/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "Caches.h" #include "ProgramCache.h" #include "Properties.h" namespace android { namespace uirenderer { /////////////////////////////////////////////////////////////////////////////// // Defines /////////////////////////////////////////////////////////////////////////////// #define MODULATE_OP_NO_MODULATE 0 #define MODULATE_OP_MODULATE 1 #define MODULATE_OP_MODULATE_A8 2 #define STR(x) STR1(x) #define STR1(x) #x /////////////////////////////////////////////////////////////////////////////// // Vertex shaders snippets /////////////////////////////////////////////////////////////////////////////// const char* gVS_Header_Start = "#version 100\n" "attribute vec4 position;\n"; const char* gVS_Header_Attributes_TexCoords = "attribute vec2 texCoords;\n"; const char* gVS_Header_Attributes_Colors = "attribute vec4 colors;\n"; const char* gVS_Header_Attributes_VertexAlphaParameters = "attribute float vtxAlpha;\n"; const char* gVS_Header_Uniforms_TextureTransform = "uniform mat4 mainTextureTransform;\n"; const char* gVS_Header_Uniforms = "uniform mat4 projection;\n" \ "uniform mat4 transform;\n"; const char* gVS_Header_Uniforms_HasGradient = "uniform mat4 screenSpace;\n"; const char* gVS_Header_Uniforms_HasBitmap = "uniform mat4 textureTransform;\n" "uniform mediump vec2 textureDimension;\n"; const char* gVS_Header_Uniforms_HasRoundRectClip = "uniform mat4 roundRectInvTransform;\n"; const char* gVS_Header_Varyings_HasTexture = "varying vec2 outTexCoords;\n"; const char* gVS_Header_Varyings_HasColors = "varying vec4 outColors;\n"; const char* gVS_Header_Varyings_HasVertexAlpha = "varying float alpha;\n"; const char* gVS_Header_Varyings_HasBitmap = "varying highp vec2 outBitmapTexCoords;\n"; const char* gVS_Header_Varyings_HasGradient[6] = { // Linear "varying highp vec2 linear;\n", "varying float linear;\n", // Circular "varying highp vec2 circular;\n", "varying highp vec2 circular;\n", // Sweep "varying highp vec2 sweep;\n", "varying highp vec2 sweep;\n", }; const char* gVS_Header_Varyings_HasRoundRectClip = "varying highp vec2 roundRectPos;\n"; const char* gVS_Main = "\nvoid main(void) {\n"; const char* gVS_Main_OutTexCoords = " outTexCoords = texCoords;\n"; const char* gVS_Main_OutColors = " outColors = colors;\n"; const char* gVS_Main_OutTransformedTexCoords = " outTexCoords = (mainTextureTransform * vec4(texCoords, 0.0, 1.0)).xy;\n"; const char* gVS_Main_OutGradient[6] = { // Linear " linear = vec2((screenSpace * position).x, 0.5);\n", " linear = (screenSpace * position).x;\n", // Circular " circular = (screenSpace * position).xy;\n", " circular = (screenSpace * position).xy;\n", // Sweep " sweep = (screenSpace * position).xy;\n", " sweep = (screenSpace * position).xy;\n" }; const char* gVS_Main_OutBitmapTexCoords = " outBitmapTexCoords = (textureTransform * position).xy * textureDimension;\n"; const char* gVS_Main_Position = " vec4 transformedPosition = projection * transform * position;\n" " gl_Position = transformedPosition;\n"; const char* gVS_Main_VertexAlpha = " alpha = vtxAlpha;\n"; const char* gVS_Main_HasRoundRectClip = " roundRectPos = (roundRectInvTransform * transformedPosition).xy;\n"; const char* gVS_Footer = "}\n\n"; /////////////////////////////////////////////////////////////////////////////// // Fragment shaders snippets /////////////////////////////////////////////////////////////////////////////// const char* gFS_Header_Start = "#version 100\n"; const char* gFS_Header_Extension_FramebufferFetch = "#extension GL_NV_shader_framebuffer_fetch : enable\n\n"; const char* gFS_Header_Extension_ExternalTexture = "#extension GL_OES_EGL_image_external : require\n\n"; const char* gFS_Header = "precision mediump float;\n\n"; const char* gFS_Uniforms_Color = "uniform vec4 color;\n"; const char* gFS_Uniforms_TextureSampler = "uniform sampler2D baseSampler;\n"; const char* gFS_Uniforms_ExternalTextureSampler = "uniform samplerExternalOES baseSampler;\n"; const char* gFS_Uniforms_GradientSampler[2] = { "uniform vec2 screenSize;\n" "uniform sampler2D gradientSampler;\n", "uniform vec2 screenSize;\n" "uniform vec4 startColor;\n" "uniform vec4 endColor;\n" }; const char* gFS_Uniforms_BitmapSampler = "uniform sampler2D bitmapSampler;\n"; const char* gFS_Uniforms_BitmapExternalSampler = "uniform samplerExternalOES bitmapSampler;\n"; const char* gFS_Uniforms_ColorOp[3] = { // None "", // Matrix "uniform mat4 colorMatrix;\n" "uniform vec4 colorMatrixVector;\n", // PorterDuff "uniform vec4 colorBlend;\n" }; const char* gFS_Uniforms_HasRoundRectClip = "uniform vec4 roundRectInnerRectLTRB;\n" "uniform float roundRectRadius;\n"; const char* gFS_Uniforms_ColorSpaceConversion = // TODO: Should we use a 3D LUT to combine the matrix and transfer functions? // 32x32x32 fp16 LUTs (for scRGB output) are large and heavy to generate... "uniform mat3 colorSpaceMatrix;\n"; const char* gFS_Uniforms_TransferFunction[4] = { // In this order: g, a, b, c, d, e, f // See ColorSpace::TransferParameters // We'll use hardware sRGB conversion as much as possible "", "uniform float transferFunction[7];\n", "uniform float transferFunction[5];\n", "uniform float transferFunctionGamma;\n" }; const char* gFS_OETF[2] = { R"__SHADER__( vec4 OETF(const vec4 linear) { return linear; } )__SHADER__", // We expect linear data to be scRGB so we mirror the gamma function R"__SHADER__( vec4 OETF(const vec4 linear) { return vec4(sign(linear.rgb) * OETF_sRGB(abs(linear.rgb)), linear.a); } )__SHADER__" }; const char* gFS_ColorConvert[3] = { // Just OETF R"__SHADER__( vec4 colorConvert(const vec4 color) { return OETF(color); } )__SHADER__", // Full color conversion for opaque bitmaps R"__SHADER__( vec4 colorConvert(const vec4 color) { return OETF(vec4(colorSpaceMatrix * EOTF_Parametric(color.rgb), color.a)); } )__SHADER__", // Full color conversion for translucent bitmaps // Note: 0.5/256=0.0019 R"__SHADER__( vec4 colorConvert(in vec4 color) { color.rgb /= color.a + 0.0019; color = OETF(vec4(colorSpaceMatrix * EOTF_Parametric(color.rgb), color.a)); color.rgb *= color.a + 0.0019; return color; } )__SHADER__", }; const char* gFS_sRGB_TransferFunctions = R"__SHADER__( float OETF_sRGB(const float linear) { // IEC 61966-2-1:1999 return linear <= 0.0031308 ? linear * 12.92 : (pow(linear, 1.0 / 2.4) * 1.055) - 0.055; } vec3 OETF_sRGB(const vec3 linear) { return vec3(OETF_sRGB(linear.r), OETF_sRGB(linear.g), OETF_sRGB(linear.b)); } float EOTF_sRGB(float srgb) { // IEC 61966-2-1:1999 return srgb <= 0.04045 ? srgb / 12.92 : pow((srgb + 0.055) / 1.055, 2.4); } )__SHADER__"; const char* gFS_TransferFunction[4] = { // Conversion done by the texture unit (sRGB) R"__SHADER__( vec3 EOTF_Parametric(const vec3 x) { return x; } )__SHADER__", // Full transfer function // TODO: We should probably use a 1D LUT (256x1 with texelFetch() since input is 8 bit) // TODO: That would cause 3 dependent texture fetches. Is it worth it? R"__SHADER__( float EOTF_Parametric(float x) { return x <= transferFunction[4] ? transferFunction[3] * x + transferFunction[6] : pow(transferFunction[1] * x + transferFunction[2], transferFunction[0]) + transferFunction[5]; } vec3 EOTF_Parametric(const vec3 x) { return vec3(EOTF_Parametric(x.r), EOTF_Parametric(x.g), EOTF_Parametric(x.b)); } )__SHADER__", // Limited transfer function, e = f = 0.0 R"__SHADER__( float EOTF_Parametric(float x) { return x <= transferFunction[4] ? transferFunction[3] * x : pow(transferFunction[1] * x + transferFunction[2], transferFunction[0]); } vec3 EOTF_Parametric(const vec3 x) { return vec3(EOTF_Parametric(x.r), EOTF_Parametric(x.g), EOTF_Parametric(x.b)); } )__SHADER__", // Gamma transfer function, e = f = 0.0 R"__SHADER__( vec3 EOTF_Parametric(const vec3 x) { return vec3(pow(x.r, transferFunctionGamma), pow(x.g, transferFunctionGamma), pow(x.b, transferFunctionGamma)); } )__SHADER__" }; // Dithering must be done in the quantization space // When we are writing to an sRGB framebuffer, we must do the following: // EOTF(OETF(color) + dither) // The dithering pattern is generated with a triangle noise generator in the range [-1.0,1.0] // TODO: Handle linear fp16 render targets const char* gFS_GradientFunctions = R"__SHADER__( float triangleNoise(const highp vec2 n) { highp vec2 p = fract(n * vec2(5.3987, 5.4421)); p += dot(p.yx, p.xy + vec2(21.5351, 14.3137)); highp float xy = p.x * p.y; return fract(xy * 95.4307) + fract(xy * 75.04961) - 1.0; } )__SHADER__"; const char* gFS_GradientPreamble[2] = { // Linear framebuffer R"__SHADER__( vec4 dither(const vec4 color) { return color + (triangleNoise(gl_FragCoord.xy * screenSize.xy) / 255.0); } )__SHADER__", // sRGB framebuffer R"__SHADER__( vec4 dither(const vec4 color) { vec3 dithered = sqrt(color.rgb) + (triangleNoise(gl_FragCoord.xy * screenSize.xy) / 255.0); return vec4(dithered * dithered, color.a); } )__SHADER__", }; // Uses luminance coefficients from Rec.709 to choose the appropriate gamma // The gamma() function assumes that bright text will be displayed on a dark // background and that dark text will be displayed on bright background // The gamma coefficient is chosen to thicken or thin the text accordingly // The dot product used to compute the luminance could be approximated with // a simple max(color.r, color.g, color.b) const char* gFS_Gamma_Preamble = R"__SHADER__( #define GAMMA (%.2f) #define GAMMA_INV (%.2f) float gamma(float a, const vec3 color) { float luminance = dot(color, vec3(0.2126, 0.7152, 0.0722)); return pow(a, luminance < 0.5 ? GAMMA_INV : GAMMA); } )__SHADER__"; const char* gFS_Main = "\nvoid main(void) {\n" " vec4 fragColor;\n"; const char* gFS_Main_AddDither = " fragColor = dither(fragColor);\n"; // General case const char* gFS_Main_FetchColor = " fragColor = color;\n"; const char* gFS_Main_ModulateColor = " fragColor *= color.a;\n"; const char* gFS_Main_ApplyVertexAlphaLinearInterp = " fragColor *= alpha;\n"; const char* gFS_Main_ApplyVertexAlphaShadowInterp = // map alpha through shadow alpha sampler " fragColor *= texture2D(baseSampler, vec2(alpha, 0.5)).a;\n"; const char* gFS_Main_FetchTexture[2] = { // Don't modulate " fragColor = colorConvert(texture2D(baseSampler, outTexCoords));\n", // Modulate " fragColor = color * colorConvert(texture2D(baseSampler, outTexCoords));\n" }; const char* gFS_Main_FetchA8Texture[4] = { // Don't modulate " fragColor = texture2D(baseSampler, outTexCoords);\n", " fragColor = texture2D(baseSampler, outTexCoords);\n", // Modulate " fragColor = color * texture2D(baseSampler, outTexCoords).a;\n", " fragColor = color * gamma(texture2D(baseSampler, outTexCoords).a, color.rgb);\n", }; const char* gFS_Main_FetchGradient[6] = { // Linear " vec4 gradientColor = texture2D(gradientSampler, linear);\n", " vec4 gradientColor = mix(startColor, endColor, clamp(linear, 0.0, 1.0));\n", // Circular " vec4 gradientColor = texture2D(gradientSampler, vec2(length(circular), 0.5));\n", " vec4 gradientColor = mix(startColor, endColor, clamp(length(circular), 0.0, 1.0));\n", // Sweep " highp float index = atan(sweep.y, sweep.x) * 0.15915494309; // inv(2 * PI)\n" " vec4 gradientColor = texture2D(gradientSampler, vec2(index - floor(index), 0.5));\n", " highp float index = atan(sweep.y, sweep.x) * 0.15915494309; // inv(2 * PI)\n" " vec4 gradientColor = mix(startColor, endColor, clamp(index - floor(index), 0.0, 1.0));\n" }; const char* gFS_Main_FetchBitmap = " vec4 bitmapColor = colorConvert(texture2D(bitmapSampler, outBitmapTexCoords));\n"; const char* gFS_Main_FetchBitmapNpot = " vec4 bitmapColor = colorConvert(texture2D(bitmapSampler, wrap(outBitmapTexCoords)));\n"; const char* gFS_Main_BlendShadersBG = " fragColor = blendShaders(gradientColor, bitmapColor)"; const char* gFS_Main_BlendShadersGB = " fragColor = blendShaders(bitmapColor, gradientColor)"; const char* gFS_Main_BlendShaders_Modulate[6] = { // Don't modulate ";\n", ";\n", // Modulate " * color.a;\n", " * color.a;\n", // Modulate with alpha 8 texture " * texture2D(baseSampler, outTexCoords).a;\n", " * gamma(texture2D(baseSampler, outTexCoords).a, color.rgb);\n", }; const char* gFS_Main_GradientShader_Modulate[6] = { // Don't modulate " fragColor = gradientColor;\n", " fragColor = gradientColor;\n", // Modulate " fragColor = gradientColor * color.a;\n", " fragColor = gradientColor * color.a;\n", // Modulate with alpha 8 texture " fragColor = gradientColor * texture2D(baseSampler, outTexCoords).a;\n", " fragColor = gradientColor * gamma(texture2D(baseSampler, outTexCoords).a, gradientColor.rgb);\n", }; const char* gFS_Main_BitmapShader_Modulate[6] = { // Don't modulate " fragColor = bitmapColor;\n", " fragColor = bitmapColor;\n", // Modulate " fragColor = bitmapColor * color.a;\n", " fragColor = bitmapColor * color.a;\n", // Modulate with alpha 8 texture " fragColor = bitmapColor * texture2D(baseSampler, outTexCoords).a;\n", " fragColor = bitmapColor * gamma(texture2D(baseSampler, outTexCoords).a, bitmapColor.rgb);\n", }; const char* gFS_Main_FragColor = " gl_FragColor = fragColor;\n"; const char* gFS_Main_FragColor_HasColors = " gl_FragColor *= outColors;\n"; const char* gFS_Main_FragColor_Blend = " gl_FragColor = blendFramebuffer(fragColor, gl_LastFragColor);\n"; const char* gFS_Main_FragColor_Blend_Swap = " gl_FragColor = blendFramebuffer(gl_LastFragColor, fragColor);\n"; const char* gFS_Main_ApplyColorOp[3] = { // None "", // Matrix " fragColor.rgb /= (fragColor.a + 0.0019);\n" // un-premultiply " fragColor *= colorMatrix;\n" " fragColor += colorMatrixVector;\n" " fragColor.rgb *= (fragColor.a + 0.0019);\n", // re-premultiply // PorterDuff " fragColor = blendColors(colorBlend, fragColor);\n" }; // Note: LTRB -> xyzw const char* gFS_Main_FragColor_HasRoundRectClip = " mediump vec2 fragToLT = roundRectInnerRectLTRB.xy - roundRectPos;\n" " mediump vec2 fragFromRB = roundRectPos - roundRectInnerRectLTRB.zw;\n" // divide + multiply by 128 to avoid falling out of range in length() function " mediump vec2 dist = max(max(fragToLT, fragFromRB), vec2(0.0, 0.0)) / 128.0;\n" " mediump float linearDist = roundRectRadius - (length(dist) * 128.0);\n" " gl_FragColor *= clamp(linearDist, 0.0, 1.0);\n"; const char* gFS_Main_DebugHighlight = " gl_FragColor.rgb = vec3(0.0, gl_FragColor.a, 0.0);\n"; const char* gFS_Footer = "}\n\n"; /////////////////////////////////////////////////////////////////////////////// // PorterDuff snippets /////////////////////////////////////////////////////////////////////////////// const char* gBlendOps[18] = { // Clear "return vec4(0.0, 0.0, 0.0, 0.0);\n", // Src "return src;\n", // Dst "return dst;\n", // SrcOver "return src + dst * (1.0 - src.a);\n", // DstOver "return dst + src * (1.0 - dst.a);\n", // SrcIn "return src * dst.a;\n", // DstIn "return dst * src.a;\n", // SrcOut "return src * (1.0 - dst.a);\n", // DstOut "return dst * (1.0 - src.a);\n", // SrcAtop "return vec4(src.rgb * dst.a + (1.0 - src.a) * dst.rgb, dst.a);\n", // DstAtop "return vec4(dst.rgb * src.a + (1.0 - dst.a) * src.rgb, src.a);\n", // Xor "return vec4(src.rgb * (1.0 - dst.a) + (1.0 - src.a) * dst.rgb, " "src.a + dst.a - 2.0 * src.a * dst.a);\n", // Plus "return min(src + dst, 1.0);\n", // Modulate "return src * dst;\n", // Screen "return src + dst - src * dst;\n", // Overlay "return clamp(vec4(mix(" "2.0 * src.rgb * dst.rgb + src.rgb * (1.0 - dst.a) + dst.rgb * (1.0 - src.a), " "src.a * dst.a - 2.0 * (dst.a - dst.rgb) * (src.a - src.rgb) + src.rgb * (1.0 - dst.a) + dst.rgb * (1.0 - src.a), " "step(dst.a, 2.0 * dst.rgb)), " "src.a + dst.a - src.a * dst.a), 0.0, 1.0);\n", // Darken "return vec4(src.rgb * (1.0 - dst.a) + (1.0 - src.a) * dst.rgb + " "min(src.rgb * dst.a, dst.rgb * src.a), src.a + dst.a - src.a * dst.a);\n", // Lighten "return vec4(src.rgb * (1.0 - dst.a) + (1.0 - src.a) * dst.rgb + " "max(src.rgb * dst.a, dst.rgb * src.a), src.a + dst.a - src.a * dst.a);\n", }; /////////////////////////////////////////////////////////////////////////////// // Constructors/destructors /////////////////////////////////////////////////////////////////////////////// ProgramCache::ProgramCache(Extensions& extensions) : mHasES3(extensions.getMajorGlVersion() >= 3) , mHasLinearBlending(extensions.hasLinearBlending()) { } ProgramCache::~ProgramCache() { clear(); } /////////////////////////////////////////////////////////////////////////////// // Cache management /////////////////////////////////////////////////////////////////////////////// void ProgramCache::clear() { PROGRAM_LOGD("Clearing program cache"); mCache.clear(); } Program* ProgramCache::get(const ProgramDescription& description) { programid key = description.key(); if (key == (PROGRAM_KEY_TEXTURE | PROGRAM_KEY_A8_TEXTURE)) { // program for A8, unmodulated, texture w/o shader (black text/path textures) is equivalent // to standard texture program (bitmaps, patches). Consider them equivalent. key = PROGRAM_KEY_TEXTURE; } auto iter = mCache.find(key); Program* program = nullptr; if (iter == mCache.end()) { description.log("Could not find program"); program = generateProgram(description, key); mCache[key] = std::unique_ptr(program); } else { program = iter->second.get(); } return program; } /////////////////////////////////////////////////////////////////////////////// // Program generation /////////////////////////////////////////////////////////////////////////////// Program* ProgramCache::generateProgram(const ProgramDescription& description, programid key) { String8 vertexShader = generateVertexShader(description); String8 fragmentShader = generateFragmentShader(description); return new Program(description, vertexShader.string(), fragmentShader.string()); } static inline size_t gradientIndex(const ProgramDescription& description) { return description.gradientType * 2 + description.isSimpleGradient; } String8 ProgramCache::generateVertexShader(const ProgramDescription& description) { // Add attributes String8 shader(gVS_Header_Start); if (description.hasTexture || description.hasExternalTexture) { shader.append(gVS_Header_Attributes_TexCoords); } if (description.hasVertexAlpha) { shader.append(gVS_Header_Attributes_VertexAlphaParameters); } if (description.hasColors) { shader.append(gVS_Header_Attributes_Colors); } // Uniforms shader.append(gVS_Header_Uniforms); if (description.hasTextureTransform) { shader.append(gVS_Header_Uniforms_TextureTransform); } if (description.hasGradient) { shader.append(gVS_Header_Uniforms_HasGradient); } if (description.hasBitmap) { shader.append(gVS_Header_Uniforms_HasBitmap); } if (description.hasRoundRectClip) { shader.append(gVS_Header_Uniforms_HasRoundRectClip); } // Varyings if (description.hasTexture || description.hasExternalTexture) { shader.append(gVS_Header_Varyings_HasTexture); } if (description.hasVertexAlpha) { shader.append(gVS_Header_Varyings_HasVertexAlpha); } if (description.hasColors) { shader.append(gVS_Header_Varyings_HasColors); } if (description.hasGradient) { shader.append(gVS_Header_Varyings_HasGradient[gradientIndex(description)]); } if (description.hasBitmap) { shader.append(gVS_Header_Varyings_HasBitmap); } if (description.hasRoundRectClip) { shader.append(gVS_Header_Varyings_HasRoundRectClip); } // Begin the shader shader.append(gVS_Main); { if (description.hasTextureTransform) { shader.append(gVS_Main_OutTransformedTexCoords); } else if (description.hasTexture || description.hasExternalTexture) { shader.append(gVS_Main_OutTexCoords); } if (description.hasVertexAlpha) { shader.append(gVS_Main_VertexAlpha); } if (description.hasColors) { shader.append(gVS_Main_OutColors); } if (description.hasBitmap) { shader.append(gVS_Main_OutBitmapTexCoords); } // Output transformed position shader.append(gVS_Main_Position); if (description.hasGradient) { shader.append(gVS_Main_OutGradient[gradientIndex(description)]); } if (description.hasRoundRectClip) { shader.append(gVS_Main_HasRoundRectClip); } } // End the shader shader.append(gVS_Footer); PROGRAM_LOGD("*** Generated vertex shader:\n\n%s", shader.string()); return shader; } static bool shaderOp(const ProgramDescription& description, String8& shader, const int modulateOp, const char** snippets) { int op = description.hasAlpha8Texture ? MODULATE_OP_MODULATE_A8 : modulateOp; op = op * 2 + description.hasGammaCorrection; shader.append(snippets[op]); return description.hasAlpha8Texture; } String8 ProgramCache::generateFragmentShader(const ProgramDescription& description) { String8 shader(gFS_Header_Start); const bool blendFramebuffer = description.framebufferMode >= SkBlendMode::kPlus; if (blendFramebuffer) { shader.append(gFS_Header_Extension_FramebufferFetch); } if (description.hasExternalTexture || (description.hasBitmap && description.isShaderBitmapExternal)) { shader.append(gFS_Header_Extension_ExternalTexture); } shader.append(gFS_Header); // Varyings if (description.hasTexture || description.hasExternalTexture) { shader.append(gVS_Header_Varyings_HasTexture); } if (description.hasVertexAlpha) { shader.append(gVS_Header_Varyings_HasVertexAlpha); } if (description.hasColors) { shader.append(gVS_Header_Varyings_HasColors); } if (description.hasGradient) { shader.append(gVS_Header_Varyings_HasGradient[gradientIndex(description)]); } if (description.hasBitmap) { shader.append(gVS_Header_Varyings_HasBitmap); } if (description.hasRoundRectClip) { shader.append(gVS_Header_Varyings_HasRoundRectClip); } // Uniforms int modulateOp = MODULATE_OP_NO_MODULATE; const bool singleColor = !description.hasTexture && !description.hasExternalTexture && !description.hasGradient && !description.hasBitmap; if (description.modulate || singleColor) { shader.append(gFS_Uniforms_Color); if (!singleColor) modulateOp = MODULATE_OP_MODULATE; } if (description.hasTexture || description.useShadowAlphaInterp) { shader.append(gFS_Uniforms_TextureSampler); } else if (description.hasExternalTexture) { shader.append(gFS_Uniforms_ExternalTextureSampler); } if (description.hasGradient) { shader.append(gFS_Uniforms_GradientSampler[description.isSimpleGradient]); } if (description.hasRoundRectClip) { shader.append(gFS_Uniforms_HasRoundRectClip); } if (description.hasGammaCorrection) { shader.appendFormat(gFS_Gamma_Preamble, Properties::textGamma, 1.0f / Properties::textGamma); } if (description.hasBitmap) { if (description.isShaderBitmapExternal) { shader.append(gFS_Uniforms_BitmapExternalSampler); } else { shader.append(gFS_Uniforms_BitmapSampler); } } shader.append(gFS_Uniforms_ColorOp[static_cast(description.colorOp)]); if (description.hasColorSpaceConversion) { shader.append(gFS_Uniforms_ColorSpaceConversion); } shader.append(gFS_Uniforms_TransferFunction[static_cast(description.transferFunction)]); // Generate required functions if (description.hasGradient && description.hasBitmap) { generateBlend(shader, "blendShaders", description.shadersMode); } if (description.colorOp == ProgramDescription::ColorFilterMode::Blend) { generateBlend(shader, "blendColors", description.colorMode); } if (blendFramebuffer) { generateBlend(shader, "blendFramebuffer", description.framebufferMode); } if (description.useShaderBasedWrap) { generateTextureWrap(shader, description.bitmapWrapS, description.bitmapWrapT); } if (description.hasGradient || description.hasLinearTexture || description.hasColorSpaceConversion) { shader.append(gFS_sRGB_TransferFunctions); } if (description.hasBitmap || ((description.hasTexture || description.hasExternalTexture) && !description.hasAlpha8Texture)) { shader.append(gFS_TransferFunction[static_cast(description.transferFunction)]); shader.append(gFS_OETF[(description.hasLinearTexture || description.hasColorSpaceConversion) && !mHasLinearBlending]); shader.append(gFS_ColorConvert[description.hasColorSpaceConversion ? 1 + description.hasTranslucentConversion : 0]); } if (description.hasGradient) { shader.append(gFS_GradientFunctions); shader.append(gFS_GradientPreamble[mHasLinearBlending]); } // Begin the shader shader.append(gFS_Main); { // Stores the result in fragColor directly if (description.hasTexture || description.hasExternalTexture) { if (description.hasAlpha8Texture) { if (!description.hasGradient && !description.hasBitmap) { shader.append( gFS_Main_FetchA8Texture[modulateOp * 2 + description.hasGammaCorrection]); } } else { shader.append(gFS_Main_FetchTexture[modulateOp]); } } else { if (!description.hasGradient && !description.hasBitmap) { shader.append(gFS_Main_FetchColor); } } if (description.hasGradient) { shader.append(gFS_Main_FetchGradient[gradientIndex(description)]); } if (description.hasBitmap) { if (!description.useShaderBasedWrap) { shader.append(gFS_Main_FetchBitmap); } else { shader.append(gFS_Main_FetchBitmapNpot); } } bool applyModulate = false; // Case when we have two shaders set if (description.hasGradient && description.hasBitmap) { if (description.isBitmapFirst) { shader.append(gFS_Main_BlendShadersBG); } else { shader.append(gFS_Main_BlendShadersGB); } applyModulate = shaderOp(description, shader, modulateOp, gFS_Main_BlendShaders_Modulate); } else { if (description.hasGradient) { applyModulate = shaderOp(description, shader, modulateOp, gFS_Main_GradientShader_Modulate); } else if (description.hasBitmap) { applyModulate = shaderOp(description, shader, modulateOp, gFS_Main_BitmapShader_Modulate); } } if (description.modulate && applyModulate) { shader.append(gFS_Main_ModulateColor); } // Apply the color op if needed shader.append(gFS_Main_ApplyColorOp[static_cast(description.colorOp)]); if (description.hasVertexAlpha) { if (description.useShadowAlphaInterp) { shader.append(gFS_Main_ApplyVertexAlphaShadowInterp); } else { shader.append(gFS_Main_ApplyVertexAlphaLinearInterp); } } if (description.hasGradient) { shader.append(gFS_Main_AddDither); } // Output the fragment if (!blendFramebuffer) { shader.append(gFS_Main_FragColor); } else { shader.append(!description.swapSrcDst ? gFS_Main_FragColor_Blend : gFS_Main_FragColor_Blend_Swap); } if (description.hasColors) { shader.append(gFS_Main_FragColor_HasColors); } if (description.hasRoundRectClip) { shader.append(gFS_Main_FragColor_HasRoundRectClip); } if (description.hasDebugHighlight) { shader.append(gFS_Main_DebugHighlight); } } // End the shader shader.append(gFS_Footer); #if DEBUG_PROGRAMS PROGRAM_LOGD("*** Generated fragment shader:\n\n"); printLongString(shader); #endif return shader; } void ProgramCache::generateBlend(String8& shader, const char* name, SkBlendMode mode) { shader.append("\nvec4 "); shader.append(name); shader.append("(vec4 src, vec4 dst) {\n"); shader.append(" "); shader.append(gBlendOps[(int)mode]); shader.append("}\n"); } void ProgramCache::generateTextureWrap(String8& shader, GLenum wrapS, GLenum wrapT) { shader.append("\nhighp vec2 wrap(highp vec2 texCoords) {\n"); if (wrapS == GL_MIRRORED_REPEAT) { shader.append(" highp float xMod2 = mod(texCoords.x, 2.0);\n"); shader.append(" if (xMod2 > 1.0) xMod2 = 2.0 - xMod2;\n"); } if (wrapT == GL_MIRRORED_REPEAT) { shader.append(" highp float yMod2 = mod(texCoords.y, 2.0);\n"); shader.append(" if (yMod2 > 1.0) yMod2 = 2.0 - yMod2;\n"); } shader.append(" return vec2("); switch (wrapS) { case GL_CLAMP_TO_EDGE: shader.append("texCoords.x"); break; case GL_REPEAT: shader.append("mod(texCoords.x, 1.0)"); break; case GL_MIRRORED_REPEAT: shader.append("xMod2"); break; } shader.append(", "); switch (wrapT) { case GL_CLAMP_TO_EDGE: shader.append("texCoords.y"); break; case GL_REPEAT: shader.append("mod(texCoords.y, 1.0)"); break; case GL_MIRRORED_REPEAT: shader.append("yMod2"); break; } shader.append(");\n"); shader.append("}\n"); } void ProgramCache::printLongString(const String8& shader) const { ssize_t index = 0; ssize_t lastIndex = 0; const char* str = shader.string(); while ((index = shader.find("\n", index)) > -1) { String8 line(str, index - lastIndex); if (line.length() == 0) line.append("\n"); ALOGD("%s", line.string()); index++; str += (index - lastIndex); lastIndex = index; } } }; // namespace uirenderer }; // namespace android