/* * Copyright (C) 2012-2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "DEBUG" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "debuggerd/handler.h" #include "backtrace.h" #include "elf_utils.h" #include "machine.h" #include "open_files_list.h" #include "tombstone.h" using android::base::StringPrintf; #define STACK_WORDS 16 #define MAX_TOMBSTONES 10 #define TOMBSTONE_DIR "/data/tombstones" #define TOMBSTONE_TEMPLATE (TOMBSTONE_DIR"/tombstone_%02d") static bool signal_has_si_addr(int si_signo, int si_code) { // Manually sent signals won't have si_addr. if (si_code == SI_USER || si_code == SI_QUEUE || si_code == SI_TKILL) { return false; } switch (si_signo) { case SIGBUS: case SIGFPE: case SIGILL: case SIGSEGV: case SIGTRAP: return true; default: return false; } } static const char* get_signame(int sig) { switch (sig) { case SIGABRT: return "SIGABRT"; case SIGBUS: return "SIGBUS"; case SIGFPE: return "SIGFPE"; case SIGILL: return "SIGILL"; case SIGSEGV: return "SIGSEGV"; #if defined(SIGSTKFLT) case SIGSTKFLT: return "SIGSTKFLT"; #endif case SIGSTOP: return "SIGSTOP"; case SIGSYS: return "SIGSYS"; case SIGTRAP: return "SIGTRAP"; case DEBUGGER_SIGNAL: return ""; default: return "?"; } } static const char* get_sigcode(int signo, int code) { // Try the signal-specific codes... switch (signo) { case SIGILL: switch (code) { case ILL_ILLOPC: return "ILL_ILLOPC"; case ILL_ILLOPN: return "ILL_ILLOPN"; case ILL_ILLADR: return "ILL_ILLADR"; case ILL_ILLTRP: return "ILL_ILLTRP"; case ILL_PRVOPC: return "ILL_PRVOPC"; case ILL_PRVREG: return "ILL_PRVREG"; case ILL_COPROC: return "ILL_COPROC"; case ILL_BADSTK: return "ILL_BADSTK"; } static_assert(NSIGILL == ILL_BADSTK, "missing ILL_* si_code"); break; case SIGBUS: switch (code) { case BUS_ADRALN: return "BUS_ADRALN"; case BUS_ADRERR: return "BUS_ADRERR"; case BUS_OBJERR: return "BUS_OBJERR"; case BUS_MCEERR_AR: return "BUS_MCEERR_AR"; case BUS_MCEERR_AO: return "BUS_MCEERR_AO"; } static_assert(NSIGBUS == BUS_MCEERR_AO, "missing BUS_* si_code"); break; case SIGFPE: switch (code) { case FPE_INTDIV: return "FPE_INTDIV"; case FPE_INTOVF: return "FPE_INTOVF"; case FPE_FLTDIV: return "FPE_FLTDIV"; case FPE_FLTOVF: return "FPE_FLTOVF"; case FPE_FLTUND: return "FPE_FLTUND"; case FPE_FLTRES: return "FPE_FLTRES"; case FPE_FLTINV: return "FPE_FLTINV"; case FPE_FLTSUB: return "FPE_FLTSUB"; } static_assert(NSIGFPE == FPE_FLTSUB, "missing FPE_* si_code"); break; case SIGSEGV: switch (code) { case SEGV_MAPERR: return "SEGV_MAPERR"; case SEGV_ACCERR: return "SEGV_ACCERR"; #if defined(SEGV_BNDERR) case SEGV_BNDERR: return "SEGV_BNDERR"; #endif #if defined(SEGV_PKUERR) case SEGV_PKUERR: return "SEGV_PKUERR"; #endif } #if defined(SEGV_PKUERR) static_assert(NSIGSEGV == SEGV_PKUERR, "missing SEGV_* si_code"); #elif defined(SEGV_BNDERR) static_assert(NSIGSEGV == SEGV_BNDERR, "missing SEGV_* si_code"); #else static_assert(NSIGSEGV == SEGV_ACCERR, "missing SEGV_* si_code"); #endif break; #if defined(SYS_SECCOMP) // Our glibc is too old, and we build this for the host too. case SIGSYS: switch (code) { case SYS_SECCOMP: return "SYS_SECCOMP"; } static_assert(NSIGSYS == SYS_SECCOMP, "missing SYS_* si_code"); break; #endif case SIGTRAP: switch (code) { case TRAP_BRKPT: return "TRAP_BRKPT"; case TRAP_TRACE: return "TRAP_TRACE"; case TRAP_BRANCH: return "TRAP_BRANCH"; case TRAP_HWBKPT: return "TRAP_HWBKPT"; } static_assert(NSIGTRAP == TRAP_HWBKPT, "missing TRAP_* si_code"); break; } // Then the other codes... switch (code) { case SI_USER: return "SI_USER"; case SI_KERNEL: return "SI_KERNEL"; case SI_QUEUE: return "SI_QUEUE"; case SI_TIMER: return "SI_TIMER"; case SI_MESGQ: return "SI_MESGQ"; case SI_ASYNCIO: return "SI_ASYNCIO"; case SI_SIGIO: return "SI_SIGIO"; case SI_TKILL: return "SI_TKILL"; case SI_DETHREAD: return "SI_DETHREAD"; } // Then give up... return "?"; } static void dump_header_info(log_t* log) { char fingerprint[PROPERTY_VALUE_MAX]; char revision[PROPERTY_VALUE_MAX]; property_get("ro.build.fingerprint", fingerprint, "unknown"); property_get("ro.revision", revision, "unknown"); _LOG(log, logtype::HEADER, "Build fingerprint: '%s'\n", fingerprint); _LOG(log, logtype::HEADER, "Revision: '%s'\n", revision); _LOG(log, logtype::HEADER, "ABI: '%s'\n", ABI_STRING); } static void dump_probable_cause(log_t* log, const siginfo_t& si) { std::string cause; if (si.si_signo == SIGSEGV && si.si_code == SEGV_MAPERR) { if (si.si_addr < reinterpret_cast(4096)) { cause = StringPrintf("null pointer dereference"); } else if (si.si_addr == reinterpret_cast(0xffff0ffc)) { cause = "call to kuser_helper_version"; } else if (si.si_addr == reinterpret_cast(0xffff0fe0)) { cause = "call to kuser_get_tls"; } else if (si.si_addr == reinterpret_cast(0xffff0fc0)) { cause = "call to kuser_cmpxchg"; } else if (si.si_addr == reinterpret_cast(0xffff0fa0)) { cause = "call to kuser_memory_barrier"; } else if (si.si_addr == reinterpret_cast(0xffff0f60)) { cause = "call to kuser_cmpxchg64"; } } else if (si.si_signo == SIGSYS && si.si_code == SYS_SECCOMP) { cause = StringPrintf("seccomp prevented call to disallowed %s system call %d", ABI_STRING, si.si_syscall); } if (!cause.empty()) _LOG(log, logtype::HEADER, "Cause: %s\n", cause.c_str()); } static void dump_signal_info(log_t* log, const siginfo_t* siginfo) { const siginfo_t& si = *siginfo; char addr_desc[32]; // ", fault addr 0x1234" if (signal_has_si_addr(si.si_signo, si.si_code)) { snprintf(addr_desc, sizeof(addr_desc), "%p", si.si_addr); } else { snprintf(addr_desc, sizeof(addr_desc), "--------"); } _LOG(log, logtype::HEADER, "signal %d (%s), code %d (%s), fault addr %s\n", si.si_signo, get_signame(si.si_signo), si.si_code, get_sigcode(si.si_signo, si.si_code), addr_desc); dump_probable_cause(log, si); } static void dump_signal_info(log_t* log, pid_t tid) { siginfo_t si; memset(&si, 0, sizeof(si)); if (ptrace(PTRACE_GETSIGINFO, tid, 0, &si) == -1) { ALOGE("cannot get siginfo: %s\n", strerror(errno)); return; } dump_signal_info(log, &si); } static void dump_thread_info(log_t* log, pid_t pid, pid_t tid, const char* process_name, const char* thread_name) { // Blacklist logd, logd.reader, logd.writer, logd.auditd, logd.control ... // TODO: Why is this controlled by thread name? if (strcmp(thread_name, "logd") == 0 || strncmp(thread_name, "logd.", 4) == 0) { log->should_retrieve_logcat = false; } _LOG(log, logtype::HEADER, "pid: %d, tid: %d, name: %s >>> %s <<<\n", pid, tid, thread_name, process_name); } static void dump_stack_segment( Backtrace* backtrace, log_t* log, uintptr_t* sp, size_t words, int label) { // Read the data all at once. word_t stack_data[words]; size_t bytes_read = backtrace->Read(*sp, reinterpret_cast(&stack_data[0]), sizeof(word_t) * words); words = bytes_read / sizeof(word_t); std::string line; for (size_t i = 0; i < words; i++) { line = " "; if (i == 0 && label >= 0) { // Print the label once. line += StringPrintf("#%02d ", label); } else { line += " "; } line += StringPrintf("%" PRIPTR " %" PRIPTR, *sp, stack_data[i]); backtrace_map_t map; backtrace->FillInMap(stack_data[i], &map); if (BacktraceMap::IsValid(map) && !map.name.empty()) { line += " " + map.name; uintptr_t offset = 0; std::string func_name(backtrace->GetFunctionName(stack_data[i], &offset, &map)); if (!func_name.empty()) { line += " (" + func_name; if (offset) { line += StringPrintf("+%" PRIuPTR, offset); } line += ')'; } } _LOG(log, logtype::STACK, "%s\n", line.c_str()); *sp += sizeof(word_t); } } static void dump_stack(Backtrace* backtrace, log_t* log) { size_t first = 0, last; for (size_t i = 0; i < backtrace->NumFrames(); i++) { const backtrace_frame_data_t* frame = backtrace->GetFrame(i); if (frame->sp) { if (!first) { first = i+1; } last = i; } } if (!first) { return; } first--; // Dump a few words before the first frame. word_t sp = backtrace->GetFrame(first)->sp - STACK_WORDS * sizeof(word_t); dump_stack_segment(backtrace, log, &sp, STACK_WORDS, -1); // Dump a few words from all successive frames. // Only log the first 3 frames, put the rest in the tombstone. for (size_t i = first; i <= last; i++) { const backtrace_frame_data_t* frame = backtrace->GetFrame(i); if (sp != frame->sp) { _LOG(log, logtype::STACK, " ........ ........\n"); sp = frame->sp; } if (i == last) { dump_stack_segment(backtrace, log, &sp, STACK_WORDS, i); if (sp < frame->sp + frame->stack_size) { _LOG(log, logtype::STACK, " ........ ........\n"); } } else { size_t words = frame->stack_size / sizeof(word_t); if (words == 0) { words = 1; } else if (words > STACK_WORDS) { words = STACK_WORDS; } dump_stack_segment(backtrace, log, &sp, words, i); } } } static std::string get_addr_string(uintptr_t addr) { std::string addr_str; #if defined(__LP64__) addr_str = StringPrintf("%08x'%08x", static_cast(addr >> 32), static_cast(addr & 0xffffffff)); #else addr_str = StringPrintf("%08x", addr); #endif return addr_str; } static void dump_abort_message(Backtrace* backtrace, log_t* log, uintptr_t address) { if (address == 0) { return; } address += sizeof(size_t); // Skip the buffer length. char msg[512]; memset(msg, 0, sizeof(msg)); char* p = &msg[0]; while (p < &msg[sizeof(msg)]) { word_t data; size_t len = sizeof(word_t); if (!backtrace->ReadWord(address, &data)) { break; } address += sizeof(word_t); while (len > 0 && (*p++ = (data >> (sizeof(word_t) - len) * 8) & 0xff) != 0) { len--; } } msg[sizeof(msg) - 1] = '\0'; _LOG(log, logtype::HEADER, "Abort message: '%s'\n", msg); } static void dump_all_maps(Backtrace* backtrace, BacktraceMap* map, log_t* log, pid_t tid) { bool print_fault_address_marker = false; uintptr_t addr = 0; siginfo_t si; memset(&si, 0, sizeof(si)); if (ptrace(PTRACE_GETSIGINFO, tid, 0, &si) != -1) { print_fault_address_marker = signal_has_si_addr(si.si_signo, si.si_code); addr = reinterpret_cast(si.si_addr); } else { ALOGE("Cannot get siginfo for %d: %s\n", tid, strerror(errno)); } ScopedBacktraceMapIteratorLock lock(map); _LOG(log, logtype::MAPS, "\n"); if (!print_fault_address_marker) { _LOG(log, logtype::MAPS, "memory map:\n"); } else { _LOG(log, logtype::MAPS, "memory map: (fault address prefixed with --->)\n"); if (map->begin() != map->end() && addr < map->begin()->start) { _LOG(log, logtype::MAPS, "--->Fault address falls at %s before any mapped regions\n", get_addr_string(addr).c_str()); print_fault_address_marker = false; } } std::string line; for (BacktraceMap::const_iterator it = map->begin(); it != map->end(); ++it) { line = " "; if (print_fault_address_marker) { if (addr < it->start) { _LOG(log, logtype::MAPS, "--->Fault address falls at %s between mapped regions\n", get_addr_string(addr).c_str()); print_fault_address_marker = false; } else if (addr >= it->start && addr < it->end) { line = "--->"; print_fault_address_marker = false; } } line += get_addr_string(it->start) + '-' + get_addr_string(it->end - 1) + ' '; if (it->flags & PROT_READ) { line += 'r'; } else { line += '-'; } if (it->flags & PROT_WRITE) { line += 'w'; } else { line += '-'; } if (it->flags & PROT_EXEC) { line += 'x'; } else { line += '-'; } line += StringPrintf(" %8" PRIxPTR " %8" PRIxPTR, it->offset, it->end - it->start); bool space_needed = true; if (it->name.length() > 0) { space_needed = false; line += " " + it->name; std::string build_id; if ((it->flags & PROT_READ) && elf_get_build_id(backtrace, it->start, &build_id)) { line += " (BuildId: " + build_id + ")"; } } if (it->load_base != 0) { if (space_needed) { line += ' '; } line += StringPrintf(" (load base 0x%" PRIxPTR ")", it->load_base); } _LOG(log, logtype::MAPS, "%s\n", line.c_str()); } if (print_fault_address_marker) { _LOG(log, logtype::MAPS, "--->Fault address falls at %s after any mapped regions\n", get_addr_string(addr).c_str()); } } static void dump_backtrace_and_stack(Backtrace* backtrace, log_t* log) { if (backtrace->NumFrames()) { _LOG(log, logtype::BACKTRACE, "\nbacktrace:\n"); dump_backtrace_to_log(backtrace, log, " "); _LOG(log, logtype::STACK, "\nstack:\n"); dump_stack(backtrace, log); } } // Weak noop implementation, real implementations are in /machine.cpp. __attribute__((weak)) void dump_registers(log_t* log, const ucontext_t*) { _LOG(log, logtype::REGISTERS, " register dumping unimplemented on this architecture"); } static void dump_thread(log_t* log, pid_t pid, pid_t tid, const std::string& process_name, const std::string& thread_name, BacktraceMap* map, uintptr_t abort_msg_address, bool primary_thread) { log->current_tid = tid; if (!primary_thread) { _LOG(log, logtype::THREAD, "--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---\n"); } dump_thread_info(log, pid, tid, process_name.c_str(), thread_name.c_str()); dump_signal_info(log, tid); std::unique_ptr backtrace(Backtrace::Create(pid, tid, map)); if (primary_thread) { dump_abort_message(backtrace.get(), log, abort_msg_address); } dump_registers(log, tid); if (backtrace->Unwind(0)) { dump_backtrace_and_stack(backtrace.get(), log); } else { ALOGE("Unwind failed: pid = %d, tid = %d", pid, tid); } if (primary_thread) { dump_memory_and_code(log, backtrace.get()); if (map) { dump_all_maps(backtrace.get(), map, log, tid); } } log->current_tid = log->crashed_tid; } // Reads the contents of the specified log device, filters out the entries // that don't match the specified pid, and writes them to the tombstone file. // // If "tail" is non-zero, log the last "tail" number of lines. static EventTagMap* g_eventTagMap = NULL; static void dump_log_file( log_t* log, pid_t pid, const char* filename, unsigned int tail) { bool first = true; struct logger_list* logger_list; if (!log->should_retrieve_logcat) { return; } logger_list = android_logger_list_open( android_name_to_log_id(filename), ANDROID_LOG_RDONLY | ANDROID_LOG_NONBLOCK, tail, pid); if (!logger_list) { ALOGE("Unable to open %s: %s\n", filename, strerror(errno)); return; } struct log_msg log_entry; while (true) { ssize_t actual = android_logger_list_read(logger_list, &log_entry); struct logger_entry* entry; if (actual < 0) { if (actual == -EINTR) { // interrupted by signal, retry continue; } else if (actual == -EAGAIN) { // non-blocking EOF; we're done break; } else { ALOGE("Error while reading log: %s\n", strerror(-actual)); break; } } else if (actual == 0) { ALOGE("Got zero bytes while reading log: %s\n", strerror(errno)); break; } // NOTE: if you ALOGV something here, this will spin forever, // because you will be writing as fast as you're reading. Any // high-frequency debug diagnostics should just be written to // the tombstone file. entry = &log_entry.entry_v1; if (first) { _LOG(log, logtype::LOGS, "--------- %slog %s\n", tail ? "tail end of " : "", filename); first = false; } // Msg format is: \0\0 // // We want to display it in the same format as "logcat -v threadtime" // (although in this case the pid is redundant). static const char* kPrioChars = "!.VDIWEFS"; unsigned hdr_size = log_entry.entry.hdr_size; if (!hdr_size) { hdr_size = sizeof(log_entry.entry_v1); } if ((hdr_size < sizeof(log_entry.entry_v1)) || (hdr_size > sizeof(log_entry.entry))) { continue; } char* msg = reinterpret_cast(log_entry.buf) + hdr_size; char timeBuf[32]; time_t sec = static_cast(entry->sec); struct tm tmBuf; struct tm* ptm; ptm = localtime_r(&sec, &tmBuf); strftime(timeBuf, sizeof(timeBuf), "%m-%d %H:%M:%S", ptm); if (log_entry.id() == LOG_ID_EVENTS) { if (!g_eventTagMap) { g_eventTagMap = android_openEventTagMap(NULL); } AndroidLogEntry e; char buf[512]; android_log_processBinaryLogBuffer(entry, &e, g_eventTagMap, buf, sizeof(buf)); _LOG(log, logtype::LOGS, "%s.%03d %5d %5d %c %-8.*s: %s\n", timeBuf, entry->nsec / 1000000, entry->pid, entry->tid, 'I', (int)e.tagLen, e.tag, e.message); continue; } unsigned char prio = msg[0]; char* tag = msg + 1; msg = tag + strlen(tag) + 1; // consume any trailing newlines char* nl = msg + strlen(msg) - 1; while (nl >= msg && *nl == '\n') { *nl-- = '\0'; } char prioChar = (prio < strlen(kPrioChars) ? kPrioChars[prio] : '?'); // Look for line breaks ('\n') and display each text line // on a separate line, prefixed with the header, like logcat does. do { nl = strchr(msg, '\n'); if (nl) { *nl = '\0'; ++nl; } _LOG(log, logtype::LOGS, "%s.%03d %5d %5d %c %-8s: %s\n", timeBuf, entry->nsec / 1000000, entry->pid, entry->tid, prioChar, tag, msg); } while ((msg = nl)); } android_logger_list_free(logger_list); } // Dumps the logs generated by the specified pid to the tombstone, from both // "system" and "main" log devices. Ideally we'd interleave the output. static void dump_logs(log_t* log, pid_t pid, unsigned int tail) { dump_log_file(log, pid, "system", tail); dump_log_file(log, pid, "main", tail); } // Dumps all information about the specified pid to the tombstone. static void dump_crash(log_t* log, BacktraceMap* map, const OpenFilesList* open_files, pid_t pid, pid_t tid, const std::string& process_name, const std::map& threads, uintptr_t abort_msg_address) { // don't copy log messages to tombstone unless this is a dev device char value[PROPERTY_VALUE_MAX]; property_get("ro.debuggable", value, "0"); bool want_logs = (value[0] == '1'); _LOG(log, logtype::HEADER, "*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***\n"); dump_header_info(log); dump_thread(log, pid, tid, process_name, threads.find(tid)->second, map, abort_msg_address, true); if (want_logs) { dump_logs(log, pid, 5); } for (const auto& it : threads) { pid_t thread_tid = it.first; const std::string& thread_name = it.second; if (thread_tid != tid) { dump_thread(log, pid, thread_tid, process_name, thread_name, map, 0, false); } } if (open_files) { _LOG(log, logtype::OPEN_FILES, "\nopen files:\n"); dump_open_files_list_to_log(*open_files, log, " "); } if (want_logs) { dump_logs(log, pid, 0); } } // open_tombstone - find an available tombstone slot, if any, of the // form tombstone_XX where XX is 00 to MAX_TOMBSTONES-1, inclusive. If no // file is available, we reuse the least-recently-modified file. int open_tombstone(std::string* out_path) { // In a single pass, find an available slot and, in case none // exist, find and record the least-recently-modified file. char path[128]; int fd = -1; int oldest = -1; struct stat oldest_sb; for (int i = 0; i < MAX_TOMBSTONES; i++) { snprintf(path, sizeof(path), TOMBSTONE_TEMPLATE, i); struct stat sb; if (stat(path, &sb) == 0) { if (oldest < 0 || sb.st_mtime < oldest_sb.st_mtime) { oldest = i; oldest_sb.st_mtime = sb.st_mtime; } continue; } if (errno != ENOENT) continue; fd = open(path, O_CREAT | O_EXCL | O_WRONLY | O_NOFOLLOW | O_CLOEXEC, 0600); if (fd < 0) continue; // raced ? if (out_path) { *out_path = path; } fchown(fd, AID_SYSTEM, AID_SYSTEM); return fd; } if (oldest < 0) { ALOGE("debuggerd: failed to find a valid tombstone, default to using tombstone 0.\n"); oldest = 0; } // we didn't find an available file, so we clobber the oldest one snprintf(path, sizeof(path), TOMBSTONE_TEMPLATE, oldest); fd = open(path, O_CREAT | O_TRUNC | O_WRONLY | O_NOFOLLOW | O_CLOEXEC, 0600); if (fd < 0) { ALOGE("debuggerd: failed to open tombstone file '%s': %s\n", path, strerror(errno)); return -1; } if (out_path) { *out_path = path; } fchown(fd, AID_SYSTEM, AID_SYSTEM); return fd; } void engrave_tombstone(int tombstone_fd, BacktraceMap* map, const OpenFilesList* open_files, pid_t pid, pid_t tid, const std::string& process_name, const std::map& threads, uintptr_t abort_msg_address, std::string* amfd_data) { log_t log; log.current_tid = tid; log.crashed_tid = tid; log.tfd = tombstone_fd; log.amfd_data = amfd_data; dump_crash(&log, map, open_files, pid, tid, process_name, threads, abort_msg_address); } void engrave_tombstone_ucontext(int tombstone_fd, uintptr_t abort_msg_address, siginfo_t* siginfo, ucontext_t* ucontext) { pid_t pid = getpid(); pid_t tid = gettid(); log_t log; log.current_tid = tid; log.crashed_tid = tid; log.tfd = tombstone_fd; log.amfd_data = nullptr; char thread_name[16]; char process_name[128]; read_with_default("/proc/self/comm", thread_name, sizeof(thread_name), ""); read_with_default("/proc/self/cmdline", process_name, sizeof(process_name), ""); _LOG(&log, logtype::HEADER, "*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***\n"); dump_header_info(&log); dump_thread_info(&log, pid, tid, thread_name, process_name); dump_signal_info(&log, siginfo); std::unique_ptr backtrace(Backtrace::Create(pid, tid)); dump_abort_message(backtrace.get(), &log, abort_msg_address); dump_registers(&log, ucontext); // TODO: Dump registers from the ucontext. if (backtrace->Unwind(0, ucontext)) { dump_backtrace_and_stack(backtrace.get(), &log); } else { ALOGE("Unwind failed: pid = %d, tid = %d", pid, tid); } }