/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #define LOG_TAG "EffectHAL" #define ATRACE_TAG ATRACE_TAG_AUDIO #include #include #include #include "Conversions.h" #include "Effect.h" #include "EffectMap.h" namespace android { namespace hardware { namespace audio { namespace effect { namespace V2_0 { namespace implementation { using ::android::hardware::audio::common::V2_0::AudioChannelMask; using ::android::hardware::audio::common::V2_0::AudioFormat; using ::android::hardware::audio::effect::V2_0::MessageQueueFlagBits; namespace { class ProcessThread : public Thread { public: // ProcessThread's lifespan never exceeds Effect's lifespan. ProcessThread(std::atomic* stop, effect_handle_t effect, std::atomic* inBuffer, std::atomic* outBuffer, Effect::StatusMQ* statusMQ, EventFlag* efGroup) : Thread(false /*canCallJava*/), mStop(stop), mEffect(effect), mHasProcessReverse((*mEffect)->process_reverse != NULL), mInBuffer(inBuffer), mOutBuffer(outBuffer), mStatusMQ(statusMQ), mEfGroup(efGroup) { } virtual ~ProcessThread() {} private: std::atomic* mStop; effect_handle_t mEffect; bool mHasProcessReverse; std::atomic* mInBuffer; std::atomic* mOutBuffer; Effect::StatusMQ* mStatusMQ; EventFlag* mEfGroup; bool threadLoop() override; }; bool ProcessThread::threadLoop() { // This implementation doesn't return control back to the Thread until it decides to stop, // as the Thread uses mutexes, and this can lead to priority inversion. while(!std::atomic_load_explicit(mStop, std::memory_order_acquire)) { uint32_t efState = 0; mEfGroup->wait(static_cast(MessageQueueFlagBits::REQUEST_PROCESS_ALL), &efState); if (!(efState & static_cast(MessageQueueFlagBits::REQUEST_PROCESS_ALL)) || (efState & static_cast(MessageQueueFlagBits::REQUEST_QUIT))) { continue; // Nothing to do or time to quit. } Result retval = Result::OK; if (efState & static_cast(MessageQueueFlagBits::REQUEST_PROCESS_REVERSE) && !mHasProcessReverse) { retval = Result::NOT_SUPPORTED; } if (retval == Result::OK) { // affects both buffer pointers and their contents. std::atomic_thread_fence(std::memory_order_acquire); int32_t processResult; audio_buffer_t* inBuffer = std::atomic_load_explicit(mInBuffer, std::memory_order_relaxed); audio_buffer_t* outBuffer = std::atomic_load_explicit(mOutBuffer, std::memory_order_relaxed); if (inBuffer != nullptr && outBuffer != nullptr) { if (efState & static_cast(MessageQueueFlagBits::REQUEST_PROCESS)) { processResult = (*mEffect)->process(mEffect, inBuffer, outBuffer); } else { processResult = (*mEffect)->process_reverse(mEffect, inBuffer, outBuffer); } std::atomic_thread_fence(std::memory_order_release); } else { ALOGE("processing buffers were not set before calling 'process'"); processResult = -ENODEV; } switch(processResult) { case 0: retval = Result::OK; break; case -ENODATA: retval = Result::INVALID_STATE; break; case -EINVAL: retval = Result::INVALID_ARGUMENTS; break; default: retval = Result::NOT_INITIALIZED; } } if (!mStatusMQ->write(&retval)) { ALOGW("status message queue write failed"); } mEfGroup->wake(static_cast(MessageQueueFlagBits::DONE_PROCESSING)); } return false; } } // namespace // static const char *Effect::sContextResultOfCommand = "returned status"; const char *Effect::sContextCallToCommand = "error"; const char *Effect::sContextCallFunction = sContextCallToCommand; Effect::Effect(effect_handle_t handle) : mIsClosed(false), mHandle(handle), mEfGroup(nullptr), mStopProcessThread(false) { } Effect::~Effect() { ATRACE_CALL(); close(); if (mProcessThread.get()) { ATRACE_NAME("mProcessThread->join"); status_t status = mProcessThread->join(); ALOGE_IF(status, "processing thread exit error: %s", strerror(-status)); } if (mEfGroup) { status_t status = EventFlag::deleteEventFlag(&mEfGroup); ALOGE_IF(status, "processing MQ event flag deletion error: %s", strerror(-status)); } mInBuffer.clear(); mOutBuffer.clear(); int status = EffectRelease(mHandle); ALOGW_IF(status, "Error releasing effect %p: %s", mHandle, strerror(-status)); EffectMap::getInstance().remove(mHandle); mHandle = 0; } // static template size_t Effect::alignedSizeIn(size_t s) { return (s + sizeof(T) - 1) / sizeof(T); } // static template std::unique_ptr Effect::hidlVecToHal( const hidl_vec& vec, uint32_t* halDataSize) { // Due to bugs in HAL, they may attempt to write into the provided // input buffer. The original binder buffer is r/o, thus it is needed // to create a r/w version. *halDataSize = vec.size() * sizeof(T); std::unique_ptr halData(new uint8_t[*halDataSize]); memcpy(&halData[0], &vec[0], *halDataSize); return halData; } // static void Effect::effectAuxChannelsConfigFromHal( const channel_config_t& halConfig, EffectAuxChannelsConfig* config) { config->mainChannels = AudioChannelMask(halConfig.main_channels); config->auxChannels = AudioChannelMask(halConfig.aux_channels); } // static void Effect::effectAuxChannelsConfigToHal( const EffectAuxChannelsConfig& config, channel_config_t* halConfig) { halConfig->main_channels = static_cast(config.mainChannels); halConfig->aux_channels = static_cast(config.auxChannels); } // static void Effect::effectBufferConfigFromHal( const buffer_config_t& halConfig, EffectBufferConfig* config) { config->buffer.id = 0; config->buffer.frameCount = 0; config->samplingRateHz = halConfig.samplingRate; config->channels = AudioChannelMask(halConfig.channels); config->format = AudioFormat(halConfig.format); config->accessMode = EffectBufferAccess(halConfig.accessMode); config->mask = EffectConfigParameters(halConfig.mask); } // static void Effect::effectBufferConfigToHal(const EffectBufferConfig& config, buffer_config_t* halConfig) { // Note: setting the buffers directly is considered obsolete. They need to be set // using 'setProcessBuffers'. halConfig->buffer.frameCount = 0; halConfig->buffer.raw = NULL; halConfig->samplingRate = config.samplingRateHz; halConfig->channels = static_cast(config.channels); // Note: The framework code does not use BP. halConfig->bufferProvider.cookie = NULL; halConfig->bufferProvider.getBuffer = NULL; halConfig->bufferProvider.releaseBuffer = NULL; halConfig->format = static_cast(config.format); halConfig->accessMode = static_cast(config.accessMode); halConfig->mask = static_cast(config.mask); } // static void Effect::effectConfigFromHal(const effect_config_t& halConfig, EffectConfig* config) { effectBufferConfigFromHal(halConfig.inputCfg, &config->inputCfg); effectBufferConfigFromHal(halConfig.outputCfg, &config->outputCfg); } // static void Effect::effectConfigToHal(const EffectConfig& config, effect_config_t* halConfig) { effectBufferConfigToHal(config.inputCfg, &halConfig->inputCfg); effectBufferConfigToHal(config.outputCfg, &halConfig->outputCfg); } // static void Effect::effectOffloadParamToHal( const EffectOffloadParameter& offload, effect_offload_param_t* halOffload) { halOffload->isOffload = offload.isOffload; halOffload->ioHandle = offload.ioHandle; } // static std::vector Effect::parameterToHal( uint32_t paramSize, const void* paramData, uint32_t valueSize, const void** valueData) { size_t valueOffsetFromData = alignedSizeIn(paramSize) * sizeof(uint32_t); size_t halParamBufferSize = sizeof(effect_param_t) + valueOffsetFromData + valueSize; std::vector halParamBuffer(halParamBufferSize, 0); effect_param_t *halParam = reinterpret_cast(&halParamBuffer[0]); halParam->psize = paramSize; halParam->vsize = valueSize; memcpy(halParam->data, paramData, paramSize); if (valueData) { if (*valueData) { // Value data is provided. memcpy(halParam->data + valueOffsetFromData, *valueData, valueSize); } else { // The caller needs the pointer to the value data location. *valueData = halParam->data + valueOffsetFromData; } } return halParamBuffer; } Result Effect::analyzeCommandStatus(const char* commandName, const char* context, status_t status) { return analyzeStatus("command", commandName, context, status); } Result Effect::analyzeStatus( const char* funcName, const char* subFuncName, const char* contextDescription, status_t status) { if (status != OK) { ALOGW("Effect %p %s %s %s: %s", mHandle, funcName, subFuncName, contextDescription, strerror(-status)); } switch (status) { case OK: return Result::OK; case -EINVAL: return Result::INVALID_ARGUMENTS; case -ENODATA: return Result::INVALID_STATE; case -ENODEV: return Result::NOT_INITIALIZED; case -ENOMEM: return Result::RESULT_TOO_BIG; case -ENOSYS: return Result::NOT_SUPPORTED; default: return Result::INVALID_STATE; } } void Effect::getConfigImpl(int commandCode, const char* commandName, GetConfigCallback cb) { uint32_t halResultSize = sizeof(effect_config_t); effect_config_t halConfig{}; status_t status = (*mHandle)->command( mHandle, commandCode, 0, NULL, &halResultSize, &halConfig); EffectConfig config; if (status == OK) { effectConfigFromHal(halConfig, &config); } cb(analyzeCommandStatus(commandName, sContextCallToCommand, status), config); } Result Effect::getCurrentConfigImpl( uint32_t featureId, uint32_t configSize, GetCurrentConfigSuccessCallback onSuccess) { uint32_t halCmd = featureId; uint32_t halResult[alignedSizeIn(sizeof(uint32_t) + configSize)]; memset(halResult, 0, sizeof(halResult)); uint32_t halResultSize = 0; return sendCommandReturningStatusAndData( EFFECT_CMD_GET_FEATURE_CONFIG, "GET_FEATURE_CONFIG", sizeof(uint32_t), &halCmd, &halResultSize, halResult, sizeof(uint32_t), [&]{ onSuccess(&halResult[1]); }); } Result Effect::getParameterImpl( uint32_t paramSize, const void* paramData, uint32_t requestValueSize, uint32_t replyValueSize, GetParameterSuccessCallback onSuccess) { // As it is unknown what method HAL uses for copying the provided parameter data, // it is safer to make sure that input and output buffers do not overlap. std::vector halCmdBuffer = parameterToHal(paramSize, paramData, requestValueSize, nullptr); const void *valueData = nullptr; std::vector halParamBuffer = parameterToHal(paramSize, paramData, replyValueSize, &valueData); uint32_t halParamBufferSize = halParamBuffer.size(); return sendCommandReturningStatusAndData( EFFECT_CMD_GET_PARAM, "GET_PARAM", halCmdBuffer.size(), &halCmdBuffer[0], &halParamBufferSize, &halParamBuffer[0], sizeof(effect_param_t), [&]{ effect_param_t *halParam = reinterpret_cast(&halParamBuffer[0]); onSuccess(halParam->vsize, valueData); }); } Result Effect::getSupportedConfigsImpl( uint32_t featureId, uint32_t maxConfigs, uint32_t configSize, GetSupportedConfigsSuccessCallback onSuccess) { uint32_t halCmd[2] = { featureId, maxConfigs }; uint32_t halResultSize = 2 * sizeof(uint32_t) + maxConfigs * sizeof(configSize); uint8_t halResult[halResultSize]; memset(&halResult[0], 0, halResultSize); return sendCommandReturningStatusAndData( EFFECT_CMD_GET_FEATURE_SUPPORTED_CONFIGS, "GET_FEATURE_SUPPORTED_CONFIGS", sizeof(halCmd), halCmd, &halResultSize, &halResult[0], 2 * sizeof(uint32_t), [&]{ uint32_t *halResult32 = reinterpret_cast(&halResult[0]); uint32_t supportedConfigs = *(++halResult32); // skip status field if (supportedConfigs > maxConfigs) supportedConfigs = maxConfigs; onSuccess(supportedConfigs, ++halResult32); }); } Return Effect::prepareForProcessing(prepareForProcessing_cb _hidl_cb) { status_t status; // Create message queue. if (mStatusMQ) { ALOGE("the client attempts to call prepareForProcessing_cb twice"); _hidl_cb(Result::INVALID_STATE, StatusMQ::Descriptor()); return Void(); } std::unique_ptr tempStatusMQ(new StatusMQ(1, true /*EventFlag*/)); if (!tempStatusMQ->isValid()) { ALOGE_IF(!tempStatusMQ->isValid(), "status MQ is invalid"); _hidl_cb(Result::INVALID_ARGUMENTS, StatusMQ::Descriptor()); return Void(); } status = EventFlag::createEventFlag(tempStatusMQ->getEventFlagWord(), &mEfGroup); if (status != OK || !mEfGroup) { ALOGE("failed creating event flag for status MQ: %s", strerror(-status)); _hidl_cb(Result::INVALID_ARGUMENTS, StatusMQ::Descriptor()); return Void(); } // Create and launch the thread. mProcessThread = new ProcessThread( &mStopProcessThread, mHandle, &mHalInBufferPtr, &mHalOutBufferPtr, tempStatusMQ.get(), mEfGroup); status = mProcessThread->run("effect", PRIORITY_URGENT_AUDIO); if (status != OK) { ALOGW("failed to start effect processing thread: %s", strerror(-status)); _hidl_cb(Result::INVALID_ARGUMENTS, MQDescriptorSync()); return Void(); } mStatusMQ = std::move(tempStatusMQ); _hidl_cb(Result::OK, *mStatusMQ->getDesc()); return Void(); } Return Effect::setProcessBuffers( const AudioBuffer& inBuffer, const AudioBuffer& outBuffer) { AudioBufferManager& manager = AudioBufferManager::getInstance(); sp tempInBuffer, tempOutBuffer; if (!manager.wrap(inBuffer, &tempInBuffer)) { ALOGE("Could not map memory of the input buffer"); return Result::INVALID_ARGUMENTS; } if (!manager.wrap(outBuffer, &tempOutBuffer)) { ALOGE("Could not map memory of the output buffer"); return Result::INVALID_ARGUMENTS; } mInBuffer = tempInBuffer; mOutBuffer = tempOutBuffer; // The processing thread only reads these pointers after waking up by an event flag, // so it's OK to update the pair non-atomically. mHalInBufferPtr.store(mInBuffer->getHalBuffer(), std::memory_order_release); mHalOutBufferPtr.store(mOutBuffer->getHalBuffer(), std::memory_order_release); return Result::OK; } Result Effect::sendCommand(int commandCode, const char* commandName) { return sendCommand(commandCode, commandName, 0, NULL); } Result Effect::sendCommand( int commandCode, const char* commandName, uint32_t size, void* data) { status_t status = (*mHandle)->command(mHandle, commandCode, size, data, 0, NULL); return analyzeCommandStatus(commandName, sContextCallToCommand, status); } Result Effect::sendCommandReturningData( int commandCode, const char* commandName, uint32_t* replySize, void* replyData) { return sendCommandReturningData(commandCode, commandName, 0, NULL, replySize, replyData); } Result Effect::sendCommandReturningData( int commandCode, const char* commandName, uint32_t size, void* data, uint32_t* replySize, void* replyData) { uint32_t expectedReplySize = *replySize; status_t status = (*mHandle)->command(mHandle, commandCode, size, data, replySize, replyData); if (status == OK && *replySize != expectedReplySize) { status = -ENODATA; } return analyzeCommandStatus(commandName, sContextCallToCommand, status); } Result Effect::sendCommandReturningStatus(int commandCode, const char* commandName) { return sendCommandReturningStatus(commandCode, commandName, 0, NULL); } Result Effect::sendCommandReturningStatus( int commandCode, const char* commandName, uint32_t size, void* data) { uint32_t replyCmdStatus; uint32_t replySize = sizeof(uint32_t); return sendCommandReturningStatusAndData( commandCode, commandName, size, data, &replySize, &replyCmdStatus, replySize, []{}); } Result Effect::sendCommandReturningStatusAndData( int commandCode, const char* commandName, uint32_t size, void* data, uint32_t* replySize, void* replyData, uint32_t minReplySize, CommandSuccessCallback onSuccess) { status_t status = (*mHandle)->command(mHandle, commandCode, size, data, replySize, replyData); Result retval; if (status == OK && minReplySize >= sizeof(uint32_t) && *replySize >= minReplySize) { uint32_t commandStatus = *reinterpret_cast(replyData); retval = analyzeCommandStatus(commandName, sContextResultOfCommand, commandStatus); if (commandStatus == OK) { onSuccess(); } } else { retval = analyzeCommandStatus(commandName, sContextCallToCommand, status); } return retval; } Result Effect::setConfigImpl( int commandCode, const char* commandName, const EffectConfig& config, const sp& inputBufferProvider, const sp& outputBufferProvider) { effect_config_t halConfig; effectConfigToHal(config, &halConfig); if (inputBufferProvider != 0) { LOG_FATAL("Using input buffer provider is not supported"); } if (outputBufferProvider != 0) { LOG_FATAL("Using output buffer provider is not supported"); } return sendCommandReturningStatus( commandCode, commandName, sizeof(effect_config_t), &halConfig); } Result Effect::setParameterImpl( uint32_t paramSize, const void* paramData, uint32_t valueSize, const void* valueData) { std::vector halParamBuffer = parameterToHal( paramSize, paramData, valueSize, &valueData); return sendCommandReturningStatus( EFFECT_CMD_SET_PARAM, "SET_PARAM", halParamBuffer.size(), &halParamBuffer[0]); } // Methods from ::android::hardware::audio::effect::V2_0::IEffect follow. Return Effect::init() { return sendCommandReturningStatus(EFFECT_CMD_INIT, "INIT"); } Return Effect::setConfig( const EffectConfig& config, const sp& inputBufferProvider, const sp& outputBufferProvider) { return setConfigImpl( EFFECT_CMD_SET_CONFIG, "SET_CONFIG", config, inputBufferProvider, outputBufferProvider); } Return Effect::reset() { return sendCommand(EFFECT_CMD_RESET, "RESET"); } Return Effect::enable() { return sendCommandReturningStatus(EFFECT_CMD_ENABLE, "ENABLE"); } Return Effect::disable() { return sendCommandReturningStatus(EFFECT_CMD_DISABLE, "DISABLE"); } Return Effect::setDevice(AudioDevice device) { uint32_t halDevice = static_cast(device); return sendCommand(EFFECT_CMD_SET_DEVICE, "SET_DEVICE", sizeof(uint32_t), &halDevice); } Return Effect::setAndGetVolume( const hidl_vec& volumes, setAndGetVolume_cb _hidl_cb) { uint32_t halDataSize; std::unique_ptr halData = hidlVecToHal(volumes, &halDataSize); uint32_t halResultSize = halDataSize; uint32_t halResult[volumes.size()]; Result retval = sendCommandReturningData( EFFECT_CMD_SET_VOLUME, "SET_VOLUME", halDataSize, &halData[0], &halResultSize, halResult); hidl_vec result; if (retval == Result::OK) { result.setToExternal(&halResult[0], halResultSize); } _hidl_cb(retval, result); return Void(); } Return Effect::volumeChangeNotification(const hidl_vec& volumes) { uint32_t halDataSize; std::unique_ptr halData = hidlVecToHal(volumes, &halDataSize); return sendCommand( EFFECT_CMD_SET_VOLUME, "SET_VOLUME", halDataSize, &halData[0]); } Return Effect::setAudioMode(AudioMode mode) { uint32_t halMode = static_cast(mode); return sendCommand( EFFECT_CMD_SET_AUDIO_MODE, "SET_AUDIO_MODE", sizeof(uint32_t), &halMode); } Return Effect::setConfigReverse( const EffectConfig& config, const sp& inputBufferProvider, const sp& outputBufferProvider) { return setConfigImpl(EFFECT_CMD_SET_CONFIG_REVERSE, "SET_CONFIG_REVERSE", config, inputBufferProvider, outputBufferProvider); } Return Effect::setInputDevice(AudioDevice device) { uint32_t halDevice = static_cast(device); return sendCommand( EFFECT_CMD_SET_INPUT_DEVICE, "SET_INPUT_DEVICE", sizeof(uint32_t), &halDevice); } Return Effect::getConfig(getConfig_cb _hidl_cb) { getConfigImpl(EFFECT_CMD_GET_CONFIG, "GET_CONFIG", _hidl_cb); return Void(); } Return Effect::getConfigReverse(getConfigReverse_cb _hidl_cb) { getConfigImpl(EFFECT_CMD_GET_CONFIG_REVERSE, "GET_CONFIG_REVERSE", _hidl_cb); return Void(); } Return Effect::getSupportedAuxChannelsConfigs( uint32_t maxConfigs, getSupportedAuxChannelsConfigs_cb _hidl_cb) { hidl_vec result; Result retval = getSupportedConfigsImpl( EFFECT_FEATURE_AUX_CHANNELS, maxConfigs, sizeof(channel_config_t), [&] (uint32_t supportedConfigs, void* configsData) { result.resize(supportedConfigs); channel_config_t *config = reinterpret_cast(configsData); for (size_t i = 0; i < result.size(); ++i) { effectAuxChannelsConfigFromHal(*config++, &result[i]); } }); _hidl_cb(retval, result); return Void(); } Return Effect::getAuxChannelsConfig(getAuxChannelsConfig_cb _hidl_cb) { uint32_t halCmd = EFFECT_FEATURE_AUX_CHANNELS; uint32_t halResult[alignedSizeIn(sizeof(uint32_t) + sizeof(channel_config_t))]; memset(halResult, 0, sizeof(halResult)); uint32_t halResultSize = 0; EffectAuxChannelsConfig result; Result retval = getCurrentConfigImpl( EFFECT_FEATURE_AUX_CHANNELS, sizeof(channel_config_t), [&] (void* configData) { effectAuxChannelsConfigFromHal( *reinterpret_cast(configData), &result); }); _hidl_cb(retval, result); return Void(); } Return Effect::setAuxChannelsConfig(const EffectAuxChannelsConfig& config) { uint32_t halCmd[alignedSizeIn(sizeof(uint32_t) + sizeof(channel_config_t))]; halCmd[0] = EFFECT_FEATURE_AUX_CHANNELS; effectAuxChannelsConfigToHal(config, reinterpret_cast(&halCmd[1])); return sendCommandReturningStatus(EFFECT_CMD_SET_FEATURE_CONFIG, "SET_FEATURE_CONFIG AUX_CHANNELS", sizeof(halCmd), halCmd); } Return Effect::setAudioSource(AudioSource source) { uint32_t halSource = static_cast(source); return sendCommand( EFFECT_CMD_SET_AUDIO_SOURCE, "SET_AUDIO_SOURCE", sizeof(uint32_t), &halSource); } Return Effect::offload(const EffectOffloadParameter& param) { effect_offload_param_t halParam; effectOffloadParamToHal(param, &halParam); return sendCommandReturningStatus( EFFECT_CMD_OFFLOAD, "OFFLOAD", sizeof(effect_offload_param_t), &halParam); } Return Effect::getDescriptor(getDescriptor_cb _hidl_cb) { effect_descriptor_t halDescriptor; memset(&halDescriptor, 0, sizeof(effect_descriptor_t)); status_t status = (*mHandle)->get_descriptor(mHandle, &halDescriptor); EffectDescriptor descriptor; if (status == OK) { effectDescriptorFromHal(halDescriptor, &descriptor); } _hidl_cb(analyzeStatus("get_descriptor", "", sContextCallFunction, status), descriptor); return Void(); } Return Effect::command( uint32_t commandId, const hidl_vec& data, uint32_t resultMaxSize, command_cb _hidl_cb) { uint32_t halDataSize; std::unique_ptr halData = hidlVecToHal(data, &halDataSize); uint32_t halResultSize = resultMaxSize; std::unique_ptr halResult(new uint8_t[halResultSize]); memset(&halResult[0], 0, halResultSize); void* dataPtr = halDataSize > 0 ? &halData[0] : NULL; void* resultPtr = halResultSize > 0 ? &halResult[0] : NULL; status_t status = (*mHandle)->command( mHandle, commandId, halDataSize, dataPtr, &halResultSize, resultPtr); hidl_vec result; if (status == OK && resultPtr != NULL) { result.setToExternal(&halResult[0], halResultSize); } _hidl_cb(status, result); return Void(); } Return Effect::setParameter( const hidl_vec& parameter, const hidl_vec& value) { return setParameterImpl(parameter.size(), ¶meter[0], value.size(), &value[0]); } Return Effect::getParameter( const hidl_vec& parameter, uint32_t valueMaxSize, getParameter_cb _hidl_cb) { hidl_vec value; Result retval = getParameterImpl( parameter.size(), ¶meter[0], valueMaxSize, [&] (uint32_t valueSize, const void* valueData) { value.setToExternal( reinterpret_cast(const_cast(valueData)), valueSize); }); _hidl_cb(retval, value); return Void(); } Return Effect::getSupportedConfigsForFeature( uint32_t featureId, uint32_t maxConfigs, uint32_t configSize, getSupportedConfigsForFeature_cb _hidl_cb) { uint32_t configCount = 0; hidl_vec result; Result retval = getSupportedConfigsImpl( featureId, maxConfigs, configSize, [&] (uint32_t supportedConfigs, void* configsData) { configCount = supportedConfigs; result.resize(configCount * configSize); memcpy(&result[0], configsData, result.size()); }); _hidl_cb(retval, configCount, result); return Void(); } Return Effect::getCurrentConfigForFeature( uint32_t featureId, uint32_t configSize, getCurrentConfigForFeature_cb _hidl_cb) { hidl_vec result; Result retval = getCurrentConfigImpl( featureId, configSize, [&] (void* configData) { result.resize(configSize); memcpy(&result[0], configData, result.size()); }); _hidl_cb(retval, result); return Void(); } Return Effect::setCurrentConfigForFeature( uint32_t featureId, const hidl_vec& configData) { uint32_t halCmd[alignedSizeIn(sizeof(uint32_t) + configData.size())]; memset(halCmd, 0, sizeof(halCmd)); halCmd[0] = featureId; memcpy(&halCmd[1], &configData[0], configData.size()); return sendCommandReturningStatus( EFFECT_CMD_SET_FEATURE_CONFIG, "SET_FEATURE_CONFIG", sizeof(halCmd), halCmd); } Return Effect::close() { if (mIsClosed) return Result::INVALID_STATE; mIsClosed = true; if (mProcessThread.get()) { mStopProcessThread.store(true, std::memory_order_release); } if (mEfGroup) { mEfGroup->wake(static_cast(MessageQueueFlagBits::REQUEST_QUIT)); } return Result::OK; } } // namespace implementation } // namespace V2_0 } // namespace effect } // namespace audio } // namespace hardware } // namespace android