/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "GLConsumer" #define ATRACE_TAG ATRACE_TAG_GRAPHICS //#define LOG_NDEBUG 0 #define GL_GLEXT_PROTOTYPES #define EGL_EGLEXT_PROTOTYPES #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include EGLAPI const char* eglQueryStringImplementationANDROID(EGLDisplay dpy, EGLint name); #define CROP_EXT_STR "EGL_ANDROID_image_crop" #define PROT_CONTENT_EXT_STR "EGL_EXT_protected_content" #define EGL_PROTECTED_CONTENT_EXT 0x32C0 namespace android { // Macros for including the GLConsumer name in log messages #define GLC_LOGV(x, ...) ALOGV("[%s] " x, mName.string(), ##__VA_ARGS__) #define GLC_LOGD(x, ...) ALOGD("[%s] " x, mName.string(), ##__VA_ARGS__) //#define GLC_LOGI(x, ...) ALOGI("[%s] " x, mName.string(), ##__VA_ARGS__) #define GLC_LOGW(x, ...) ALOGW("[%s] " x, mName.string(), ##__VA_ARGS__) #define GLC_LOGE(x, ...) ALOGE("[%s] " x, mName.string(), ##__VA_ARGS__) static const struct { uint32_t width, height; char const* bits; } kDebugData = { 15, 12, "_______________" "_______________" "_____XX_XX_____" "__X_X_____X_X__" "__X_XXXXXXX_X__" "__XXXXXXXXXXX__" "___XX_XXX_XX___" "____XXXXXXX____" "_____X___X_____" "____X_____X____" "_______________" "_______________" }; // Transform matrices static float mtxIdentity[16] = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, }; static float mtxFlipH[16] = { -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, }; static float mtxFlipV[16] = { 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, }; static float mtxRot90[16] = { 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, }; static void mtxMul(float out[16], const float a[16], const float b[16]); Mutex GLConsumer::sStaticInitLock; sp GLConsumer::sReleasedTexImageBuffer; static bool hasEglAndroidImageCropImpl() { EGLDisplay dpy = eglGetDisplay(EGL_DEFAULT_DISPLAY); const char* exts = eglQueryStringImplementationANDROID(dpy, EGL_EXTENSIONS); size_t cropExtLen = strlen(CROP_EXT_STR); size_t extsLen = strlen(exts); bool equal = !strcmp(CROP_EXT_STR, exts); bool atStart = !strncmp(CROP_EXT_STR " ", exts, cropExtLen+1); bool atEnd = (cropExtLen+1) < extsLen && !strcmp(" " CROP_EXT_STR, exts + extsLen - (cropExtLen+1)); bool inMiddle = strstr(exts, " " CROP_EXT_STR " "); return equal || atStart || atEnd || inMiddle; } static bool hasEglAndroidImageCrop() { // Only compute whether the extension is present once the first time this // function is called. static bool hasIt = hasEglAndroidImageCropImpl(); return hasIt; } static bool hasEglProtectedContentImpl() { EGLDisplay dpy = eglGetDisplay(EGL_DEFAULT_DISPLAY); const char* exts = eglQueryString(dpy, EGL_EXTENSIONS); size_t cropExtLen = strlen(PROT_CONTENT_EXT_STR); size_t extsLen = strlen(exts); bool equal = !strcmp(PROT_CONTENT_EXT_STR, exts); bool atStart = !strncmp(PROT_CONTENT_EXT_STR " ", exts, cropExtLen+1); bool atEnd = (cropExtLen+1) < extsLen && !strcmp(" " PROT_CONTENT_EXT_STR, exts + extsLen - (cropExtLen+1)); bool inMiddle = strstr(exts, " " PROT_CONTENT_EXT_STR " "); return equal || atStart || atEnd || inMiddle; } static bool hasEglProtectedContent() { // Only compute whether the extension is present once the first time this // function is called. static bool hasIt = hasEglProtectedContentImpl(); return hasIt; } static bool isEglImageCroppable(const Rect& crop) { return hasEglAndroidImageCrop() && (crop.left == 0 && crop.top == 0); } GLConsumer::GLConsumer(const sp& bq, uint32_t tex, uint32_t texTarget, bool useFenceSync, bool isControlledByApp) : ConsumerBase(bq, isControlledByApp), mCurrentCrop(Rect::EMPTY_RECT), mCurrentTransform(0), mCurrentScalingMode(NATIVE_WINDOW_SCALING_MODE_FREEZE), mCurrentFence(Fence::NO_FENCE), mCurrentTimestamp(0), mCurrentDataSpace(HAL_DATASPACE_UNKNOWN), mCurrentFrameNumber(0), mDefaultWidth(1), mDefaultHeight(1), mFilteringEnabled(true), mTexName(tex), mUseFenceSync(useFenceSync), mTexTarget(texTarget), mEglDisplay(EGL_NO_DISPLAY), mEglContext(EGL_NO_CONTEXT), mCurrentTexture(BufferQueue::INVALID_BUFFER_SLOT), mAttached(true) { GLC_LOGV("GLConsumer"); memcpy(mCurrentTransformMatrix, mtxIdentity, sizeof(mCurrentTransformMatrix)); mConsumer->setConsumerUsageBits(DEFAULT_USAGE_FLAGS); } GLConsumer::GLConsumer(const sp& bq, uint32_t texTarget, bool useFenceSync, bool isControlledByApp) : ConsumerBase(bq, isControlledByApp), mCurrentCrop(Rect::EMPTY_RECT), mCurrentTransform(0), mCurrentScalingMode(NATIVE_WINDOW_SCALING_MODE_FREEZE), mCurrentFence(Fence::NO_FENCE), mCurrentTimestamp(0), mCurrentDataSpace(HAL_DATASPACE_UNKNOWN), mCurrentFrameNumber(0), mDefaultWidth(1), mDefaultHeight(1), mFilteringEnabled(true), mTexName(0), mUseFenceSync(useFenceSync), mTexTarget(texTarget), mEglDisplay(EGL_NO_DISPLAY), mEglContext(EGL_NO_CONTEXT), mCurrentTexture(BufferQueue::INVALID_BUFFER_SLOT), mAttached(false) { GLC_LOGV("GLConsumer"); memcpy(mCurrentTransformMatrix, mtxIdentity, sizeof(mCurrentTransformMatrix)); mConsumer->setConsumerUsageBits(DEFAULT_USAGE_FLAGS); } status_t GLConsumer::setDefaultBufferSize(uint32_t w, uint32_t h) { Mutex::Autolock lock(mMutex); if (mAbandoned) { GLC_LOGE("setDefaultBufferSize: GLConsumer is abandoned!"); return NO_INIT; } mDefaultWidth = w; mDefaultHeight = h; return mConsumer->setDefaultBufferSize(w, h); } status_t GLConsumer::updateTexImage() { ATRACE_CALL(); GLC_LOGV("updateTexImage"); Mutex::Autolock lock(mMutex); if (mAbandoned) { GLC_LOGE("updateTexImage: GLConsumer is abandoned!"); return NO_INIT; } // Make sure the EGL state is the same as in previous calls. status_t err = checkAndUpdateEglStateLocked(); if (err != NO_ERROR) { return err; } BufferItem item; // Acquire the next buffer. // In asynchronous mode the list is guaranteed to be one buffer // deep, while in synchronous mode we use the oldest buffer. err = acquireBufferLocked(&item, 0); if (err != NO_ERROR) { if (err == BufferQueue::NO_BUFFER_AVAILABLE) { // We always bind the texture even if we don't update its contents. GLC_LOGV("updateTexImage: no buffers were available"); glBindTexture(mTexTarget, mTexName); err = NO_ERROR; } else { GLC_LOGE("updateTexImage: acquire failed: %s (%d)", strerror(-err), err); } return err; } // Release the previous buffer. err = updateAndReleaseLocked(item); if (err != NO_ERROR) { // We always bind the texture. glBindTexture(mTexTarget, mTexName); return err; } // Bind the new buffer to the GL texture, and wait until it's ready. return bindTextureImageLocked(); } status_t GLConsumer::releaseTexImage() { ATRACE_CALL(); GLC_LOGV("releaseTexImage"); Mutex::Autolock lock(mMutex); if (mAbandoned) { GLC_LOGE("releaseTexImage: GLConsumer is abandoned!"); return NO_INIT; } // Make sure the EGL state is the same as in previous calls. status_t err = NO_ERROR; if (mAttached) { err = checkAndUpdateEglStateLocked(true); if (err != NO_ERROR) { return err; } } else { // if we're detached, no need to validate EGL's state -- we won't use it. } // Update the GLConsumer state. int buf = mCurrentTexture; if (buf != BufferQueue::INVALID_BUFFER_SLOT) { GLC_LOGV("releaseTexImage: (slot=%d, mAttached=%d)", buf, mAttached); if (mAttached) { // Do whatever sync ops we need to do before releasing the slot. err = syncForReleaseLocked(mEglDisplay); if (err != NO_ERROR) { GLC_LOGE("syncForReleaseLocked failed (slot=%d), err=%d", buf, err); return err; } } else { // if we're detached, we just use the fence that was created in detachFromContext() // so... basically, nothing more to do here. } err = releaseBufferLocked(buf, mSlots[buf].mGraphicBuffer, mEglDisplay, EGL_NO_SYNC_KHR); if (err < NO_ERROR) { GLC_LOGE("releaseTexImage: failed to release buffer: %s (%d)", strerror(-err), err); return err; } if (mReleasedTexImage == NULL) { mReleasedTexImage = new EglImage(getDebugTexImageBuffer()); } mCurrentTexture = BufferQueue::INVALID_BUFFER_SLOT; mCurrentTextureImage = mReleasedTexImage; mCurrentCrop.makeInvalid(); mCurrentTransform = 0; mCurrentTimestamp = 0; mCurrentDataSpace = HAL_DATASPACE_UNKNOWN; mCurrentFence = Fence::NO_FENCE; mCurrentFenceTime = FenceTime::NO_FENCE; if (mAttached) { // This binds a dummy buffer (mReleasedTexImage). status_t result = bindTextureImageLocked(); if (result != NO_ERROR) { return result; } } else { // detached, don't touch the texture (and we may not even have an // EGLDisplay here. } } return NO_ERROR; } sp GLConsumer::getDebugTexImageBuffer() { Mutex::Autolock _l(sStaticInitLock); if (CC_UNLIKELY(sReleasedTexImageBuffer == NULL)) { // The first time, create the debug texture in case the application // continues to use it. sp buffer = new GraphicBuffer( kDebugData.width, kDebugData.height, PIXEL_FORMAT_RGBA_8888, GraphicBuffer::USAGE_SW_WRITE_RARELY, "[GLConsumer debug texture]"); uint32_t* bits; buffer->lock(GraphicBuffer::USAGE_SW_WRITE_RARELY, reinterpret_cast(&bits)); uint32_t stride = buffer->getStride(); uint32_t height = buffer->getHeight(); memset(bits, 0, stride * height * 4); for (uint32_t y = 0; y < kDebugData.height; y++) { for (uint32_t x = 0; x < kDebugData.width; x++) { bits[x] = (kDebugData.bits[y + kDebugData.width + x] == 'X') ? 0xFF000000 : 0xFFFFFFFF; } bits += stride; } buffer->unlock(); sReleasedTexImageBuffer = buffer; } return sReleasedTexImageBuffer; } status_t GLConsumer::acquireBufferLocked(BufferItem *item, nsecs_t presentWhen, uint64_t maxFrameNumber) { status_t err = ConsumerBase::acquireBufferLocked(item, presentWhen, maxFrameNumber); if (err != NO_ERROR) { return err; } // If item->mGraphicBuffer is not null, this buffer has not been acquired // before, so any prior EglImage created is using a stale buffer. This // replaces any old EglImage with a new one (using the new buffer). if (item->mGraphicBuffer != NULL) { int slot = item->mSlot; mEglSlots[slot].mEglImage = new EglImage(item->mGraphicBuffer); } return NO_ERROR; } status_t GLConsumer::releaseBufferLocked(int buf, sp graphicBuffer, EGLDisplay display, EGLSyncKHR eglFence) { // release the buffer if it hasn't already been discarded by the // BufferQueue. This can happen, for example, when the producer of this // buffer has reallocated the original buffer slot after this buffer // was acquired. status_t err = ConsumerBase::releaseBufferLocked( buf, graphicBuffer, display, eglFence); mEglSlots[buf].mEglFence = EGL_NO_SYNC_KHR; return err; } status_t GLConsumer::updateAndReleaseLocked(const BufferItem& item, PendingRelease* pendingRelease) { status_t err = NO_ERROR; int slot = item.mSlot; if (!mAttached) { GLC_LOGE("updateAndRelease: GLConsumer is not attached to an OpenGL " "ES context"); releaseBufferLocked(slot, mSlots[slot].mGraphicBuffer, mEglDisplay, EGL_NO_SYNC_KHR); return INVALID_OPERATION; } // Confirm state. err = checkAndUpdateEglStateLocked(); if (err != NO_ERROR) { releaseBufferLocked(slot, mSlots[slot].mGraphicBuffer, mEglDisplay, EGL_NO_SYNC_KHR); return err; } // Ensure we have a valid EglImageKHR for the slot, creating an EglImage // if nessessary, for the gralloc buffer currently in the slot in // ConsumerBase. // We may have to do this even when item.mGraphicBuffer == NULL (which // means the buffer was previously acquired). err = mEglSlots[slot].mEglImage->createIfNeeded(mEglDisplay, item.mCrop); if (err != NO_ERROR) { GLC_LOGW("updateAndRelease: unable to createImage on display=%p slot=%d", mEglDisplay, slot); releaseBufferLocked(slot, mSlots[slot].mGraphicBuffer, mEglDisplay, EGL_NO_SYNC_KHR); return UNKNOWN_ERROR; } // Do whatever sync ops we need to do before releasing the old slot. if (slot != mCurrentTexture) { err = syncForReleaseLocked(mEglDisplay); if (err != NO_ERROR) { // Release the buffer we just acquired. It's not safe to // release the old buffer, so instead we just drop the new frame. // As we are still under lock since acquireBuffer, it is safe to // release by slot. releaseBufferLocked(slot, mSlots[slot].mGraphicBuffer, mEglDisplay, EGL_NO_SYNC_KHR); return err; } } GLC_LOGV("updateAndRelease: (slot=%d buf=%p) -> (slot=%d buf=%p)", mCurrentTexture, mCurrentTextureImage != NULL ? mCurrentTextureImage->graphicBufferHandle() : 0, slot, mSlots[slot].mGraphicBuffer->handle); // Hang onto the pointer so that it isn't freed in the call to // releaseBufferLocked() if we're in shared buffer mode and both buffers are // the same. sp nextTextureImage = mEglSlots[slot].mEglImage; // release old buffer if (mCurrentTexture != BufferQueue::INVALID_BUFFER_SLOT) { if (pendingRelease == nullptr) { status_t status = releaseBufferLocked( mCurrentTexture, mCurrentTextureImage->graphicBuffer(), mEglDisplay, mEglSlots[mCurrentTexture].mEglFence); if (status < NO_ERROR) { GLC_LOGE("updateAndRelease: failed to release buffer: %s (%d)", strerror(-status), status); err = status; // keep going, with error raised [?] } } else { pendingRelease->currentTexture = mCurrentTexture; pendingRelease->graphicBuffer = mCurrentTextureImage->graphicBuffer(); pendingRelease->display = mEglDisplay; pendingRelease->fence = mEglSlots[mCurrentTexture].mEglFence; pendingRelease->isPending = true; } } // Update the GLConsumer state. mCurrentTexture = slot; mCurrentTextureImage = nextTextureImage; mCurrentCrop = item.mCrop; mCurrentTransform = item.mTransform; mCurrentScalingMode = item.mScalingMode; mCurrentTimestamp = item.mTimestamp; mCurrentDataSpace = item.mDataSpace; mCurrentFence = item.mFence; mCurrentFenceTime = item.mFenceTime; mCurrentFrameNumber = item.mFrameNumber; computeCurrentTransformMatrixLocked(); return err; } status_t GLConsumer::bindTextureImageLocked() { if (mEglDisplay == EGL_NO_DISPLAY) { ALOGE("bindTextureImage: invalid display"); return INVALID_OPERATION; } GLenum error; while ((error = glGetError()) != GL_NO_ERROR) { GLC_LOGW("bindTextureImage: clearing GL error: %#04x", error); } glBindTexture(mTexTarget, mTexName); if (mCurrentTexture == BufferQueue::INVALID_BUFFER_SLOT && mCurrentTextureImage == NULL) { GLC_LOGE("bindTextureImage: no currently-bound texture"); return NO_INIT; } status_t err = mCurrentTextureImage->createIfNeeded(mEglDisplay, mCurrentCrop); if (err != NO_ERROR) { GLC_LOGW("bindTextureImage: can't create image on display=%p slot=%d", mEglDisplay, mCurrentTexture); return UNKNOWN_ERROR; } mCurrentTextureImage->bindToTextureTarget(mTexTarget); // In the rare case that the display is terminated and then initialized // again, we can't detect that the display changed (it didn't), but the // image is invalid. In this case, repeat the exact same steps while // forcing the creation of a new image. if ((error = glGetError()) != GL_NO_ERROR) { glBindTexture(mTexTarget, mTexName); status_t result = mCurrentTextureImage->createIfNeeded(mEglDisplay, mCurrentCrop, true); if (result != NO_ERROR) { GLC_LOGW("bindTextureImage: can't create image on display=%p slot=%d", mEglDisplay, mCurrentTexture); return UNKNOWN_ERROR; } mCurrentTextureImage->bindToTextureTarget(mTexTarget); if ((error = glGetError()) != GL_NO_ERROR) { GLC_LOGE("bindTextureImage: error binding external image: %#04x", error); return UNKNOWN_ERROR; } } // Wait for the new buffer to be ready. return doGLFenceWaitLocked(); } status_t GLConsumer::checkAndUpdateEglStateLocked(bool contextCheck) { EGLDisplay dpy = eglGetCurrentDisplay(); EGLContext ctx = eglGetCurrentContext(); if (!contextCheck) { // if this is the first time we're called, mEglDisplay/mEglContext have // never been set, so don't error out (below). if (mEglDisplay == EGL_NO_DISPLAY) { mEglDisplay = dpy; } if (mEglContext == EGL_NO_CONTEXT) { mEglContext = ctx; } } if (mEglDisplay != dpy || dpy == EGL_NO_DISPLAY) { GLC_LOGE("checkAndUpdateEglState: invalid current EGLDisplay"); return INVALID_OPERATION; } if (mEglContext != ctx || ctx == EGL_NO_CONTEXT) { GLC_LOGE("checkAndUpdateEglState: invalid current EGLContext"); return INVALID_OPERATION; } mEglDisplay = dpy; mEglContext = ctx; return NO_ERROR; } void GLConsumer::setReleaseFence(const sp& fence) { if (fence->isValid() && mCurrentTexture != BufferQueue::INVALID_BUFFER_SLOT) { status_t err = addReleaseFence(mCurrentTexture, mCurrentTextureImage->graphicBuffer(), fence); if (err != OK) { GLC_LOGE("setReleaseFence: failed to add the fence: %s (%d)", strerror(-err), err); } } } status_t GLConsumer::detachFromContext() { ATRACE_CALL(); GLC_LOGV("detachFromContext"); Mutex::Autolock lock(mMutex); if (mAbandoned) { GLC_LOGE("detachFromContext: abandoned GLConsumer"); return NO_INIT; } if (!mAttached) { GLC_LOGE("detachFromContext: GLConsumer is not attached to a " "context"); return INVALID_OPERATION; } EGLDisplay dpy = eglGetCurrentDisplay(); EGLContext ctx = eglGetCurrentContext(); if (mEglDisplay != dpy && mEglDisplay != EGL_NO_DISPLAY) { GLC_LOGE("detachFromContext: invalid current EGLDisplay"); return INVALID_OPERATION; } if (mEglContext != ctx && mEglContext != EGL_NO_CONTEXT) { GLC_LOGE("detachFromContext: invalid current EGLContext"); return INVALID_OPERATION; } if (dpy != EGL_NO_DISPLAY && ctx != EGL_NO_CONTEXT) { status_t err = syncForReleaseLocked(dpy); if (err != OK) { return err; } glDeleteTextures(1, &mTexName); } mEglDisplay = EGL_NO_DISPLAY; mEglContext = EGL_NO_CONTEXT; mAttached = false; return OK; } status_t GLConsumer::attachToContext(uint32_t tex) { ATRACE_CALL(); GLC_LOGV("attachToContext"); Mutex::Autolock lock(mMutex); if (mAbandoned) { GLC_LOGE("attachToContext: abandoned GLConsumer"); return NO_INIT; } if (mAttached) { GLC_LOGE("attachToContext: GLConsumer is already attached to a " "context"); return INVALID_OPERATION; } EGLDisplay dpy = eglGetCurrentDisplay(); EGLContext ctx = eglGetCurrentContext(); if (dpy == EGL_NO_DISPLAY) { GLC_LOGE("attachToContext: invalid current EGLDisplay"); return INVALID_OPERATION; } if (ctx == EGL_NO_CONTEXT) { GLC_LOGE("attachToContext: invalid current EGLContext"); return INVALID_OPERATION; } // We need to bind the texture regardless of whether there's a current // buffer. glBindTexture(mTexTarget, GLuint(tex)); mEglDisplay = dpy; mEglContext = ctx; mTexName = tex; mAttached = true; if (mCurrentTextureImage != NULL) { // This may wait for a buffer a second time. This is likely required if // this is a different context, since otherwise the wait could be skipped // by bouncing through another context. For the same context the extra // wait is redundant. status_t err = bindTextureImageLocked(); if (err != NO_ERROR) { return err; } } return OK; } status_t GLConsumer::syncForReleaseLocked(EGLDisplay dpy) { GLC_LOGV("syncForReleaseLocked"); if (mCurrentTexture != BufferQueue::INVALID_BUFFER_SLOT) { if (SyncFeatures::getInstance().useNativeFenceSync()) { EGLSyncKHR sync = eglCreateSyncKHR(dpy, EGL_SYNC_NATIVE_FENCE_ANDROID, NULL); if (sync == EGL_NO_SYNC_KHR) { GLC_LOGE("syncForReleaseLocked: error creating EGL fence: %#x", eglGetError()); return UNKNOWN_ERROR; } glFlush(); int fenceFd = eglDupNativeFenceFDANDROID(dpy, sync); eglDestroySyncKHR(dpy, sync); if (fenceFd == EGL_NO_NATIVE_FENCE_FD_ANDROID) { GLC_LOGE("syncForReleaseLocked: error dup'ing native fence " "fd: %#x", eglGetError()); return UNKNOWN_ERROR; } sp fence(new Fence(fenceFd)); status_t err = addReleaseFenceLocked(mCurrentTexture, mCurrentTextureImage->graphicBuffer(), fence); if (err != OK) { GLC_LOGE("syncForReleaseLocked: error adding release fence: " "%s (%d)", strerror(-err), err); return err; } } else if (mUseFenceSync && SyncFeatures::getInstance().useFenceSync()) { EGLSyncKHR fence = mEglSlots[mCurrentTexture].mEglFence; if (fence != EGL_NO_SYNC_KHR) { // There is already a fence for the current slot. We need to // wait on that before replacing it with another fence to // ensure that all outstanding buffer accesses have completed // before the producer accesses it. EGLint result = eglClientWaitSyncKHR(dpy, fence, 0, 1000000000); if (result == EGL_FALSE) { GLC_LOGE("syncForReleaseLocked: error waiting for previous " "fence: %#x", eglGetError()); return UNKNOWN_ERROR; } else if (result == EGL_TIMEOUT_EXPIRED_KHR) { GLC_LOGE("syncForReleaseLocked: timeout waiting for previous " "fence"); return TIMED_OUT; } eglDestroySyncKHR(dpy, fence); } // Create a fence for the outstanding accesses in the current // OpenGL ES context. fence = eglCreateSyncKHR(dpy, EGL_SYNC_FENCE_KHR, NULL); if (fence == EGL_NO_SYNC_KHR) { GLC_LOGE("syncForReleaseLocked: error creating fence: %#x", eglGetError()); return UNKNOWN_ERROR; } glFlush(); mEglSlots[mCurrentTexture].mEglFence = fence; } } return OK; } bool GLConsumer::isExternalFormat(PixelFormat format) { switch (format) { // supported YUV formats case HAL_PIXEL_FORMAT_YV12: // Legacy/deprecated YUV formats case HAL_PIXEL_FORMAT_YCbCr_422_SP: case HAL_PIXEL_FORMAT_YCrCb_420_SP: case HAL_PIXEL_FORMAT_YCbCr_422_I: return true; } // Any OEM format needs to be considered if (format>=0x100 && format<=0x1FF) return true; return false; } uint32_t GLConsumer::getCurrentTextureTarget() const { return mTexTarget; } void GLConsumer::getTransformMatrix(float mtx[16]) { Mutex::Autolock lock(mMutex); memcpy(mtx, mCurrentTransformMatrix, sizeof(mCurrentTransformMatrix)); } void GLConsumer::setFilteringEnabled(bool enabled) { Mutex::Autolock lock(mMutex); if (mAbandoned) { GLC_LOGE("setFilteringEnabled: GLConsumer is abandoned!"); return; } bool needsRecompute = mFilteringEnabled != enabled; mFilteringEnabled = enabled; if (needsRecompute && mCurrentTextureImage==NULL) { GLC_LOGD("setFilteringEnabled called with mCurrentTextureImage == NULL"); } if (needsRecompute && mCurrentTextureImage != NULL) { computeCurrentTransformMatrixLocked(); } } void GLConsumer::computeCurrentTransformMatrixLocked() { GLC_LOGV("computeCurrentTransformMatrixLocked"); sp buf = (mCurrentTextureImage == nullptr) ? nullptr : mCurrentTextureImage->graphicBuffer(); if (buf == nullptr) { GLC_LOGD("computeCurrentTransformMatrixLocked: " "mCurrentTextureImage is NULL"); } computeTransformMatrix(mCurrentTransformMatrix, buf, isEglImageCroppable(mCurrentCrop) ? Rect::EMPTY_RECT : mCurrentCrop, mCurrentTransform, mFilteringEnabled); } void GLConsumer::computeTransformMatrix(float outTransform[16], const sp& buf, const Rect& cropRect, uint32_t transform, bool filtering) { float xform[16]; for (int i = 0; i < 16; i++) { xform[i] = mtxIdentity[i]; } if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H) { float result[16]; mtxMul(result, xform, mtxFlipH); for (int i = 0; i < 16; i++) { xform[i] = result[i]; } } if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V) { float result[16]; mtxMul(result, xform, mtxFlipV); for (int i = 0; i < 16; i++) { xform[i] = result[i]; } } if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90) { float result[16]; mtxMul(result, xform, mtxRot90); for (int i = 0; i < 16; i++) { xform[i] = result[i]; } } float mtxBeforeFlipV[16]; if (!cropRect.isEmpty()) { float tx = 0.0f, ty = 0.0f, sx = 1.0f, sy = 1.0f; float bufferWidth = buf->getWidth(); float bufferHeight = buf->getHeight(); float shrinkAmount = 0.0f; if (filtering) { // In order to prevent bilinear sampling beyond the edge of the // crop rectangle we may need to shrink it by 2 texels in each // dimension. Normally this would just need to take 1/2 a texel // off each end, but because the chroma channels of YUV420 images // are subsampled we may need to shrink the crop region by a whole // texel on each side. switch (buf->getPixelFormat()) { case PIXEL_FORMAT_RGBA_8888: case PIXEL_FORMAT_RGBX_8888: case PIXEL_FORMAT_RGBA_FP16: case PIXEL_FORMAT_RGBA_1010102: case PIXEL_FORMAT_RGB_888: case PIXEL_FORMAT_RGB_565: case PIXEL_FORMAT_BGRA_8888: // We know there's no subsampling of any channels, so we // only need to shrink by a half a pixel. shrinkAmount = 0.5; break; default: // If we don't recognize the format, we must assume the // worst case (that we care about), which is YUV420. shrinkAmount = 1.0; break; } } // Only shrink the dimensions that are not the size of the buffer. if (cropRect.width() < bufferWidth) { tx = (float(cropRect.left) + shrinkAmount) / bufferWidth; sx = (float(cropRect.width()) - (2.0f * shrinkAmount)) / bufferWidth; } if (cropRect.height() < bufferHeight) { ty = (float(bufferHeight - cropRect.bottom) + shrinkAmount) / bufferHeight; sy = (float(cropRect.height()) - (2.0f * shrinkAmount)) / bufferHeight; } float crop[16] = { sx, 0, 0, 0, 0, sy, 0, 0, 0, 0, 1, 0, tx, ty, 0, 1, }; mtxMul(mtxBeforeFlipV, crop, xform); } else { for (int i = 0; i < 16; i++) { mtxBeforeFlipV[i] = xform[i]; } } // SurfaceFlinger expects the top of its window textures to be at a Y // coordinate of 0, so GLConsumer must behave the same way. We don't // want to expose this to applications, however, so we must add an // additional vertical flip to the transform after all the other transforms. mtxMul(outTransform, mtxFlipV, mtxBeforeFlipV); } nsecs_t GLConsumer::getTimestamp() { GLC_LOGV("getTimestamp"); Mutex::Autolock lock(mMutex); return mCurrentTimestamp; } android_dataspace GLConsumer::getCurrentDataSpace() { GLC_LOGV("getCurrentDataSpace"); Mutex::Autolock lock(mMutex); return mCurrentDataSpace; } uint64_t GLConsumer::getFrameNumber() { GLC_LOGV("getFrameNumber"); Mutex::Autolock lock(mMutex); return mCurrentFrameNumber; } sp GLConsumer::getCurrentBuffer(int* outSlot) const { Mutex::Autolock lock(mMutex); if (outSlot != nullptr) { *outSlot = mCurrentTexture; } return (mCurrentTextureImage == nullptr) ? NULL : mCurrentTextureImage->graphicBuffer(); } Rect GLConsumer::getCurrentCrop() const { Mutex::Autolock lock(mMutex); Rect outCrop = mCurrentCrop; if (mCurrentScalingMode == NATIVE_WINDOW_SCALING_MODE_SCALE_CROP) { uint32_t newWidth = static_cast(mCurrentCrop.width()); uint32_t newHeight = static_cast(mCurrentCrop.height()); if (newWidth * mDefaultHeight > newHeight * mDefaultWidth) { newWidth = newHeight * mDefaultWidth / mDefaultHeight; GLC_LOGV("too wide: newWidth = %d", newWidth); } else if (newWidth * mDefaultHeight < newHeight * mDefaultWidth) { newHeight = newWidth * mDefaultHeight / mDefaultWidth; GLC_LOGV("too tall: newHeight = %d", newHeight); } uint32_t currentWidth = static_cast(mCurrentCrop.width()); uint32_t currentHeight = static_cast(mCurrentCrop.height()); // The crop is too wide if (newWidth < currentWidth) { uint32_t dw = currentWidth - newWidth; auto halfdw = dw / 2; outCrop.left += halfdw; // Not halfdw because it would subtract 1 too few when dw is odd outCrop.right -= (dw - halfdw); // The crop is too tall } else if (newHeight < currentHeight) { uint32_t dh = currentHeight - newHeight; auto halfdh = dh / 2; outCrop.top += halfdh; // Not halfdh because it would subtract 1 too few when dh is odd outCrop.bottom -= (dh - halfdh); } GLC_LOGV("getCurrentCrop final crop [%d,%d,%d,%d]", outCrop.left, outCrop.top, outCrop.right,outCrop.bottom); } return outCrop; } uint32_t GLConsumer::getCurrentTransform() const { Mutex::Autolock lock(mMutex); return mCurrentTransform; } uint32_t GLConsumer::getCurrentScalingMode() const { Mutex::Autolock lock(mMutex); return mCurrentScalingMode; } sp GLConsumer::getCurrentFence() const { Mutex::Autolock lock(mMutex); return mCurrentFence; } std::shared_ptr GLConsumer::getCurrentFenceTime() const { Mutex::Autolock lock(mMutex); return mCurrentFenceTime; } status_t GLConsumer::doGLFenceWait() const { Mutex::Autolock lock(mMutex); return doGLFenceWaitLocked(); } status_t GLConsumer::doGLFenceWaitLocked() const { EGLDisplay dpy = eglGetCurrentDisplay(); EGLContext ctx = eglGetCurrentContext(); if (mEglDisplay != dpy || mEglDisplay == EGL_NO_DISPLAY) { GLC_LOGE("doGLFenceWait: invalid current EGLDisplay"); return INVALID_OPERATION; } if (mEglContext != ctx || mEglContext == EGL_NO_CONTEXT) { GLC_LOGE("doGLFenceWait: invalid current EGLContext"); return INVALID_OPERATION; } if (mCurrentFence->isValid()) { if (SyncFeatures::getInstance().useWaitSync()) { // Create an EGLSyncKHR from the current fence. int fenceFd = mCurrentFence->dup(); if (fenceFd == -1) { GLC_LOGE("doGLFenceWait: error dup'ing fence fd: %d", errno); return -errno; } EGLint attribs[] = { EGL_SYNC_NATIVE_FENCE_FD_ANDROID, fenceFd, EGL_NONE }; EGLSyncKHR sync = eglCreateSyncKHR(dpy, EGL_SYNC_NATIVE_FENCE_ANDROID, attribs); if (sync == EGL_NO_SYNC_KHR) { close(fenceFd); GLC_LOGE("doGLFenceWait: error creating EGL fence: %#x", eglGetError()); return UNKNOWN_ERROR; } // XXX: The spec draft is inconsistent as to whether this should // return an EGLint or void. Ignore the return value for now, as // it's not strictly needed. eglWaitSyncKHR(dpy, sync, 0); EGLint eglErr = eglGetError(); eglDestroySyncKHR(dpy, sync); if (eglErr != EGL_SUCCESS) { GLC_LOGE("doGLFenceWait: error waiting for EGL fence: %#x", eglErr); return UNKNOWN_ERROR; } } else { status_t err = mCurrentFence->waitForever( "GLConsumer::doGLFenceWaitLocked"); if (err != NO_ERROR) { GLC_LOGE("doGLFenceWait: error waiting for fence: %d", err); return err; } } } return NO_ERROR; } void GLConsumer::freeBufferLocked(int slotIndex) { GLC_LOGV("freeBufferLocked: slotIndex=%d", slotIndex); if (slotIndex == mCurrentTexture) { mCurrentTexture = BufferQueue::INVALID_BUFFER_SLOT; } mEglSlots[slotIndex].mEglImage.clear(); ConsumerBase::freeBufferLocked(slotIndex); } void GLConsumer::abandonLocked() { GLC_LOGV("abandonLocked"); mCurrentTextureImage.clear(); ConsumerBase::abandonLocked(); } void GLConsumer::setName(const String8& name) { Mutex::Autolock _l(mMutex); if (mAbandoned) { GLC_LOGE("setName: GLConsumer is abandoned!"); return; } mName = name; mConsumer->setConsumerName(name); } status_t GLConsumer::setDefaultBufferFormat(PixelFormat defaultFormat) { Mutex::Autolock lock(mMutex); if (mAbandoned) { GLC_LOGE("setDefaultBufferFormat: GLConsumer is abandoned!"); return NO_INIT; } return mConsumer->setDefaultBufferFormat(defaultFormat); } status_t GLConsumer::setDefaultBufferDataSpace( android_dataspace defaultDataSpace) { Mutex::Autolock lock(mMutex); if (mAbandoned) { GLC_LOGE("setDefaultBufferDataSpace: GLConsumer is abandoned!"); return NO_INIT; } return mConsumer->setDefaultBufferDataSpace(defaultDataSpace); } status_t GLConsumer::setConsumerUsageBits(uint32_t usage) { Mutex::Autolock lock(mMutex); if (mAbandoned) { GLC_LOGE("setConsumerUsageBits: GLConsumer is abandoned!"); return NO_INIT; } usage |= DEFAULT_USAGE_FLAGS; return mConsumer->setConsumerUsageBits(usage); } status_t GLConsumer::setTransformHint(uint32_t hint) { Mutex::Autolock lock(mMutex); if (mAbandoned) { GLC_LOGE("setTransformHint: GLConsumer is abandoned!"); return NO_INIT; } return mConsumer->setTransformHint(hint); } status_t GLConsumer::setMaxAcquiredBufferCount(int maxAcquiredBuffers) { Mutex::Autolock lock(mMutex); if (mAbandoned) { GLC_LOGE("setMaxAcquiredBufferCount: GLConsumer is abandoned!"); return NO_INIT; } return mConsumer->setMaxAcquiredBufferCount(maxAcquiredBuffers); } void GLConsumer::dumpLocked(String8& result, const char* prefix) const { result.appendFormat( "%smTexName=%d mCurrentTexture=%d\n" "%smCurrentCrop=[%d,%d,%d,%d] mCurrentTransform=%#x\n", prefix, mTexName, mCurrentTexture, prefix, mCurrentCrop.left, mCurrentCrop.top, mCurrentCrop.right, mCurrentCrop.bottom, mCurrentTransform); ConsumerBase::dumpLocked(result, prefix); } static void mtxMul(float out[16], const float a[16], const float b[16]) { out[0] = a[0]*b[0] + a[4]*b[1] + a[8]*b[2] + a[12]*b[3]; out[1] = a[1]*b[0] + a[5]*b[1] + a[9]*b[2] + a[13]*b[3]; out[2] = a[2]*b[0] + a[6]*b[1] + a[10]*b[2] + a[14]*b[3]; out[3] = a[3]*b[0] + a[7]*b[1] + a[11]*b[2] + a[15]*b[3]; out[4] = a[0]*b[4] + a[4]*b[5] + a[8]*b[6] + a[12]*b[7]; out[5] = a[1]*b[4] + a[5]*b[5] + a[9]*b[6] + a[13]*b[7]; out[6] = a[2]*b[4] + a[6]*b[5] + a[10]*b[6] + a[14]*b[7]; out[7] = a[3]*b[4] + a[7]*b[5] + a[11]*b[6] + a[15]*b[7]; out[8] = a[0]*b[8] + a[4]*b[9] + a[8]*b[10] + a[12]*b[11]; out[9] = a[1]*b[8] + a[5]*b[9] + a[9]*b[10] + a[13]*b[11]; out[10] = a[2]*b[8] + a[6]*b[9] + a[10]*b[10] + a[14]*b[11]; out[11] = a[3]*b[8] + a[7]*b[9] + a[11]*b[10] + a[15]*b[11]; out[12] = a[0]*b[12] + a[4]*b[13] + a[8]*b[14] + a[12]*b[15]; out[13] = a[1]*b[12] + a[5]*b[13] + a[9]*b[14] + a[13]*b[15]; out[14] = a[2]*b[12] + a[6]*b[13] + a[10]*b[14] + a[14]*b[15]; out[15] = a[3]*b[12] + a[7]*b[13] + a[11]*b[14] + a[15]*b[15]; } GLConsumer::EglImage::EglImage(sp graphicBuffer) : mGraphicBuffer(graphicBuffer), mEglImage(EGL_NO_IMAGE_KHR), mEglDisplay(EGL_NO_DISPLAY), mCropRect(Rect::EMPTY_RECT) { } GLConsumer::EglImage::~EglImage() { if (mEglImage != EGL_NO_IMAGE_KHR) { if (!eglDestroyImageKHR(mEglDisplay, mEglImage)) { ALOGE("~EglImage: eglDestroyImageKHR failed"); } eglTerminate(mEglDisplay); } } status_t GLConsumer::EglImage::createIfNeeded(EGLDisplay eglDisplay, const Rect& cropRect, bool forceCreation) { // If there's an image and it's no longer valid, destroy it. bool haveImage = mEglImage != EGL_NO_IMAGE_KHR; bool displayInvalid = mEglDisplay != eglDisplay; bool cropInvalid = hasEglAndroidImageCrop() && mCropRect != cropRect; if (haveImage && (displayInvalid || cropInvalid || forceCreation)) { if (!eglDestroyImageKHR(mEglDisplay, mEglImage)) { ALOGE("createIfNeeded: eglDestroyImageKHR failed"); } eglTerminate(mEglDisplay); mEglImage = EGL_NO_IMAGE_KHR; mEglDisplay = EGL_NO_DISPLAY; } // If there's no image, create one. if (mEglImage == EGL_NO_IMAGE_KHR) { mEglDisplay = eglDisplay; mCropRect = cropRect; mEglImage = createImage(mEglDisplay, mGraphicBuffer, mCropRect); } // Fail if we can't create a valid image. if (mEglImage == EGL_NO_IMAGE_KHR) { mEglDisplay = EGL_NO_DISPLAY; mCropRect.makeInvalid(); const sp& buffer = mGraphicBuffer; ALOGE("Failed to create image. size=%ux%u st=%u usage=0x%x fmt=%d", buffer->getWidth(), buffer->getHeight(), buffer->getStride(), buffer->getUsage(), buffer->getPixelFormat()); return UNKNOWN_ERROR; } return OK; } void GLConsumer::EglImage::bindToTextureTarget(uint32_t texTarget) { glEGLImageTargetTexture2DOES(texTarget, static_cast(mEglImage)); } EGLImageKHR GLConsumer::EglImage::createImage(EGLDisplay dpy, const sp& graphicBuffer, const Rect& crop) { EGLClientBuffer cbuf = static_cast(graphicBuffer->getNativeBuffer()); const bool createProtectedImage = (graphicBuffer->getUsage() & GRALLOC_USAGE_PROTECTED) && hasEglProtectedContent(); EGLint attrs[] = { EGL_IMAGE_PRESERVED_KHR, EGL_TRUE, EGL_IMAGE_CROP_LEFT_ANDROID, crop.left, EGL_IMAGE_CROP_TOP_ANDROID, crop.top, EGL_IMAGE_CROP_RIGHT_ANDROID, crop.right, EGL_IMAGE_CROP_BOTTOM_ANDROID, crop.bottom, createProtectedImage ? EGL_PROTECTED_CONTENT_EXT : EGL_NONE, createProtectedImage ? EGL_TRUE : EGL_NONE, EGL_NONE, }; if (!crop.isValid()) { // No crop rect to set, so leave the crop out of the attrib array. Make // sure to propagate the protected content attrs if they are set. attrs[2] = attrs[10]; attrs[3] = attrs[11]; attrs[4] = EGL_NONE; } else if (!isEglImageCroppable(crop)) { // The crop rect is not at the origin, so we can't set the crop on the // EGLImage because that's not allowed by the EGL_ANDROID_image_crop // extension. In the future we can add a layered extension that // removes this restriction if there is hardware that can support it. attrs[2] = attrs[10]; attrs[3] = attrs[11]; attrs[4] = EGL_NONE; } eglInitialize(dpy, 0, 0); EGLImageKHR image = eglCreateImageKHR(dpy, EGL_NO_CONTEXT, EGL_NATIVE_BUFFER_ANDROID, cbuf, attrs); if (image == EGL_NO_IMAGE_KHR) { EGLint error = eglGetError(); ALOGE("error creating EGLImage: %#x", error); eglTerminate(dpy); } return image; } }; // namespace android