKING([that C++ compiler can include header file]) AC_LANG(C++) safe_CXXFLAGS=$CXXFLAGS CXXFLAGS=-std=c++0x AC_COMPILE_IFELSE([AC_LANG_SOURCE([ #include ])], [ ac_cxx_can_include_thread_header=yes AC_MSG_RESULT([yes]) ], [ ac_cxx_can_include_thread_header=no AC_MSG_RESULT([no]) ]) CXXFLAGS=$safe_CXXFLAGS AC_LANG(C) AM_CONDITIONAL(CXX_CAN_INCLUDE_THREAD_HEADER, test x$ac_cxx_can_include_thread_header = xyes) # On aarch64 before glibc 2.20 we would get the kernel user_pt_regs instead # of the user_regs_struct from sys/user.h. They are structurally the same # but we get either one or the other. AC_CHECK_TYPE([struct user_regs_struct], [sys_user_has_user_regs=yes], [sys_user_has_user_regs=no], [[#include ] [#include ] [#include ]]) if test "$sys_user_has_user_regs" = "yes"; then AC_DEFINE(HAVE_SYS_USER_REGS, 1, [Define to 1 if defines struct user_regs_struct]) fi #---------------------------------------------------------------------------- # Checking for supported compiler flags. #---------------------------------------------------------------------------- # does this compiler support -m32 ? AC_MSG_CHECKING([if gcc accepts -m32]) safe_CFLAGS=$CFLAGS CFLAGS="-m32 -Werror" AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[ return 0; ]])], [ FLAG_M32="-m32" AC_MSG_RESULT([yes]) ], [ FLAG_M32="" AC_MSG_RESULT([no]) ]) CFLAGS=$safe_CFLAGS AC_SUBST(FLAG_M32) # does this compiler support -m64 ? AC_MSG_CHECKING([if gcc accepts -m64]) safe_CFLAGS=$CFLAGS CFLAGS="-m64 -Werror" AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[ return 0; ]])], [ FLAG_M64="-m64" AC_MSG_RESULT([yes]) ], [ FLAG_M64="" AC_MSG_RESULT([no]) ]) CFLAGS=$safe_CFLAGS AC_SUBST(FLAG_M64) # does this compiler support -march=mips32 (mips32 default) ? AC_MSG_CHECKING([if gcc accepts -march=mips32]) safe_CFLAGS=$CFLAGS CFLAGS="$CFLAGS -march=mips32 -Werror" AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[ return 0; ]])], [ FLAG_MIPS32="-march=mips32" AC_MSG_RESULT([yes]) ], [ FLAG_MIPS32="" AC_MSG_RESULT([no]) ]) CFLAGS=$safe_CFLAGS AC_SUBST(FLAG_MIPS32) # does this compiler support -march=mips64 (mips64 default) ? AC_MSG_CHECKING([if gcc accepts -march=mips64]) safe_CFLAGS=$CFLAGS CFLAGS="$CFLAGS -march=mips64 -Werror" AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[ return 0; ]])], [ FLAG_MIPS64="-march=mips64" AC_MSG_RESULT([yes]) ], [ FLAG_MIPS64="" AC_MSG_RESULT([no]) ]) CFLAGS=$safe_CFLAGS AC_SUBST(FLAG_MIPS64) # does this compiler support -march=octeon (Cavium OCTEON I Specific) ? AC_MSG_CHECKING([if gcc accepts -march=octeon]) safe_CFLAGS=$CFLAGS CFLAGS="$CFLAGS -march=octeon -Werror" AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[ return 0; ]])], [ FLAG_OCTEON="-march=octeon" AC_MSG_RESULT([yes]) ], [ FLAG_OCTEON="" AC_MSG_RESULT([no]) ]) CFLAGS=$safe_CFLAGS AC_SUBST(FLAG_OCTEON) # does this compiler support -march=octeon2 (Cavium OCTEON II Specific) ? AC_MSG_CHECKING([if gcc accepts -march=octeon2]) safe_CFLAGS=$CFLAGS CFLAGS="$CFLAGS -march=octeon2 -Werror" AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[ return 0; ]])], [ FLAG_OCTEON2="-march=octeon2" AC_MSG_RESULT([yes]) ], [ FLAG_OCTEON2="" AC_MSG_RESULT([no]) ]) CFLAGS=$safe_CFLAGS AC_SUBST(FLAG_OCTEON2) # does this compiler support -mmmx ? AC_MSG_CHECKING([if gcc accepts -mmmx]) safe_CFLAGS=$CFLAGS CFLAGS="-mmmx -Werror" AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[ return 0; ]])], [ FLAG_MMMX="-mmmx" AC_MSG_RESULT([yes]) ], [ FLAG_MMMX="" AC_MSG_RESULT([no]) ]) CFLAGS=$safe_CFLAGS AC_SUBST(FLAG_MMMX) # does this compiler support -msse ? AC_MSG_CHECKING([if gcc accepts -msse]) safe_CFLAGS=$CFLAGS CFLAGS="-msse -Werror" AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[ return 0; ]])], [ FLAG_MSSE="-msse" AC_MSG_RESULT([yes]) ], [ FLAG_MSSE="" AC_MSG_RESULT([no]) ]) CFLAGS=$safe_CFLAGS AC_SUBST(FLAG_MSSE) # does this compiler support -mpreferred-stack-boundary=2 when # generating code for a 32-bit target? Note that we only care about # this when generating code for (32-bit) x86, so if the compiler # doesn't recognise -m32 it's no big deal. We'll just get code for # the Memcheck and other helper functions, that is a bit slower than # it could be, on x86; and no difference at all on any other platform. AC_MSG_CHECKING([if gcc accepts -mpreferred-stack-boundary=2 -m32]) safe_CFLAGS=$CFLAGS CFLAGS="-mpreferred-stack-boundary=2 -m32 -Werror" AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[ return 0; ]])], [ PREFERRED_STACK_BOUNDARY_2="-mpreferred-stack-boundary=2" AC_MSG_RESULT([yes]) ], [ PREFERRED_STACK_BOUNDARY_2="" AC_MSG_RESULT([no]) ]) CFLAGS=$safe_CFLAGS AC_SUBST(PREFERRED_STACK_BOUNDARY_2) # does this compiler support -mlong-double-128 ? AC_MSG_CHECKING([if gcc accepts -mlong-double-128]) safe_CFLAGS=$CFLAGS CFLAGS="-mlong-double-128 -Werror" AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[ return 0; ]])], [ ac_compiler_supports_mlong_double_128=yes AC_MSG_RESULT([yes]) ], [ ac_compiler_supports_mlong_double_128=no AC_MSG_RESULT([no]) ]) CFLAGS=$safe_CFLAGS AM_CONDITIONAL(HAS_MLONG_DOUBLE_128, test x$ac_compiler_supports_mlong_double_128 = xyes) FLAG_MLONG_DOUBLE_128="-mlong-double-128" AC_SUBST(FLAG_MLONG_DOUBLE_128) # Convenience function to check whether GCC supports a particular # warning option. Takes two arguments, # first the warning flag name to check (without -W), then the # substitution name to set with -Wno-warning-flag if the flag exists, # or the empty string if the compiler doesn't accept the flag. Note # that checking is done against the warning flag itself, but the # substitution is then done to cancel the warning flag. AC_DEFUN([AC_GCC_WARNING_SUBST_NO],[ AC_MSG_CHECKING([if gcc accepts -W$1]) safe_CFLAGS=$CFLAGS CFLAGS="-W$1 -Werror" AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[;]])], [ AC_SUBST([$2], [-Wno-$1]) AC_MSG_RESULT([yes])], [ AC_SUBST([$2], []) AC_MSG_RESULT([no])]) CFLAGS=$safe_CFLAGS ]) # Convenience function. Like AC_GCC_WARNING_SUBST_NO, except it substitutes # -W$1 (instead of -Wno-$1). AC_DEFUN([AC_GCC_WARNING_SUBST],[ AC_MSG_CHECKING([if gcc accepts -W$1]) safe_CFLAGS=$CFLAGS CFLAGS="-W$1 -Werror" AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[;]])], [ AC_SUBST([$2], [-W$1]) AC_MSG_RESULT([yes])], [ AC_SUBST([$2], []) AC_MSG_RESULT([no])]) CFLAGS=$safe_CFLAGS ]) AC_GCC_WARNING_SUBST_NO([memset-transposed-args], [FLAG_W_NO_MEMSET_TRANSPOSED_ARGS]) AC_GCC_WARNING_SUBST_NO([nonnull], [FLAG_W_NO_NONNULL]) AC_GCC_WARNING_SUBST_NO([overflow], [FLAG_W_NO_OVERFLOW]) AC_GCC_WARNING_SUBST_NO([pointer-sign], [FLAG_W_NO_POINTER_SIGN]) AC_GCC_WARNING_SUBST_NO([uninitialized], [FLAG_W_NO_UNINITIALIZED]) AC_GCC_WARNING_SUBST_NO([unused-function], [FLAG_W_NO_UNUSED_FUNCTION]) AC_GCC_WARNING_SUBST_NO([static-local-in-inline], [FLAG_W_NO_STATIC_LOCAL_IN_INLINE]) AC_GCC_WARNING_SUBST_NO([mismatched-new-delete], [FLAG_W_NO_MISMATCHED_NEW_DELETE]) AC_GCC_WARNING_SUBST_NO([infinite-recursion], [FLAG_W_NO_INFINITE_RECURSION]) AC_GCC_WARNING_SUBST([write-strings], [FLAG_W_WRITE_STRINGS]) AC_GCC_WARNING_SUBST([empty-body], [FLAG_W_EMPTY_BODY]) AC_GCC_WARNING_SUBST([format], [FLAG_W_FORMAT]) # Disabled for now until all platforms are clean format_checking_enabled=no #format_checking_enabled=yes if test "$format_checking_enabled" = "yes"; then AC_GCC_WARNING_SUBST([format-signedness], [FLAG_W_FORMAT_SIGNEDNESS]) else dumy_assignment_to_avoid_syntax_errors=1 AC_SUBST([FLAG_W_FORMAT_SIGNEDNESS], []) fi AC_GCC_WARNING_SUBST([cast-qual], [FLAG_W_CAST_QUAL]) AC_GCC_WARNING_SUBST([old-style-declaration], [FLAG_W_OLD_STYLE_DECLARATION]) AC_GCC_WARNING_SUBST([ignored-qualifiers], [FLAG_W_IGNORED_QUALIFIERS]) AC_GCC_WARNING_SUBST([missing-parameter-type], [FLAG_W_MISSING_PARAMETER_TYPE]) # Does this compiler support -Wformat-security ? # Special handling is needed, because certain GCC versions require -Wformat # being present if -Wformat-security is given. Otherwise a warning is issued. # However, AC_GCC_WARNING_SUBST will stick in -Werror (see r15323 for rationale). # And with that the warning will be turned into an error with the result # that -Wformat-security is believed to be unsupported when in fact it is. AC_MSG_CHECKING([if gcc accepts -Wformat-security]) safe_CFLAGS=$CFLAGS CFLAGS="-Wformat -Wformat-security -Werror" AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[;]])], [ AC_SUBST([FLAG_W_FORMAT_SECURITY], [-Wformat-security]) AC_MSG_RESULT([yes])], [ AC_SUBST([FLAG_W_FORMAT_SECURITY], []) AC_MSG_RESULT([no])]) CFLAGS=$safe_CFLAGS # does this compiler support -Wextra or the older -W ? AC_MSG_CHECKING([if gcc accepts -Wextra or -W]) safe_CFLAGS=$CFLAGS CFLAGS="-Wextra -Werror" AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ ]], [[ return 0; ]])], [ AC_SUBST([FLAG_W_EXTRA], [-Wextra]) AC_MSG_RESULT([-Wextra]) ], [ CFLAGS="-W -Werror" AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ ]], [[ return 0; ]])], [ AC_SUBST([FLAG_W_EXTRA], [-W]) AC_MSG_RESULT([-W]) ], [ AC_SUBST([FLAG_W_EXTRA], []) AC_MSG_RESULT([not supported]) ]) ]) CFLAGS=$safe_CFLAGS # On ARM we do not want to pass -Wcast-align as that produces loads # of warnings. GCC is just being conservative. See here: # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=65459#c4 if test "X$VGCONF_ARCH_PRI" = "Xarm"; then AC_SUBST([FLAG_W_CAST_ALIGN], [""]) else AC_SUBST([FLAG_W_CAST_ALIGN], [-Wcast-align]) fi # does this compiler support -fno-stack-protector ? AC_MSG_CHECKING([if gcc accepts -fno-stack-protector]) safe_CFLAGS=$CFLAGS CFLAGS="-fno-stack-protector -Werror" AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[ return 0; ]])], [ no_stack_protector=yes FLAG_FNO_STACK_PROTECTOR="-fno-stack-protector" AC_MSG_RESULT([yes]) ], [ no_stack_protector=no FLAG_FNO_STACK_PROTECTOR="" AC_MSG_RESULT([no]) ]) CFLAGS=$safe_CFLAGS AC_SUBST(FLAG_FNO_STACK_PROTECTOR) # Does GCC support disabling Identical Code Folding? # We want to disabled Identical Code Folding for the # tools preload shared objects to get better backraces. # For GCC 5.1+ -fipa-icf is enabled by default at -O2. # "The optimization reduces code size and may disturb # unwind stacks by replacing a function by equivalent # one with a different name." AC_MSG_CHECKING([if gcc accepts -fno-ipa-icf]) safe_CFLAGS=$CFLAGS CFLAGS="-fno-ipa-icf -Werror" AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[ return 0; ]])], [ no_ipa_icf=yes FLAG_FNO_IPA_ICF="-fno-ipa-icf" AC_MSG_RESULT([yes]) ], [ no_ipa_icf=no FLAG_FNO_IPA_ICF="" AC_MSG_RESULT([no]) ]) CFLAGS=$safe_CFLAGS AC_SUBST(FLAG_FNO_IPA_ICF) # Does this compiler support -fsanitize=undefined. This is true for # GCC 4.9 and newer. However, the undefined behaviour sanitiser in GCC 5.1 # also checks for alignment violations on memory accesses which the valgrind # code base is sprinkled (if not littered) with. As those alignment issues # don't pose a problem we want to suppress warnings about them. # In GCC 5.1 this can be done by passing -fno-sanitize=alignment. Earlier # GCCs do not support that. # # Only checked for if --enable-ubsan was given. if test "x${vg_cv_ubsan}" = "xyes"; then AC_MSG_CHECKING([if gcc accepts -fsanitize=undefined -fno-sanitize=alignment]) safe_CFLAGS=$CFLAGS CFLAGS="-fsanitize=undefined -fno-sanitize=alignment -Werror" AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[ return 0; ]])], [ FLAG_FSANITIZE="-fsanitize=undefined -fno-sanitize=alignment" LIB_UBSAN="-static-libubsan" AC_MSG_RESULT([yes]) ], [ CFLAGS="-fsanitize=undefined -Werror" AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[ return 0; ]])], [ FLAG_FSANITIZE="-fsanitize=undefined" LIB_UBSAN="-static-libubsan" AC_MSG_RESULT([yes]) ], [ FLAG_FSANITIZE="" LIB_UBSAN="" AC_MSG_RESULT([no]) ]) ]) CFLAGS=$safe_CFLAGS AC_SUBST(FLAG_FSANITIZE) AC_SUBST(LIB_UBSAN) fi # does this compiler support --param inline-unit-growth=... ? AC_MSG_CHECKING([if gcc accepts --param inline-unit-growth]) safe_CFLAGS=$CFLAGS CFLAGS="--param inline-unit-growth=900 -Werror" AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ ]], [[ return 0; ]])], [ AC_SUBST([FLAG_UNLIMITED_INLINE_UNIT_GROWTH], ["--param inline-unit-growth=900"]) AC_MSG_RESULT([yes]) ], [ AC_SUBST([FLAG_UNLIMITED_INLINE_UNIT_GROWTH], [""]) AC_MSG_RESULT([no]) ]) CFLAGS=$safe_CFLAGS # does this compiler support -gdwarf-4 -fdebug-types-section ? AC_MSG_CHECKING([if gcc accepts -gdwarf-4 -fdebug-types-section]) safe_CFLAGS=$CFLAGS CFLAGS="-gdwarf-4 -fdebug-types-section -Werror" AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ ]], [[ return 0; ]])], [ ac_have_dwarf4=yes AC_MSG_RESULT([yes]) ], [ ac_have_dwarf4=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(DWARF4, test x$ac_have_dwarf4 = xyes) CFLAGS=$safe_CFLAGS # does this compiler support nested functions ? AC_MSG_CHECKING([if gcc accepts nested functions]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[ int foo() { return 1; } return foo(); ]])], [ ac_have_nested_functions=yes AC_MSG_RESULT([yes]) ], [ ac_have_nested_functions=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL([HAVE_NESTED_FUNCTIONS], [test x$ac_have_nested_functions = xyes]) # does this compiler support the 'p' constraint in ASM statements ? AC_MSG_CHECKING([if gcc accepts the 'p' constraint in asm statements]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[ char *p; __asm__ __volatile__ ("movdqa (%0),%%xmm6\n" : "=p" (p)); ]])], [ ac_have_asm_constraint_p=yes AC_MSG_RESULT([yes]) ], [ ac_have_asm_constraint_p=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL([HAVE_ASM_CONSTRAINT_P], [test x$ac_have_asm_constraint_p = xyes]) # We want to use use the -Ttext-segment option to the linker. # GNU (bfd) ld supports this directly. Newer GNU gold linkers # support it as an alias of -Ttext. Sadly GNU (bfd) ld's -Ttext # semantics are NOT what we want (GNU gold -Ttext is fine). # # For GNU (bfd) ld -Ttext-segment chooses the base at which ELF headers # will reside. -Ttext aligns just the .text section start (but not any # other section). # # So test for -Ttext-segment which is supported by all bfd ld versions # and use that if it exists. If it doesn't exist it must be an older # version of gold and we can fall back to using -Ttext which has the # right semantics. AC_MSG_CHECKING([if the linker accepts -Wl,-Ttext-segment]) safe_CFLAGS=$CFLAGS CFLAGS="-static -nodefaultlibs -nostartfiles -Wl,-Ttext-segment=$valt_load_address_pri_norml -Werror" AC_LINK_IFELSE( [AC_LANG_SOURCE([int _start () { return 0; }])], [ linker_using_t_text="no" AC_SUBST([FLAG_T_TEXT], ["-Ttext-segment"]) AC_MSG_RESULT([yes]) ], [ linker_using_t_text="yes" AC_SUBST([FLAG_T_TEXT], ["-Ttext"]) AC_MSG_RESULT([no]) ]) CFLAGS=$safe_CFLAGS # If the linker only supports -Ttext (not -Ttext-segment) then we will # have to strip any build-id ELF NOTEs from the staticly linked tools. # Otherwise the build-id NOTE might end up at the default load address. # (Pedantically if the linker is gold then -Ttext is fine, but newer # gold versions also support -Ttext-segment. So just assume that unless # we can use -Ttext-segment we need to strip the build-id NOTEs. if test "x${linker_using_t_text}" = "xyes"; then AC_MSG_NOTICE([ld -Ttext used, need to strip build-id NOTEs.]) # does the linker support -Wl,--build-id=none ? Note, it's # important that we test indirectly via whichever C compiler # is selected, rather than testing /usr/bin/ld or whatever # directly. AC_MSG_CHECKING([if the linker accepts -Wl,--build-id=none]) safe_CFLAGS=$CFLAGS CFLAGS="-Wl,--build-id=none -Werror" AC_LINK_IFELSE( [AC_LANG_PROGRAM([ ], [return 0;])], [ AC_SUBST([FLAG_NO_BUILD_ID], ["-Wl,--build-id=none"]) AC_MSG_RESULT([yes]) ], [ AC_SUBST([FLAG_NO_BUILD_ID], [""]) AC_MSG_RESULT([no]) ]) else AC_MSG_NOTICE([ld -Ttext-segment used, no need to strip build-id NOTEs.]) AC_SUBST([FLAG_NO_BUILD_ID], [""]) fi CFLAGS=$safe_CFLAGS # does the ppc assembler support "mtocrf" et al? AC_MSG_CHECKING([if ppc32/64 as supports mtocrf/mfocrf]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[ __asm__ __volatile__("mtocrf 4,0"); __asm__ __volatile__("mfocrf 0,4"); ]])], [ ac_have_as_ppc_mftocrf=yes AC_MSG_RESULT([yes]) ], [ ac_have_as_ppc_mftocrf=no AC_MSG_RESULT([no]) ]) if test x$ac_have_as_ppc_mftocrf = xyes ; then AC_DEFINE(HAVE_AS_PPC_MFTOCRF, 1, [Define to 1 if as supports mtocrf/mfocrf.]) fi # does the ppc assembler support "lfdp" and other phased out floating point insns? AC_MSG_CHECKING([if ppc32/64 asm supports phased out floating point instructions]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[ do { typedef struct { double hi; double lo; } dbl_pair_t; dbl_pair_t dbl_pair[3]; __asm__ volatile ("lfdp 10, %0"::"m" (dbl_pair[0])); } while (0) ]])], [ ac_have_as_ppc_fpPO=yes AC_MSG_RESULT([yes]) ], [ ac_have_as_ppc_fpPO=no AC_MSG_RESULT([no]) ]) if test x$ac_have_as_ppc_fpPO = xyes ; then AC_DEFINE(HAVE_AS_PPC_FPPO, 1, [Define to 1 if as supports floating point phased out category.]) fi # does the amd64 assembler understand "fxsave64" and "fxrstor64"? AC_MSG_CHECKING([if amd64 assembler supports fxsave64/fxrstor64]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[ void* p; asm __volatile__("fxsave64 (%0)" : : "r" (p) : "memory" ); asm __volatile__("fxrstor64 (%0)" : : "r" (p) : "memory" ); ]])], [ ac_have_as_amd64_fxsave64=yes AC_MSG_RESULT([yes]) ], [ ac_have_as_amd64_fxsave64=no AC_MSG_RESULT([no]) ]) if test x$ac_have_as_amd64_fxsave64 = xyes ; then AC_DEFINE(HAVE_AS_AMD64_FXSAVE64, 1, [Define to 1 if as supports fxsave64/fxrstor64.]) fi # does the x86/amd64 assembler understand SSE3 instructions? # Note, this doesn't generate a C-level symbol. It generates a # automake-level symbol (BUILD_SSE3_TESTS), used in test Makefile.am's AC_MSG_CHECKING([if x86/amd64 assembler speaks SSE3]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[ do { long long int x; __asm__ __volatile__("fisttpq (%0)" : :"r"(&x) ); } while (0) ]])], [ ac_have_as_sse3=yes AC_MSG_RESULT([yes]) ], [ ac_have_as_sse3=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(BUILD_SSE3_TESTS, test x$ac_have_as_sse3 = xyes) # Ditto for SSSE3 instructions (note extra S) # Note, this doesn't generate a C-level symbol. It generates a # automake-level symbol (BUILD_SSSE3_TESTS), used in test Makefile.am's AC_MSG_CHECKING([if x86/amd64 assembler speaks SSSE3]) save_CFLAGS="$CFLAGS" CFLAGS="$CFLAGS -msse -Werror" AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[ do { long long int x; __asm__ __volatile__( "pabsb (%0),%%xmm7" : : "r"(&x) : "xmm7" ); } while (0) ]])], [ ac_have_as_ssse3=yes AC_MSG_RESULT([yes]) ], [ ac_have_as_ssse3=no AC_MSG_RESULT([no]) ]) CFLAGS="$save_CFLAGS" AM_CONDITIONAL(BUILD_SSSE3_TESTS, test x$ac_have_as_ssse3 = xyes) # does the x86/amd64 assembler understand the PCLMULQDQ instruction? # Note, this doesn't generate a C-level symbol. It generates a # automake-level symbol (BUILD_PCLMULQDQ_TESTS), used in test Makefile.am's AC_MSG_CHECKING([if x86/amd64 assembler supports 'pclmulqdq']) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[ do { __asm__ __volatile__( "pclmulqdq \$17,%%xmm6,%%xmm7" : : : "xmm6", "xmm7" ); } while (0) ]])], [ ac_have_as_pclmulqdq=yes AC_MSG_RESULT([yes]) ], [ ac_have_as_pclmulqdq=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(BUILD_PCLMULQDQ_TESTS, test x$ac_have_as_pclmulqdq = xyes) # does the x86/amd64 assembler understand the VPCLMULQDQ instruction? # Note, this doesn't generate a C-level symbol. It generates a # automake-level symbol (BUILD_VPCLMULQDQ_TESTS), used in test Makefile.am's AC_MSG_CHECKING([if x86/amd64 assembler supports 'vpclmulqdq']) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[ do { /* * Carry-less multiplication of xmm1 with xmm2 and store the result in * xmm3. The immediate is used to determine which quadwords of xmm1 and * xmm2 should be used. */ __asm__ __volatile__( "vpclmulqdq \$0,%%xmm1,%%xmm2,%%xmm3" : : : ); } while (0) ]])], [ ac_have_as_vpclmulqdq=yes AC_MSG_RESULT([yes]) ], [ ac_have_as_vpclmulqdq=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(BUILD_VPCLMULQDQ_TESTS, test x$ac_have_as_vpclmulqdq = xyes) # does the x86/amd64 assembler understand the LZCNT instruction? # Note, this doesn't generate a C-level symbol. It generates a # automake-level symbol (BUILD_LZCNT_TESTS), used in test Makefile.am's AC_MSG_CHECKING([if x86/amd64 assembler supports 'lzcnt']) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[ do { __asm__ __volatile__("lzcnt %%rax,%%rax" : : : "rax"); } while (0) ]])], [ ac_have_as_lzcnt=yes AC_MSG_RESULT([yes]) ], [ ac_have_as_lzcnt=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL([BUILD_LZCNT_TESTS], [test x$ac_have_as_lzcnt = xyes]) # does the x86/amd64 assembler understand the LOOPNEL instruction? # Note, this doesn't generate a C-level symbol. It generates a # automake-level symbol (BUILD_LOOPNEL_TESTS), used in test Makefile.am's AC_MSG_CHECKING([if x86/amd64 assembler supports 'loopnel']) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[ do { __asm__ __volatile__("1: loopnel 1b\n"); } while (0) ]])], [ ac_have_as_loopnel=yes AC_MSG_RESULT([yes]) ], [ ac_have_as_loopnel=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL([BUILD_LOOPNEL_TESTS], [test x$ac_have_as_loopnel = xyes]) # does the x86/amd64 assembler understand ADDR32 ? # Note, this doesn't generate a C-level symbol. It generates a # automake-level symbol (BUILD_ADDR32_TESTS), used in test Makefile.am's AC_MSG_CHECKING([if x86/amd64 assembler supports 'addr32']) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[ do { asm volatile ("addr32 rep movsb"); } while (0) ]])], [ ac_have_as_addr32=yes AC_MSG_RESULT([yes]) ], [ ac_have_as_addr32=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL([BUILD_ADDR32_TESTS], [test x$ac_have_as_addr32 = xyes]) # does the x86/amd64 assembler understand SSE 4.2 instructions? # Note, this doesn't generate a C-level symbol. It generates a # automake-level symbol (BUILD_SSE42_TESTS), used in test Makefile.am's AC_MSG_CHECKING([if x86/amd64 assembler speaks SSE4.2]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[ do { long long int x; __asm__ __volatile__( "crc32q %%r15,%%r15" : : : "r15" ); __asm__ __volatile__( "pblendvb (%%rcx), %%xmm11" : : : "memory", "xmm11"); __asm__ __volatile__( "aesdec %%xmm2, %%xmm1" : : : "xmm2", "xmm1"); } while (0) ]])], [ ac_have_as_sse42=yes AC_MSG_RESULT([yes]) ], [ ac_have_as_sse42=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(BUILD_SSE42_TESTS, test x$ac_have_as_sse42 = xyes) # does the x86/amd64 assembler understand AVX instructions? # Note, this doesn't generate a C-level symbol. It generates a # automake-level symbol (BUILD_AVX_TESTS), used in test Makefile.am's AC_MSG_CHECKING([if x86/amd64 assembler speaks AVX]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[ do { long long int x; __asm__ __volatile__( "vmovupd (%%rsp), %%ymm7" : : : "xmm7" ); __asm__ __volatile__( "vaddpd %%ymm6,%%ymm7,%%ymm8" : : : "xmm6","xmm7","xmm8"); } while (0) ]])], [ ac_have_as_avx=yes AC_MSG_RESULT([yes]) ], [ ac_have_as_avx=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(BUILD_AVX_TESTS, test x$ac_have_as_avx = xyes) # does the x86/amd64 assembler understand AVX2 instructions? # Note, this doesn't generate a C-level symbol. It generates a # automake-level symbol (BUILD_AVX2_TESTS), used in test Makefile.am's AC_MSG_CHECKING([if x86/amd64 assembler speaks AVX2]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[ do { long long int x; __asm__ __volatile__( "vpsravd (%%rsp), %%ymm8, %%ymm7" : : : "xmm7", "xmm8" ); __asm__ __volatile__( "vpaddb %%ymm6,%%ymm7,%%ymm8" : : : "xmm6","xmm7","xmm8"); } while (0) ]])], [ ac_have_as_avx2=yes AC_MSG_RESULT([yes]) ], [ ac_have_as_avx2=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(BUILD_AVX2_TESTS, test x$ac_have_as_avx2 = xyes) # does the x86/amd64 assembler understand TSX instructions and # the XACQUIRE/XRELEASE prefixes? # Note, this doesn't generate a C-level symbol. It generates a # automake-level symbol (BUILD_TSX_TESTS), used in test Makefile.am's AC_MSG_CHECKING([if x86/amd64 assembler speaks TSX]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[ do { __asm__ __volatile__( " xbegin Lfoo \n\t" "Lfoo: xend \n\t" " xacquire lock incq 0(%rsp) \n\t" " xrelease lock incq 0(%rsp) \n" ); } while (0) ]])], [ ac_have_as_tsx=yes AC_MSG_RESULT([yes]) ], [ ac_have_as_tsx=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(BUILD_TSX_TESTS, test x$ac_have_as_tsx = xyes) # does the x86/amd64 assembler understand BMI1 and BMI2 instructions? # Note, this doesn't generate a C-level symbol. It generates a # automake-level symbol (BUILD_BMI_TESTS), used in test Makefile.am's AC_MSG_CHECKING([if x86/amd64 assembler speaks BMI1 and BMI2]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[ do { unsigned int h, l; __asm__ __volatile__( "mulx %rax,%rcx,%r8" ); __asm__ __volatile__( "andn %2, %1, %0" : "=r" (h) : "r" (0x1234567), "r" (0x7654321) ); __asm__ __volatile__( "movl %2, %%edx; mulx %3, %1, %0" : "=r" (h), "=r" (l) : "g" (0x1234567), "rm" (0x7654321) : "edx" ); } while (0) ]])], [ ac_have_as_bmi=yes AC_MSG_RESULT([yes]) ], [ ac_have_as_bmi=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(BUILD_BMI_TESTS, test x$ac_have_as_bmi = xyes) # does the x86/amd64 assembler understand FMA instructions? # Note, this doesn't generate a C-level symbol. It generates a # automake-level symbol (BUILD_FMA_TESTS), used in test Makefile.am's AC_MSG_CHECKING([if x86/amd64 assembler speaks FMA]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[ do { unsigned int h, l; __asm__ __volatile__( "vfmadd132ps (%%rsp), %%ymm8, %%ymm7" : : : "xmm7", "xmm8" ); __asm__ __volatile__( "vfnmsub231sd (%%rsp), %%xmm8, %%xmm7" : : : "xmm7", "xmm8" ); __asm__ __volatile__( "vfmsubadd213pd (%%rsp), %%xmm8, %%xmm7" : : : "xmm7", "xmm8" ); } while (0) ]])], [ ac_have_as_fma=yes AC_MSG_RESULT([yes]) ], [ ac_have_as_fma=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(BUILD_FMA_TESTS, test x$ac_have_as_fma = xyes) # does the amd64 assembler understand MPX instructions? # Note, this doesn't generate a C-level symbol. It generates a # automake-level symbol (BUILD_MPX_TESTS), used in test Makefile.am's AC_MSG_CHECKING([if amd64 assembler knows the MPX instructions]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[ do { asm ("bndmov %bnd0,(%rsp)"); asm ("bndldx 3(%rbx,%rdx), %bnd2"); asm ("bnd call foo\n" bnd jmp end\n" foo: bnd ret\n" end: nop"); } while (0) ]])], [ ac_have_as_mpx=yes AC_MSG_RESULT([yes]) ], [ ac_have_as_mpx=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(BUILD_MPX_TESTS, test x$ac_have_as_mpx = xyes) # Does the C compiler support the "ifunc" attribute # Note, this doesn't generate a C-level symbol. It generates a # automake-level symbol (BUILD_IFUNC_TESTS), used in test Makefile.am's # does the x86/amd64 assembler understand MOVBE? # Note, this doesn't generate a C-level symbol. It generates a # automake-level symbol (BUILD_MOVBE_TESTS), used in test Makefile.am's AC_MSG_CHECKING([if x86/amd64 assembler knows the MOVBE insn]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[ do { long long int x; __asm__ __volatile__( "movbe (%%rsp), %%r15" : : : "memory", "r15" ); } while (0) ]])], [ ac_have_as_movbe=yes AC_MSG_RESULT([yes]) ], [ ac_have_as_movbe=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(BUILD_MOVBE_TESTS, test x$ac_have_as_movbe = xyes) # Does the C compiler support the "ifunc" attribute # Note, this doesn't generate a C-level symbol. It generates a # automake-level symbol (BUILD_IFUNC_TESTS), used in test Makefile.am's AC_MSG_CHECKING([if gcc supports the ifunc attribute]) AC_LINK_IFELSE([AC_LANG_SOURCE([[ static void mytest(void) {} static void (*resolve_test(void))(void) { return (void (*)(void))&mytest; } void test(void) __attribute__((ifunc("resolve_test"))); int main() { test(); return 0; } ]])], [ ac_have_ifunc_attr=yes AC_MSG_RESULT([yes]) ], [ ac_have_ifunc_attr=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(BUILD_IFUNC_TESTS, test x$ac_have_ifunc_attr = xyes) # XXX JRS 2010 Oct 13: what is this for? For sure, we don't need this # when building the tool executables. I think we should get rid of it. # # Check for TLS support in the compiler and linker AC_LINK_IFELSE([AC_LANG_PROGRAM([[static __thread int foo;]], [[return foo;]])], [vg_cv_linktime_tls=yes], [vg_cv_linktime_tls=no]) # Native compilation: check whether running a program using TLS succeeds. # Linking only is not sufficient -- e.g. on Red Hat 7.3 linking TLS programs # succeeds but running programs using TLS fails. # Cross-compiling: check whether linking a program using TLS succeeds. AC_CACHE_CHECK([for TLS support], vg_cv_tls, [AC_ARG_ENABLE(tls, [ --enable-tls platform supports TLS], [vg_cv_tls=$enableval], [AC_RUN_IFELSE([AC_LANG_PROGRAM([[static __thread int foo;]], [[return foo;]])], [vg_cv_tls=yes], [vg_cv_tls=no], [vg_cv_tls=$vg_cv_linktime_tls])])]) if test "$vg_cv_tls" = yes -a $is_clang != applellvm; then AC_DEFINE([HAVE_TLS], 1, [can use __thread to define thread-local variables]) fi #---------------------------------------------------------------------------- # Solaris-specific checks. #---------------------------------------------------------------------------- if test "$VGCONF_OS" = "solaris" ; then # Solaris-specific check determining if the Sun Studio Assembler is used to # build Valgrind. The test checks if the x86/amd64 assembler understands the # cmovl.l instruction, if yes then it's Sun Assembler. # # C-level symbol: none # Automake-level symbol: SOLARIS_SUN_STUDIO_AS # AC_MSG_CHECKING([if x86/amd64 assembler speaks cmovl.l (Solaris-specific)]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ ]], [[ __asm__ __volatile__("cmovl.l %edx, %eax"); ]])], [ solaris_have_sun_studio_as=yes AC_MSG_RESULT([yes]) ], [ solaris_have_sun_studio_as=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(SOLARIS_SUN_STUDIO_AS, test x$solaris_have_sun_studio_as = xyes) # Solaris-specific check determining if symbols __xpg4 and __xpg6 # are present in linked elfs when gcc is invoked with -std=gnu99. # See solaris/vgpreload-solaris.mapfile for details. # gcc on Solaris instructs linker to include these symbols, # gcc on illumos does not. # # C-level symbol: none # Automake-level symbol: SOLARIS_XPG_SYMBOLS_PRESENT # save_CFLAGS="$CFLAGS" CFLAGS="$CFLAGS -std=gnu99" AC_MSG_CHECKING([if xpg symbols are present with -std=gnu99 (Solaris-specific)]) AC_RUN_IFELSE([AC_LANG_SOURCE([[ #include #include #include int main(int argc, const char *argv[]) { char command[PATH_MAX + 50]; snprintf(command, sizeof(command), "nm %s | egrep '__xpg[4,6]'", argv[0]); FILE *output = popen(command, "r"); if (output == NULL) return -1; char buf[100]; if (fgets(buf, sizeof(buf), output) != NULL) { pclose(output); return 0; } else { pclose(output); return 1; } } ]])], [ solaris_xpg_symbols_present=yes AC_MSG_RESULT([yes]) ], [ solaris_xpg_symbols_present=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(SOLARIS_XPG_SYMBOLS_PRESENT, test x$solaris_xpg_symbols_present = xyes) CFLAGS="$save_CFLAGS" # Solaris-specific check determining if /proc/self/cmdline # or /proc//cmdline is supported. # # C-level symbol: SOLARIS_PROC_CMDLINE # Automake-level symbol: SOLARIS_PROC_CMDLINE # AC_CHECK_FILE([/proc/self/cmdline], [ solaris_proc_cmdline=yes AC_DEFINE([SOLARIS_PROC_CMDLINE], 1, [Define to 1 if you have /proc/self/cmdline.]) ], [ solaris_proc_cmdline=no ]) AM_CONDITIONAL(SOLARIS_PROC_CMDLINE, test x$solaris_proc_cmdline = xyes) # Solaris-specific check determining default platform for the Valgrind launcher. # Used in case the launcher cannot select platform by looking at the client # image (for example because the executable is a shell script). # # C-level symbol: SOLARIS_LAUNCHER_DEFAULT_PLATFORM # Automake-level symbol: none # AC_MSG_CHECKING([for default platform of Valgrind launcher (Solaris-specific)]) # Get the ELF class of /bin/sh first. if ! test -f /bin/sh; then AC_MSG_ERROR([Shell interpreter `/bin/sh' not found.]) fi elf_class=$( /usr/bin/file /bin/sh | sed -n 's/.*ELF \(..\)-bit.*/\1/p' ) case "$elf_class" in 64) default_arch="$VGCONF_ARCH_PRI"; ;; 32) if test "x$VGCONF_ARCH_SEC" != "x"; then default_arch="$VGCONF_ARCH_SEC" else default_arch="$VGCONF_ARCH_PRI"; fi ;; *) AC_MSG_ERROR([Cannot determine ELF class of `/bin/sh'.]) ;; esac default_platform="$default_arch-$VGCONF_OS" AC_MSG_RESULT([$default_platform]) AC_DEFINE_UNQUOTED([SOLARIS_LAUNCHER_DEFAULT_PLATFORM], ["$default_platform"], [Default platform for Valgrind launcher.]) # Solaris-specific check determining if the old syscalls are available. # # C-level symbol: SOLARIS_OLD_SYSCALLS # Automake-level symbol: SOLARIS_OLD_SYSCALLS # AC_MSG_CHECKING([for the old Solaris syscalls (Solaris-specific)]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ #include ]], [[ return !SYS_open; ]])], [ solaris_old_syscalls=yes AC_MSG_RESULT([yes]) AC_DEFINE([SOLARIS_OLD_SYSCALLS], 1, [Define to 1 if you have the old Solaris syscalls.]) ], [ solaris_old_syscalls=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(SOLARIS_OLD_SYSCALLS, test x$solaris_old_syscalls = xyes) # Solaris-specific check determining if the new accept() syscall is available. # # Old syscall: # int accept(int sock, struct sockaddr *name, socklen_t *namelenp, # int version); # # New syscall (available on illumos): # int accept(int sock, struct sockaddr *name, socklen_t *namelenp, # int version, int flags); # # If the old syscall is present then the following syscall will fail with # ENOTSOCK (because file descriptor 0 is not a socket), if the new syscall is # available then it will fail with EINVAL (because the flags parameter is # invalid). # # C-level symbol: SOLARIS_NEW_ACCEPT_SYSCALL # Automake-level symbol: none # AC_MSG_CHECKING([for the new `accept' syscall (Solaris-specific)]) AC_RUN_IFELSE([AC_LANG_PROGRAM([[ #include #include ]], [[ errno = 0; syscall(SYS_accept, 0, 0, 0, 0, -1); return !(errno == EINVAL); ]])], [ AC_MSG_RESULT([yes]) AC_DEFINE([SOLARIS_NEW_ACCEPT_SYSCALL], 1, [Define to 1 if you have the new `accept' syscall.]) ], [ AC_MSG_RESULT([no]) ]) # Solaris-specific check determining if the new illumos pipe() syscall is # available. # # Old syscall: # longlong_t pipe(); # # New syscall (available on illumos): # int pipe(intptr_t arg, int flags); # # If the old syscall is present then the following call will succeed, if the # new syscall is available then it will fail with EFAULT (because address 0 # cannot be accessed). # # C-level symbol: SOLARIS_NEW_PIPE_SYSCALL # Automake-level symbol: none # AC_MSG_CHECKING([for the new `pipe' syscall (Solaris-specific)]) AC_RUN_IFELSE([AC_LANG_PROGRAM([[ #include #include ]], [[ errno = 0; syscall(SYS_pipe, 0, 0); return !(errno == EFAULT); ]])], [ AC_MSG_RESULT([yes]) AC_DEFINE([SOLARIS_NEW_PIPE_SYSCALL], 1, [Define to 1 if you have the new `pipe' syscall.]) ], [ AC_MSG_RESULT([no]) ]) # Solaris-specific check determining if the new lwp_sigqueue() syscall is # available. # # Old syscall: # int lwp_kill(id_t lwpid, int sig); # # New syscall (available on Solaris 11): # int lwp_sigqueue(id_t lwpid, int sig, void *value, # int si_code, timespec_t *timeout); # # C-level symbol: SOLARIS_LWP_SIGQUEUE_SYSCALL # Automake-level symbol: SOLARIS_LWP_SIGQUEUE_SYSCALL # AC_MSG_CHECKING([for the new `lwp_sigqueue' syscall (Solaris-specific)]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ #include ]], [[ return !SYS_lwp_sigqueue; ]])], [ solaris_lwp_sigqueue_syscall=yes AC_MSG_RESULT([yes]) AC_DEFINE([SOLARIS_LWP_SIGQUEUE_SYSCALL], 1, [Define to 1 if you have the new `lwp_sigqueue' syscall.]) ], [ solaris_lwp_sigqueue_syscall=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(SOLARIS_LWP_SIGQUEUE_SYSCALL, test x$solaris_lwp_sigqueue_syscall = xyes) # Solaris-specific check determining if the lwp_sigqueue() syscall # takes both pid and thread id arguments or just thread id. # # Old syscall (available on Solaris 11.x): # int lwp_sigqueue(id_t lwpid, int sig, void *value, # int si_code, timespec_t *timeout); # # New syscall (available on Solaris 12): # int lwp_sigqueue(pid_t pid, id_t lwpid, int sig, void *value, # int si_code, timespec_t *timeout); # # If the old syscall is present then the following syscall will fail with # EINVAL (because signal is out of range); if the new syscall is available # then it will fail with ESRCH (because it would not find such thread in the # current process). # # C-level symbol: SOLARIS_LWP_SIGQUEUE_SYSCALL_TAKES_PID # Automake-level symbol: SOLARIS_LWP_SIGQUEUE_SYSCALL_TAKES_PID # AM_COND_IF(SOLARIS_LWP_SIGQUEUE_SYSCALL, AC_MSG_CHECKING([if the `lwp_sigqueue' syscall accepts pid (Solaris-specific)]) AC_RUN_IFELSE([AC_LANG_PROGRAM([[ #include #include ]], [[ errno = 0; syscall(SYS_lwp_sigqueue, 0, 101, 0, 0, 0, 0); return !(errno == ESRCH); ]])], [ solaris_lwp_sigqueue_syscall_takes_pid=yes AC_MSG_RESULT([yes]) AC_DEFINE([SOLARIS_LWP_SIGQUEUE_SYSCALL_TAKES_PID], 1, [Define to 1 if you have the new `lwp_sigqueue' syscall which accepts pid.]) ], [ solaris_lwp_sigqueue_syscall_takes_pid=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(SOLARIS_LWP_SIGQUEUE_SYSCALL_TAKES_PID, test x$solaris_lwp_sigqueue_syscall_takes_pid = xyes) , AM_CONDITIONAL(SOLARIS_LWP_SIGQUEUE_SYSCALL_TAKES_PID, test x = y) ) # Solaris-specific check determining if the new lwp_name() syscall is # available. # # New syscall (available on Solaris 11): # int lwp_name(int opcode, id_t lwpid, char *name, size_t len); # # C-level symbol: SOLARIS_LWP_NAME_SYSCALL # Automake-level symbol: SOLARIS_LWP_NAME_SYSCALL # AC_MSG_CHECKING([for the new `lwp_name' syscall (Solaris-specific)]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ #include ]], [[ return !SYS_lwp_name; ]])], [ solaris_lwp_name_syscall=yes AC_MSG_RESULT([yes]) AC_DEFINE([SOLARIS_LWP_NAME_SYSCALL], 1, [Define to 1 if you have the new `lwp_name' syscall.]) ], [ solaris_lwp_name_syscall=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(SOLARIS_LWP_NAME_SYSCALL, test x$solaris_lwp_name_syscall = xyes) # Solaris-specific check determining if the new zone() syscall subcodes # ZONE_LIST_DEFUNCT and ZONE_GETATTR_DEFUNCT are available. These subcodes # were added in Solaris 11 but are missing on illumos. # # C-level symbol: SOLARIS_ZONE_DEFUNCT # Automake-level symbol: SOLARIS_ZONE_DEFUNCT # AC_MSG_CHECKING([for ZONE_LIST_DEFUNCT and ZONE_GETATTR_DEFUNCT (Solaris-specific)]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ #include ]], [[ return !(ZONE_LIST_DEFUNCT && ZONE_GETATTR_DEFUNCT); ]])], [ solaris_zone_defunct=yes AC_MSG_RESULT([yes]) AC_DEFINE([SOLARIS_ZONE_DEFUNCT], 1, [Define to 1 if you have the `ZONE_LIST_DEFUNCT' and `ZONE_GETATTR_DEFUNC' constants.]) ], [ solaris_zone_defunct=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(SOLARIS_ZONE_DEFUNCT, test x$solaris_zone_defunct = xyes) # Solaris-specific check determining if the new shmsys() syscall subcodes # IPC_XSTAT64, SHMADV, SHM_ADV_GET, SHM_ADV_SET and SHMGET_OSM are available. # These subcodes were added in Solaris 11 but are missing on illumos. # # C-level symbol: SOLARIS_SHM_NEW # Automake-level symbol: SOLARIS_SHM_NEW # AC_MSG_CHECKING([for SHMADV, SHM_ADV_GET, SHM_ADV_SET and SHMGET_OSM (Solaris-specific)]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ #include #include #include ]], [[ return !(IPC_XSTAT64 && SHMADV && SHM_ADV_GET && SHM_ADV_SET && SHMGET_OSM); ]])], [ solaris_shm_new=yes AC_MSG_RESULT([yes]) AC_DEFINE([SOLARIS_SHM_NEW], 1, [Define to 1 if you have the `IPC_XSTAT64', `SHMADV', `SHM_ADV_GET', `SHM_ADV_SET' and `SHMGET_OSM' constants.]) ], [ solaris_shm_new=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(SOLARIS_SHM_NEW, test x$solaris_shm_new = xyes) # Solaris-specific check determining if prxregset_t is available. Illumos # currently does not define it on the x86 platform. # # C-level symbol: SOLARIS_PRXREGSET_T # Automake-level symbol: SOLARIS_PRXREGSET_T # AC_MSG_CHECKING([for the `prxregset_t' type (Solaris-specific)]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ #include ]], [[ return !sizeof(prxregset_t); ]])], [ solaris_prxregset_t=yes AC_MSG_RESULT([yes]) AC_DEFINE([SOLARIS_PRXREGSET_T], 1, [Define to 1 if you have the `prxregset_t' type.]) ], [ solaris_prxregset_t=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(SOLARIS_PRXREGSET_T, test x$solaris_prxregset_t = xyes) # Solaris-specific check determining if the new frealpathat() syscall is # available. # # New syscall (available on Solaris 11.1): # int frealpathat(int fd, char *path, char *buf, size_t buflen); # # C-level symbol: SOLARIS_FREALPATHAT_SYSCALL # Automake-level symbol: SOLARIS_FREALPATHAT_SYSCALL # AC_MSG_CHECKING([for the new `frealpathat' syscall (Solaris-specific)]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ #include ]], [[ return !SYS_frealpathat; ]])], [ solaris_frealpathat_syscall=yes AC_MSG_RESULT([yes]) AC_DEFINE([SOLARIS_FREALPATHAT_SYSCALL], 1, [Define to 1 if you have the new `frealpathat' syscall.]) ], [ solaris_frealpathat_syscall=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(SOLARIS_FREALPATHAT_SYSCALL, test x$solaris_frealpathat_syscall = xyes) # Solaris-specific check determining if the new uuidsys() syscall is # available. # # New syscall (available on newer Solaris): # int uuidsys(struct uuid *uuid); # # C-level symbol: SOLARIS_UUIDSYS_SYSCALL # Automake-level symbol: SOLARIS_UUIDSYS_SYSCALL # AC_MSG_CHECKING([for the new `uuidsys' syscall (Solaris-specific)]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ #include ]], [[ return !SYS_uuidsys; ]])], [ solaris_uuidsys_syscall=yes AC_MSG_RESULT([yes]) AC_DEFINE([SOLARIS_UUIDSYS_SYSCALL], 1, [Define to 1 if you have the new `uuidsys' syscall.]) ], [ solaris_uuidsys_syscall=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(SOLARIS_UUIDSYS_SYSCALL, test x$solaris_uuidsys_syscall = xyes) # Solaris-specific check determining if the new labelsys() syscall subcode # TNDB_GET_TNIP is available. This subcode was added in Solaris 11 but is # missing on illumos. # # C-level symbol: SOLARIS_TNDB_GET_TNIP # Automake-level symbol: SOLARIS_TNDB_GET_TNIP # AC_MSG_CHECKING([for TNDB_GET_TNIP (Solaris-specific)]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ #include ]], [[ return !TNDB_GET_TNIP; ]])], [ solaris_tndb_get_tnip=yes AC_MSG_RESULT([yes]) AC_DEFINE([SOLARIS_TNDB_GET_TNIP], 1, [Define to 1 if you have the `TNDB_GET_TNIP' constant.]) ], [ solaris_tndb_get_tnip=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(SOLARIS_TNDB_GET_TNIP, test x$solaris_tndb_get_tnip = xyes) # Solaris-specific check determining if the new labelsys() syscall opcodes # TSOL_GETCLEARANCE and TSOL_SETCLEARANCE are available. These opcodes were # added in Solaris 11 but are missing on illumos. # # C-level symbol: SOLARIS_TSOL_CLEARANCE # Automake-level symbol: SOLARIS_TSOL_CLEARANCE # AC_MSG_CHECKING([for TSOL_GETCLEARANCE and TSOL_SETCLEARANCE (Solaris-specific)]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ #include ]], [[ return !(TSOL_GETCLEARANCE && TSOL_SETCLEARANCE); ]])], [ solaris_tsol_clearance=yes AC_MSG_RESULT([yes]) AC_DEFINE([SOLARIS_TSOL_CLEARANCE], 1, [Define to 1 if you have the `TSOL_GETCLEARANCE' and `TSOL_SETCLEARANCE' constants.]) ], [ solaris_tsol_clearance=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(SOLARIS_TSOL_CLEARANCE, test x$solaris_tsol_clearance = xyes) # Solaris-specific check determining if the new pset() syscall subcode # PSET_GET_NAME is available. This subcode was added in Solaris 12 but # is missing on illumos and Solaris 11. # # C-level symbol: SOLARIS_PSET_GET_NAME # Automake-level symbol: SOLARIS_PSET_GET_NAME # AC_MSG_CHECKING([for PSET_GET_NAME (Solaris-specific)]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ #include ]], [[ return !(PSET_GET_NAME); ]])], [ solaris_pset_get_name=yes AC_MSG_RESULT([yes]) AC_DEFINE([SOLARIS_PSET_GET_NAME], 1, [Define to 1 if you have the `PSET_GET_NAME' constants.]) ], [ solaris_pset_get_name=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(SOLARIS_PSET_GET_NAME, test x$solaris_pset_get_name = xyes) # Solaris-specific check determining if the utimesys() syscall is # available (on illumos and older Solaris). # # C-level symbol: SOLARIS_UTIMESYS_SYSCALL # Automake-level symbol: SOLARIS_UTIMESYS_SYSCALL # AC_MSG_CHECKING([for the `utimesys' syscall (Solaris-specific)]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ #include ]], [[ return !SYS_utimesys; ]])], [ solaris_utimesys_syscall=yes AC_MSG_RESULT([yes]) AC_DEFINE([SOLARIS_UTIMESYS_SYSCALL], 1, [Define to 1 if you have the `utimesys' syscall.]) ], [ solaris_utimesys_syscall=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(SOLARIS_UTIMESYS_SYSCALL, test x$solaris_utimesys_syscall = xyes) # Solaris-specific check determining if the utimensat() syscall is # available (on newer Solaris). # # C-level symbol: SOLARIS_UTIMENSAT_SYSCALL # Automake-level symbol: SOLARIS_UTIMENSAT_SYSCALL # AC_MSG_CHECKING([for the `utimensat' syscall (Solaris-specific)]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ #include ]], [[ return !SYS_utimensat; ]])], [ solaris_utimensat_syscall=yes AC_MSG_RESULT([yes]) AC_DEFINE([SOLARIS_UTIMENSAT_SYSCALL], 1, [Define to 1 if you have the `utimensat' syscall.]) ], [ solaris_utimensat_syscall=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(SOLARIS_UTIMENSAT_SYSCALL, test x$solaris_utimensat_syscall = xyes) # Solaris-specific check determining if the spawn() syscall is available # (on newer Solaris). # # C-level symbol: SOLARIS_SPAWN_SYSCALL # Automake-level symbol: SOLARIS_SPAWN_SYSCALL # AC_MSG_CHECKING([for the `spawn' syscall (Solaris-specific)]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ #include ]], [[ return !SYS_spawn; ]])], [ solaris_spawn_syscall=yes AC_MSG_RESULT([yes]) AC_DEFINE([SOLARIS_SPAWN_SYSCALL], 1, [Define to 1 if you have the `spawn' syscall.]) ], [ solaris_spawn_syscall=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(SOLARIS_SPAWN_SYSCALL, test x$solaris_spawn_syscall = xyes) # Solaris-specific check determining whether nscd (name switch cache daemon) # attaches its door at /system/volatile/name_service_door (Solaris) # or at /var/run/name_service_door (illumos). # # Note that /var/run is a symlink to /system/volatile on Solaris # but not vice versa on illumos. # # C-level symbol: SOLARIS_NSCD_DOOR_SYSTEM_VOLATILE # Automake-level symbol: SOLARIS_NSCD_DOOR_SYSTEM_VOLATILE # AC_MSG_CHECKING([for nscd door location (Solaris-specific)]) if test -e /system/volatile/name_service_door; then solaris_nscd_door_system_volatile=yes AC_MSG_RESULT([/system/volatile/name_service_door]) AC_DEFINE([SOLARIS_NSCD_DOOR_SYSTEM_VOLATILE], 1, [Define to 1 if nscd attaches to /system/volatile/name_service_door.]) else solaris_nscd_door_system_volatile=no AC_MSG_RESULT([/var/run/name_service_door]) fi AM_CONDITIONAL(SOLARIS_NSCD_DOOR_SYSTEM_VOLATILE, test x$solaris_nscd_door_system_volatile = xyes) # Solaris-specific check determining if the new gethrt() fasttrap is available. # # New fasttrap (available on Solaris 11): # hrt_t *gethrt(void); # # C-level symbol: SOLARIS_GETHRT_FASTTRAP # Automake-level symbol: SOLARIS_GETHRT_FASTTRAP # AC_MSG_CHECKING([for the new `gethrt' fasttrap (Solaris-specific)]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ #include ]], [[ return !T_GETHRT; ]])], [ solaris_gethrt_fasttrap=yes AC_MSG_RESULT([yes]) AC_DEFINE([SOLARIS_GETHRT_FASTTRAP], 1, [Define to 1 if you have the new `gethrt' fasttrap.]) ], [ solaris_gethrt_fasttrap=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(SOLARIS_GETHRT_FASTTRAP, test x$solaris_gethrt_fasttrap = xyes) # Solaris-specific check determining if the new get_zone_offset() fasttrap # is available. # # New fasttrap (available on Solaris 11): # zonehrtoffset_t *get_zone_offset(void); # # C-level symbol: SOLARIS_GETZONEOFFSET_FASTTRAP # Automake-level symbol: SOLARIS_GETZONEOFFSET_FASTTRAP # AC_MSG_CHECKING([for the new `get_zone_offset' fasttrap (Solaris-specific)]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ #include ]], [[ return !T_GETZONEOFFSET; ]])], [ solaris_getzoneoffset_fasttrap=yes AC_MSG_RESULT([yes]) AC_DEFINE([SOLARIS_GETZONEOFFSET_FASTTRAP], 1, [Define to 1 if you have the new `get_zone_offset' fasttrap.]) ], [ solaris_getzoneoffset_fasttrap=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(SOLARIS_GETZONEOFFSET_FASTTRAP, test x$solaris_getzoneoffset_fasttrap = xyes) # Solaris-specific check determining if the execve() syscall # takes fourth argument (flags) or not. # # Old syscall (available on illumos): # int execve(const char *fname, const char **argv, const char **envp); # # New syscall (available on Solaris): # int execve(uintptr_t file, const char **argv, const char **envp, int flags); # # If the new syscall is present then it will fail with EINVAL (because flags # are invalid); if the old syscall is available then it will fail with ENOENT # (because the file could not be found). # # C-level symbol: SOLARIS_EXECVE_SYSCALL_TAKES_FLAGS # Automake-level symbol: SOLARIS_EXECVE_SYSCALL_TAKES_FLAGS # AC_MSG_CHECKING([if the `execve' syscall accepts flags (Solaris-specific)]) AC_RUN_IFELSE([AC_LANG_PROGRAM([[ #include #include ]], [[ errno = 0; syscall(SYS_execve, "/no/existing/path", 0, 0, 0xdeadbeef, 0, 0); return !(errno == EINVAL); ]])], [ solaris_execve_syscall_takes_flags=yes AC_MSG_RESULT([yes]) AC_DEFINE([SOLARIS_EXECVE_SYSCALL_TAKES_FLAGS], 1, [Define to 1 if you have the new `execve' syscall which accepts flags.]) ], [ solaris_execve_syscall_takes_flags=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(SOLARIS_EXECVE_SYSCALL_TAKES_FLAGS, test x$solaris_execve_syscall_takes_flags = xyes) # Solaris-specific check determining version of the repository cache protocol. # Every Solaris version uses a different one, ranging from 21 to current 25. # The check is very ugly, though. # # C-level symbol: SOLARIS_REPCACHE_PROTOCOL_VERSION vv # Automake-level symbol: none # AC_PATH_PROG(DIS_PATH, dis, false) if test "x$DIS_PATH" = "xfalse"; then AC_MSG_FAILURE([Object code disassembler (`dis') not found.]) fi AC_CHECK_LIB(scf, scf_handle_bind, [], [ AC_MSG_WARN([Function `scf_handle_bind' was not found in `libscf'.]) AC_MSG_ERROR([Cannot determine version of the repository cache protocol.]) ]) AC_MSG_CHECKING([for version of the repository cache protocol (Solaris-specific)]) if test "X$VGCONF_ARCH_PRI" = "Xamd64"; then libscf=/usr/lib/64/libscf.so.1 else libscf=/usr/lib/libscf.so.1 fi if ! $DIS_PATH -F scf_handle_bind $libscf | grep -q 0x526570; then AC_MSG_WARN([Function `scf_handle_bind' does not contain repository cache protocol version.]) AC_MSG_ERROR([Cannot determine version of the repository cache protocol.]) fi hex=$( $DIS_PATH -F scf_handle_bind $libscf | sed -n 's/.*0x526570\(..\).*/\1/p' ) if test -z "$hex"; then AC_MSG_WARN([Version of the repository cache protocol is empty?!]) AC_MSG_ERROR([Cannot determine version of the repository cache protocol.]) fi version=$( printf "%d\n" 0x$hex ) AC_MSG_RESULT([$version]) AC_DEFINE_UNQUOTED([SOLARIS_REPCACHE_PROTOCOL_VERSION], [$version], [Version number of the repository door cache protocol.]) # Solaris-specific check determining if "sysstat" segment reservation type # is available. # # New "sysstat" segment reservation (available on Solaris 12): # - program header type: PT_SUNW_SYSSTAT # - auxiliary vector entry: AT_SUN_SYSSTAT_ADDR # # C-level symbol: SOLARIS_RESERVE_SYSSTAT_ADDR # Automake-level symbol: SOLARIS_RESERVE_SYSSTAT_ADDR # AC_MSG_CHECKING([for the new `sysstat' segment reservation (Solaris-specific)]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ #include ]], [[ return !AT_SUN_SYSSTAT_ADDR; ]])], [ solaris_reserve_sysstat_addr=yes AC_MSG_RESULT([yes]) AC_DEFINE([SOLARIS_RESERVE_SYSSTAT_ADDR], 1, [Define to 1 if you have the new `sysstat' segment reservation.]) ], [ solaris_reserve_sysstat_addr=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(SOLARIS_RESERVE_SYSSTAT_ADDR, test x$solaris_reserve_sysstat_addr = xyes) # Solaris-specific check determining if "sysstat_zone" segment reservation type # is available. # # New "sysstat_zone" segment reservation (available on Solaris 12): # - program header type: PT_SUNW_SYSSTAT_ZONE # - auxiliary vector entry: AT_SUN_SYSSTAT_ZONE_ADDR # # C-level symbol: SOLARIS_RESERVE_SYSSTAT_ZONE_ADDR # Automake-level symbol: SOLARIS_RESERVE_SYSSTAT_ZONE_ADDR # AC_MSG_CHECKING([for the new `sysstat_zone' segment reservation (Solaris-specific)]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ #include ]], [[ return !AT_SUN_SYSSTAT_ZONE_ADDR; ]])], [ solaris_reserve_sysstat_zone_addr=yes AC_MSG_RESULT([yes]) AC_DEFINE([SOLARIS_RESERVE_SYSSTAT_ZONE_ADDR], 1, [Define to 1 if you have the new `sysstat_zone' segment reservation.]) ], [ solaris_reserve_sysstat_zone_addr=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(SOLARIS_RESERVE_SYSSTAT_ZONE_ADDR, test x$solaris_reserve_sysstat_zone_addr = xyes) # Solaris-specific check determining if the system_stats() syscall is available # (on newer Solaris). # # C-level symbol: SOLARIS_SYSTEM_STATS_SYSCALL # Automake-level symbol: SOLARIS_SYSTEM_STATS_SYSCALL # AC_MSG_CHECKING([for the `system_stats' syscall (Solaris-specific)]) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ #include ]], [[ return !SYS_system_stats; ]])], [ solaris_system_stats_syscall=yes AC_MSG_RESULT([yes]) AC_DEFINE([SOLARIS_SYSTEM_STATS_SYSCALL], 1, [Define to 1 if you have the `system_stats' syscall.]) ], [ solaris_system_stats_syscall=no AC_MSG_RESULT([no]) ]) AM_CONDITIONAL(SOLARIS_SYSTEM_STATS_SYSCALL, test x$solaris_system_stats_syscall = xyes) else AM_CONDITIONAL(SOLARIS_SUN_STUDIO_AS, false) AM_CONDITIONAL(SOLARIS_XPG_SYMBOLS_PRESENT, false) AM_CONDITIONAL(SOLARIS_PROC_CMDLINE, false) AM_CONDITIONAL(SOLARIS_OLD_SYSCALLS, false) AM_CONDITIONAL(SOLARIS_LWP_SIGQUEUE_SYSCALL, false) AM_CONDITIONAL(SOLARIS_LWP_SIGQUEUE_SYSCALL_TAKES_PID, false) AM_CONDITIONAL(SOLARIS_LWP_NAME_SYSCALL, false) AM_CONDITIONAL(SOLARIS_ZONE_DEFUNCT, false) AM_CONDITIONAL(SOLARIS_SHM_NEW, false) AM_CONDITIONAL(SOLARIS_PRXREGSET_T, false) AM_CONDITIONAL(SOLARIS_FREALPATHAT_SYSCALL, false) AM_CONDITIONAL(SOLARIS_UUIDSYS_SYSCALL, false) AM_CONDITIONAL(SOLARIS_TNDB_GET_TNIP, false) AM_CONDITIONAL(SOLARIS_TSOL_CLEARANCE, false) AM_CONDITIONAL(SOLARIS_PSET_GET_NAME, false) AM_CONDITIONAL(SOLARIS_UTIMESYS_SYSCALL, false) AM_CONDITIONAL(SOLARIS_UTIMENSAT_SYSCALL, false) AM_CONDITIONAL(SOLARIS_SPAWN_SYSCALL, false) AM_CONDITIONAL(SOLARIS_NSCD_DOOR_SYSTEM_VOLATILE, false) AM_CONDITIONAL(SOLARIS_GETHRT_FASTTRAP, false) AM_CONDITIONAL(SOLARIS_GETZONEOFFSET_FASTTRAP, false) AM_CONDITIONAL(SOLARIS_EXECVE_SYSCALL_TAKES_FLAGS, false) AM_CONDITIONAL(SOLARIS_RESERVE_SYSSTAT_ADDR, false) AM_CONDITIONAL(SOLARIS_RESERVE_SYSSTAT_ZONE_ADDR, false) AM_CONDITIONAL(SOLARIS_SYSTEM_STATS_SYSCALL, false) fi # test "$VGCONF_OS" = "solaris" #---------------------------------------------------------------------------- # Checks for C header files. #---------------------------------------------------------------------------- AC_HEADER_STDC AC_CHECK_HEADERS([ \ asm/unistd.h \ endian.h \ mqueue.h \ sys/endian.h \ sys/epoll.h \ sys/eventfd.h \ sys/klog.h \ sys/poll.h \ sys/prctl.h \ sys/signal.h \ sys/signalfd.h \ sys/syscall.h \ sys/time.h \ sys/types.h \ ]) # Verify whether the header is usable. AC_MSG_CHECKING([if is usable]) save_CFLAGS="$CFLAGS" CFLAGS="$CFLAGS -D__user=" AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ #include ]], [[ return FUTEX_WAIT; ]])], [ ac_have_usable_linux_futex_h=yes AC_DEFINE([HAVE_USABLE_LINUX_FUTEX_H], 1, [Define to 1 if you have a usable header file.]) AC_MSG_RESULT([yes]) ], [ ac_have_usable_linux_futex_h=no AC_MSG_RESULT([no]) ]) CFLAGS="$save_CFLAGS" #---------------------------------------------------------------------------- # Checks for typedefs, structures, and compiler characteristics. #---------------------------------------------------------------------------- AC_TYPE_UID_T AC_TYPE_OFF_T AC_TYPE_SIZE_T AC_HEADER_TIME #---------------------------------------------------------------------------- # Checks for library functions. #---------------------------------------------------------------------------- AC_FUNC_MEMCMP AC_FUNC_MMAP AC_CHECK_LIB([pthread], [pthread_create]) AC_CHECK_LIB([rt], [clock_gettime]) AC_CHECK_FUNCS([ \ clock_gettime\ epoll_create \ epoll_pwait \ klogctl \ mallinfo \ memchr \ memset \ mkdir \ mremap \ ppoll \ pthread_barrier_init \ pthread_condattr_setclock \ pthread_mutex_timedlock \ pthread_rwlock_timedrdlock \ pthread_rwlock_timedwrlock \ pthread_spin_lock \ pthread_yield \ pthread_setname_np \ readlinkat \ semtimedop \ signalfd \ sigwaitinfo \ strchr \ strdup \ strpbrk \ strrchr \ strstr \ syscall \ utimensat \ process_vm_readv \ process_vm_writev \ ]) # AC_CHECK_LIB adds any library found to the variable LIBS, and links these # libraries with any shared object and/or executable. This is NOT what we # want for e.g. vgpreload_core-x86-linux.so LIBS="" AM_CONDITIONAL([HAVE_PTHREAD_BARRIER], [test x$ac_cv_func_pthread_barrier_init = xyes]) AM_CONDITIONAL([HAVE_PTHREAD_MUTEX_TIMEDLOCK], [test x$ac_cv_func_pthread_mutex_timedlock = xyes]) AM_CONDITIONAL([HAVE_PTHREAD_SPINLOCK], [test x$ac_cv_func_pthread_spin_lock = xyes]) AM_CONDITIONAL([HAVE_PTHREAD_SETNAME_NP], [test x$ac_cv_func_pthread_setname_np = xyes]) if test x$VGCONF_PLATFORM_PRI_CAPS = xMIPS32_LINUX \ -o x$VGCONF_PLATFORM_PRI_CAPS = xMIPS64_LINUX ; then AC_DEFINE([DISABLE_PTHREAD_SPINLOCK_INTERCEPT], 1, [Disable intercept pthread_spin_lock() on MIPS32 and MIPS64.]) fi #---------------------------------------------------------------------------- # MPI checks #---------------------------------------------------------------------------- # Do we have a useable MPI setup on the primary and/or secondary targets? # On Linux, by default, assumes mpicc and -m32/-m64 # Note: this is a kludge in that it assumes the specified mpicc # understands -m32/-m64 regardless of what is specified using # --with-mpicc=. AC_PATH_PROG([MPI_CC], [mpicc], [mpicc], [$PATH:/usr/lib/openmpi/bin:/usr/lib64/openmpi/bin]) mflag_primary= if test x$VGCONF_PLATFORM_PRI_CAPS = xX86_LINUX \ -o x$VGCONF_PLATFORM_PRI_CAPS = xPPC32_LINUX \ -o x$VGCONF_PLATFORM_PRI_CAPS = xARM_LINUX \ -o x$VGCONF_PLATFORM_PRI_CAPS = xMIPS32_LINUX \ -o x$VGCONF_PLATFORM_PRI_CAPS = xMIPS64_LINUX \ -o x$VGCONF_PLATFORM_PRI_CAPS = xX86_SOLARIS ; then mflag_primary=$FLAG_M32 elif test x$VGCONF_PLATFORM_PRI_CAPS = xAMD64_LINUX \ -o x$VGCONF_PLATFORM_PRI_CAPS = xPPC64_LINUX \ -o x$VGCONF_PLATFORM_PRI_CAPS = xARM64_LINUX \ -o x$VGCONF_PLATFORM_PRI_CAPS = xS390X_LINUX ; then mflag_primary=$FLAG_M64 elif test x$VGCONF_PLATFORM_PRI_CAPS = xX86_DARWIN ; then mflag_primary="$FLAG_M32 -arch i386" elif test x$VGCONF_PLATFORM_PRI_CAPS = xAMD64_DARWIN ; then mflag_primary="$FLAG_M64 -arch x86_64" fi mflag_secondary= if test x$VGCONF_PLATFORM_SEC_CAPS = xX86_LINUX \ -o x$VGCONF_PLATFORM_SEC_CAPS = xPPC32_LINUX \ -o x$VGCONF_PLATFORM_SEC_CAPS = xX86_SOLARIS ; then mflag_secondary=$FLAG_M32 elif test x$VGCONF_PLATFORM_SEC_CAPS = xX86_DARWIN ; then mflag_secondary="$FLAG_M32 -arch i386" fi AC_ARG_WITH(mpicc, [ --with-mpicc= Specify name of MPI2-ised C compiler], MPI_CC=$withval ) AC_SUBST(MPI_CC) ## We AM_COND_IF here instead of automake "if" in mpi/Makefile.am so that we can ## use these values in the check for a functioning mpicc. ## ## We leave the MPI_FLAG_M3264_ logic in mpi/Makefile.am and assume that ## mflag_primary/mflag_secondary are sufficient approximations of that behavior AM_COND_IF([VGCONF_OS_IS_LINUX], [CFLAGS_MPI="-g -O -fno-omit-frame-pointer -Wall -fpic" LDFLAGS_MPI="-fpic -shared"]) AM_COND_IF([VGCONF_OS_IS_DARWIN], [CFLAGS_MPI="-g -O -fno-omit-frame-pointer -Wall -dynamic" LDFLAGS_MPI="-dynamic -dynamiclib -all_load"]) AM_COND_IF([VGCONF_OS_IS_SOLARIS], [CFLAGS_MPI="-g -O -fno-omit-frame-pointer -Wall -fpic" LDFLAGS_MPI="-fpic -shared"]) AC_SUBST([CFLAGS_MPI]) AC_SUBST([LDFLAGS_MPI]) ## See if MPI_CC works for the primary target ## AC_MSG_CHECKING([primary target for usable MPI2-compliant C compiler and mpi.h]) saved_CC=$CC saved_CFLAGS=$CFLAGS CC=$MPI_CC CFLAGS="$CFLAGS_MPI $mflag_primary" saved_LDFLAGS="$LDFLAGS" LDFLAGS="$LDFLAGS_MPI $mflag_primary" AC_LINK_IFELSE([AC_LANG_PROGRAM([[ #include #include ]], [[ int ni, na, nd, comb; int r = MPI_Init(NULL,NULL); r |= MPI_Type_get_envelope( MPI_INT, &ni, &na, &nd, &comb ); r |= MPI_Finalize(); return r; ]])], [ ac_have_mpi2_pri=yes AC_MSG_RESULT([yes, $MPI_CC]) ], [ ac_have_mpi2_pri=no AC_MSG_RESULT([no]) ]) CC=$saved_CC CFLAGS=$saved_CFLAGS LDFLAGS="$saved_LDFLAGS" AM_CONDITIONAL(BUILD_MPIWRAP_PRI, test x$ac_have_mpi2_pri = xyes) ## See if MPI_CC works for the secondary target. Complication: what if ## there is no secondary target? We need this to then fail. ## Kludge this by making MPI_CC something which will surely fail in ## such a case. ## AC_MSG_CHECKING([secondary target for usable MPI2-compliant C compiler and mpi.h]) saved_CC=$CC saved_CFLAGS=$CFLAGS saved_LDFLAGS="$LDFLAGS" LDFLAGS="$LDFLAGS_MPI $mflag_secondary" if test x$VGCONF_PLATFORM_SEC_CAPS = x ; then CC="$MPI_CC this will surely fail" else CC=$MPI_CC fi CFLAGS="$CFLAGS_MPI $mflag_secondary" AC_LINK_IFELSE([AC_LANG_PROGRAM([[ #include #include ]], [[ int ni, na, nd, comb; int r = MPI_Init(NULL,NULL); r |= MPI_Type_get_envelope( MPI_INT, &ni, &na, &nd, &comb ); r |= MPI_Finalize(); return r; ]])], [ ac_have_mpi2_sec=yes AC_MSG_RESULT([yes, $MPI_CC]) ], [ ac_have_mpi2_sec=no AC_MSG_RESULT([no]) ]) CC=$saved_CC CFLAGS=$saved_CFLAGS LDFLAGS="$saved_LDFLAGS" AM_CONDITIONAL(BUILD_MPIWRAP_SEC, test x$ac_have_mpi2_sec = xyes) #---------------------------------------------------------------------------- # Other library checks #---------------------------------------------------------------------------- # There now follow some tests for Boost, and OpenMP. These # tests are present because Drd has some regression tests that use # these packages. All regression test programs all compiled only # for the primary target. And so it is important that the configure # checks that follow, use the correct -m32 or -m64 flag for the # primary target (called $mflag_primary). Otherwise, we can end up # in a situation (eg) where, on amd64-linux, the test for Boost checks # for usable 64-bit Boost facilities, but because we are doing a 32-bit # only build (meaning, the primary target is x86-linux), the build # of the regtest programs that use Boost fails, because they are # build as 32-bit (IN THIS EXAMPLE). # # Hence: ALWAYS USE $mflag_primary FOR CONFIGURE TESTS FOR FACILITIES # NEEDED BY THE REGRESSION TEST PROGRAMS. # Check whether the boost library 1.35 or later has been installed. # The Boost.Threads library has undergone a major rewrite in version 1.35.0. AC_MSG_CHECKING([for boost]) AC_LANG(C++) safe_CXXFLAGS=$CXXFLAGS CXXFLAGS="$mflag_primary" safe_LIBS="$LIBS" LIBS="-lboost_thread-mt -lboost_system-mt $LIBS" AC_LINK_IFELSE([AC_LANG_SOURCE([ #include static void thread_func(void) { } int main(int argc, char** argv) { boost::thread t(thread_func); return 0; } ])], [ ac_have_boost_1_35=yes AC_SUBST([BOOST_CFLAGS], []) AC_SUBST([BOOST_LIBS], ["-lboost_thread-mt -lboost_system-mt"]) AC_MSG_RESULT([yes]) ], [ ac_have_boost_1_35=no AC_MSG_RESULT([no]) ]) LIBS="$safe_LIBS" CXXFLAGS=$safe_CXXFLAGS AC_LANG(C) AM_CONDITIONAL([HAVE_BOOST_1_35], [test x$ac_have_boost_1_35 = xyes]) # does this compiler support -fopenmp, does it have the include file # and does it have libgomp ? AC_MSG_CHECKING([for OpenMP]) safe_CFLAGS=$CFLAGS CFLAGS="-fopenmp $mflag_primary -Werror" AC_LINK_IFELSE([AC_LANG_SOURCE([ #include int main(int argc, char** argv) { omp_set_dynamic(0); return 0; } ])], [ ac_have_openmp=yes AC_MSG_RESULT([yes]) ], [ ac_have_openmp=no AC_MSG_RESULT([no]) ]) CFLAGS=$safe_CFLAGS AM_CONDITIONAL([HAVE_OPENMP], [test x$ac_have_openmp = xyes]) # Check for __builtin_popcount AC_MSG_CHECKING([for __builtin_popcount()]) AC_LINK_IFELSE([AC_LANG_PROGRAM([[ ]], [[ __builtin_popcount(2); return 0; ]])], [ AC_MSG_RESULT([yes]) AC_DEFINE([HAVE_BUILTIN_POPCOUT], 1, [Define to 1 if compiler provides __builtin_popcount().]) ], [ AC_MSG_RESULT([no]) ]) # Check for __builtin_clz AC_MSG_CHECKING([for __builtin_clz()]) AC_LINK_IFELSE([AC_LANG_PROGRAM([[ ]], [[ __builtin_clz(2); return 0; ]])], [ AC_MSG_RESULT([yes]) AC_DEFINE([HAVE_BUILTIN_CLZ], 1, [Define to 1 if compiler provides __builtin_clz().]) ], [ AC_MSG_RESULT([no]) ]) # Check for __builtin_ctz AC_MSG_CHECKING([for __builtin_ctz()]) AC_LINK_IFELSE([AC_LANG_PROGRAM([[ ]], [[ __builtin_ctz(2); return 0; ]])], [ AC_MSG_RESULT([yes]) AC_DEFINE([HAVE_BUILTIN_CTZ], 1, [Define to 1 if compiler provides __builtin_ctz().]) ], [ AC_MSG_RESULT([no]) ]) # does this compiler have built-in functions for atomic memory access for the # primary target ? AC_MSG_CHECKING([if gcc supports __sync_add_and_fetch for the primary target]) safe_CFLAGS=$CFLAGS CFLAGS="$mflag_primary" AC_LINK_IFELSE([AC_LANG_PROGRAM([[]], [[ int variable = 1; return (__sync_bool_compare_and_swap(&variable, 1, 2) && __sync_add_and_fetch(&variable, 1) ? 1 : 0) ]])], [ ac_have_builtin_atomic_primary=yes AC_MSG_RESULT([yes]) AC_DEFINE(HAVE_BUILTIN_ATOMIC, 1, [Define to 1 if gcc supports __sync_bool_compare_and_swap() and __sync_add_and_fetch() for the primary target]) ], [ ac_have_builtin_atomic_primary=no AC_MSG_RESULT([no]) ]) CFLAGS=$safe_CFLAGS AM_CONDITIONAL([HAVE_BUILTIN_ATOMIC], [test x$ac_have_builtin_atomic_primary = xyes]) # does this compiler have built-in functions for atomic memory access for the # secondary target ? if test x$VGCONF_PLATFORM_SEC_CAPS != x; then AC_MSG_CHECKING([if gcc supports __sync_add_and_fetch for the secondary target]) safe_CFLAGS=$CFLAGS CFLAGS="$mflag_secondary" AC_LINK_IFELSE([AC_LANG_PROGRAM([[]], [[ int variable = 1; return (__sync_add_and_fetch(&variable, 1) ? 1 : 0) ]])], [ ac_have_builtin_atomic_secondary=yes AC_MSG_RESULT([yes]) ], [ ac_have_builtin_atomic_secondary=no AC_MSG_RESULT([no]) ]) CFLAGS=$safe_CFLAGS fi AM_CONDITIONAL([HAVE_BUILTIN_ATOMIC_SECONDARY], [test x$ac_have_builtin_atomic_secondary = xyes]) # does this compiler have built-in functions for atomic memory access on # 64-bit integers for all targets ? AC_MSG_CHECKING([if gcc supports __sync_add_and_fetch on uint64_t for all targets]) AC_LINK_IFELSE([AC_LANG_PROGRAM([[ #include ]], [[ uint64_t variable = 1; return __sync_add_and_fetch(&variable, 1) ]])], [ ac_have_builtin_atomic64_primary=yes ], [ ac_have_builtin_atomic64_primary=no ]) if test x$VGCONF_PLATFORM_SEC_CAPS != x; then safe_CFLAGS=$CFLAGS CFLAGS="$mflag_secondary" AC_LINK_IFELSE([AC_LANG_PROGRAM([[ #include ]], [[ uint64_t variable = 1; return __sync_add_and_fetch(&variable, 1) ]])], [ ac_have_builtin_atomic64_secondary=yes ], [ ac_have_builtin_atomic64_secondary=no ]) CFLAGS=$safe_CFLAGS fi if test x$ac_have_builtin_atomic64_primary = xyes && \ test x$VGCONF_PLATFORM_SEC_CAPS = x \ -o x$ac_have_builtin_atomic64_secondary = xyes; then AC_MSG_RESULT([yes]) ac_have_builtin_atomic64=yes else AC_MSG_RESULT([no]) ac_have_builtin_atomic64=no fi AM_CONDITIONAL([HAVE_BUILTIN_ATOMIC64], [test x$ac_have_builtin_atomic64 = xyes]) # does g++ have built-in functions for atomic memory access ? AC_MSG_CHECKING([if g++ supports __sync_add_and_fetch]) safe_CXXFLAGS=$CXXFLAGS CXXFLAGS="$mflag_primary" AC_LANG_PUSH(C++) AC_LINK_IFELSE([AC_LANG_PROGRAM([[]], [[ int variable = 1; return (__sync_bool_compare_and_swap(&variable, 1, 2) && __sync_add_and_fetch(&variable, 1) ? 1 : 0) ]])], [ ac_have_builtin_atomic_cxx=yes AC_MSG_RESULT([yes]) AC_DEFINE(HAVE_BUILTIN_ATOMIC_CXX, 1, [Define to 1 if g++ supports __sync_bool_compare_and_swap() and __sync_add_and_fetch()]) ], [ ac_have_builtin_atomic_cxx=no AC_MSG_RESULT([no]) ]) AC_LANG_POP(C++) CXXFLAGS=$safe_CXXFLAGS AM_CONDITIONAL([HAVE_BUILTIN_ATOMIC_CXX], [test x$ac_have_builtin_atomic_cxx = xyes]) if test x$ac_have_usable_linux_futex_h = xyes \ -a x$ac_have_builtin_atomic_primary = xyes; then ac_enable_linux_ticket_lock_primary=yes fi AM_CONDITIONAL([ENABLE_LINUX_TICKET_LOCK_PRIMARY], [test x$ac_enable_linux_ticket_lock_primary = xyes]) if test x$VGCONF_PLATFORM_SEC_CAPS != x \ -a x$ac_have_usable_linux_futex_h = xyes \ -a x$ac_have_builtin_atomic_secondary = xyes; then ac_enable_linux_ticket_lock_secondary=yes fi AM_CONDITIONAL([ENABLE_LINUX_TICKET_LOCK_SECONDARY], [test x$ac_enable_linux_ticket_lock_secondary = xyes]) # does libstdc++ support annotating shared pointers ? AC_MSG_CHECKING([if libstdc++ supports annotating shared pointers]) safe_CXXFLAGS=$CXXFLAGS CXXFLAGS="-std=c++0x" AC_LANG_PUSH(C++) AC_LINK_IFELSE([AC_LANG_PROGRAM([[ #include ]], [[ std::shared_ptr p ]])], [ ac_have_shared_ptr=yes ], [ ac_have_shared_ptr=no ]) if test x$ac_have_shared_ptr = xyes; then # If compilation of the program below fails because of a syntax error # triggered by substituting one of the annotation macros then that # means that libstdc++ supports these macros. AC_LINK_IFELSE([AC_LANG_PROGRAM([[ #define _GLIBCXX_SYNCHRONIZATION_HAPPENS_BEFORE(a) (a)---- #define _GLIBCXX_SYNCHRONIZATION_HAPPENS_AFTER(a) (a)---- #include ]], [[ std::shared_ptr p ]])], [ ac_have_shared_pointer_annotation=no AC_MSG_RESULT([no]) ], [ ac_have_shared_pointer_annotation=yes AC_MSG_RESULT([yes]) AC_DEFINE(HAVE_SHARED_POINTER_ANNOTATION, 1, [Define to 1 if libstd++ supports annotating shared pointers]) ]) else ac_have_shared_pointer_annotation=no AC_MSG_RESULT([no]) fi AC_LANG_POP(C++) CXXFLAGS=$safe_CXXFLAGS AM_CONDITIONAL([HAVE_SHARED_POINTER_ANNOTATION], [test x$ac_have_shared_pointer_annotation = xyes]) #---------------------------------------------------------------------------- # Ok. We're done checking. #---------------------------------------------------------------------------- # Nb: VEX/Makefile is generated from Makefile.vex.in. AC_CONFIG_FILES([ Makefile VEX/Makefile:Makefile.vex.in valgrind.spec valgrind.pc glibc-2.X.supp docs/Makefile tests/Makefile tests/vg_regtest perf/Makefile perf/vg_perf gdbserver_tests/Makefile gdbserver_tests/solaris/Makefile include/Makefile auxprogs/Makefile mpi/Makefile coregrind/Makefile memcheck/Makefile memcheck/tests/Makefile memcheck/tests/common/Makefile memcheck/tests/amd64/Makefile memcheck/tests/x86/Makefile memcheck/tests/linux/Makefile memcheck/tests/darwin/Makefile memcheck/tests/solaris/Makefile memcheck/tests/amd64-linux/Makefile memcheck/tests/x86-linux/Makefile memcheck/tests/amd64-solaris/Makefile memcheck/tests/x86-solaris/Makefile memcheck/tests/ppc32/Makefile memcheck/tests/ppc64/Makefile memcheck/tests/s390x/Makefile memcheck/tests/vbit-test/Makefile cachegrind/Makefile cachegrind/tests/Makefile cachegrind/tests/x86/Makefile cachegrind/cg_annotate cachegrind/cg_diff callgrind/Makefile callgrind/callgrind_annotate callgrind/callgrind_control callgrind/tests/Makefile helgrind/Makefile helgrind/tests/Makefile massif/Makefile massif/tests/Makefile massif/ms_print lackey/Makefile lackey/tests/Makefile none/Makefile none/tests/Makefile none/tests/scripts/Makefile none/tests/amd64/Makefile none/tests/ppc32/Makefile none/tests/ppc64/Makefile none/tests/x86/Makefile none/tests/arm/Makefile none/tests/arm64/Makefile none/tests/s390x/Makefile none/tests/mips32/Makefile none/tests/mips64/Makefile none/tests/tilegx/Makefile none/tests/linux/Makefile none/tests/darwin/Makefile none/tests/solaris/Makefile none/tests/amd64-linux/Makefile none/tests/x86-linux/Makefile none/tests/amd64-darwin/Makefile none/tests/x86-darwin/Makefile none/tests/amd64-solaris/Makefile none/tests/x86-solaris/Makefile exp-sgcheck/Makefile exp-sgcheck/tests/Makefile drd/Makefile drd/scripts/download-and-build-splash2 drd/tests/Makefile exp-bbv/Makefile exp-bbv/tests/Makefile exp-bbv/tests/x86/Makefile exp-bbv/tests/x86-linux/Makefile exp-bbv/tests/amd64-linux/Makefile exp-bbv/tests/ppc32-linux/Makefile exp-bbv/tests/arm-linux/Makefile exp-dhat/Makefile exp-dhat/tests/Makefile shared/Makefile solaris/Makefile ]) AC_CONFIG_FILES([coregrind/link_tool_exe_linux], [chmod +x coregrind/link_tool_exe_linux]) AC_CONFIG_FILES([coregrind/link_tool_exe_darwin], [chmod +x coregrind/link_tool_exe_darwin]) AC_CONFIG_FILES([coregrind/link_tool_exe_solaris], [chmod +x coregrind/link_tool_exe_solaris]) AC_OUTPUT cat<