/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "NBLog" //#define LOG_NDEBUG 0 #include #include #include #include #include #include #include #include #include #include #include #include #include namespace android { int NBLog::Entry::readAt(size_t offset) const { // FIXME This is too slow, despite the name it is used during writing if (offset == 0) return mEvent; else if (offset == 1) return mLength; else if (offset < (size_t) (mLength + 2)) return ((char *) mData)[offset - 2]; else if (offset == (size_t) (mLength + 2)) return mLength; else return 0; } // --------------------------------------------------------------------------- NBLog::FormatEntry::FormatEntry(const uint8_t *entry) : mEntry(entry) { ALOGW_IF(entry[offsetof(struct entry, type)] != EVENT_START_FMT, "Created format entry with invalid event type %d", entry[offsetof(struct entry, type)]); } NBLog::FormatEntry::FormatEntry(const NBLog::FormatEntry::iterator &it) : FormatEntry(it.ptr) {} const char *NBLog::FormatEntry::formatString() const { return (const char*) mEntry + offsetof(entry, data); } size_t NBLog::FormatEntry::formatStringLength() const { return mEntry[offsetof(entry, length)]; } NBLog::FormatEntry::iterator NBLog::FormatEntry::args() const { auto it = begin(); // skip start fmt ++it; // skip timestamp ++it; // Skip author if present if (it->type == EVENT_AUTHOR) { ++it; } return it; } timespec NBLog::FormatEntry::timestamp() const { auto it = begin(); // skip start fmt ++it; return it.payload(); } pid_t NBLog::FormatEntry::author() const { auto it = begin(); // skip start fmt ++it; // skip timestamp ++it; // if there is an author entry, return it, return -1 otherwise if (it->type == EVENT_AUTHOR) { return it.payload(); } return -1; } NBLog::FormatEntry::iterator NBLog::FormatEntry::copyWithAuthor( std::unique_ptr &dst, int author) const { auto it = begin(); // copy fmt start entry it.copyTo(dst); // copy timestamp (++it).copyTo(dst); // insert author entry size_t authorEntrySize = NBLog::Entry::kOverhead + sizeof(author); uint8_t authorEntry[authorEntrySize]; authorEntry[offsetof(entry, type)] = EVENT_AUTHOR; authorEntry[offsetof(entry, length)] = authorEntry[authorEntrySize + NBLog::Entry::kPreviousLengthOffset] = sizeof(author); *(int*) (&authorEntry[offsetof(entry, data)]) = author; dst->write(authorEntry, authorEntrySize); // copy rest of entries while ((++it)->type != EVENT_END_FMT) { it.copyTo(dst); } it.copyTo(dst); ++it; return it; } void NBLog::FormatEntry::iterator::copyTo(std::unique_ptr &dst) const { size_t length = ptr[offsetof(entry, length)] + NBLog::Entry::kOverhead; dst->write(ptr, length); } void NBLog::FormatEntry::iterator::copyData(uint8_t *dst) const { memcpy((void*) dst, ptr + offsetof(entry, data), ptr[offsetof(entry, length)]); } NBLog::FormatEntry::iterator NBLog::FormatEntry::begin() const { return iterator(mEntry); } NBLog::FormatEntry::iterator::iterator() : ptr(nullptr) {} NBLog::FormatEntry::iterator::iterator(const uint8_t *entry) : ptr(entry) {} NBLog::FormatEntry::iterator::iterator(const NBLog::FormatEntry::iterator &other) : ptr(other.ptr) {} const NBLog::FormatEntry::entry& NBLog::FormatEntry::iterator::operator*() const { return *(entry*) ptr; } const NBLog::FormatEntry::entry* NBLog::FormatEntry::iterator::operator->() const { return (entry*) ptr; } NBLog::FormatEntry::iterator& NBLog::FormatEntry::iterator::operator++() { ptr += ptr[offsetof(entry, length)] + NBLog::Entry::kOverhead; return *this; } NBLog::FormatEntry::iterator& NBLog::FormatEntry::iterator::operator--() { ptr -= ptr[NBLog::Entry::kPreviousLengthOffset] + NBLog::Entry::kOverhead; return *this; } NBLog::FormatEntry::iterator NBLog::FormatEntry::iterator::next() const { iterator aux(*this); return ++aux; } NBLog::FormatEntry::iterator NBLog::FormatEntry::iterator::prev() const { iterator aux(*this); return --aux; } int NBLog::FormatEntry::iterator::operator-(const NBLog::FormatEntry::iterator &other) const { return ptr - other.ptr; } bool NBLog::FormatEntry::iterator::operator!=(const iterator &other) const { return ptr != other.ptr; } bool NBLog::FormatEntry::iterator::hasConsistentLength() const { return ptr[offsetof(entry, length)] == ptr[ptr[offsetof(entry, length)] + NBLog::Entry::kOverhead + NBLog::Entry::kPreviousLengthOffset]; } // --------------------------------------------------------------------------- #if 0 // FIXME see note in NBLog.h NBLog::Timeline::Timeline(size_t size, void *shared) : mSize(roundup(size)), mOwn(shared == NULL), mShared((Shared *) (mOwn ? new char[sharedSize(size)] : shared)) { new (mShared) Shared; } NBLog::Timeline::~Timeline() { mShared->~Shared(); if (mOwn) { delete[] (char *) mShared; } } #endif /*static*/ size_t NBLog::Timeline::sharedSize(size_t size) { // TODO fifo now supports non-power-of-2 buffer sizes, so could remove the roundup return sizeof(Shared) + roundup(size); } // --------------------------------------------------------------------------- NBLog::Writer::Writer() : mShared(NULL), mFifo(NULL), mFifoWriter(NULL), mEnabled(false), mPidTag(NULL), mPidTagSize(0) { } NBLog::Writer::Writer(void *shared, size_t size) : mShared((Shared *) shared), mFifo(mShared != NULL ? new audio_utils_fifo(size, sizeof(uint8_t), mShared->mBuffer, mShared->mRear, NULL /*throttlesFront*/) : NULL), mFifoWriter(mFifo != NULL ? new audio_utils_fifo_writer(*mFifo) : NULL), mEnabled(mFifoWriter != NULL) { // caching pid and process name pid_t id = ::getpid(); char procName[16]; int status = prctl(PR_GET_NAME, procName); if (status) { // error getting process name procName[0] = '\0'; } size_t length = strlen(procName); mPidTagSize = length + sizeof(pid_t); mPidTag = new char[mPidTagSize]; memcpy(mPidTag, &id, sizeof(pid_t)); memcpy(mPidTag + sizeof(pid_t), procName, length); } NBLog::Writer::Writer(const sp& iMemory, size_t size) : Writer(iMemory != 0 ? (Shared *) iMemory->pointer() : NULL, size) { mIMemory = iMemory; } NBLog::Writer::~Writer() { delete mFifoWriter; delete mFifo; delete[] mPidTag; } void NBLog::Writer::log(const char *string) { if (!mEnabled) { return; } LOG_ALWAYS_FATAL_IF(string == NULL, "Attempted to log NULL string"); size_t length = strlen(string); if (length > Entry::kMaxLength) { length = Entry::kMaxLength; } log(EVENT_STRING, string, length); } void NBLog::Writer::logf(const char *fmt, ...) { if (!mEnabled) { return; } va_list ap; va_start(ap, fmt); Writer::logvf(fmt, ap); // the Writer:: is needed to avoid virtual dispatch for LockedWriter va_end(ap); } void NBLog::Writer::logvf(const char *fmt, va_list ap) { if (!mEnabled) { return; } char buffer[Entry::kMaxLength + 1 /*NUL*/]; int length = vsnprintf(buffer, sizeof(buffer), fmt, ap); if (length >= (int) sizeof(buffer)) { length = sizeof(buffer) - 1; // NUL termination is not required // buffer[length] = '\0'; } if (length >= 0) { log(EVENT_STRING, buffer, length); } } void NBLog::Writer::logTimestamp() { if (!mEnabled) { return; } struct timespec ts; if (!clock_gettime(CLOCK_MONOTONIC, &ts)) { log(EVENT_TIMESTAMP, &ts, sizeof(ts)); } } void NBLog::Writer::logTimestamp(const struct timespec &ts) { if (!mEnabled) { return; } log(EVENT_TIMESTAMP, &ts, sizeof(ts)); } void NBLog::Writer::logInteger(const int x) { if (!mEnabled) { return; } log(EVENT_INTEGER, &x, sizeof(x)); } void NBLog::Writer::logFloat(const float x) { if (!mEnabled) { return; } log(EVENT_FLOAT, &x, sizeof(x)); } void NBLog::Writer::logPID() { if (!mEnabled) { return; } log(EVENT_PID, mPidTag, mPidTagSize); } void NBLog::Writer::logStart(const char *fmt) { if (!mEnabled) { return; } size_t length = strlen(fmt); if (length > Entry::kMaxLength) { length = Entry::kMaxLength; } log(EVENT_START_FMT, fmt, length); } void NBLog::Writer::logEnd() { if (!mEnabled) { return; } Entry entry = Entry(EVENT_END_FMT, NULL, 0); log(&entry, true); } void NBLog::Writer::logFormat(const char *fmt, ...) { if (!mEnabled) { return; } va_list ap; va_start(ap, fmt); Writer::logVFormat(fmt, ap); va_end(ap); } void NBLog::Writer::logVFormat(const char *fmt, va_list argp) { if (!mEnabled) { return; } Writer::logStart(fmt); int i; double f; char* s; struct timespec t; Writer::logTimestamp(); for (const char *p = fmt; *p != '\0'; p++) { // TODO: implement more complex formatting such as %.3f if (*p != '%') { continue; } switch(*++p) { case 's': // string s = va_arg(argp, char *); Writer::log(s); break; case 't': // timestamp t = va_arg(argp, struct timespec); Writer::logTimestamp(t); break; case 'd': // integer i = va_arg(argp, int); Writer::logInteger(i); break; case 'f': // float f = va_arg(argp, double); // float arguments are promoted to double in vararg lists Writer::logFloat((float)f); break; case 'p': // pid Writer::logPID(); break; // the "%\0" case finishes parsing case '\0': --p; break; case '%': break; default: ALOGW("NBLog Writer parsed invalid format specifier: %c", *p); break; } } Writer::logEnd(); } void NBLog::Writer::log(Event event, const void *data, size_t length) { if (!mEnabled) { return; } if (data == NULL || length > Entry::kMaxLength) { // TODO Perhaps it makes sense to display truncated data or at least a // message that the data is too long? The current behavior can create // a confusion for a programmer debugging their code. return; } switch (event) { case EVENT_STRING: case EVENT_TIMESTAMP: case EVENT_INTEGER: case EVENT_FLOAT: case EVENT_PID: case EVENT_START_FMT: break; case EVENT_RESERVED: default: return; } Entry entry(event, data, length); log(&entry, true /*trusted*/); } void NBLog::Writer::log(const NBLog::Entry *entry, bool trusted) { if (!mEnabled) { return; } if (!trusted) { log(entry->mEvent, entry->mData, entry->mLength); return; } size_t need = entry->mLength + Entry::kOverhead; // mEvent, mLength, data[length], mLength // need = number of bytes remaining to write // FIXME optimize this using memcpy for the data part of the Entry. // The Entry could have a method copyTo(ptr, offset, size) to optimize the copy. uint8_t temp[Entry::kMaxLength + Entry::kOverhead]; for (size_t i = 0; i < need; i++) { temp[i] = entry->readAt(i); } mFifoWriter->write(temp, need); } bool NBLog::Writer::isEnabled() const { return mEnabled; } bool NBLog::Writer::setEnabled(bool enabled) { bool old = mEnabled; mEnabled = enabled && mShared != NULL; return old; } // --------------------------------------------------------------------------- NBLog::LockedWriter::LockedWriter() : Writer() { } NBLog::LockedWriter::LockedWriter(void *shared, size_t size) : Writer(shared, size) { } void NBLog::LockedWriter::log(const char *string) { Mutex::Autolock _l(mLock); Writer::log(string); } void NBLog::LockedWriter::logf(const char *fmt, ...) { // FIXME should not take the lock until after formatting is done Mutex::Autolock _l(mLock); va_list ap; va_start(ap, fmt); Writer::logvf(fmt, ap); va_end(ap); } void NBLog::LockedWriter::logvf(const char *fmt, va_list ap) { // FIXME should not take the lock until after formatting is done Mutex::Autolock _l(mLock); Writer::logvf(fmt, ap); } void NBLog::LockedWriter::logTimestamp() { // FIXME should not take the lock until after the clock_gettime() syscall Mutex::Autolock _l(mLock); Writer::logTimestamp(); } void NBLog::LockedWriter::logTimestamp(const struct timespec &ts) { Mutex::Autolock _l(mLock); Writer::logTimestamp(ts); } void NBLog::LockedWriter::logInteger(const int x) { Mutex::Autolock _l(mLock); Writer::logInteger(x); } void NBLog::LockedWriter::logFloat(const float x) { Mutex::Autolock _l(mLock); Writer::logFloat(x); } void NBLog::LockedWriter::logPID() { Mutex::Autolock _l(mLock); Writer::logPID(); } void NBLog::LockedWriter::logStart(const char *fmt) { Mutex::Autolock _l(mLock); Writer::logStart(fmt); } void NBLog::LockedWriter::logEnd() { Mutex::Autolock _l(mLock); Writer::logEnd(); } bool NBLog::LockedWriter::isEnabled() const { Mutex::Autolock _l(mLock); return Writer::isEnabled(); } bool NBLog::LockedWriter::setEnabled(bool enabled) { Mutex::Autolock _l(mLock); return Writer::setEnabled(enabled); } // --------------------------------------------------------------------------- NBLog::Reader::Reader(const void *shared, size_t size) : mShared((/*const*/ Shared *) shared), /*mIMemory*/ mFd(-1), mIndent(0), mFifo(mShared != NULL ? new audio_utils_fifo(size, sizeof(uint8_t), mShared->mBuffer, mShared->mRear, NULL /*throttlesFront*/) : NULL), mFifoReader(mFifo != NULL ? new audio_utils_fifo_reader(*mFifo) : NULL) { } NBLog::Reader::Reader(const sp& iMemory, size_t size) : Reader(iMemory != 0 ? (Shared *) iMemory->pointer() : NULL, size) { mIMemory = iMemory; } NBLog::Reader::~Reader() { delete mFifoReader; delete mFifo; } uint8_t *NBLog::Reader::findLastEntryOfType(uint8_t *front, uint8_t *back, uint8_t type) { while (back + Entry::kPreviousLengthOffset >= front) { uint8_t *prev = back - back[Entry::kPreviousLengthOffset] - Entry::kOverhead; if (prev < front || prev + prev[offsetof(FormatEntry::entry, length)] + Entry::kOverhead != back) { // prev points to an out of limits or inconsistent entry return nullptr; } if (prev[offsetof(FormatEntry::entry, type)] == type) { return prev; } back = prev; } return nullptr; // no entry found } std::unique_ptr NBLog::Reader::getSnapshot() { if (mFifoReader == NULL) { return std::unique_ptr(new Snapshot()); } // make a copy to avoid race condition with writer size_t capacity = mFifo->capacity(); // This emulates the behaviour of audio_utils_fifo_reader::read, but without incrementing the // reader index. The index is incremented after handling corruption, to after the last complete // entry of the buffer size_t lost; audio_utils_iovec iovec[2]; ssize_t availToRead = mFifoReader->obtain(iovec, capacity, NULL /*timeout*/, &lost); if (availToRead <= 0) { return std::unique_ptr(new Snapshot()); } std::unique_ptr snapshot(new Snapshot(availToRead)); memcpy(snapshot->mData, (const char *) mFifo->buffer() + iovec[0].mOffset, iovec[0].mLength); if (iovec[1].mLength > 0) { memcpy(snapshot->mData + (iovec[0].mLength), (const char *) mFifo->buffer() + iovec[1].mOffset, iovec[1].mLength); } // Handle corrupted buffer // Potentially, a buffer has corrupted data on both beginning (due to overflow) and end // (due to incomplete format entry). But even if the end format entry is incomplete, // it ends in a complete entry (which is not an END_FMT). So is safe to traverse backwards. // TODO: handle client corruption (in the middle of a buffer) uint8_t *back = snapshot->mData + availToRead; uint8_t *front = snapshot->mData; // Find last END_FMT. is sitting on an entry which might be the middle of a FormatEntry. // We go backwards until we find an EVENT_END_FMT. uint8_t *lastEnd = findLastEntryOfType(front, back, EVENT_END_FMT); if (lastEnd == nullptr) { snapshot->mEnd = snapshot->mBegin = FormatEntry::iterator(front); } else { // end of snapshot points to after last END_FMT entry snapshot->mEnd = FormatEntry::iterator(lastEnd + Entry::kOverhead); // find first START_FMT uint8_t *firstStart = nullptr; uint8_t *firstStartTmp = lastEnd; while ((firstStartTmp = findLastEntryOfType(front, firstStartTmp, EVENT_START_FMT)) != nullptr) { firstStart = firstStartTmp; } // firstStart is null if no START_FMT entry was found before lastEnd if (firstStart == nullptr) { snapshot->mBegin = snapshot->mEnd; } else { snapshot->mBegin = FormatEntry::iterator(firstStart); } } // advance fifo reader index to after last entry read. mFifoReader->release(snapshot->mEnd - front); snapshot->mLost = lost; return snapshot; } void NBLog::Reader::dump(int fd, size_t indent, NBLog::Reader::Snapshot &snapshot) { #if 0 struct timespec ts; time_t maxSec = -1; while (entry - start >= (int) Entry::kOverhead) { if (prevEntry - start < 0 || !prevEntry.hasConsistentLength()) { break; } if (prevEntry->type == EVENT_TIMESTAMP) { if (prevEntry->length != sizeof(struct timespec)) { // corrupt break; } prevEntry.copyData((uint8_t*) &ts); if (ts.tv_sec > maxSec) { maxSec = ts.tv_sec; } } --entry; --prevEntry; } #endif mFd = fd; mIndent = indent; String8 timestamp, body; size_t lost = snapshot.lost() + (snapshot.begin() - FormatEntry::iterator(snapshot.data())); if (lost > 0) { body.appendFormat("warning: lost %zu bytes worth of events", lost); // TODO timestamp empty here, only other choice to wait for the first timestamp event in the // log to push it out. Consider keeping the timestamp/body between calls to readAt(). dumpLine(timestamp, body); } #if 0 size_t width = 1; while (maxSec >= 10) { ++width; maxSec /= 10; } if (maxSec >= 0) { timestamp.appendFormat("[%*s]", (int) width + 4, ""); } bool deferredTimestamp = false; #endif for (auto entry = snapshot.begin(); entry != snapshot.end();) { switch (entry->type) { #if 0 case EVENT_STRING: body.appendFormat("%.*s", (int) entry.length(), entry.data()); break; case EVENT_TIMESTAMP: { // already checked that length == sizeof(struct timespec); entry.copyData((const uint8_t*) &ts); long prevNsec = ts.tv_nsec; long deltaMin = LONG_MAX; long deltaMax = -1; long deltaTotal = 0; auto aux(entry); for (;;) { ++aux; if (end - aux >= 0 || aux.type() != EVENT_TIMESTAMP) { break; } struct timespec tsNext; aux.copyData((const uint8_t*) &tsNext); if (tsNext.tv_sec != ts.tv_sec) { break; } long delta = tsNext.tv_nsec - prevNsec; if (delta < 0) { break; } if (delta < deltaMin) { deltaMin = delta; } if (delta > deltaMax) { deltaMax = delta; } deltaTotal += delta; prevNsec = tsNext.tv_nsec; } size_t n = (aux - entry) / (sizeof(struct timespec) + 3 /*Entry::kOverhead?*/); if (deferredTimestamp) { dumpLine(timestamp, body); deferredTimestamp = false; } timestamp.clear(); if (n >= kSquashTimestamp) { timestamp.appendFormat("[%d.%03d to .%.03d by .%.03d to .%.03d]", (int) ts.tv_sec, (int) (ts.tv_nsec / 1000000), (int) ((ts.tv_nsec + deltaTotal) / 1000000), (int) (deltaMin / 1000000), (int) (deltaMax / 1000000)); entry = aux; // advance = 0; break; } timestamp.appendFormat("[%d.%03d]", (int) ts.tv_sec, (int) (ts.tv_nsec / 1000000)); deferredTimestamp = true; } break; case EVENT_INTEGER: appendInt(&body, entry.data()); break; case EVENT_FLOAT: appendFloat(&body, entry.data()); break; case EVENT_PID: appendPID(&body, entry.data(), entry.length()); break; #endif case EVENT_START_FMT: // right now, this is the only supported case entry = handleFormat(FormatEntry(entry), ×tamp, &body); break; case EVENT_END_FMT: body.appendFormat("warning: got to end format event"); ++entry; break; case EVENT_RESERVED: default: body.appendFormat("warning: unexpected event %d", entry->type); ++entry; break; } if (!body.isEmpty()) { dumpLine(timestamp, body); // deferredTimestamp = false; } } // if (deferredTimestamp) { // dumpLine(timestamp, body); // } } void NBLog::Reader::dump(int fd, size_t indent) { // get a snapshot, dump it std::unique_ptr snap = getSnapshot(); dump(fd, indent, *snap); } void NBLog::Reader::dumpLine(const String8 ×tamp, String8 &body) { if (mFd >= 0) { dprintf(mFd, "%.*s%s %s\n", mIndent, "", timestamp.string(), body.string()); } else { ALOGI("%.*s%s %s", mIndent, "", timestamp.string(), body.string()); } body.clear(); } bool NBLog::Reader::isIMemory(const sp& iMemory) const { return iMemory != 0 && mIMemory != 0 && iMemory->pointer() == mIMemory->pointer(); } void NBLog::appendTimestamp(String8 *body, const void *data) { struct timespec ts; memcpy(&ts, data, sizeof(struct timespec)); body->appendFormat("[%d.%03d]", (int) ts.tv_sec, (int) (ts.tv_nsec / 1000000)); } void NBLog::appendInt(String8 *body, const void *data) { int x = *((int*) data); body->appendFormat("<%d>", x); } void NBLog::appendFloat(String8 *body, const void *data) { float f; memcpy(&f, data, sizeof(float)); body->appendFormat("<%f>", f); } void NBLog::appendPID(String8 *body, const void* data, size_t length) { pid_t id = *((pid_t*) data); char * name = &((char*) data)[sizeof(pid_t)]; body->appendFormat("", id, (int) (length - sizeof(pid_t)), name); } NBLog::FormatEntry::iterator NBLog::Reader::handleFormat(const FormatEntry &fmtEntry, String8 *timestamp, String8 *body) { // log timestamp struct timespec ts = fmtEntry.timestamp(); timestamp->clear(); timestamp->appendFormat("[%d.%03d]", (int) ts.tv_sec, (int) (ts.tv_nsec / 1000000)); // log author (if present) handleAuthor(fmtEntry, body); // log string NBLog::FormatEntry::iterator arg = fmtEntry.args(); const char* fmt = fmtEntry.formatString(); size_t fmt_length = fmtEntry.formatStringLength(); for (size_t fmt_offset = 0; fmt_offset < fmt_length; ++fmt_offset) { if (fmt[fmt_offset] != '%') { body->append(&fmt[fmt_offset], 1); // TODO optimize to write consecutive strings at once continue; } // case "%%"" if (fmt[++fmt_offset] == '%') { body->append("%"); continue; } // case "%\0" if (fmt_offset == fmt_length) { continue; } NBLog::Event event = (NBLog::Event) arg->type; size_t length = arg->length; // TODO check length for event type is correct if (event == EVENT_END_FMT) { break; } // TODO: implement more complex formatting such as %.3f const uint8_t *datum = arg->data; // pointer to the current event args switch(fmt[fmt_offset]) { case 's': // string ALOGW_IF(event != EVENT_STRING, "NBLog Reader incompatible event for string specifier: %d", event); body->append((const char*) datum, length); break; case 't': // timestamp ALOGW_IF(event != EVENT_TIMESTAMP, "NBLog Reader incompatible event for timestamp specifier: %d", event); appendTimestamp(body, datum); break; case 'd': // integer ALOGW_IF(event != EVENT_INTEGER, "NBLog Reader incompatible event for integer specifier: %d", event); appendInt(body, datum); break; case 'f': // float ALOGW_IF(event != EVENT_FLOAT, "NBLog Reader incompatible event for float specifier: %d", event); appendFloat(body, datum); break; case 'p': // pid ALOGW_IF(event != EVENT_PID, "NBLog Reader incompatible event for pid specifier: %d", event); appendPID(body, datum, length); break; default: ALOGW("NBLog Reader encountered unknown character %c", fmt[fmt_offset]); } ++arg; } ALOGW_IF(arg->type != EVENT_END_FMT, "Expected end of format, got %d", arg->type); ++arg; return arg; } // --------------------------------------------------------------------------- NBLog::Merger::Merger(const void *shared, size_t size): mBuffer(NULL), mShared((Shared *) shared), mFifo(mShared != NULL ? new audio_utils_fifo(size, sizeof(uint8_t), mShared->mBuffer, mShared->mRear, NULL /*throttlesFront*/) : NULL), mFifoWriter(mFifo != NULL ? new audio_utils_fifo_writer(*mFifo) : NULL) {} void NBLog::Merger::addReader(const NBLog::NamedReader &reader) { mNamedReaders.push_back(reader); } // items placed in priority queue during merge // composed by a timestamp and the index of the snapshot where the timestamp came from struct MergeItem { struct timespec ts; int index; MergeItem(struct timespec ts, int index): ts(ts), index(index) {} }; // operators needed for priority queue in merge bool operator>(const struct timespec &t1, const struct timespec &t2) { return t1.tv_sec > t2.tv_sec || (t1.tv_sec == t2.tv_sec && t1.tv_nsec > t2.tv_nsec); } bool operator>(const struct MergeItem &i1, const struct MergeItem &i2) { return i1.ts > i2.ts || (i1.ts.tv_sec == i2.ts.tv_sec && i1.ts.tv_nsec == i2.ts.tv_nsec && i1.index > i2.index); } // Merge registered readers, sorted by timestamp void NBLog::Merger::merge() { int nLogs = mNamedReaders.size(); std::vector> snapshots(nLogs); std::vector offsets(nLogs); for (int i = 0; i < nLogs; ++i) { snapshots[i] = mNamedReaders[i].reader()->getSnapshot(); offsets[i] = snapshots[i]->begin(); } // initialize offsets // TODO custom heap implementation could allow to update top, improving performance // for bursty buffers std::priority_queue, std::greater> timestamps; for (int i = 0; i < nLogs; ++i) { if (offsets[i] != snapshots[i]->end()) { timespec ts = FormatEntry(offsets[i]).timestamp(); timestamps.emplace(ts, i); } } while (!timestamps.empty()) { // find minimum timestamp int index = timestamps.top().index; // copy it to the log, increasing offset offsets[index] = FormatEntry(offsets[index]).copyWithAuthor(mFifoWriter, index); // update data structures timestamps.pop(); if (offsets[index] != snapshots[index]->end()) { timespec ts = FormatEntry(offsets[index]).timestamp(); timestamps.emplace(ts, index); } } } const std::vector *NBLog::Merger::getNamedReaders() const { return &mNamedReaders; } NBLog::MergeReader::MergeReader(const void *shared, size_t size, Merger &merger) : Reader(shared, size), mNamedReaders(merger.getNamedReaders()) {} size_t NBLog::MergeReader::handleAuthor(const NBLog::FormatEntry &fmtEntry, String8 *body) { int author = fmtEntry.author(); const char* name = (*mNamedReaders)[author].name(); body->appendFormat("%s: ", name); return NBLog::Entry::kOverhead + sizeof(author); } NBLog::MergeThread::MergeThread(NBLog::Merger &merger) : mMerger(merger), mTimeoutUs(0) {} NBLog::MergeThread::~MergeThread() { // set exit flag, set timeout to 0 to force threadLoop to exit and wait for the thread to join requestExit(); setTimeoutUs(0); join(); } bool NBLog::MergeThread::threadLoop() { bool doMerge; { AutoMutex _l(mMutex); // If mTimeoutUs is negative, wait on the condition variable until it's positive. // If it's positive, wait kThreadSleepPeriodUs and then merge nsecs_t waitTime = mTimeoutUs > 0 ? kThreadSleepPeriodUs * 1000 : LLONG_MAX; mCond.waitRelative(mMutex, waitTime); doMerge = mTimeoutUs > 0; mTimeoutUs -= kThreadSleepPeriodUs; } if (doMerge) { mMerger.merge(); } return true; } void NBLog::MergeThread::wakeup() { setTimeoutUs(kThreadWakeupPeriodUs); } void NBLog::MergeThread::setTimeoutUs(int time) { AutoMutex _l(mMutex); mTimeoutUs = time; mCond.signal(); } } // namespace android