/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "AAudio" //#define LOG_NDEBUG 0 #include #include #include "utility/AudioClock.h" #include "IsochronousClockModel.h" #define MIN_LATENESS_NANOS (10 * AAUDIO_NANOS_PER_MICROSECOND) using namespace android; using namespace aaudio; IsochronousClockModel::IsochronousClockModel() : mMarkerFramePosition(0) , mMarkerNanoTime(0) , mSampleRate(48000) , mFramesPerBurst(64) , mMaxLatenessInNanos(0) , mState(STATE_STOPPED) { } IsochronousClockModel::~IsochronousClockModel() { } void IsochronousClockModel::start(int64_t nanoTime) { ALOGD("IsochronousClockModel::start(nanos = %lld)\n", (long long) nanoTime); mMarkerNanoTime = nanoTime; mState = STATE_STARTING; } void IsochronousClockModel::stop(int64_t nanoTime) { ALOGD("IsochronousClockModel::stop(nanos = %lld)\n", (long long) nanoTime); mMarkerNanoTime = nanoTime; mMarkerFramePosition = convertTimeToPosition(nanoTime); // TODO should we do this? mState = STATE_STOPPED; } void IsochronousClockModel::processTimestamp(int64_t framePosition, int64_t nanoTime) { int64_t framesDelta = framePosition - mMarkerFramePosition; int64_t nanosDelta = nanoTime - mMarkerNanoTime; if (nanosDelta < 1000) { return; } // ALOGD("processTimestamp() - mMarkerFramePosition = %lld at mMarkerNanoTime %llu", // (long long)mMarkerFramePosition, // (long long)mMarkerNanoTime); // ALOGD("processTimestamp() - framePosition = %lld at nanoTime %llu", // (long long)framePosition, // (long long)nanoTime); int64_t expectedNanosDelta = convertDeltaPositionToTime(framesDelta); // ALOGD("processTimestamp() - expectedNanosDelta = %lld, nanosDelta = %llu", // (long long)expectedNanosDelta, // (long long)nanosDelta); // ALOGD("processTimestamp() - mSampleRate = %d", mSampleRate); // ALOGD("processTimestamp() - mState = %d", mState); switch (mState) { case STATE_STOPPED: break; case STATE_STARTING: mMarkerFramePosition = framePosition; mMarkerNanoTime = nanoTime; mState = STATE_SYNCING; break; case STATE_SYNCING: // This will handle a burst of rapid transfer at the beginning. if (nanosDelta < expectedNanosDelta) { mMarkerFramePosition = framePosition; mMarkerNanoTime = nanoTime; } else { // ALOGD("processTimestamp() - advance to STATE_RUNNING"); mState = STATE_RUNNING; } break; case STATE_RUNNING: if (nanosDelta < expectedNanosDelta) { // Earlier than expected timestamp. // This data is probably more accurate so use it. // or we may be drifting due to a slow HW clock. mMarkerFramePosition = framePosition; mMarkerNanoTime = nanoTime; // ALOGD("processTimestamp() - STATE_RUNNING - %d < %d micros - EARLY", // (int) (nanosDelta / 1000), (int)(expectedNanosDelta / 1000)); } else if (nanosDelta > (expectedNanosDelta + mMaxLatenessInNanos)) { // Later than expected timestamp. mMarkerFramePosition = framePosition; mMarkerNanoTime = nanoTime - mMaxLatenessInNanos; // ALOGD("processTimestamp() - STATE_RUNNING - %d > %d + %d micros - LATE", // (int) (nanosDelta / 1000), (int)(expectedNanosDelta / 1000), // (int) (mMaxLatenessInNanos / 1000)); } break; default: break; } } void IsochronousClockModel::setSampleRate(int32_t sampleRate) { mSampleRate = sampleRate; update(); } void IsochronousClockModel::setFramesPerBurst(int32_t framesPerBurst) { mFramesPerBurst = framesPerBurst; update(); } void IsochronousClockModel::update() { int64_t nanosLate = convertDeltaPositionToTime(mFramesPerBurst); // uses mSampleRate mMaxLatenessInNanos = (nanosLate > MIN_LATENESS_NANOS) ? nanosLate : MIN_LATENESS_NANOS; } int64_t IsochronousClockModel::convertDeltaPositionToTime( int64_t framesDelta) const { return (AAUDIO_NANOS_PER_SECOND * framesDelta) / mSampleRate; } int64_t IsochronousClockModel::convertDeltaTimeToPosition(int64_t nanosDelta) const { return (mSampleRate * nanosDelta) / AAUDIO_NANOS_PER_SECOND; } int64_t IsochronousClockModel::convertPositionToTime(int64_t framePosition) const { if (mState == STATE_STOPPED) { return mMarkerNanoTime; } int64_t nextBurstIndex = (framePosition + mFramesPerBurst - 1) / mFramesPerBurst; int64_t nextBurstPosition = mFramesPerBurst * nextBurstIndex; int64_t framesDelta = nextBurstPosition - mMarkerFramePosition; int64_t nanosDelta = convertDeltaPositionToTime(framesDelta); int64_t time = (int64_t) (mMarkerNanoTime + nanosDelta); // ALOGD("IsochronousClockModel::convertPositionToTime: pos = %llu --> time = %llu", // (unsigned long long)framePosition, // (unsigned long long)time); return time; } int64_t IsochronousClockModel::convertTimeToPosition(int64_t nanoTime) const { if (mState == STATE_STOPPED) { return mMarkerFramePosition; } int64_t nanosDelta = nanoTime - mMarkerNanoTime; int64_t framesDelta = convertDeltaTimeToPosition(nanosDelta); int64_t nextBurstPosition = mMarkerFramePosition + framesDelta; int64_t nextBurstIndex = nextBurstPosition / mFramesPerBurst; int64_t position = nextBurstIndex * mFramesPerBurst; // ALOGD("IsochronousClockModel::convertTimeToPosition: time = %llu --> pos = %llu", // (unsigned long long)nanoTime, // (unsigned long long)position); // ALOGD("IsochronousClockModel::convertTimeToPosition: framesDelta = %llu, mFramesPerBurst = %d", // (long long) framesDelta, mFramesPerBurst); return position; }