/* * Copyright 2004 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include "webrtc/p2p/base/stun.h" #include "webrtc/base/arraysize.h" #include "webrtc/base/bytebuffer.h" #include "webrtc/base/gunit.h" #include "webrtc/base/logging.h" #include "webrtc/base/messagedigest.h" #include "webrtc/base/scoped_ptr.h" #include "webrtc/base/socketaddress.h" namespace cricket { class StunTest : public ::testing::Test { protected: void CheckStunHeader(const StunMessage& msg, StunMessageType expected_type, size_t expected_length) { ASSERT_EQ(expected_type, msg.type()); ASSERT_EQ(expected_length, msg.length()); } void CheckStunTransactionID(const StunMessage& msg, const unsigned char* expectedID, size_t length) { ASSERT_EQ(length, msg.transaction_id().size()); ASSERT_EQ(length == kStunTransactionIdLength + 4, msg.IsLegacy()); ASSERT_EQ(length == kStunTransactionIdLength, !msg.IsLegacy()); ASSERT_EQ(0, memcmp(msg.transaction_id().c_str(), expectedID, length)); } void CheckStunAddressAttribute(const StunAddressAttribute* addr, StunAddressFamily expected_family, int expected_port, rtc::IPAddress expected_address) { ASSERT_EQ(expected_family, addr->family()); ASSERT_EQ(expected_port, addr->port()); if (addr->family() == STUN_ADDRESS_IPV4) { in_addr v4_address = expected_address.ipv4_address(); in_addr stun_address = addr->ipaddr().ipv4_address(); ASSERT_EQ(0, memcmp(&v4_address, &stun_address, sizeof(stun_address))); } else if (addr->family() == STUN_ADDRESS_IPV6) { in6_addr v6_address = expected_address.ipv6_address(); in6_addr stun_address = addr->ipaddr().ipv6_address(); ASSERT_EQ(0, memcmp(&v6_address, &stun_address, sizeof(stun_address))); } else { ASSERT_TRUE(addr->family() == STUN_ADDRESS_IPV6 || addr->family() == STUN_ADDRESS_IPV4); } } size_t ReadStunMessageTestCase(StunMessage* msg, const unsigned char* testcase, size_t size) { const char* input = reinterpret_cast(testcase); rtc::ByteBuffer buf(input, size); if (msg->Read(&buf)) { // Returns the size the stun message should report itself as being return (size - 20); } else { return 0; } } }; // Sample STUN packets with various attributes // Gathered by wiresharking pjproject's pjnath test programs // pjproject available at www.pjsip.org static const unsigned char kStunMessageWithIPv6MappedAddress[] = { 0x00, 0x01, 0x00, 0x18, // message header 0x21, 0x12, 0xa4, 0x42, // transaction id 0x29, 0x1f, 0xcd, 0x7c, 0xba, 0x58, 0xab, 0xd7, 0xf2, 0x41, 0x01, 0x00, 0x00, 0x01, 0x00, 0x14, // Address type (mapped), length 0x00, 0x02, 0xb8, 0x81, // family (IPv6), port 0x24, 0x01, 0xfa, 0x00, // an IPv6 address 0x00, 0x04, 0x10, 0x00, 0xbe, 0x30, 0x5b, 0xff, 0xfe, 0xe5, 0x00, 0xc3 }; static const unsigned char kStunMessageWithIPv4MappedAddress[] = { 0x01, 0x01, 0x00, 0x0c, // binding response, length 12 0x21, 0x12, 0xa4, 0x42, // magic cookie 0x29, 0x1f, 0xcd, 0x7c, // transaction ID 0xba, 0x58, 0xab, 0xd7, 0xf2, 0x41, 0x01, 0x00, 0x00, 0x01, 0x00, 0x08, // Mapped, 8 byte length 0x00, 0x01, 0x9d, 0xfc, // AF_INET, unxor-ed port 0xac, 0x17, 0x44, 0xe6 // IPv4 address }; // Test XOR-mapped IP addresses: static const unsigned char kStunMessageWithIPv6XorMappedAddress[] = { 0x01, 0x01, 0x00, 0x18, // message header (binding response) 0x21, 0x12, 0xa4, 0x42, // magic cookie (rfc5389) 0xe3, 0xa9, 0x46, 0xe1, // transaction ID 0x7c, 0x00, 0xc2, 0x62, 0x54, 0x08, 0x01, 0x00, 0x00, 0x20, 0x00, 0x14, // Address Type (XOR), length 0x00, 0x02, 0xcb, 0x5b, // family, XOR-ed port 0x05, 0x13, 0x5e, 0x42, // XOR-ed IPv6 address 0xe3, 0xad, 0x56, 0xe1, 0xc2, 0x30, 0x99, 0x9d, 0xaa, 0xed, 0x01, 0xc3 }; static const unsigned char kStunMessageWithIPv4XorMappedAddress[] = { 0x01, 0x01, 0x00, 0x0c, // message header (binding response) 0x21, 0x12, 0xa4, 0x42, // magic cookie 0x29, 0x1f, 0xcd, 0x7c, // transaction ID 0xba, 0x58, 0xab, 0xd7, 0xf2, 0x41, 0x01, 0x00, 0x00, 0x20, 0x00, 0x08, // address type (xor), length 0x00, 0x01, 0xfc, 0xb5, // family (AF_INET), XOR-ed port 0x8d, 0x05, 0xe0, 0xa4 // IPv4 address }; // ByteString Attribute (username) static const unsigned char kStunMessageWithByteStringAttribute[] = { 0x00, 0x01, 0x00, 0x0c, 0x21, 0x12, 0xa4, 0x42, 0xe3, 0xa9, 0x46, 0xe1, 0x7c, 0x00, 0xc2, 0x62, 0x54, 0x08, 0x01, 0x00, 0x00, 0x06, 0x00, 0x08, // username attribute (length 8) 0x61, 0x62, 0x63, 0x64, // abcdefgh 0x65, 0x66, 0x67, 0x68 }; // Message with an unknown but comprehensible optional attribute. // Parsing should succeed despite this unknown attribute. static const unsigned char kStunMessageWithUnknownAttribute[] = { 0x00, 0x01, 0x00, 0x14, 0x21, 0x12, 0xa4, 0x42, 0xe3, 0xa9, 0x46, 0xe1, 0x7c, 0x00, 0xc2, 0x62, 0x54, 0x08, 0x01, 0x00, 0x00, 0xaa, 0x00, 0x07, // Unknown attribute, length 7 (needs padding!) 0x61, 0x62, 0x63, 0x64, // abcdefg + padding 0x65, 0x66, 0x67, 0x00, 0x00, 0x06, 0x00, 0x03, // Followed by a known attribute we can 0x61, 0x62, 0x63, 0x00 // check for (username of length 3) }; // ByteString Attribute (username) with padding byte static const unsigned char kStunMessageWithPaddedByteStringAttribute[] = { 0x00, 0x01, 0x00, 0x08, 0x21, 0x12, 0xa4, 0x42, 0xe3, 0xa9, 0x46, 0xe1, 0x7c, 0x00, 0xc2, 0x62, 0x54, 0x08, 0x01, 0x00, 0x00, 0x06, 0x00, 0x03, // username attribute (length 3) 0x61, 0x62, 0x63, 0xcc // abc }; // Message with an Unknown Attributes (uint16_t list) attribute. static const unsigned char kStunMessageWithUInt16ListAttribute[] = { 0x00, 0x01, 0x00, 0x0c, 0x21, 0x12, 0xa4, 0x42, 0xe3, 0xa9, 0x46, 0xe1, 0x7c, 0x00, 0xc2, 0x62, 0x54, 0x08, 0x01, 0x00, 0x00, 0x0a, 0x00, 0x06, // username attribute (length 6) 0x00, 0x01, 0x10, 0x00, // three attributes plus padding 0xAB, 0xCU, 0xBE, 0xEF }; // Error response message (unauthorized) static const unsigned char kStunMessageWithErrorAttribute[] = { 0x01, 0x11, 0x00, 0x14, 0x21, 0x12, 0xa4, 0x42, 0x29, 0x1f, 0xcd, 0x7c, 0xba, 0x58, 0xab, 0xd7, 0xf2, 0x41, 0x01, 0x00, 0x00, 0x09, 0x00, 0x10, 0x00, 0x00, 0x04, 0x01, 0x55, 0x6e, 0x61, 0x75, 0x74, 0x68, 0x6f, 0x72, 0x69, 0x7a, 0x65, 0x64 }; static const unsigned char kStunMessageWithOriginAttribute[] = { 0x00, 0x01, 0x00, 0x18, // message header (binding request), length 24 0x21, 0x12, 0xA4, 0x42, // magic cookie 0x29, 0x1f, 0xcd, 0x7c, // transaction id 0xba, 0x58, 0xab, 0xd7, 0xf2, 0x41, 0x01, 0x00, 0x80, 0x2f, 0x00, 0x12, // origin attribute (length 18) 0x68, 0x74, 0x74, 0x70, // http://example.com 0x3A, 0x2F, 0x2F, 0x65, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x2e, 0x63, 0x6f, 0x6d, 0x00, 0x00, }; // Sample messages with an invalid length Field // The actual length in bytes of the invalid messages (including STUN header) static const int kRealLengthOfInvalidLengthTestCases = 32; static const unsigned char kStunMessageWithZeroLength[] = { 0x00, 0x01, 0x00, 0x00, // length of 0 (last 2 bytes) 0x21, 0x12, 0xA4, 0x42, // magic cookie '0', '1', '2', '3', // transaction id '4', '5', '6', '7', '8', '9', 'a', 'b', 0x00, 0x20, 0x00, 0x08, // xor mapped address 0x00, 0x01, 0x21, 0x1F, 0x21, 0x12, 0xA4, 0x53, }; static const unsigned char kStunMessageWithExcessLength[] = { 0x00, 0x01, 0x00, 0x55, // length of 85 0x21, 0x12, 0xA4, 0x42, // magic cookie '0', '1', '2', '3', // transaction id '4', '5', '6', '7', '8', '9', 'a', 'b', 0x00, 0x20, 0x00, 0x08, // xor mapped address 0x00, 0x01, 0x21, 0x1F, 0x21, 0x12, 0xA4, 0x53, }; static const unsigned char kStunMessageWithSmallLength[] = { 0x00, 0x01, 0x00, 0x03, // length of 3 0x21, 0x12, 0xA4, 0x42, // magic cookie '0', '1', '2', '3', // transaction id '4', '5', '6', '7', '8', '9', 'a', 'b', 0x00, 0x20, 0x00, 0x08, // xor mapped address 0x00, 0x01, 0x21, 0x1F, 0x21, 0x12, 0xA4, 0x53, }; // RTCP packet, for testing we correctly ignore non stun packet types. // V=2, P=false, RC=0, Type=200, Len=6, Sender-SSRC=85, etc static const unsigned char kRtcpPacket[] = { 0x80, 0xc8, 0x00, 0x06, 0x00, 0x00, 0x00, 0x55, 0xce, 0xa5, 0x18, 0x3a, 0x39, 0xcc, 0x7d, 0x09, 0x23, 0xed, 0x19, 0x07, 0x00, 0x00, 0x01, 0x56, 0x00, 0x03, 0x73, 0x50, }; // RFC5769 Test Vectors // Software name (request): "STUN test client" (without quotes) // Software name (response): "test vector" (without quotes) // Username: "evtj:h6vY" (without quotes) // Password: "VOkJxbRl1RmTxUk/WvJxBt" (without quotes) static const unsigned char kRfc5769SampleMsgTransactionId[] = { 0xb7, 0xe7, 0xa7, 0x01, 0xbc, 0x34, 0xd6, 0x86, 0xfa, 0x87, 0xdf, 0xae }; static const char kRfc5769SampleMsgClientSoftware[] = "STUN test client"; static const char kRfc5769SampleMsgServerSoftware[] = "test vector"; static const char kRfc5769SampleMsgUsername[] = "evtj:h6vY"; static const char kRfc5769SampleMsgPassword[] = "VOkJxbRl1RmTxUk/WvJxBt"; static const rtc::SocketAddress kRfc5769SampleMsgMappedAddress( "192.0.2.1", 32853); static const rtc::SocketAddress kRfc5769SampleMsgIPv6MappedAddress( "2001:db8:1234:5678:11:2233:4455:6677", 32853); static const unsigned char kRfc5769SampleMsgWithAuthTransactionId[] = { 0x78, 0xad, 0x34, 0x33, 0xc6, 0xad, 0x72, 0xc0, 0x29, 0xda, 0x41, 0x2e }; static const char kRfc5769SampleMsgWithAuthUsername[] = "\xe3\x83\x9e\xe3\x83\x88\xe3\x83\xaa\xe3\x83\x83\xe3\x82\xaf\xe3\x82\xb9"; static const char kRfc5769SampleMsgWithAuthPassword[] = "TheMatrIX"; static const char kRfc5769SampleMsgWithAuthNonce[] = "f//499k954d6OL34oL9FSTvy64sA"; static const char kRfc5769SampleMsgWithAuthRealm[] = "example.org"; // 2.1. Sample Request static const unsigned char kRfc5769SampleRequest[] = { 0x00, 0x01, 0x00, 0x58, // Request type and message length 0x21, 0x12, 0xa4, 0x42, // Magic cookie 0xb7, 0xe7, 0xa7, 0x01, // } 0xbc, 0x34, 0xd6, 0x86, // } Transaction ID 0xfa, 0x87, 0xdf, 0xae, // } 0x80, 0x22, 0x00, 0x10, // SOFTWARE attribute header 0x53, 0x54, 0x55, 0x4e, // } 0x20, 0x74, 0x65, 0x73, // } User-agent... 0x74, 0x20, 0x63, 0x6c, // } ...name 0x69, 0x65, 0x6e, 0x74, // } 0x00, 0x24, 0x00, 0x04, // PRIORITY attribute header 0x6e, 0x00, 0x01, 0xff, // ICE priority value 0x80, 0x29, 0x00, 0x08, // ICE-CONTROLLED attribute header 0x93, 0x2f, 0xf9, 0xb1, // } Pseudo-random tie breaker... 0x51, 0x26, 0x3b, 0x36, // } ...for ICE control 0x00, 0x06, 0x00, 0x09, // USERNAME attribute header 0x65, 0x76, 0x74, 0x6a, // } 0x3a, 0x68, 0x36, 0x76, // } Username (9 bytes) and padding (3 bytes) 0x59, 0x20, 0x20, 0x20, // } 0x00, 0x08, 0x00, 0x14, // MESSAGE-INTEGRITY attribute header 0x9a, 0xea, 0xa7, 0x0c, // } 0xbf, 0xd8, 0xcb, 0x56, // } 0x78, 0x1e, 0xf2, 0xb5, // } HMAC-SHA1 fingerprint 0xb2, 0xd3, 0xf2, 0x49, // } 0xc1, 0xb5, 0x71, 0xa2, // } 0x80, 0x28, 0x00, 0x04, // FINGERPRINT attribute header 0xe5, 0x7a, 0x3b, 0xcf // CRC32 fingerprint }; // 2.2. Sample IPv4 Response static const unsigned char kRfc5769SampleResponse[] = { 0x01, 0x01, 0x00, 0x3c, // Response type and message length 0x21, 0x12, 0xa4, 0x42, // Magic cookie 0xb7, 0xe7, 0xa7, 0x01, // } 0xbc, 0x34, 0xd6, 0x86, // } Transaction ID 0xfa, 0x87, 0xdf, 0xae, // } 0x80, 0x22, 0x00, 0x0b, // SOFTWARE attribute header 0x74, 0x65, 0x73, 0x74, // } 0x20, 0x76, 0x65, 0x63, // } UTF-8 server name 0x74, 0x6f, 0x72, 0x20, // } 0x00, 0x20, 0x00, 0x08, // XOR-MAPPED-ADDRESS attribute header 0x00, 0x01, 0xa1, 0x47, // Address family (IPv4) and xor'd mapped port 0xe1, 0x12, 0xa6, 0x43, // Xor'd mapped IPv4 address 0x00, 0x08, 0x00, 0x14, // MESSAGE-INTEGRITY attribute header 0x2b, 0x91, 0xf5, 0x99, // } 0xfd, 0x9e, 0x90, 0xc3, // } 0x8c, 0x74, 0x89, 0xf9, // } HMAC-SHA1 fingerprint 0x2a, 0xf9, 0xba, 0x53, // } 0xf0, 0x6b, 0xe7, 0xd7, // } 0x80, 0x28, 0x00, 0x04, // FINGERPRINT attribute header 0xc0, 0x7d, 0x4c, 0x96 // CRC32 fingerprint }; // 2.3. Sample IPv6 Response static const unsigned char kRfc5769SampleResponseIPv6[] = { 0x01, 0x01, 0x00, 0x48, // Response type and message length 0x21, 0x12, 0xa4, 0x42, // Magic cookie 0xb7, 0xe7, 0xa7, 0x01, // } 0xbc, 0x34, 0xd6, 0x86, // } Transaction ID 0xfa, 0x87, 0xdf, 0xae, // } 0x80, 0x22, 0x00, 0x0b, // SOFTWARE attribute header 0x74, 0x65, 0x73, 0x74, // } 0x20, 0x76, 0x65, 0x63, // } UTF-8 server name 0x74, 0x6f, 0x72, 0x20, // } 0x00, 0x20, 0x00, 0x14, // XOR-MAPPED-ADDRESS attribute header 0x00, 0x02, 0xa1, 0x47, // Address family (IPv6) and xor'd mapped port. 0x01, 0x13, 0xa9, 0xfa, // } 0xa5, 0xd3, 0xf1, 0x79, // } Xor'd mapped IPv6 address 0xbc, 0x25, 0xf4, 0xb5, // } 0xbe, 0xd2, 0xb9, 0xd9, // } 0x00, 0x08, 0x00, 0x14, // MESSAGE-INTEGRITY attribute header 0xa3, 0x82, 0x95, 0x4e, // } 0x4b, 0xe6, 0x7b, 0xf1, // } 0x17, 0x84, 0xc9, 0x7c, // } HMAC-SHA1 fingerprint 0x82, 0x92, 0xc2, 0x75, // } 0xbf, 0xe3, 0xed, 0x41, // } 0x80, 0x28, 0x00, 0x04, // FINGERPRINT attribute header 0xc8, 0xfb, 0x0b, 0x4c // CRC32 fingerprint }; // 2.4. Sample Request with Long-Term Authentication static const unsigned char kRfc5769SampleRequestLongTermAuth[] = { 0x00, 0x01, 0x00, 0x60, // Request type and message length 0x21, 0x12, 0xa4, 0x42, // Magic cookie 0x78, 0xad, 0x34, 0x33, // } 0xc6, 0xad, 0x72, 0xc0, // } Transaction ID 0x29, 0xda, 0x41, 0x2e, // } 0x00, 0x06, 0x00, 0x12, // USERNAME attribute header 0xe3, 0x83, 0x9e, 0xe3, // } 0x83, 0x88, 0xe3, 0x83, // } 0xaa, 0xe3, 0x83, 0x83, // } Username value (18 bytes) and padding (2 bytes) 0xe3, 0x82, 0xaf, 0xe3, // } 0x82, 0xb9, 0x00, 0x00, // } 0x00, 0x15, 0x00, 0x1c, // NONCE attribute header 0x66, 0x2f, 0x2f, 0x34, // } 0x39, 0x39, 0x6b, 0x39, // } 0x35, 0x34, 0x64, 0x36, // } 0x4f, 0x4c, 0x33, 0x34, // } Nonce value 0x6f, 0x4c, 0x39, 0x46, // } 0x53, 0x54, 0x76, 0x79, // } 0x36, 0x34, 0x73, 0x41, // } 0x00, 0x14, 0x00, 0x0b, // REALM attribute header 0x65, 0x78, 0x61, 0x6d, // } 0x70, 0x6c, 0x65, 0x2e, // } Realm value (11 bytes) and padding (1 byte) 0x6f, 0x72, 0x67, 0x00, // } 0x00, 0x08, 0x00, 0x14, // MESSAGE-INTEGRITY attribute header 0xf6, 0x70, 0x24, 0x65, // } 0x6d, 0xd6, 0x4a, 0x3e, // } 0x02, 0xb8, 0xe0, 0x71, // } HMAC-SHA1 fingerprint 0x2e, 0x85, 0xc9, 0xa2, // } 0x8c, 0xa8, 0x96, 0x66 // } }; // Length parameter is changed to 0x38 from 0x58. // AddMessageIntegrity will add MI information and update the length param // accordingly. static const unsigned char kRfc5769SampleRequestWithoutMI[] = { 0x00, 0x01, 0x00, 0x38, // Request type and message length 0x21, 0x12, 0xa4, 0x42, // Magic cookie 0xb7, 0xe7, 0xa7, 0x01, // } 0xbc, 0x34, 0xd6, 0x86, // } Transaction ID 0xfa, 0x87, 0xdf, 0xae, // } 0x80, 0x22, 0x00, 0x10, // SOFTWARE attribute header 0x53, 0x54, 0x55, 0x4e, // } 0x20, 0x74, 0x65, 0x73, // } User-agent... 0x74, 0x20, 0x63, 0x6c, // } ...name 0x69, 0x65, 0x6e, 0x74, // } 0x00, 0x24, 0x00, 0x04, // PRIORITY attribute header 0x6e, 0x00, 0x01, 0xff, // ICE priority value 0x80, 0x29, 0x00, 0x08, // ICE-CONTROLLED attribute header 0x93, 0x2f, 0xf9, 0xb1, // } Pseudo-random tie breaker... 0x51, 0x26, 0x3b, 0x36, // } ...for ICE control 0x00, 0x06, 0x00, 0x09, // USERNAME attribute header 0x65, 0x76, 0x74, 0x6a, // } 0x3a, 0x68, 0x36, 0x76, // } Username (9 bytes) and padding (3 bytes) 0x59, 0x20, 0x20, 0x20 // } }; // This HMAC differs from the RFC 5769 SampleRequest message. This differs // because spec uses 0x20 for the padding where as our implementation uses 0. static const unsigned char kCalculatedHmac1[] = { 0x79, 0x07, 0xc2, 0xd2, // } 0xed, 0xbf, 0xea, 0x48, // } 0x0e, 0x4c, 0x76, 0xd8, // } HMAC-SHA1 fingerprint 0x29, 0x62, 0xd5, 0xc3, // } 0x74, 0x2a, 0xf9, 0xe3 // } }; // Length parameter is changed to 0x1c from 0x3c. // AddMessageIntegrity will add MI information and update the length param // accordingly. static const unsigned char kRfc5769SampleResponseWithoutMI[] = { 0x01, 0x01, 0x00, 0x1c, // Response type and message length 0x21, 0x12, 0xa4, 0x42, // Magic cookie 0xb7, 0xe7, 0xa7, 0x01, // } 0xbc, 0x34, 0xd6, 0x86, // } Transaction ID 0xfa, 0x87, 0xdf, 0xae, // } 0x80, 0x22, 0x00, 0x0b, // SOFTWARE attribute header 0x74, 0x65, 0x73, 0x74, // } 0x20, 0x76, 0x65, 0x63, // } UTF-8 server name 0x74, 0x6f, 0x72, 0x20, // } 0x00, 0x20, 0x00, 0x08, // XOR-MAPPED-ADDRESS attribute header 0x00, 0x01, 0xa1, 0x47, // Address family (IPv4) and xor'd mapped port 0xe1, 0x12, 0xa6, 0x43 // Xor'd mapped IPv4 address }; // This HMAC differs from the RFC 5769 SampleResponse message. This differs // because spec uses 0x20 for the padding where as our implementation uses 0. static const unsigned char kCalculatedHmac2[] = { 0x5d, 0x6b, 0x58, 0xbe, // } 0xad, 0x94, 0xe0, 0x7e, // } 0xef, 0x0d, 0xfc, 0x12, // } HMAC-SHA1 fingerprint 0x82, 0xa2, 0xbd, 0x08, // } 0x43, 0x14, 0x10, 0x28 // } }; // A transaction ID without the 'magic cookie' portion // pjnat's test programs use this transaction ID a lot. const unsigned char kTestTransactionId1[] = { 0x029, 0x01f, 0x0cd, 0x07c, 0x0ba, 0x058, 0x0ab, 0x0d7, 0x0f2, 0x041, 0x001, 0x000 }; // They use this one sometimes too. const unsigned char kTestTransactionId2[] = { 0x0e3, 0x0a9, 0x046, 0x0e1, 0x07c, 0x000, 0x0c2, 0x062, 0x054, 0x008, 0x001, 0x000 }; const in6_addr kIPv6TestAddress1 = { { { 0x24, 0x01, 0xfa, 0x00, 0x00, 0x04, 0x10, 0x00, 0xbe, 0x30, 0x5b, 0xff, 0xfe, 0xe5, 0x00, 0xc3 } } }; const in6_addr kIPv6TestAddress2 = { { { 0x24, 0x01, 0xfa, 0x00, 0x00, 0x04, 0x10, 0x12, 0x06, 0x0c, 0xce, 0xff, 0xfe, 0x1f, 0x61, 0xa4 } } }; #ifdef WEBRTC_POSIX const in_addr kIPv4TestAddress1 = { 0xe64417ac }; #elif defined WEBRTC_WIN // Windows in_addr has a union with a uchar[] array first. const in_addr kIPv4TestAddress1 = { { 0x0ac, 0x017, 0x044, 0x0e6 } }; #endif const char kTestUserName1[] = "abcdefgh"; const char kTestUserName2[] = "abc"; const char kTestErrorReason[] = "Unauthorized"; const char kTestOrigin[] = "http://example.com"; const int kTestErrorClass = 4; const int kTestErrorNumber = 1; const int kTestErrorCode = 401; const int kTestMessagePort1 = 59977; const int kTestMessagePort2 = 47233; const int kTestMessagePort3 = 56743; const int kTestMessagePort4 = 40444; #define ReadStunMessage(X, Y) ReadStunMessageTestCase(X, Y, sizeof(Y)); // Test that the GetStun*Type and IsStun*Type methods work as expected. TEST_F(StunTest, MessageTypes) { EXPECT_EQ(STUN_BINDING_RESPONSE, GetStunSuccessResponseType(STUN_BINDING_REQUEST)); EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, GetStunErrorResponseType(STUN_BINDING_REQUEST)); EXPECT_EQ(-1, GetStunSuccessResponseType(STUN_BINDING_INDICATION)); EXPECT_EQ(-1, GetStunSuccessResponseType(STUN_BINDING_RESPONSE)); EXPECT_EQ(-1, GetStunSuccessResponseType(STUN_BINDING_ERROR_RESPONSE)); EXPECT_EQ(-1, GetStunErrorResponseType(STUN_BINDING_INDICATION)); EXPECT_EQ(-1, GetStunErrorResponseType(STUN_BINDING_RESPONSE)); EXPECT_EQ(-1, GetStunErrorResponseType(STUN_BINDING_ERROR_RESPONSE)); int types[] = { STUN_BINDING_REQUEST, STUN_BINDING_INDICATION, STUN_BINDING_RESPONSE, STUN_BINDING_ERROR_RESPONSE }; for (size_t i = 0; i < arraysize(types); ++i) { EXPECT_EQ(i == 0U, IsStunRequestType(types[i])); EXPECT_EQ(i == 1U, IsStunIndicationType(types[i])); EXPECT_EQ(i == 2U, IsStunSuccessResponseType(types[i])); EXPECT_EQ(i == 3U, IsStunErrorResponseType(types[i])); EXPECT_EQ(1, types[i] & 0xFEEF); } } TEST_F(StunTest, ReadMessageWithIPv4AddressAttribute) { StunMessage msg; size_t size = ReadStunMessage(&msg, kStunMessageWithIPv4MappedAddress); CheckStunHeader(msg, STUN_BINDING_RESPONSE, size); CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength); const StunAddressAttribute* addr = msg.GetAddress(STUN_ATTR_MAPPED_ADDRESS); rtc::IPAddress test_address(kIPv4TestAddress1); CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV4, kTestMessagePort4, test_address); } TEST_F(StunTest, ReadMessageWithIPv4XorAddressAttribute) { StunMessage msg; StunMessage msg2; size_t size = ReadStunMessage(&msg, kStunMessageWithIPv4XorMappedAddress); CheckStunHeader(msg, STUN_BINDING_RESPONSE, size); CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength); const StunAddressAttribute* addr = msg.GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS); rtc::IPAddress test_address(kIPv4TestAddress1); CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV4, kTestMessagePort3, test_address); } TEST_F(StunTest, ReadMessageWithIPv6AddressAttribute) { StunMessage msg; size_t size = ReadStunMessage(&msg, kStunMessageWithIPv6MappedAddress); CheckStunHeader(msg, STUN_BINDING_REQUEST, size); CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength); rtc::IPAddress test_address(kIPv6TestAddress1); const StunAddressAttribute* addr = msg.GetAddress(STUN_ATTR_MAPPED_ADDRESS); CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV6, kTestMessagePort2, test_address); } TEST_F(StunTest, ReadMessageWithInvalidAddressAttribute) { StunMessage msg; size_t size = ReadStunMessage(&msg, kStunMessageWithIPv6MappedAddress); CheckStunHeader(msg, STUN_BINDING_REQUEST, size); CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength); rtc::IPAddress test_address(kIPv6TestAddress1); const StunAddressAttribute* addr = msg.GetAddress(STUN_ATTR_MAPPED_ADDRESS); CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV6, kTestMessagePort2, test_address); } TEST_F(StunTest, ReadMessageWithIPv6XorAddressAttribute) { StunMessage msg; size_t size = ReadStunMessage(&msg, kStunMessageWithIPv6XorMappedAddress); rtc::IPAddress test_address(kIPv6TestAddress1); CheckStunHeader(msg, STUN_BINDING_RESPONSE, size); CheckStunTransactionID(msg, kTestTransactionId2, kStunTransactionIdLength); const StunAddressAttribute* addr = msg.GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS); CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV6, kTestMessagePort1, test_address); } // Read the RFC5389 fields from the RFC5769 sample STUN request. TEST_F(StunTest, ReadRfc5769RequestMessage) { StunMessage msg; size_t size = ReadStunMessage(&msg, kRfc5769SampleRequest); CheckStunHeader(msg, STUN_BINDING_REQUEST, size); CheckStunTransactionID(msg, kRfc5769SampleMsgTransactionId, kStunTransactionIdLength); const StunByteStringAttribute* software = msg.GetByteString(STUN_ATTR_SOFTWARE); ASSERT_TRUE(software != NULL); EXPECT_EQ(kRfc5769SampleMsgClientSoftware, software->GetString()); const StunByteStringAttribute* username = msg.GetByteString(STUN_ATTR_USERNAME); ASSERT_TRUE(username != NULL); EXPECT_EQ(kRfc5769SampleMsgUsername, username->GetString()); // Actual M-I value checked in a later test. ASSERT_TRUE(msg.GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL); // Fingerprint checked in a later test, but double-check the value here. const StunUInt32Attribute* fingerprint = msg.GetUInt32(STUN_ATTR_FINGERPRINT); ASSERT_TRUE(fingerprint != NULL); EXPECT_EQ(0xe57a3bcf, fingerprint->value()); } // Read the RFC5389 fields from the RFC5769 sample STUN response. TEST_F(StunTest, ReadRfc5769ResponseMessage) { StunMessage msg; size_t size = ReadStunMessage(&msg, kRfc5769SampleResponse); CheckStunHeader(msg, STUN_BINDING_RESPONSE, size); CheckStunTransactionID(msg, kRfc5769SampleMsgTransactionId, kStunTransactionIdLength); const StunByteStringAttribute* software = msg.GetByteString(STUN_ATTR_SOFTWARE); ASSERT_TRUE(software != NULL); EXPECT_EQ(kRfc5769SampleMsgServerSoftware, software->GetString()); const StunAddressAttribute* mapped_address = msg.GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS); ASSERT_TRUE(mapped_address != NULL); EXPECT_EQ(kRfc5769SampleMsgMappedAddress, mapped_address->GetAddress()); // Actual M-I and fingerprint checked in later tests. ASSERT_TRUE(msg.GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL); ASSERT_TRUE(msg.GetUInt32(STUN_ATTR_FINGERPRINT) != NULL); } // Read the RFC5389 fields from the RFC5769 sample STUN response for IPv6. TEST_F(StunTest, ReadRfc5769ResponseMessageIPv6) { StunMessage msg; size_t size = ReadStunMessage(&msg, kRfc5769SampleResponseIPv6); CheckStunHeader(msg, STUN_BINDING_RESPONSE, size); CheckStunTransactionID(msg, kRfc5769SampleMsgTransactionId, kStunTransactionIdLength); const StunByteStringAttribute* software = msg.GetByteString(STUN_ATTR_SOFTWARE); ASSERT_TRUE(software != NULL); EXPECT_EQ(kRfc5769SampleMsgServerSoftware, software->GetString()); const StunAddressAttribute* mapped_address = msg.GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS); ASSERT_TRUE(mapped_address != NULL); EXPECT_EQ(kRfc5769SampleMsgIPv6MappedAddress, mapped_address->GetAddress()); // Actual M-I and fingerprint checked in later tests. ASSERT_TRUE(msg.GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL); ASSERT_TRUE(msg.GetUInt32(STUN_ATTR_FINGERPRINT) != NULL); } // Read the RFC5389 fields from the RFC5769 sample STUN response with auth. TEST_F(StunTest, ReadRfc5769RequestMessageLongTermAuth) { StunMessage msg; size_t size = ReadStunMessage(&msg, kRfc5769SampleRequestLongTermAuth); CheckStunHeader(msg, STUN_BINDING_REQUEST, size); CheckStunTransactionID(msg, kRfc5769SampleMsgWithAuthTransactionId, kStunTransactionIdLength); const StunByteStringAttribute* username = msg.GetByteString(STUN_ATTR_USERNAME); ASSERT_TRUE(username != NULL); EXPECT_EQ(kRfc5769SampleMsgWithAuthUsername, username->GetString()); const StunByteStringAttribute* nonce = msg.GetByteString(STUN_ATTR_NONCE); ASSERT_TRUE(nonce != NULL); EXPECT_EQ(kRfc5769SampleMsgWithAuthNonce, nonce->GetString()); const StunByteStringAttribute* realm = msg.GetByteString(STUN_ATTR_REALM); ASSERT_TRUE(realm != NULL); EXPECT_EQ(kRfc5769SampleMsgWithAuthRealm, realm->GetString()); // No fingerprint, actual M-I checked in later tests. ASSERT_TRUE(msg.GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL); ASSERT_TRUE(msg.GetUInt32(STUN_ATTR_FINGERPRINT) == NULL); } // The RFC3489 packet in this test is the same as // kStunMessageWithIPv4MappedAddress, but with a different value where the // magic cookie was. TEST_F(StunTest, ReadLegacyMessage) { unsigned char rfc3489_packet[sizeof(kStunMessageWithIPv4MappedAddress)]; memcpy(rfc3489_packet, kStunMessageWithIPv4MappedAddress, sizeof(kStunMessageWithIPv4MappedAddress)); // Overwrite the magic cookie here. memcpy(&rfc3489_packet[4], "ABCD", 4); StunMessage msg; size_t size = ReadStunMessage(&msg, rfc3489_packet); CheckStunHeader(msg, STUN_BINDING_RESPONSE, size); CheckStunTransactionID(msg, &rfc3489_packet[4], kStunTransactionIdLength + 4); const StunAddressAttribute* addr = msg.GetAddress(STUN_ATTR_MAPPED_ADDRESS); rtc::IPAddress test_address(kIPv4TestAddress1); CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV4, kTestMessagePort4, test_address); } TEST_F(StunTest, SetIPv6XorAddressAttributeOwner) { StunMessage msg; StunMessage msg2; size_t size = ReadStunMessage(&msg, kStunMessageWithIPv6XorMappedAddress); rtc::IPAddress test_address(kIPv6TestAddress1); CheckStunHeader(msg, STUN_BINDING_RESPONSE, size); CheckStunTransactionID(msg, kTestTransactionId2, kStunTransactionIdLength); const StunAddressAttribute* addr = msg.GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS); CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV6, kTestMessagePort1, test_address); // Owner with a different transaction ID. msg2.SetTransactionID("ABCDABCDABCD"); StunXorAddressAttribute addr2(STUN_ATTR_XOR_MAPPED_ADDRESS, 20, NULL); addr2.SetIP(addr->ipaddr()); addr2.SetPort(addr->port()); addr2.SetOwner(&msg2); // The internal IP address shouldn't change. ASSERT_EQ(addr2.ipaddr(), addr->ipaddr()); rtc::ByteBuffer correct_buf; rtc::ByteBuffer wrong_buf; EXPECT_TRUE(addr->Write(&correct_buf)); EXPECT_TRUE(addr2.Write(&wrong_buf)); // But when written out, the buffers should look different. ASSERT_NE(0, memcmp(correct_buf.Data(), wrong_buf.Data(), wrong_buf.Length())); // And when reading a known good value, the address should be wrong. addr2.Read(&correct_buf); ASSERT_NE(addr->ipaddr(), addr2.ipaddr()); addr2.SetIP(addr->ipaddr()); addr2.SetPort(addr->port()); // Try writing with no owner at all, should fail and write nothing. addr2.SetOwner(NULL); ASSERT_EQ(addr2.ipaddr(), addr->ipaddr()); wrong_buf.Consume(wrong_buf.Length()); EXPECT_FALSE(addr2.Write(&wrong_buf)); ASSERT_EQ(0U, wrong_buf.Length()); } TEST_F(StunTest, SetIPv4XorAddressAttributeOwner) { // Unlike the IPv6XorAddressAttributeOwner test, IPv4 XOR address attributes // should _not_ be affected by a change in owner. IPv4 XOR address uses the // magic cookie value which is fixed. StunMessage msg; StunMessage msg2; size_t size = ReadStunMessage(&msg, kStunMessageWithIPv4XorMappedAddress); rtc::IPAddress test_address(kIPv4TestAddress1); CheckStunHeader(msg, STUN_BINDING_RESPONSE, size); CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength); const StunAddressAttribute* addr = msg.GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS); CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV4, kTestMessagePort3, test_address); // Owner with a different transaction ID. msg2.SetTransactionID("ABCDABCDABCD"); StunXorAddressAttribute addr2(STUN_ATTR_XOR_MAPPED_ADDRESS, 20, NULL); addr2.SetIP(addr->ipaddr()); addr2.SetPort(addr->port()); addr2.SetOwner(&msg2); // The internal IP address shouldn't change. ASSERT_EQ(addr2.ipaddr(), addr->ipaddr()); rtc::ByteBuffer correct_buf; rtc::ByteBuffer wrong_buf; EXPECT_TRUE(addr->Write(&correct_buf)); EXPECT_TRUE(addr2.Write(&wrong_buf)); // The same address data should be written. ASSERT_EQ(0, memcmp(correct_buf.Data(), wrong_buf.Data(), wrong_buf.Length())); // And an attribute should be able to un-XOR an address belonging to a message // with a different transaction ID. EXPECT_TRUE(addr2.Read(&correct_buf)); ASSERT_EQ(addr->ipaddr(), addr2.ipaddr()); // However, no owner is still an error, should fail and write nothing. addr2.SetOwner(NULL); ASSERT_EQ(addr2.ipaddr(), addr->ipaddr()); wrong_buf.Consume(wrong_buf.Length()); EXPECT_FALSE(addr2.Write(&wrong_buf)); } TEST_F(StunTest, CreateIPv6AddressAttribute) { rtc::IPAddress test_ip(kIPv6TestAddress2); StunAddressAttribute* addr = StunAttribute::CreateAddress(STUN_ATTR_MAPPED_ADDRESS); rtc::SocketAddress test_addr(test_ip, kTestMessagePort2); addr->SetAddress(test_addr); CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV6, kTestMessagePort2, test_ip); delete addr; } TEST_F(StunTest, CreateIPv4AddressAttribute) { struct in_addr test_in_addr; test_in_addr.s_addr = 0xBEB0B0BE; rtc::IPAddress test_ip(test_in_addr); StunAddressAttribute* addr = StunAttribute::CreateAddress(STUN_ATTR_MAPPED_ADDRESS); rtc::SocketAddress test_addr(test_ip, kTestMessagePort2); addr->SetAddress(test_addr); CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV4, kTestMessagePort2, test_ip); delete addr; } // Test that we don't care what order we set the parts of an address TEST_F(StunTest, CreateAddressInArbitraryOrder) { StunAddressAttribute* addr = StunAttribute::CreateAddress(STUN_ATTR_DESTINATION_ADDRESS); // Port first addr->SetPort(kTestMessagePort1); addr->SetIP(rtc::IPAddress(kIPv4TestAddress1)); ASSERT_EQ(kTestMessagePort1, addr->port()); ASSERT_EQ(rtc::IPAddress(kIPv4TestAddress1), addr->ipaddr()); StunAddressAttribute* addr2 = StunAttribute::CreateAddress(STUN_ATTR_DESTINATION_ADDRESS); // IP first addr2->SetIP(rtc::IPAddress(kIPv4TestAddress1)); addr2->SetPort(kTestMessagePort2); ASSERT_EQ(kTestMessagePort2, addr2->port()); ASSERT_EQ(rtc::IPAddress(kIPv4TestAddress1), addr2->ipaddr()); delete addr; delete addr2; } TEST_F(StunTest, WriteMessageWithIPv6AddressAttribute) { StunMessage msg; size_t size = sizeof(kStunMessageWithIPv6MappedAddress); rtc::IPAddress test_ip(kIPv6TestAddress1); msg.SetType(STUN_BINDING_REQUEST); msg.SetTransactionID( std::string(reinterpret_cast(kTestTransactionId1), kStunTransactionIdLength)); CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength); StunAddressAttribute* addr = StunAttribute::CreateAddress(STUN_ATTR_MAPPED_ADDRESS); rtc::SocketAddress test_addr(test_ip, kTestMessagePort2); addr->SetAddress(test_addr); EXPECT_TRUE(msg.AddAttribute(addr)); CheckStunHeader(msg, STUN_BINDING_REQUEST, (size - 20)); rtc::ByteBuffer out; EXPECT_TRUE(msg.Write(&out)); ASSERT_EQ(out.Length(), sizeof(kStunMessageWithIPv6MappedAddress)); int len1 = static_cast(out.Length()); std::string bytes; out.ReadString(&bytes, len1); ASSERT_EQ(0, memcmp(bytes.c_str(), kStunMessageWithIPv6MappedAddress, len1)); } TEST_F(StunTest, WriteMessageWithIPv4AddressAttribute) { StunMessage msg; size_t size = sizeof(kStunMessageWithIPv4MappedAddress); rtc::IPAddress test_ip(kIPv4TestAddress1); msg.SetType(STUN_BINDING_RESPONSE); msg.SetTransactionID( std::string(reinterpret_cast(kTestTransactionId1), kStunTransactionIdLength)); CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength); StunAddressAttribute* addr = StunAttribute::CreateAddress(STUN_ATTR_MAPPED_ADDRESS); rtc::SocketAddress test_addr(test_ip, kTestMessagePort4); addr->SetAddress(test_addr); EXPECT_TRUE(msg.AddAttribute(addr)); CheckStunHeader(msg, STUN_BINDING_RESPONSE, (size - 20)); rtc::ByteBuffer out; EXPECT_TRUE(msg.Write(&out)); ASSERT_EQ(out.Length(), sizeof(kStunMessageWithIPv4MappedAddress)); int len1 = static_cast(out.Length()); std::string bytes; out.ReadString(&bytes, len1); ASSERT_EQ(0, memcmp(bytes.c_str(), kStunMessageWithIPv4MappedAddress, len1)); } TEST_F(StunTest, WriteMessageWithIPv6XorAddressAttribute) { StunMessage msg; size_t size = sizeof(kStunMessageWithIPv6XorMappedAddress); rtc::IPAddress test_ip(kIPv6TestAddress1); msg.SetType(STUN_BINDING_RESPONSE); msg.SetTransactionID( std::string(reinterpret_cast(kTestTransactionId2), kStunTransactionIdLength)); CheckStunTransactionID(msg, kTestTransactionId2, kStunTransactionIdLength); StunAddressAttribute* addr = StunAttribute::CreateXorAddress(STUN_ATTR_XOR_MAPPED_ADDRESS); rtc::SocketAddress test_addr(test_ip, kTestMessagePort1); addr->SetAddress(test_addr); EXPECT_TRUE(msg.AddAttribute(addr)); CheckStunHeader(msg, STUN_BINDING_RESPONSE, (size - 20)); rtc::ByteBuffer out; EXPECT_TRUE(msg.Write(&out)); ASSERT_EQ(out.Length(), sizeof(kStunMessageWithIPv6XorMappedAddress)); int len1 = static_cast(out.Length()); std::string bytes; out.ReadString(&bytes, len1); ASSERT_EQ(0, memcmp(bytes.c_str(), kStunMessageWithIPv6XorMappedAddress, len1)); } TEST_F(StunTest, WriteMessageWithIPv4XoreAddressAttribute) { StunMessage msg; size_t size = sizeof(kStunMessageWithIPv4XorMappedAddress); rtc::IPAddress test_ip(kIPv4TestAddress1); msg.SetType(STUN_BINDING_RESPONSE); msg.SetTransactionID( std::string(reinterpret_cast(kTestTransactionId1), kStunTransactionIdLength)); CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength); StunAddressAttribute* addr = StunAttribute::CreateXorAddress(STUN_ATTR_XOR_MAPPED_ADDRESS); rtc::SocketAddress test_addr(test_ip, kTestMessagePort3); addr->SetAddress(test_addr); EXPECT_TRUE(msg.AddAttribute(addr)); CheckStunHeader(msg, STUN_BINDING_RESPONSE, (size - 20)); rtc::ByteBuffer out; EXPECT_TRUE(msg.Write(&out)); ASSERT_EQ(out.Length(), sizeof(kStunMessageWithIPv4XorMappedAddress)); int len1 = static_cast(out.Length()); std::string bytes; out.ReadString(&bytes, len1); ASSERT_EQ(0, memcmp(bytes.c_str(), kStunMessageWithIPv4XorMappedAddress, len1)); } TEST_F(StunTest, ReadByteStringAttribute) { StunMessage msg; size_t size = ReadStunMessage(&msg, kStunMessageWithByteStringAttribute); CheckStunHeader(msg, STUN_BINDING_REQUEST, size); CheckStunTransactionID(msg, kTestTransactionId2, kStunTransactionIdLength); const StunByteStringAttribute* username = msg.GetByteString(STUN_ATTR_USERNAME); ASSERT_TRUE(username != NULL); EXPECT_EQ(kTestUserName1, username->GetString()); } TEST_F(StunTest, ReadPaddedByteStringAttribute) { StunMessage msg; size_t size = ReadStunMessage(&msg, kStunMessageWithPaddedByteStringAttribute); ASSERT_NE(0U, size); CheckStunHeader(msg, STUN_BINDING_REQUEST, size); CheckStunTransactionID(msg, kTestTransactionId2, kStunTransactionIdLength); const StunByteStringAttribute* username = msg.GetByteString(STUN_ATTR_USERNAME); ASSERT_TRUE(username != NULL); EXPECT_EQ(kTestUserName2, username->GetString()); } TEST_F(StunTest, ReadErrorCodeAttribute) { StunMessage msg; size_t size = ReadStunMessage(&msg, kStunMessageWithErrorAttribute); CheckStunHeader(msg, STUN_BINDING_ERROR_RESPONSE, size); CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength); const StunErrorCodeAttribute* errorcode = msg.GetErrorCode(); ASSERT_TRUE(errorcode != NULL); EXPECT_EQ(kTestErrorClass, errorcode->eclass()); EXPECT_EQ(kTestErrorNumber, errorcode->number()); EXPECT_EQ(kTestErrorReason, errorcode->reason()); EXPECT_EQ(kTestErrorCode, errorcode->code()); } TEST_F(StunTest, ReadMessageWithAUInt16ListAttribute) { StunMessage msg; size_t size = ReadStunMessage(&msg, kStunMessageWithUInt16ListAttribute); CheckStunHeader(msg, STUN_BINDING_REQUEST, size); const StunUInt16ListAttribute* types = msg.GetUnknownAttributes(); ASSERT_TRUE(types != NULL); EXPECT_EQ(3U, types->Size()); EXPECT_EQ(0x1U, types->GetType(0)); EXPECT_EQ(0x1000U, types->GetType(1)); EXPECT_EQ(0xAB0CU, types->GetType(2)); } TEST_F(StunTest, ReadMessageWithAnUnknownAttribute) { StunMessage msg; size_t size = ReadStunMessage(&msg, kStunMessageWithUnknownAttribute); CheckStunHeader(msg, STUN_BINDING_REQUEST, size); // Parsing should have succeeded and there should be a USERNAME attribute const StunByteStringAttribute* username = msg.GetByteString(STUN_ATTR_USERNAME); ASSERT_TRUE(username != NULL); EXPECT_EQ(kTestUserName2, username->GetString()); } TEST_F(StunTest, ReadMessageWithOriginAttribute) { StunMessage msg; size_t size = ReadStunMessage(&msg, kStunMessageWithOriginAttribute); CheckStunHeader(msg, STUN_BINDING_REQUEST, size); const StunByteStringAttribute* origin = msg.GetByteString(STUN_ATTR_ORIGIN); ASSERT_TRUE(origin != NULL); EXPECT_EQ(kTestOrigin, origin->GetString()); } TEST_F(StunTest, WriteMessageWithAnErrorCodeAttribute) { StunMessage msg; size_t size = sizeof(kStunMessageWithErrorAttribute); msg.SetType(STUN_BINDING_ERROR_RESPONSE); msg.SetTransactionID( std::string(reinterpret_cast(kTestTransactionId1), kStunTransactionIdLength)); CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength); StunErrorCodeAttribute* errorcode = StunAttribute::CreateErrorCode(); errorcode->SetCode(kTestErrorCode); errorcode->SetReason(kTestErrorReason); EXPECT_TRUE(msg.AddAttribute(errorcode)); CheckStunHeader(msg, STUN_BINDING_ERROR_RESPONSE, (size - 20)); rtc::ByteBuffer out; EXPECT_TRUE(msg.Write(&out)); ASSERT_EQ(size, out.Length()); // No padding. ASSERT_EQ(0, memcmp(out.Data(), kStunMessageWithErrorAttribute, size)); } TEST_F(StunTest, WriteMessageWithAUInt16ListAttribute) { StunMessage msg; size_t size = sizeof(kStunMessageWithUInt16ListAttribute); msg.SetType(STUN_BINDING_REQUEST); msg.SetTransactionID( std::string(reinterpret_cast(kTestTransactionId2), kStunTransactionIdLength)); CheckStunTransactionID(msg, kTestTransactionId2, kStunTransactionIdLength); StunUInt16ListAttribute* list = StunAttribute::CreateUnknownAttributes(); list->AddType(0x1U); list->AddType(0x1000U); list->AddType(0xAB0CU); EXPECT_TRUE(msg.AddAttribute(list)); CheckStunHeader(msg, STUN_BINDING_REQUEST, (size - 20)); rtc::ByteBuffer out; EXPECT_TRUE(msg.Write(&out)); ASSERT_EQ(size, out.Length()); // Check everything up to the padding. ASSERT_EQ(0, memcmp(out.Data(), kStunMessageWithUInt16ListAttribute, size - 2)); } TEST_F(StunTest, WriteMessageWithOriginAttribute) { StunMessage msg; size_t size = sizeof(kStunMessageWithOriginAttribute); msg.SetType(STUN_BINDING_REQUEST); msg.SetTransactionID( std::string(reinterpret_cast(kTestTransactionId1), kStunTransactionIdLength)); StunByteStringAttribute* origin = new StunByteStringAttribute(STUN_ATTR_ORIGIN, kTestOrigin); EXPECT_TRUE(msg.AddAttribute(origin)); rtc::ByteBuffer out; EXPECT_TRUE(msg.Write(&out)); ASSERT_EQ(size, out.Length()); // Check everything up to the padding ASSERT_EQ(0, memcmp(out.Data(), kStunMessageWithOriginAttribute, size - 2)); } // Test that we fail to read messages with invalid lengths. void CheckFailureToRead(const unsigned char* testcase, size_t length) { StunMessage msg; const char* input = reinterpret_cast(testcase); rtc::ByteBuffer buf(input, length); ASSERT_FALSE(msg.Read(&buf)); } TEST_F(StunTest, FailToReadInvalidMessages) { CheckFailureToRead(kStunMessageWithZeroLength, kRealLengthOfInvalidLengthTestCases); CheckFailureToRead(kStunMessageWithSmallLength, kRealLengthOfInvalidLengthTestCases); CheckFailureToRead(kStunMessageWithExcessLength, kRealLengthOfInvalidLengthTestCases); } // Test that we properly fail to read a non-STUN message. TEST_F(StunTest, FailToReadRtcpPacket) { CheckFailureToRead(kRtcpPacket, sizeof(kRtcpPacket)); } // Check our STUN message validation code against the RFC5769 test messages. TEST_F(StunTest, ValidateMessageIntegrity) { // Try the messages from RFC 5769. EXPECT_TRUE(StunMessage::ValidateMessageIntegrity( reinterpret_cast(kRfc5769SampleRequest), sizeof(kRfc5769SampleRequest), kRfc5769SampleMsgPassword)); EXPECT_FALSE(StunMessage::ValidateMessageIntegrity( reinterpret_cast(kRfc5769SampleRequest), sizeof(kRfc5769SampleRequest), "InvalidPassword")); EXPECT_TRUE(StunMessage::ValidateMessageIntegrity( reinterpret_cast(kRfc5769SampleResponse), sizeof(kRfc5769SampleResponse), kRfc5769SampleMsgPassword)); EXPECT_FALSE(StunMessage::ValidateMessageIntegrity( reinterpret_cast(kRfc5769SampleResponse), sizeof(kRfc5769SampleResponse), "InvalidPassword")); EXPECT_TRUE(StunMessage::ValidateMessageIntegrity( reinterpret_cast(kRfc5769SampleResponseIPv6), sizeof(kRfc5769SampleResponseIPv6), kRfc5769SampleMsgPassword)); EXPECT_FALSE(StunMessage::ValidateMessageIntegrity( reinterpret_cast(kRfc5769SampleResponseIPv6), sizeof(kRfc5769SampleResponseIPv6), "InvalidPassword")); // We first need to compute the key for the long-term authentication HMAC. std::string key; ComputeStunCredentialHash(kRfc5769SampleMsgWithAuthUsername, kRfc5769SampleMsgWithAuthRealm, kRfc5769SampleMsgWithAuthPassword, &key); EXPECT_TRUE(StunMessage::ValidateMessageIntegrity( reinterpret_cast(kRfc5769SampleRequestLongTermAuth), sizeof(kRfc5769SampleRequestLongTermAuth), key)); EXPECT_FALSE(StunMessage::ValidateMessageIntegrity( reinterpret_cast(kRfc5769SampleRequestLongTermAuth), sizeof(kRfc5769SampleRequestLongTermAuth), "InvalidPassword")); // Try some edge cases. EXPECT_FALSE(StunMessage::ValidateMessageIntegrity( reinterpret_cast(kStunMessageWithZeroLength), sizeof(kStunMessageWithZeroLength), kRfc5769SampleMsgPassword)); EXPECT_FALSE(StunMessage::ValidateMessageIntegrity( reinterpret_cast(kStunMessageWithExcessLength), sizeof(kStunMessageWithExcessLength), kRfc5769SampleMsgPassword)); EXPECT_FALSE(StunMessage::ValidateMessageIntegrity( reinterpret_cast(kStunMessageWithSmallLength), sizeof(kStunMessageWithSmallLength), kRfc5769SampleMsgPassword)); // Test that munging a single bit anywhere in the message causes the // message-integrity check to fail, unless it is after the M-I attribute. char buf[sizeof(kRfc5769SampleRequest)]; memcpy(buf, kRfc5769SampleRequest, sizeof(kRfc5769SampleRequest)); for (size_t i = 0; i < sizeof(buf); ++i) { buf[i] ^= 0x01; if (i > 0) buf[i - 1] ^= 0x01; EXPECT_EQ(i >= sizeof(buf) - 8, StunMessage::ValidateMessageIntegrity( buf, sizeof(buf), kRfc5769SampleMsgPassword)); } } // Validate that we generate correct MESSAGE-INTEGRITY attributes. // Note the use of IceMessage instead of StunMessage; this is necessary because // the RFC5769 test messages used include attributes not found in basic STUN. TEST_F(StunTest, AddMessageIntegrity) { IceMessage msg; rtc::ByteBuffer buf( reinterpret_cast(kRfc5769SampleRequestWithoutMI), sizeof(kRfc5769SampleRequestWithoutMI)); EXPECT_TRUE(msg.Read(&buf)); EXPECT_TRUE(msg.AddMessageIntegrity(kRfc5769SampleMsgPassword)); const StunByteStringAttribute* mi_attr = msg.GetByteString(STUN_ATTR_MESSAGE_INTEGRITY); EXPECT_EQ(20U, mi_attr->length()); EXPECT_EQ(0, memcmp( mi_attr->bytes(), kCalculatedHmac1, sizeof(kCalculatedHmac1))); rtc::ByteBuffer buf1; EXPECT_TRUE(msg.Write(&buf1)); EXPECT_TRUE(StunMessage::ValidateMessageIntegrity( reinterpret_cast(buf1.Data()), buf1.Length(), kRfc5769SampleMsgPassword)); IceMessage msg2; rtc::ByteBuffer buf2( reinterpret_cast(kRfc5769SampleResponseWithoutMI), sizeof(kRfc5769SampleResponseWithoutMI)); EXPECT_TRUE(msg2.Read(&buf2)); EXPECT_TRUE(msg2.AddMessageIntegrity(kRfc5769SampleMsgPassword)); const StunByteStringAttribute* mi_attr2 = msg2.GetByteString(STUN_ATTR_MESSAGE_INTEGRITY); EXPECT_EQ(20U, mi_attr2->length()); EXPECT_EQ( 0, memcmp(mi_attr2->bytes(), kCalculatedHmac2, sizeof(kCalculatedHmac2))); rtc::ByteBuffer buf3; EXPECT_TRUE(msg2.Write(&buf3)); EXPECT_TRUE(StunMessage::ValidateMessageIntegrity( reinterpret_cast(buf3.Data()), buf3.Length(), kRfc5769SampleMsgPassword)); } // Check our STUN message validation code against the RFC5769 test messages. TEST_F(StunTest, ValidateFingerprint) { EXPECT_TRUE(StunMessage::ValidateFingerprint( reinterpret_cast(kRfc5769SampleRequest), sizeof(kRfc5769SampleRequest))); EXPECT_TRUE(StunMessage::ValidateFingerprint( reinterpret_cast(kRfc5769SampleResponse), sizeof(kRfc5769SampleResponse))); EXPECT_TRUE(StunMessage::ValidateFingerprint( reinterpret_cast(kRfc5769SampleResponseIPv6), sizeof(kRfc5769SampleResponseIPv6))); EXPECT_FALSE(StunMessage::ValidateFingerprint( reinterpret_cast(kStunMessageWithZeroLength), sizeof(kStunMessageWithZeroLength))); EXPECT_FALSE(StunMessage::ValidateFingerprint( reinterpret_cast(kStunMessageWithExcessLength), sizeof(kStunMessageWithExcessLength))); EXPECT_FALSE(StunMessage::ValidateFingerprint( reinterpret_cast(kStunMessageWithSmallLength), sizeof(kStunMessageWithSmallLength))); // Test that munging a single bit anywhere in the message causes the // fingerprint check to fail. char buf[sizeof(kRfc5769SampleRequest)]; memcpy(buf, kRfc5769SampleRequest, sizeof(kRfc5769SampleRequest)); for (size_t i = 0; i < sizeof(buf); ++i) { buf[i] ^= 0x01; if (i > 0) buf[i - 1] ^= 0x01; EXPECT_FALSE(StunMessage::ValidateFingerprint(buf, sizeof(buf))); } // Put them all back to normal and the check should pass again. buf[sizeof(buf) - 1] ^= 0x01; EXPECT_TRUE(StunMessage::ValidateFingerprint(buf, sizeof(buf))); } TEST_F(StunTest, AddFingerprint) { IceMessage msg; rtc::ByteBuffer buf( reinterpret_cast(kRfc5769SampleRequestWithoutMI), sizeof(kRfc5769SampleRequestWithoutMI)); EXPECT_TRUE(msg.Read(&buf)); EXPECT_TRUE(msg.AddFingerprint()); rtc::ByteBuffer buf1; EXPECT_TRUE(msg.Write(&buf1)); EXPECT_TRUE(StunMessage::ValidateFingerprint( reinterpret_cast(buf1.Data()), buf1.Length())); } // Sample "GTURN" relay message. static const unsigned char kRelayMessage[] = { 0x00, 0x01, 0x00, 88, // message header 0x21, 0x12, 0xA4, 0x42, // magic cookie '0', '1', '2', '3', // transaction id '4', '5', '6', '7', '8', '9', 'a', 'b', 0x00, 0x01, 0x00, 8, // mapped address 0x00, 0x01, 0x00, 13, 0x00, 0x00, 0x00, 17, 0x00, 0x06, 0x00, 12, // username 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 0x00, 0x0d, 0x00, 4, // lifetime 0x00, 0x00, 0x00, 11, 0x00, 0x0f, 0x00, 4, // magic cookie 0x72, 0xc6, 0x4b, 0xc6, 0x00, 0x10, 0x00, 4, // bandwidth 0x00, 0x00, 0x00, 6, 0x00, 0x11, 0x00, 8, // destination address 0x00, 0x01, 0x00, 13, 0x00, 0x00, 0x00, 17, 0x00, 0x12, 0x00, 8, // source address 2 0x00, 0x01, 0x00, 13, 0x00, 0x00, 0x00, 17, 0x00, 0x13, 0x00, 7, // data 'a', 'b', 'c', 'd', 'e', 'f', 'g', 0 // DATA must be padded per rfc5766. }; // Test that we can read the GTURN-specific fields. TEST_F(StunTest, ReadRelayMessage) { RelayMessage msg, msg2; const char* input = reinterpret_cast(kRelayMessage); size_t size = sizeof(kRelayMessage); rtc::ByteBuffer buf(input, size); EXPECT_TRUE(msg.Read(&buf)); EXPECT_EQ(STUN_BINDING_REQUEST, msg.type()); EXPECT_EQ(size - 20, msg.length()); EXPECT_EQ("0123456789ab", msg.transaction_id()); msg2.SetType(STUN_BINDING_REQUEST); msg2.SetTransactionID("0123456789ab"); in_addr legacy_in_addr; legacy_in_addr.s_addr = htonl(17U); rtc::IPAddress legacy_ip(legacy_in_addr); const StunAddressAttribute* addr = msg.GetAddress(STUN_ATTR_MAPPED_ADDRESS); ASSERT_TRUE(addr != NULL); EXPECT_EQ(1, addr->family()); EXPECT_EQ(13, addr->port()); EXPECT_EQ(legacy_ip, addr->ipaddr()); StunAddressAttribute* addr2 = StunAttribute::CreateAddress(STUN_ATTR_MAPPED_ADDRESS); addr2->SetPort(13); addr2->SetIP(legacy_ip); EXPECT_TRUE(msg2.AddAttribute(addr2)); const StunByteStringAttribute* bytes = msg.GetByteString(STUN_ATTR_USERNAME); ASSERT_TRUE(bytes != NULL); EXPECT_EQ(12U, bytes->length()); EXPECT_EQ("abcdefghijkl", bytes->GetString()); StunByteStringAttribute* bytes2 = StunAttribute::CreateByteString(STUN_ATTR_USERNAME); bytes2->CopyBytes("abcdefghijkl"); EXPECT_TRUE(msg2.AddAttribute(bytes2)); const StunUInt32Attribute* uval = msg.GetUInt32(STUN_ATTR_LIFETIME); ASSERT_TRUE(uval != NULL); EXPECT_EQ(11U, uval->value()); StunUInt32Attribute* uval2 = StunAttribute::CreateUInt32(STUN_ATTR_LIFETIME); uval2->SetValue(11); EXPECT_TRUE(msg2.AddAttribute(uval2)); bytes = msg.GetByteString(STUN_ATTR_MAGIC_COOKIE); ASSERT_TRUE(bytes != NULL); EXPECT_EQ(4U, bytes->length()); EXPECT_EQ(0, memcmp(bytes->bytes(), TURN_MAGIC_COOKIE_VALUE, sizeof(TURN_MAGIC_COOKIE_VALUE))); bytes2 = StunAttribute::CreateByteString(STUN_ATTR_MAGIC_COOKIE); bytes2->CopyBytes(reinterpret_cast(TURN_MAGIC_COOKIE_VALUE), sizeof(TURN_MAGIC_COOKIE_VALUE)); EXPECT_TRUE(msg2.AddAttribute(bytes2)); uval = msg.GetUInt32(STUN_ATTR_BANDWIDTH); ASSERT_TRUE(uval != NULL); EXPECT_EQ(6U, uval->value()); uval2 = StunAttribute::CreateUInt32(STUN_ATTR_BANDWIDTH); uval2->SetValue(6); EXPECT_TRUE(msg2.AddAttribute(uval2)); addr = msg.GetAddress(STUN_ATTR_DESTINATION_ADDRESS); ASSERT_TRUE(addr != NULL); EXPECT_EQ(1, addr->family()); EXPECT_EQ(13, addr->port()); EXPECT_EQ(legacy_ip, addr->ipaddr()); addr2 = StunAttribute::CreateAddress(STUN_ATTR_DESTINATION_ADDRESS); addr2->SetPort(13); addr2->SetIP(legacy_ip); EXPECT_TRUE(msg2.AddAttribute(addr2)); addr = msg.GetAddress(STUN_ATTR_SOURCE_ADDRESS2); ASSERT_TRUE(addr != NULL); EXPECT_EQ(1, addr->family()); EXPECT_EQ(13, addr->port()); EXPECT_EQ(legacy_ip, addr->ipaddr()); addr2 = StunAttribute::CreateAddress(STUN_ATTR_SOURCE_ADDRESS2); addr2->SetPort(13); addr2->SetIP(legacy_ip); EXPECT_TRUE(msg2.AddAttribute(addr2)); bytes = msg.GetByteString(STUN_ATTR_DATA); ASSERT_TRUE(bytes != NULL); EXPECT_EQ(7U, bytes->length()); EXPECT_EQ("abcdefg", bytes->GetString()); bytes2 = StunAttribute::CreateByteString(STUN_ATTR_DATA); bytes2->CopyBytes("abcdefg"); EXPECT_TRUE(msg2.AddAttribute(bytes2)); rtc::ByteBuffer out; EXPECT_TRUE(msg.Write(&out)); EXPECT_EQ(size, out.Length()); size_t len1 = out.Length(); std::string outstring; out.ReadString(&outstring, len1); EXPECT_EQ(0, memcmp(outstring.c_str(), input, len1)); rtc::ByteBuffer out2; EXPECT_TRUE(msg2.Write(&out2)); EXPECT_EQ(size, out2.Length()); size_t len2 = out2.Length(); std::string outstring2; out2.ReadString(&outstring2, len2); EXPECT_EQ(0, memcmp(outstring2.c_str(), input, len2)); } } // namespace cricket