/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "atrace" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace android; using std::string; #define NELEM(x) ((int) (sizeof(x) / sizeof((x)[0]))) #define MAX_SYS_FILES 10 #define MAX_PACKAGES 16 const char* k_traceTagsProperty = "debug.atrace.tags.enableflags"; const char* k_traceAppsNumberProperty = "debug.atrace.app_number"; const char* k_traceAppsPropertyTemplate = "debug.atrace.app_%d"; const char* k_coreServiceCategory = "core_services"; const char* k_coreServicesProp = "ro.atrace.core.services"; typedef enum { OPT, REQ } requiredness ; struct TracingCategory { // The name identifying the category. const char* name; // A longer description of the category. const char* longname; // The userland tracing tags that the category enables. uint64_t tags; // The fname==NULL terminated list of /sys/ files that the category // enables. struct { // Whether the file must be writable in order to enable the tracing // category. requiredness required; // The path to the enable file. const char* path; } sysfiles[MAX_SYS_FILES]; }; /* Tracing categories */ static const TracingCategory k_categories[] = { { "gfx", "Graphics", ATRACE_TAG_GRAPHICS, { } }, { "input", "Input", ATRACE_TAG_INPUT, { } }, { "view", "View System", ATRACE_TAG_VIEW, { } }, { "webview", "WebView", ATRACE_TAG_WEBVIEW, { } }, { "wm", "Window Manager", ATRACE_TAG_WINDOW_MANAGER, { } }, { "am", "Activity Manager", ATRACE_TAG_ACTIVITY_MANAGER, { } }, { "sm", "Sync Manager", ATRACE_TAG_SYNC_MANAGER, { } }, { "audio", "Audio", ATRACE_TAG_AUDIO, { } }, { "video", "Video", ATRACE_TAG_VIDEO, { } }, { "camera", "Camera", ATRACE_TAG_CAMERA, { } }, { "hal", "Hardware Modules", ATRACE_TAG_HAL, { } }, { "app", "Application", ATRACE_TAG_APP, { } }, { "res", "Resource Loading", ATRACE_TAG_RESOURCES, { } }, { "dalvik", "Dalvik VM", ATRACE_TAG_DALVIK, { } }, { "rs", "RenderScript", ATRACE_TAG_RS, { } }, { "bionic", "Bionic C Library", ATRACE_TAG_BIONIC, { } }, { "power", "Power Management", ATRACE_TAG_POWER, { } }, { "pm", "Package Manager", ATRACE_TAG_PACKAGE_MANAGER, { } }, { "ss", "System Server", ATRACE_TAG_SYSTEM_SERVER, { } }, { "database", "Database", ATRACE_TAG_DATABASE, { } }, { "network", "Network", ATRACE_TAG_NETWORK, { } }, { "adb", "ADB", ATRACE_TAG_ADB, { } }, { k_coreServiceCategory, "Core services", 0, { } }, { "sched", "CPU Scheduling", 0, { { REQ, "events/sched/sched_switch/enable" }, { REQ, "events/sched/sched_wakeup/enable" }, { OPT, "events/sched/sched_waking/enable" }, { OPT, "events/sched/sched_blocked_reason/enable" }, { OPT, "events/sched/sched_cpu_hotplug/enable" }, } }, { "irq", "IRQ Events", 0, { { REQ, "events/irq/enable" }, { OPT, "events/ipi/enable" }, } }, { "i2c", "I2C Events", 0, { { REQ, "events/i2c/enable" }, { REQ, "events/i2c/i2c_read/enable" }, { REQ, "events/i2c/i2c_write/enable" }, { REQ, "events/i2c/i2c_result/enable" }, { REQ, "events/i2c/i2c_reply/enable" }, { OPT, "events/i2c/smbus_read/enable" }, { OPT, "events/i2c/smbus_write/enable" }, { OPT, "events/i2c/smbus_result/enable" }, { OPT, "events/i2c/smbus_reply/enable" }, } }, { "freq", "CPU Frequency", 0, { { REQ, "events/power/cpu_frequency/enable" }, { OPT, "events/power/clock_set_rate/enable" }, { OPT, "events/power/cpu_frequency_limits/enable" }, } }, { "membus", "Memory Bus Utilization", 0, { { REQ, "events/memory_bus/enable" }, } }, { "idle", "CPU Idle", 0, { { REQ, "events/power/cpu_idle/enable" }, } }, { "disk", "Disk I/O", 0, { { OPT, "events/f2fs/f2fs_sync_file_enter/enable" }, { OPT, "events/f2fs/f2fs_sync_file_exit/enable" }, { OPT, "events/f2fs/f2fs_write_begin/enable" }, { OPT, "events/f2fs/f2fs_write_end/enable" }, { OPT, "events/ext4/ext4_da_write_begin/enable" }, { OPT, "events/ext4/ext4_da_write_end/enable" }, { OPT, "events/ext4/ext4_sync_file_enter/enable" }, { OPT, "events/ext4/ext4_sync_file_exit/enable" }, { REQ, "events/block/block_rq_issue/enable" }, { REQ, "events/block/block_rq_complete/enable" }, } }, { "mmc", "eMMC commands", 0, { { REQ, "events/mmc/enable" }, } }, { "load", "CPU Load", 0, { { REQ, "events/cpufreq_interactive/enable" }, } }, { "sync", "Synchronization", 0, { { REQ, "events/sync/enable" }, } }, { "workq", "Kernel Workqueues", 0, { { REQ, "events/workqueue/enable" }, } }, { "memreclaim", "Kernel Memory Reclaim", 0, { { REQ, "events/vmscan/mm_vmscan_direct_reclaim_begin/enable" }, { REQ, "events/vmscan/mm_vmscan_direct_reclaim_end/enable" }, { REQ, "events/vmscan/mm_vmscan_kswapd_wake/enable" }, { REQ, "events/vmscan/mm_vmscan_kswapd_sleep/enable" }, } }, { "regulators", "Voltage and Current Regulators", 0, { { REQ, "events/regulator/enable" }, } }, { "binder_driver", "Binder Kernel driver", 0, { { REQ, "events/binder/binder_transaction/enable" }, { REQ, "events/binder/binder_transaction_received/enable" }, } }, { "binder_lock", "Binder global lock trace", 0, { { REQ, "events/binder/binder_lock/enable" }, { REQ, "events/binder/binder_locked/enable" }, { REQ, "events/binder/binder_unlock/enable" }, } }, { "pagecache", "Page cache", 0, { { REQ, "events/filemap/enable" }, } }, }; /* Command line options */ static int g_traceDurationSeconds = 5; static bool g_traceOverwrite = false; static int g_traceBufferSizeKB = 2048; static bool g_compress = false; static bool g_nohup = false; static int g_initialSleepSecs = 0; static const char* g_categoriesFile = NULL; static const char* g_kernelTraceFuncs = NULL; static const char* g_debugAppCmdLine = ""; static const char* g_outputFile = nullptr; /* Global state */ static bool g_traceAborted = false; static bool g_categoryEnables[NELEM(k_categories)] = {}; static std::string g_traceFolder; /* Sys file paths */ static const char* k_traceClockPath = "trace_clock"; static const char* k_traceBufferSizePath = "buffer_size_kb"; static const char* k_traceCmdlineSizePath = "saved_cmdlines_size"; static const char* k_tracingOverwriteEnablePath = "options/overwrite"; static const char* k_currentTracerPath = "current_tracer"; static const char* k_printTgidPath = "options/print-tgid"; static const char* k_funcgraphAbsTimePath = "options/funcgraph-abstime"; static const char* k_funcgraphCpuPath = "options/funcgraph-cpu"; static const char* k_funcgraphProcPath = "options/funcgraph-proc"; static const char* k_funcgraphFlatPath = "options/funcgraph-flat"; static const char* k_funcgraphDurationPath = "options/funcgraph-duration"; static const char* k_ftraceFilterPath = "set_ftrace_filter"; static const char* k_tracingOnPath = "tracing_on"; static const char* k_tracePath = "trace"; static const char* k_traceStreamPath = "trace_pipe"; static const char* k_traceMarkerPath = "trace_marker"; // Check whether a file exists. static bool fileExists(const char* filename) { return access((g_traceFolder + filename).c_str(), F_OK) != -1; } // Check whether a file is writable. static bool fileIsWritable(const char* filename) { return access((g_traceFolder + filename).c_str(), W_OK) != -1; } // Truncate a file. static bool truncateFile(const char* path) { // This uses creat rather than truncate because some of the debug kernel // device nodes (e.g. k_ftraceFilterPath) currently aren't changed by // calls to truncate, but they are cleared by calls to creat. int traceFD = creat((g_traceFolder + path).c_str(), 0); if (traceFD == -1) { fprintf(stderr, "error truncating %s: %s (%d)\n", (g_traceFolder + path).c_str(), strerror(errno), errno); return false; } close(traceFD); return true; } static bool _writeStr(const char* filename, const char* str, int flags) { std::string fullFilename = g_traceFolder + filename; int fd = open(fullFilename.c_str(), flags); if (fd == -1) { fprintf(stderr, "error opening %s: %s (%d)\n", fullFilename.c_str(), strerror(errno), errno); return false; } bool ok = true; ssize_t len = strlen(str); if (write(fd, str, len) != len) { fprintf(stderr, "error writing to %s: %s (%d)\n", fullFilename.c_str(), strerror(errno), errno); ok = false; } close(fd); return ok; } // Write a string to a file, returning true if the write was successful. static bool writeStr(const char* filename, const char* str) { return _writeStr(filename, str, O_WRONLY); } // Append a string to a file, returning true if the write was successful. static bool appendStr(const char* filename, const char* str) { return _writeStr(filename, str, O_APPEND|O_WRONLY); } static void writeClockSyncMarker() { char buffer[128]; int len = 0; int fd = open((g_traceFolder + k_traceMarkerPath).c_str(), O_WRONLY); if (fd == -1) { fprintf(stderr, "error opening %s: %s (%d)\n", k_traceMarkerPath, strerror(errno), errno); return; } float now_in_seconds = systemTime(CLOCK_MONOTONIC) / 1000000000.0f; len = snprintf(buffer, 128, "trace_event_clock_sync: parent_ts=%f\n", now_in_seconds); if (write(fd, buffer, len) != len) { fprintf(stderr, "error writing clock sync marker %s (%d)\n", strerror(errno), errno); } int64_t realtime_in_ms = systemTime(CLOCK_REALTIME) / 1000000; len = snprintf(buffer, 128, "trace_event_clock_sync: realtime_ts=%" PRId64 "\n", realtime_in_ms); if (write(fd, buffer, len) != len) { fprintf(stderr, "error writing clock sync marker %s (%d)\n", strerror(errno), errno); } close(fd); } // Enable or disable a kernel option by writing a "1" or a "0" into a /sys // file. static bool setKernelOptionEnable(const char* filename, bool enable) { return writeStr(filename, enable ? "1" : "0"); } // Check whether the category is supported on the device with the current // rootness. A category is supported only if all its required /sys/ files are // writable and if enabling the category will enable one or more tracing tags // or /sys/ files. static bool isCategorySupported(const TracingCategory& category) { if (strcmp(category.name, k_coreServiceCategory) == 0) { char value[PROPERTY_VALUE_MAX]; property_get(k_coreServicesProp, value, ""); return strlen(value) != 0; } bool ok = category.tags != 0; for (int i = 0; i < MAX_SYS_FILES; i++) { const char* path = category.sysfiles[i].path; bool req = category.sysfiles[i].required == REQ; if (path != NULL) { if (req) { if (!fileIsWritable(path)) { return false; } else { ok = true; } } else { ok |= fileIsWritable(path); } } } return ok; } // Check whether the category would be supported on the device if the user // were root. This function assumes that root is able to write to any file // that exists. It performs the same logic as isCategorySupported, but it // uses file existence rather than writability in the /sys/ file checks. static bool isCategorySupportedForRoot(const TracingCategory& category) { bool ok = category.tags != 0; for (int i = 0; i < MAX_SYS_FILES; i++) { const char* path = category.sysfiles[i].path; bool req = category.sysfiles[i].required == REQ; if (path != NULL) { if (req) { if (!fileExists(path)) { return false; } else { ok = true; } } else { ok |= fileExists(path); } } } return ok; } // Enable or disable overwriting of the kernel trace buffers. Disabling this // will cause tracing to stop once the trace buffers have filled up. static bool setTraceOverwriteEnable(bool enable) { return setKernelOptionEnable(k_tracingOverwriteEnablePath, enable); } // Enable or disable kernel tracing. static bool setTracingEnabled(bool enable) { return setKernelOptionEnable(k_tracingOnPath, enable); } // Clear the contents of the kernel trace. static bool clearTrace() { return truncateFile(k_tracePath); } // Set the size of the kernel's trace buffer in kilobytes. static bool setTraceBufferSizeKB(int size) { char str[32] = "1"; int len; if (size < 1) { size = 1; } snprintf(str, 32, "%d", size); return writeStr(k_traceBufferSizePath, str); } // Set the default size of cmdline hashtable static bool setCmdlineSize() { if (fileExists(k_traceCmdlineSizePath)) { return writeStr(k_traceCmdlineSizePath, "8192"); } return true; } // Set the clock to the best available option while tracing. Use 'boot' if it's // available; otherwise, use 'mono'. If neither are available use 'global'. // Any write to the trace_clock sysfs file will reset the buffer, so only // update it if the requested value is not the current value. static bool setClock() { std::ifstream clockFile((g_traceFolder + k_traceClockPath).c_str(), O_RDONLY); std::string clockStr((std::istreambuf_iterator(clockFile)), std::istreambuf_iterator()); std::string newClock; if (clockStr.find("boot") != std::string::npos) { newClock = "boot"; } else if (clockStr.find("mono") != std::string::npos) { newClock = "mono"; } else { newClock = "global"; } size_t begin = clockStr.find("[") + 1; size_t end = clockStr.find("]"); if (newClock.compare(0, std::string::npos, clockStr, begin, end-begin) == 0) { return true; } return writeStr(k_traceClockPath, newClock.c_str()); } static bool setPrintTgidEnableIfPresent(bool enable) { if (fileExists(k_printTgidPath)) { return setKernelOptionEnable(k_printTgidPath, enable); } return true; } // Poke all the binder-enabled processes in the system to get them to re-read // their system properties. static bool pokeBinderServices() { sp sm = defaultServiceManager(); Vector services = sm->listServices(); for (size_t i = 0; i < services.size(); i++) { sp obj = sm->checkService(services[i]); if (obj != NULL) { Parcel data; if (obj->transact(IBinder::SYSPROPS_TRANSACTION, data, NULL, 0) != OK) { if (false) { // XXX: For some reason this fails on tablets trying to // poke the "phone" service. It's not clear whether some // are expected to fail. String8 svc(services[i]); fprintf(stderr, "error poking binder service %s\n", svc.string()); return false; } } } } return true; } // Poke all the HAL processes in the system to get them to re-read // their system properties. static void pokeHalServices() { using ::android::hidl::base::V1_0::IBase; using ::android::hidl::manager::V1_0::IServiceManager; using ::android::hardware::hidl_string; using ::android::hardware::Return; sp sm = ::android::hardware::defaultServiceManager(); if (sm == nullptr) { fprintf(stderr, "failed to get IServiceManager to poke hal services\n"); return; } auto listRet = sm->list([&](const auto &interfaces) { for (size_t i = 0; i < interfaces.size(); i++) { string fqInstanceName = interfaces[i]; string::size_type n = fqInstanceName.find("/"); if (n == std::string::npos || interfaces[i].size() == n+1) continue; hidl_string fqInterfaceName = fqInstanceName.substr(0, n); hidl_string instanceName = fqInstanceName.substr(n+1, std::string::npos); Return> interfaceRet = sm->get(fqInterfaceName, instanceName); if (!interfaceRet.isOk()) { // ignore continue; } sp interface = interfaceRet; if (interface == nullptr) { // ignore continue; } auto notifyRet = interface->notifySyspropsChanged(); if (!notifyRet.isOk()) { // ignore } } }); if (!listRet.isOk()) { // TODO(b/34242478) fix this when we determine the correct ACL //fprintf(stderr, "failed to list services: %s\n", listRet.description().c_str()); } } // Set the trace tags that userland tracing uses, and poke the running // processes to pick up the new value. static bool setTagsProperty(uint64_t tags) { char buf[PROPERTY_VALUE_MAX]; snprintf(buf, sizeof(buf), "%#" PRIx64, tags); if (property_set(k_traceTagsProperty, buf) < 0) { fprintf(stderr, "error setting trace tags system property\n"); return false; } return true; } static void clearAppProperties() { char buf[PROPERTY_KEY_MAX]; for (int i = 0; i < MAX_PACKAGES; i++) { snprintf(buf, sizeof(buf), k_traceAppsPropertyTemplate, i); if (property_set(buf, "") < 0) { fprintf(stderr, "failed to clear system property: %s\n", buf); } } if (property_set(k_traceAppsNumberProperty, "") < 0) { fprintf(stderr, "failed to clear system property: %s", k_traceAppsNumberProperty); } } // Set the system property that indicates which apps should perform // application-level tracing. static bool setAppCmdlineProperty(char* cmdline) { char buf[PROPERTY_KEY_MAX]; int i = 0; char* start = cmdline; while (start != NULL) { if (i == MAX_PACKAGES) { fprintf(stderr, "error: only 16 packages could be traced at once\n"); clearAppProperties(); return false; } char* end = strchr(start, ','); if (end != NULL) { *end = '\0'; end++; } snprintf(buf, sizeof(buf), k_traceAppsPropertyTemplate, i); if (property_set(buf, start) < 0) { fprintf(stderr, "error setting trace app %d property to %s\n", i, buf); clearAppProperties(); return false; } start = end; i++; } snprintf(buf, sizeof(buf), "%d", i); if (property_set(k_traceAppsNumberProperty, buf) < 0) { fprintf(stderr, "error setting trace app number property to %s\n", buf); clearAppProperties(); return false; } return true; } // Disable all /sys/ enable files. static bool disableKernelTraceEvents() { bool ok = true; for (int i = 0; i < NELEM(k_categories); i++) { const TracingCategory &c = k_categories[i]; for (int j = 0; j < MAX_SYS_FILES; j++) { const char* path = c.sysfiles[j].path; if (path != NULL && fileIsWritable(path)) { ok &= setKernelOptionEnable(path, false); } } } return ok; } // Verify that the comma separated list of functions are being traced by the // kernel. static bool verifyKernelTraceFuncs(const char* funcs) { std::string buf; if (!android::base::ReadFileToString(g_traceFolder + k_ftraceFilterPath, &buf)) { fprintf(stderr, "error opening %s: %s (%d)\n", k_ftraceFilterPath, strerror(errno), errno); return false; } String8 funcList = String8::format("\n%s",buf.c_str()); // Make sure that every function listed in funcs is in the list we just // read from the kernel, except for wildcard inputs. bool ok = true; char* myFuncs = strdup(funcs); char* func = strtok(myFuncs, ","); while (func) { if (!strchr(func, '*')) { String8 fancyFunc = String8::format("\n%s\n", func); bool found = funcList.find(fancyFunc.string(), 0) >= 0; if (!found || func[0] == '\0') { fprintf(stderr, "error: \"%s\" is not a valid kernel function " "to trace.\n", func); ok = false; } } func = strtok(NULL, ","); } free(myFuncs); return ok; } // Set the comma separated list of functions that the kernel is to trace. static bool setKernelTraceFuncs(const char* funcs) { bool ok = true; if (funcs == NULL || funcs[0] == '\0') { // Disable kernel function tracing. if (fileIsWritable(k_currentTracerPath)) { ok &= writeStr(k_currentTracerPath, "nop"); } if (fileIsWritable(k_ftraceFilterPath)) { ok &= truncateFile(k_ftraceFilterPath); } } else { // Enable kernel function tracing. ok &= writeStr(k_currentTracerPath, "function_graph"); ok &= setKernelOptionEnable(k_funcgraphAbsTimePath, true); ok &= setKernelOptionEnable(k_funcgraphCpuPath, true); ok &= setKernelOptionEnable(k_funcgraphProcPath, true); ok &= setKernelOptionEnable(k_funcgraphFlatPath, true); // Set the requested filter functions. ok &= truncateFile(k_ftraceFilterPath); char* myFuncs = strdup(funcs); char* func = strtok(myFuncs, ","); while (func) { ok &= appendStr(k_ftraceFilterPath, func); func = strtok(NULL, ","); } free(myFuncs); // Verify that the set functions are being traced. if (ok) { ok &= verifyKernelTraceFuncs(funcs); } } return ok; } static bool setCategoryEnable(const char* name, bool enable) { for (int i = 0; i < NELEM(k_categories); i++) { const TracingCategory& c = k_categories[i]; if (strcmp(name, c.name) == 0) { if (isCategorySupported(c)) { g_categoryEnables[i] = enable; return true; } else { if (isCategorySupportedForRoot(c)) { fprintf(stderr, "error: category \"%s\" requires root " "privileges.\n", name); } else { fprintf(stderr, "error: category \"%s\" is not supported " "on this device.\n", name); } return false; } } } fprintf(stderr, "error: unknown tracing category \"%s\"\n", name); return false; } static bool setCategoriesEnableFromFile(const char* categories_file) { if (!categories_file) { return true; } Tokenizer* tokenizer = NULL; if (Tokenizer::open(String8(categories_file), &tokenizer) != NO_ERROR) { return false; } bool ok = true; while (!tokenizer->isEol()) { String8 token = tokenizer->nextToken(" "); if (token.isEmpty()) { tokenizer->skipDelimiters(" "); continue; } ok &= setCategoryEnable(token.string(), true); } delete tokenizer; return ok; } // Set all the kernel tracing settings to the desired state for this trace // capture. static bool setUpTrace() { bool ok = true; // Set up the tracing options. ok &= setCategoriesEnableFromFile(g_categoriesFile); ok &= setTraceOverwriteEnable(g_traceOverwrite); ok &= setTraceBufferSizeKB(g_traceBufferSizeKB); // TODO: Re-enable after stabilization //ok &= setCmdlineSize(); ok &= setClock(); ok &= setPrintTgidEnableIfPresent(true); ok &= setKernelTraceFuncs(g_kernelTraceFuncs); // Set up the tags property. uint64_t tags = 0; for (int i = 0; i < NELEM(k_categories); i++) { if (g_categoryEnables[i]) { const TracingCategory &c = k_categories[i]; tags |= c.tags; } } ok &= setTagsProperty(tags); bool coreServicesTagEnabled = false; for (int i = 0; i < NELEM(k_categories); i++) { if (strcmp(k_categories[i].name, k_coreServiceCategory) == 0) { coreServicesTagEnabled = g_categoryEnables[i]; } } std::string packageList(g_debugAppCmdLine); if (coreServicesTagEnabled) { char value[PROPERTY_VALUE_MAX]; property_get(k_coreServicesProp, value, ""); if (!packageList.empty()) { packageList += ","; } packageList += value; } ok &= setAppCmdlineProperty(&packageList[0]); ok &= pokeBinderServices(); pokeHalServices(); // Disable all the sysfs enables. This is done as a separate loop from // the enables to allow the same enable to exist in multiple categories. ok &= disableKernelTraceEvents(); // Enable all the sysfs enables that are in an enabled category. for (int i = 0; i < NELEM(k_categories); i++) { if (g_categoryEnables[i]) { const TracingCategory &c = k_categories[i]; for (int j = 0; j < MAX_SYS_FILES; j++) { const char* path = c.sysfiles[j].path; bool required = c.sysfiles[j].required == REQ; if (path != NULL) { if (fileIsWritable(path)) { ok &= setKernelOptionEnable(path, true); } else if (required) { fprintf(stderr, "error writing file %s\n", path); ok = false; } } } } } return ok; } // Reset all the kernel tracing settings to their default state. static void cleanUpTrace() { // Disable all tracing that we're able to. disableKernelTraceEvents(); // Reset the system properties. setTagsProperty(0); clearAppProperties(); pokeBinderServices(); // Set the options back to their defaults. setTraceOverwriteEnable(true); setTraceBufferSizeKB(1); setPrintTgidEnableIfPresent(false); setKernelTraceFuncs(NULL); } // Enable tracing in the kernel. static bool startTrace() { return setTracingEnabled(true); } // Disable tracing in the kernel. static void stopTrace() { setTracingEnabled(false); } // Read data from the tracing pipe and forward to stdout static void streamTrace() { char trace_data[4096]; int traceFD = open((g_traceFolder + k_traceStreamPath).c_str(), O_RDWR); if (traceFD == -1) { fprintf(stderr, "error opening %s: %s (%d)\n", k_traceStreamPath, strerror(errno), errno); return; } while (!g_traceAborted) { ssize_t bytes_read = read(traceFD, trace_data, 4096); if (bytes_read > 0) { write(STDOUT_FILENO, trace_data, bytes_read); fflush(stdout); } else { if (!g_traceAborted) { fprintf(stderr, "read returned %zd bytes err %d (%s)\n", bytes_read, errno, strerror(errno)); } break; } } } // Read the current kernel trace and write it to stdout. static void dumpTrace(int outFd) { ALOGI("Dumping trace"); int traceFD = open((g_traceFolder + k_tracePath).c_str(), O_RDWR); if (traceFD == -1) { fprintf(stderr, "error opening %s: %s (%d)\n", k_tracePath, strerror(errno), errno); return; } if (g_compress) { z_stream zs; memset(&zs, 0, sizeof(zs)); int result = deflateInit(&zs, Z_DEFAULT_COMPRESSION); if (result != Z_OK) { fprintf(stderr, "error initializing zlib: %d\n", result); close(traceFD); return; } constexpr size_t bufSize = 64*1024; std::unique_ptr in(new uint8_t[bufSize]); std::unique_ptr out(new uint8_t[bufSize]); if (!in || !out) { fprintf(stderr, "couldn't allocate buffers\n"); close(traceFD); return; } int flush = Z_NO_FLUSH; zs.next_out = reinterpret_cast(out.get()); zs.avail_out = bufSize; do { if (zs.avail_in == 0) { // More input is needed. result = read(traceFD, in.get(), bufSize); if (result < 0) { fprintf(stderr, "error reading trace: %s (%d)\n", strerror(errno), errno); result = Z_STREAM_END; break; } else if (result == 0) { flush = Z_FINISH; } else { zs.next_in = reinterpret_cast(in.get()); zs.avail_in = result; } } if (zs.avail_out == 0) { // Need to write the output. result = write(outFd, out.get(), bufSize); if ((size_t)result < bufSize) { fprintf(stderr, "error writing deflated trace: %s (%d)\n", strerror(errno), errno); result = Z_STREAM_END; // skip deflate error message zs.avail_out = bufSize; // skip the final write break; } zs.next_out = reinterpret_cast(out.get()); zs.avail_out = bufSize; } } while ((result = deflate(&zs, flush)) == Z_OK); if (result != Z_STREAM_END) { fprintf(stderr, "error deflating trace: %s\n", zs.msg); } if (zs.avail_out < bufSize) { size_t bytes = bufSize - zs.avail_out; result = write(outFd, out.get(), bytes); if ((size_t)result < bytes) { fprintf(stderr, "error writing deflated trace: %s (%d)\n", strerror(errno), errno); } } result = deflateEnd(&zs); if (result != Z_OK) { fprintf(stderr, "error cleaning up zlib: %d\n", result); } } else { ssize_t sent = 0; while ((sent = sendfile(outFd, traceFD, NULL, 64*1024*1024)) > 0); if (sent == -1) { fprintf(stderr, "error dumping trace: %s (%d)\n", strerror(errno), errno); } } close(traceFD); } static void handleSignal(int /*signo*/) { if (!g_nohup) { g_traceAborted = true; } } static void registerSigHandler() { struct sigaction sa; sigemptyset(&sa.sa_mask); sa.sa_flags = 0; sa.sa_handler = handleSignal; sigaction(SIGHUP, &sa, NULL); sigaction(SIGINT, &sa, NULL); sigaction(SIGQUIT, &sa, NULL); sigaction(SIGTERM, &sa, NULL); } static void listSupportedCategories() { for (int i = 0; i < NELEM(k_categories); i++) { const TracingCategory& c = k_categories[i]; if (isCategorySupported(c)) { printf(" %10s - %s\n", c.name, c.longname); } } } // Print the command usage help to stderr. static void showHelp(const char *cmd) { fprintf(stderr, "usage: %s [options] [categories...]\n", cmd); fprintf(stderr, "options include:\n" " -a appname enable app-level tracing for a comma " "separated list of cmdlines\n" " -b N use a trace buffer size of N KB\n" " -c trace into a circular buffer\n" " -f filename use the categories written in a file as space-separated\n" " values in a line\n" " -k fname,... trace the listed kernel functions\n" " -n ignore signals\n" " -s N sleep for N seconds before tracing [default 0]\n" " -t N trace for N seconds [default 5]\n" " -z compress the trace dump\n" " --async_start start circular trace and return immediately\n" " --async_dump dump the current contents of circular trace buffer\n" " --async_stop stop tracing and dump the current contents of circular\n" " trace buffer\n" " --stream stream trace to stdout as it enters the trace buffer\n" " Note: this can take significant CPU time, and is best\n" " used for measuring things that are not affected by\n" " CPU performance, like pagecache usage.\n" " --list_categories\n" " list the available tracing categories\n" " -o filename write the trace to the specified file instead\n" " of stdout.\n" ); } bool findTraceFiles() { static const std::string debugfs_path = "/sys/kernel/debug/tracing/"; static const std::string tracefs_path = "/sys/kernel/tracing/"; static const std::string trace_file = "trace_marker"; bool tracefs = access((tracefs_path + trace_file).c_str(), F_OK) != -1; bool debugfs = access((debugfs_path + trace_file).c_str(), F_OK) != -1; if (!tracefs && !debugfs) { fprintf(stderr, "Error: Did not find trace folder\n"); return false; } if (tracefs) { g_traceFolder = tracefs_path; } else { g_traceFolder = debugfs_path; } return true; } int main(int argc, char **argv) { bool async = false; bool traceStart = true; bool traceStop = true; bool traceDump = true; bool traceStream = false; if (argc == 2 && 0 == strcmp(argv[1], "--help")) { showHelp(argv[0]); exit(0); } if (!findTraceFiles()) { fprintf(stderr, "No trace folder found\n"); exit(-1); } for (;;) { int ret; int option_index = 0; static struct option long_options[] = { {"async_start", no_argument, 0, 0 }, {"async_stop", no_argument, 0, 0 }, {"async_dump", no_argument, 0, 0 }, {"list_categories", no_argument, 0, 0 }, {"stream", no_argument, 0, 0 }, { 0, 0, 0, 0 } }; ret = getopt_long(argc, argv, "a:b:cf:k:ns:t:zo:", long_options, &option_index); if (ret < 0) { for (int i = optind; i < argc; i++) { if (!setCategoryEnable(argv[i], true)) { fprintf(stderr, "error enabling tracing category \"%s\"\n", argv[i]); exit(1); } } break; } switch(ret) { case 'a': g_debugAppCmdLine = optarg; break; case 'b': g_traceBufferSizeKB = atoi(optarg); break; case 'c': g_traceOverwrite = true; break; case 'f': g_categoriesFile = optarg; break; case 'k': g_kernelTraceFuncs = optarg; break; case 'n': g_nohup = true; break; case 's': g_initialSleepSecs = atoi(optarg); break; case 't': g_traceDurationSeconds = atoi(optarg); break; case 'z': g_compress = true; break; case 'o': g_outputFile = optarg; break; case 0: if (!strcmp(long_options[option_index].name, "async_start")) { async = true; traceStop = false; traceDump = false; g_traceOverwrite = true; } else if (!strcmp(long_options[option_index].name, "async_stop")) { async = true; traceStart = false; } else if (!strcmp(long_options[option_index].name, "async_dump")) { async = true; traceStart = false; traceStop = false; } else if (!strcmp(long_options[option_index].name, "stream")) { traceStream = true; traceDump = false; } else if (!strcmp(long_options[option_index].name, "list_categories")) { listSupportedCategories(); exit(0); } break; default: fprintf(stderr, "\n"); showHelp(argv[0]); exit(-1); break; } } registerSigHandler(); if (g_initialSleepSecs > 0) { sleep(g_initialSleepSecs); } bool ok = true; ok &= setUpTrace(); ok &= startTrace(); if (ok && traceStart) { if (!traceStream) { printf("capturing trace..."); fflush(stdout); } // We clear the trace after starting it because tracing gets enabled for // each CPU individually in the kernel. Having the beginning of the trace // contain entries from only one CPU can cause "begin" entries without a // matching "end" entry to show up if a task gets migrated from one CPU to // another. ok = clearTrace(); writeClockSyncMarker(); if (ok && !async && !traceStream) { // Sleep to allow the trace to be captured. struct timespec timeLeft; timeLeft.tv_sec = g_traceDurationSeconds; timeLeft.tv_nsec = 0; do { if (g_traceAborted) { break; } } while (nanosleep(&timeLeft, &timeLeft) == -1 && errno == EINTR); } if (traceStream) { streamTrace(); } } // Stop the trace and restore the default settings. if (traceStop) stopTrace(); if (ok && traceDump) { if (!g_traceAborted) { printf(" done\n"); fflush(stdout); int outFd = STDOUT_FILENO; if (g_outputFile) { outFd = open(g_outputFile, O_WRONLY | O_CREAT | O_TRUNC, 0644); } if (outFd == -1) { printf("Failed to open '%s', err=%d", g_outputFile, errno); } else { dprintf(outFd, "TRACE:\n"); dumpTrace(outFd); if (g_outputFile) { close(outFd); } } } else { printf("\ntrace aborted.\n"); fflush(stdout); } clearTrace(); } else if (!ok) { fprintf(stderr, "unable to start tracing\n"); } // Reset the trace buffer size to 1. if (traceStop) cleanUpTrace(); return g_traceAborted ? 1 : 0; }