/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace android; static bool gVerbose = false; static int usage(const char* name) { fprintf(stderr,"Usage: %s [-p] [-f] [-F] [-v] [-c channels]" " [-q {dq|lq|mq|hq|vhq|dlq|dmq|dhq}]" " [-i input-sample-rate] [-o output-sample-rate]" " [-O csv] [-P csv] []" " \n", name); fprintf(stderr," -p enable profiling\n"); fprintf(stderr," -f enable filter profiling\n"); fprintf(stderr," -F enable floating point -q {dlq|dmq|dhq} only"); fprintf(stderr," -v verbose : log buffer provider calls\n"); fprintf(stderr," -c # channels (1-2 for lq|mq|hq; 1-8 for dlq|dmq|dhq)\n"); fprintf(stderr," -q resampler quality\n"); fprintf(stderr," dq : default quality\n"); fprintf(stderr," lq : low quality\n"); fprintf(stderr," mq : medium quality\n"); fprintf(stderr," hq : high quality\n"); fprintf(stderr," vhq : very high quality\n"); fprintf(stderr," dlq : dynamic low quality\n"); fprintf(stderr," dmq : dynamic medium quality\n"); fprintf(stderr," dhq : dynamic high quality\n"); fprintf(stderr," -i input file sample rate (ignored if input file is specified)\n"); fprintf(stderr," -o output file sample rate\n"); fprintf(stderr," -O # frames output per call to resample() in CSV format\n"); fprintf(stderr," -P # frames provided per call to resample() in CSV format\n"); return -1; } // Convert a list of integers in CSV format to a Vector of those values. // Returns the number of elements in the list, or -1 on error. int parseCSV(const char *string, Vector& values) { // pass 1: count the number of values and do syntax check size_t numValues = 0; bool hadDigit = false; for (const char *p = string; ; ) { switch (*p++) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': hadDigit = true; break; case '\0': if (hadDigit) { // pass 2: allocate and initialize vector of values values.resize(++numValues); values.editItemAt(0) = atoi(p = optarg); for (size_t i = 1; i < numValues; ) { if (*p++ == ',') { values.editItemAt(i++) = atoi(p); } } return numValues; } // fall through case ',': if (hadDigit) { hadDigit = false; numValues++; break; } // fall through default: return -1; } } } int main(int argc, char* argv[]) { const char* const progname = argv[0]; bool profileResample = false; bool profileFilter = false; bool useFloat = false; int channels = 1; int input_freq = 0; int output_freq = 0; AudioResampler::src_quality quality = AudioResampler::DEFAULT_QUALITY; Vector Ovalues; Vector Pvalues; int ch; while ((ch = getopt(argc, argv, "pfFvc:q:i:o:O:P:")) != -1) { switch (ch) { case 'p': profileResample = true; break; case 'f': profileFilter = true; break; case 'F': useFloat = true; break; case 'v': gVerbose = true; break; case 'c': channels = atoi(optarg); break; case 'q': if (!strcmp(optarg, "dq")) quality = AudioResampler::DEFAULT_QUALITY; else if (!strcmp(optarg, "lq")) quality = AudioResampler::LOW_QUALITY; else if (!strcmp(optarg, "mq")) quality = AudioResampler::MED_QUALITY; else if (!strcmp(optarg, "hq")) quality = AudioResampler::HIGH_QUALITY; else if (!strcmp(optarg, "vhq")) quality = AudioResampler::VERY_HIGH_QUALITY; else if (!strcmp(optarg, "dlq")) quality = AudioResampler::DYN_LOW_QUALITY; else if (!strcmp(optarg, "dmq")) quality = AudioResampler::DYN_MED_QUALITY; else if (!strcmp(optarg, "dhq")) quality = AudioResampler::DYN_HIGH_QUALITY; else { usage(progname); return -1; } break; case 'i': input_freq = atoi(optarg); break; case 'o': output_freq = atoi(optarg); break; case 'O': if (parseCSV(optarg, Ovalues) < 0) { fprintf(stderr, "incorrect syntax for -O option\n"); return -1; } break; case 'P': if (parseCSV(optarg, Pvalues) < 0) { fprintf(stderr, "incorrect syntax for -P option\n"); return -1; } break; case '?': default: usage(progname); return -1; } } if (channels < 1 || channels > (quality < AudioResampler::DYN_LOW_QUALITY ? 2 : 8)) { fprintf(stderr, "invalid number of audio channels %d\n", channels); return -1; } if (useFloat && quality < AudioResampler::DYN_LOW_QUALITY) { fprintf(stderr, "float processing is only possible for dynamic resamplers\n"); return -1; } argc -= optind; argv += optind; const char* file_in = NULL; const char* file_out = NULL; if (argc == 1) { file_out = argv[0]; } else if (argc == 2) { file_in = argv[0]; file_out = argv[1]; } else { usage(progname); return -1; } // ---------------------------------------------------------- size_t input_size; void* input_vaddr; if (argc == 2) { SF_INFO info; info.format = 0; SNDFILE *sf = sf_open(file_in, SFM_READ, &info); if (sf == NULL) { perror(file_in); return EXIT_FAILURE; } input_size = info.frames * info.channels * sizeof(short); input_vaddr = malloc(input_size); (void) sf_readf_short(sf, (short *) input_vaddr, info.frames); sf_close(sf); channels = info.channels; input_freq = info.samplerate; } else { // data for testing is exactly (input sampling rate/1000)/2 seconds // so 44.1khz input is 22.05 seconds double k = 1000; // Hz / s double time = (input_freq / 2) / k; size_t input_frames = size_t(input_freq * time); input_size = channels * sizeof(int16_t) * input_frames; input_vaddr = malloc(input_size); int16_t* in = (int16_t*)input_vaddr; for (size_t i=0 ; i(new_vaddr), reinterpret_cast(input_vaddr), input_frames * channels); free(input_vaddr); input_vaddr = new_vaddr; } // ---------------------------------------------------------- class Provider: public AudioBufferProvider { const void* mAddr; // base address const size_t mNumFrames; // total frames const size_t mFrameSize; // size of each frame in bytes size_t mNextFrame; // index of next frame to provide size_t mUnrel; // number of frames not yet released const Vector mPvalues; // number of frames provided per call size_t mNextPidx; // index of next entry in mPvalues to use public: Provider(const void* addr, size_t frames, size_t frameSize, const Vector& Pvalues) : mAddr(addr), mNumFrames(frames), mFrameSize(frameSize), mNextFrame(0), mUnrel(0), mPvalues(Pvalues), mNextPidx(0) { } virtual status_t getNextBuffer(Buffer* buffer) { size_t requestedFrames = buffer->frameCount; if (requestedFrames > mNumFrames - mNextFrame) { buffer->frameCount = mNumFrames - mNextFrame; } if (!mPvalues.isEmpty()) { size_t provided = mPvalues[mNextPidx++]; printf("mPvalue[%zu]=%zu not %zu\n", mNextPidx-1, provided, buffer->frameCount); if (provided < buffer->frameCount) { buffer->frameCount = provided; } if (mNextPidx >= mPvalues.size()) { mNextPidx = 0; } } if (gVerbose) { printf("getNextBuffer() requested %zu frames out of %zu frames available," " and returned %zu frames\n", requestedFrames, (size_t) (mNumFrames - mNextFrame), buffer->frameCount); } mUnrel = buffer->frameCount; if (buffer->frameCount > 0) { buffer->raw = (char *)mAddr + mFrameSize * mNextFrame; return NO_ERROR; } else { buffer->raw = NULL; return NOT_ENOUGH_DATA; } } virtual void releaseBuffer(Buffer* buffer) { if (buffer->frameCount > mUnrel) { fprintf(stderr, "ERROR releaseBuffer() released %zu frames but only %zu available " "to release\n", buffer->frameCount, mUnrel); mNextFrame += mUnrel; mUnrel = 0; } else { if (gVerbose) { printf("releaseBuffer() released %zu frames out of %zu frames available " "to release\n", buffer->frameCount, mUnrel); } mNextFrame += buffer->frameCount; mUnrel -= buffer->frameCount; } buffer->frameCount = 0; buffer->raw = NULL; } void reset() { mNextFrame = 0; } } provider(input_vaddr, input_frames, input_framesize, Pvalues); if (gVerbose) { printf("%zu input frames\n", input_frames); } audio_format_t format = useFloat ? AUDIO_FORMAT_PCM_FLOAT : AUDIO_FORMAT_PCM_16_BIT; int output_channels = channels > 2 ? channels : 2; // output is at least stereo samples size_t output_framesize = output_channels * (useFloat ? sizeof(float) : sizeof(int32_t)); size_t output_frames = ((int64_t) input_frames * output_freq) / input_freq; size_t output_size = output_frames * output_framesize; if (profileFilter) { // Check how fast sample rate changes are that require filter changes. // The delta sample rate changes must indicate a downsampling ratio, // and must be larger than 10% changes. // // On fast devices, filters should be generated between 0.1ms - 1ms. // (single threaded). AudioResampler* resampler = AudioResampler::create(format, channels, 8000, quality); int looplimit = 100; timespec start, end; clock_gettime(CLOCK_MONOTONIC, &start); for (int i = 0; i < looplimit; ++i) { resampler->setSampleRate(9000); resampler->setSampleRate(12000); resampler->setSampleRate(20000); resampler->setSampleRate(30000); } clock_gettime(CLOCK_MONOTONIC, &end); int64_t start_ns = start.tv_sec * 1000000000LL + start.tv_nsec; int64_t end_ns = end.tv_sec * 1000000000LL + end.tv_nsec; int64_t time = end_ns - start_ns; printf("%.2f sample rate changes with filter calculation/sec\n", looplimit * 4 / (time / 1e9)); // Check how fast sample rate changes are without filter changes. // This should be very fast, probably 0.1us - 1us per sample rate // change. resampler->setSampleRate(1000); looplimit = 1000; clock_gettime(CLOCK_MONOTONIC, &start); for (int i = 0; i < looplimit; ++i) { resampler->setSampleRate(1000+i); } clock_gettime(CLOCK_MONOTONIC, &end); start_ns = start.tv_sec * 1000000000LL + start.tv_nsec; end_ns = end.tv_sec * 1000000000LL + end.tv_nsec; time = end_ns - start_ns; printf("%.2f sample rate changes without filter calculation/sec\n", looplimit / (time / 1e9)); resampler->reset(); delete resampler; } void* output_vaddr = malloc(output_size); AudioResampler* resampler = AudioResampler::create(format, channels, output_freq, quality); resampler->setSampleRate(input_freq); resampler->setVolume(AudioResampler::UNITY_GAIN_FLOAT, AudioResampler::UNITY_GAIN_FLOAT); if (profileResample) { /* * For profiling on mobile devices, upon experimentation * it is better to run a few trials with a shorter loop limit, * and take the minimum time. * * Long tests can cause CPU temperature to build up and thermal throttling * to reduce CPU frequency. * * For frequency checks (index=0, or 1, etc.): * "cat /sys/devices/system/cpu/cpu${index}/cpufreq/scaling_*_freq" * * For temperature checks (index=0, or 1, etc.): * "cat /sys/class/thermal/thermal_zone${index}/temp" * * Another way to avoid thermal throttling is to fix the CPU frequency * at a lower level which prevents excessive temperatures. */ const int trials = 4; const int looplimit = 4; timespec start, end; int64_t time = 0; for (int n = 0; n < trials; ++n) { clock_gettime(CLOCK_MONOTONIC, &start); for (int i = 0; i < looplimit; ++i) { resampler->resample((int*) output_vaddr, output_frames, &provider); provider.reset(); // during benchmarking reset only the provider } clock_gettime(CLOCK_MONOTONIC, &end); int64_t start_ns = start.tv_sec * 1000000000LL + start.tv_nsec; int64_t end_ns = end.tv_sec * 1000000000LL + end.tv_nsec; int64_t diff_ns = end_ns - start_ns; if (n == 0 || diff_ns < time) { time = diff_ns; // save the best out of our trials. } } // Mfrms/s is "Millions of output frames per second". printf("quality: %d channels: %d msec: %" PRId64 " Mfrms/s: %.2lf\n", quality, channels, time/1000000, output_frames * looplimit / (time / 1e9) / 1e6); resampler->reset(); // TODO fix legacy bug: reset does not clear buffers. // delete and recreate resampler here. delete resampler; resampler = AudioResampler::create(format, channels, output_freq, quality); resampler->setSampleRate(input_freq); resampler->setVolume(AudioResampler::UNITY_GAIN_FLOAT, AudioResampler::UNITY_GAIN_FLOAT); } memset(output_vaddr, 0, output_size); if (gVerbose) { printf("resample() %zu output frames\n", output_frames); } if (Ovalues.isEmpty()) { Ovalues.push(output_frames); } for (size_t i = 0, j = 0; i < output_frames; ) { size_t thisFrames = Ovalues[j++]; if (j >= Ovalues.size()) { j = 0; } if (thisFrames == 0 || thisFrames > output_frames - i) { thisFrames = output_frames - i; } resampler->resample((int*) output_vaddr + output_channels*i, thisFrames, &provider); i += thisFrames; } if (gVerbose) { printf("resample() complete\n"); } resampler->reset(); if (gVerbose) { printf("reset() complete\n"); } delete resampler; resampler = NULL; // For float processing, convert output format from float to Q4.27, // which is then converted to int16_t for final storage. if (useFloat) { memcpy_to_q4_27_from_float(reinterpret_cast(output_vaddr), reinterpret_cast(output_vaddr), output_frames * output_channels); } // mono takes left channel only (out of stereo output pair) // stereo and multichannel preserve all channels. int32_t* out = (int32_t*) output_vaddr; int16_t* convert = (int16_t*) malloc(output_frames * channels * sizeof(int16_t)); const int volumeShift = 12; // shift requirement for Q4.27 to Q.15 // round to half towards zero and saturate at int16 (non-dithered) const int roundVal = (1<<(volumeShift-1)) - 1; // volumePrecision > 0 for (size_t i = 0; i < output_frames; i++) { for (int j = 0; j < channels; j++) { int32_t s = out[i * output_channels + j] + roundVal; // add offset here if (s < 0) { s = (s + 1) >> volumeShift; // round to 0 if (s < -32768) { s = -32768; } } else { s = s >> volumeShift; if (s > 32767) { s = 32767; } } convert[i * channels + j] = int16_t(s); } } // write output to disk SF_INFO info; info.frames = 0; info.samplerate = output_freq; info.channels = channels; info.format = SF_FORMAT_WAV | SF_FORMAT_PCM_16; SNDFILE *sf = sf_open(file_out, SFM_WRITE, &info); if (sf == NULL) { perror(file_out); return EXIT_FAILURE; } (void) sf_writef_short(sf, convert, output_frames); sf_close(sf); return EXIT_SUCCESS; }