1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the X86 implementation of TargetFrameLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "X86FrameLowering.h"
15 #include "X86InstrBuilder.h"
16 #include "X86InstrInfo.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/Analysis/EHPersonalities.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/WinEHFuncInfo.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/MC/MCAsmInfo.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/Target/TargetOptions.h"
33 #include "llvm/Support/Debug.h"
34 #include <cstdlib>
35 
36 using namespace llvm;
37 
X86FrameLowering(const X86Subtarget & STI,unsigned StackAlignOverride)38 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI,
39                                    unsigned StackAlignOverride)
40     : TargetFrameLowering(StackGrowsDown, StackAlignOverride,
41                           STI.is64Bit() ? -8 : -4),
42       STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) {
43   // Cache a bunch of frame-related predicates for this subtarget.
44   SlotSize = TRI->getSlotSize();
45   Is64Bit = STI.is64Bit();
46   IsLP64 = STI.isTarget64BitLP64();
47   // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
48   Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
49   StackPtr = TRI->getStackRegister();
50 }
51 
hasReservedCallFrame(const MachineFunction & MF) const52 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
53   return !MF.getFrameInfo()->hasVarSizedObjects() &&
54          !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
55 }
56 
57 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
58 /// call frame pseudos can be simplified.  Having a FP, as in the default
59 /// implementation, is not sufficient here since we can't always use it.
60 /// Use a more nuanced condition.
61 bool
canSimplifyCallFramePseudos(const MachineFunction & MF) const62 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
63   return hasReservedCallFrame(MF) ||
64          (hasFP(MF) && !TRI->needsStackRealignment(MF)) ||
65          TRI->hasBasePointer(MF);
66 }
67 
68 // needsFrameIndexResolution - Do we need to perform FI resolution for
69 // this function. Normally, this is required only when the function
70 // has any stack objects. However, FI resolution actually has another job,
71 // not apparent from the title - it resolves callframesetup/destroy
72 // that were not simplified earlier.
73 // So, this is required for x86 functions that have push sequences even
74 // when there are no stack objects.
75 bool
needsFrameIndexResolution(const MachineFunction & MF) const76 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const {
77   return MF.getFrameInfo()->hasStackObjects() ||
78          MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
79 }
80 
81 /// hasFP - Return true if the specified function should have a dedicated frame
82 /// pointer register.  This is true if the function has variable sized allocas
83 /// or if frame pointer elimination is disabled.
hasFP(const MachineFunction & MF) const84 bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
85   const MachineFrameInfo *MFI = MF.getFrameInfo();
86   const MachineModuleInfo &MMI = MF.getMMI();
87 
88   return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
89           TRI->needsStackRealignment(MF) ||
90           MFI->hasVarSizedObjects() ||
91           MFI->isFrameAddressTaken() || MFI->hasOpaqueSPAdjustment() ||
92           MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
93           MMI.callsUnwindInit() || MMI.hasEHFunclets() || MMI.callsEHReturn() ||
94           MFI->hasStackMap() || MFI->hasPatchPoint() ||
95           MFI->hasCopyImplyingStackAdjustment());
96 }
97 
getSUBriOpcode(unsigned IsLP64,int64_t Imm)98 static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) {
99   if (IsLP64) {
100     if (isInt<8>(Imm))
101       return X86::SUB64ri8;
102     return X86::SUB64ri32;
103   } else {
104     if (isInt<8>(Imm))
105       return X86::SUB32ri8;
106     return X86::SUB32ri;
107   }
108 }
109 
getADDriOpcode(unsigned IsLP64,int64_t Imm)110 static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) {
111   if (IsLP64) {
112     if (isInt<8>(Imm))
113       return X86::ADD64ri8;
114     return X86::ADD64ri32;
115   } else {
116     if (isInt<8>(Imm))
117       return X86::ADD32ri8;
118     return X86::ADD32ri;
119   }
120 }
121 
getSUBrrOpcode(unsigned isLP64)122 static unsigned getSUBrrOpcode(unsigned isLP64) {
123   return isLP64 ? X86::SUB64rr : X86::SUB32rr;
124 }
125 
getADDrrOpcode(unsigned isLP64)126 static unsigned getADDrrOpcode(unsigned isLP64) {
127   return isLP64 ? X86::ADD64rr : X86::ADD32rr;
128 }
129 
getANDriOpcode(bool IsLP64,int64_t Imm)130 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
131   if (IsLP64) {
132     if (isInt<8>(Imm))
133       return X86::AND64ri8;
134     return X86::AND64ri32;
135   }
136   if (isInt<8>(Imm))
137     return X86::AND32ri8;
138   return X86::AND32ri;
139 }
140 
getLEArOpcode(unsigned IsLP64)141 static unsigned getLEArOpcode(unsigned IsLP64) {
142   return IsLP64 ? X86::LEA64r : X86::LEA32r;
143 }
144 
145 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live
146 /// when it reaches the "return" instruction. We can then pop a stack object
147 /// to this register without worry about clobbering it.
findDeadCallerSavedReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const X86RegisterInfo * TRI,bool Is64Bit)148 static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
149                                        MachineBasicBlock::iterator &MBBI,
150                                        const X86RegisterInfo *TRI,
151                                        bool Is64Bit) {
152   const MachineFunction *MF = MBB.getParent();
153   const Function *F = MF->getFunction();
154   if (!F || MF->getMMI().callsEHReturn())
155     return 0;
156 
157   const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF);
158 
159   unsigned Opc = MBBI->getOpcode();
160   switch (Opc) {
161   default: return 0;
162   case TargetOpcode::PATCHABLE_RET:
163   case X86::RET:
164   case X86::RETL:
165   case X86::RETQ:
166   case X86::RETIL:
167   case X86::RETIQ:
168   case X86::TCRETURNdi:
169   case X86::TCRETURNri:
170   case X86::TCRETURNmi:
171   case X86::TCRETURNdi64:
172   case X86::TCRETURNri64:
173   case X86::TCRETURNmi64:
174   case X86::EH_RETURN:
175   case X86::EH_RETURN64: {
176     SmallSet<uint16_t, 8> Uses;
177     for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
178       MachineOperand &MO = MBBI->getOperand(i);
179       if (!MO.isReg() || MO.isDef())
180         continue;
181       unsigned Reg = MO.getReg();
182       if (!Reg)
183         continue;
184       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
185         Uses.insert(*AI);
186     }
187 
188     for (auto CS : AvailableRegs)
189       if (!Uses.count(CS) && CS != X86::RIP)
190         return CS;
191   }
192   }
193 
194   return 0;
195 }
196 
isEAXLiveIn(MachineBasicBlock & MBB)197 static bool isEAXLiveIn(MachineBasicBlock &MBB) {
198   for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) {
199     unsigned Reg = RegMask.PhysReg;
200 
201     if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX ||
202         Reg == X86::AH || Reg == X86::AL)
203       return true;
204   }
205 
206   return false;
207 }
208 
209 /// Check if the flags need to be preserved before the terminators.
210 /// This would be the case, if the eflags is live-in of the region
211 /// composed by the terminators or live-out of that region, without
212 /// being defined by a terminator.
213 static bool
flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock & MBB)214 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) {
215   for (const MachineInstr &MI : MBB.terminators()) {
216     bool BreakNext = false;
217     for (const MachineOperand &MO : MI.operands()) {
218       if (!MO.isReg())
219         continue;
220       unsigned Reg = MO.getReg();
221       if (Reg != X86::EFLAGS)
222         continue;
223 
224       // This terminator needs an eflags that is not defined
225       // by a previous another terminator:
226       // EFLAGS is live-in of the region composed by the terminators.
227       if (!MO.isDef())
228         return true;
229       // This terminator defines the eflags, i.e., we don't need to preserve it.
230       // However, we still need to check this specific terminator does not
231       // read a live-in value.
232       BreakNext = true;
233     }
234     // We found a definition of the eflags, no need to preserve them.
235     if (BreakNext)
236       return false;
237   }
238 
239   // None of the terminators use or define the eflags.
240   // Check if they are live-out, that would imply we need to preserve them.
241   for (const MachineBasicBlock *Succ : MBB.successors())
242     if (Succ->isLiveIn(X86::EFLAGS))
243       return true;
244 
245   return false;
246 }
247 
248 /// emitSPUpdate - Emit a series of instructions to increment / decrement the
249 /// stack pointer by a constant value.
emitSPUpdate(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,int64_t NumBytes,bool InEpilogue) const250 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB,
251                                     MachineBasicBlock::iterator &MBBI,
252                                     int64_t NumBytes, bool InEpilogue) const {
253   bool isSub = NumBytes < 0;
254   uint64_t Offset = isSub ? -NumBytes : NumBytes;
255 
256   uint64_t Chunk = (1LL << 31) - 1;
257   DebugLoc DL = MBB.findDebugLoc(MBBI);
258 
259   while (Offset) {
260     if (Offset > Chunk) {
261       // Rather than emit a long series of instructions for large offsets,
262       // load the offset into a register and do one sub/add
263       unsigned Reg = 0;
264 
265       if (isSub && !isEAXLiveIn(MBB))
266         Reg = (unsigned)(Is64Bit ? X86::RAX : X86::EAX);
267       else
268         Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
269 
270       if (Reg) {
271         unsigned Opc = Is64Bit ? X86::MOV64ri : X86::MOV32ri;
272         BuildMI(MBB, MBBI, DL, TII.get(Opc), Reg)
273           .addImm(Offset);
274         Opc = isSub
275           ? getSUBrrOpcode(Is64Bit)
276           : getADDrrOpcode(Is64Bit);
277         MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
278           .addReg(StackPtr)
279           .addReg(Reg);
280         MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
281         Offset = 0;
282         continue;
283       }
284     }
285 
286     uint64_t ThisVal = std::min(Offset, Chunk);
287     if (ThisVal == (Is64Bit ? 8 : 4)) {
288       // Use push / pop instead.
289       unsigned Reg = isSub
290         ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
291         : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
292       if (Reg) {
293         unsigned Opc = isSub
294           ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
295           : (Is64Bit ? X86::POP64r  : X86::POP32r);
296         MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc))
297           .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub));
298         if (isSub)
299           MI->setFlag(MachineInstr::FrameSetup);
300         else
301           MI->setFlag(MachineInstr::FrameDestroy);
302         Offset -= ThisVal;
303         continue;
304       }
305     }
306 
307     MachineInstrBuilder MI = BuildStackAdjustment(
308         MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue);
309     if (isSub)
310       MI.setMIFlag(MachineInstr::FrameSetup);
311     else
312       MI.setMIFlag(MachineInstr::FrameDestroy);
313 
314     Offset -= ThisVal;
315   }
316 }
317 
BuildStackAdjustment(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,int64_t Offset,bool InEpilogue) const318 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment(
319     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
320     const DebugLoc &DL, int64_t Offset, bool InEpilogue) const {
321   assert(Offset != 0 && "zero offset stack adjustment requested");
322 
323   // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue
324   // is tricky.
325   bool UseLEA;
326   if (!InEpilogue) {
327     // Check if inserting the prologue at the beginning
328     // of MBB would require to use LEA operations.
329     // We need to use LEA operations if EFLAGS is live in, because
330     // it means an instruction will read it before it gets defined.
331     UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS);
332   } else {
333     // If we can use LEA for SP but we shouldn't, check that none
334     // of the terminators uses the eflags. Otherwise we will insert
335     // a ADD that will redefine the eflags and break the condition.
336     // Alternatively, we could move the ADD, but this may not be possible
337     // and is an optimization anyway.
338     UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent());
339     if (UseLEA && !STI.useLeaForSP())
340       UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB);
341     // If that assert breaks, that means we do not do the right thing
342     // in canUseAsEpilogue.
343     assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) &&
344            "We shouldn't have allowed this insertion point");
345   }
346 
347   MachineInstrBuilder MI;
348   if (UseLEA) {
349     MI = addRegOffset(BuildMI(MBB, MBBI, DL,
350                               TII.get(getLEArOpcode(Uses64BitFramePtr)),
351                               StackPtr),
352                       StackPtr, false, Offset);
353   } else {
354     bool IsSub = Offset < 0;
355     uint64_t AbsOffset = IsSub ? -Offset : Offset;
356     unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset)
357                          : getADDriOpcode(Uses64BitFramePtr, AbsOffset);
358     MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
359              .addReg(StackPtr)
360              .addImm(AbsOffset);
361     MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
362   }
363   return MI;
364 }
365 
mergeSPUpdates(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,bool doMergeWithPrevious) const366 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB,
367                                      MachineBasicBlock::iterator &MBBI,
368                                      bool doMergeWithPrevious) const {
369   if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
370       (!doMergeWithPrevious && MBBI == MBB.end()))
371     return 0;
372 
373   MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI;
374   MachineBasicBlock::iterator NI = doMergeWithPrevious ? nullptr
375                                                        : std::next(MBBI);
376   unsigned Opc = PI->getOpcode();
377   int Offset = 0;
378 
379   if (!doMergeWithPrevious && NI != MBB.end() &&
380       NI->getOpcode() == TargetOpcode::CFI_INSTRUCTION) {
381     // Don't merge with the next instruction if it has CFI.
382     return Offset;
383   }
384 
385   if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
386        Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
387       PI->getOperand(0).getReg() == StackPtr){
388     assert(PI->getOperand(1).getReg() == StackPtr);
389     Offset += PI->getOperand(2).getImm();
390     MBB.erase(PI);
391     if (!doMergeWithPrevious) MBBI = NI;
392   } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
393              PI->getOperand(0).getReg() == StackPtr &&
394              PI->getOperand(1).getReg() == StackPtr &&
395              PI->getOperand(2).getImm() == 1 &&
396              PI->getOperand(3).getReg() == X86::NoRegister &&
397              PI->getOperand(5).getReg() == X86::NoRegister) {
398     // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg.
399     Offset += PI->getOperand(4).getImm();
400     MBB.erase(PI);
401     if (!doMergeWithPrevious) MBBI = NI;
402   } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
403               Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
404              PI->getOperand(0).getReg() == StackPtr) {
405     assert(PI->getOperand(1).getReg() == StackPtr);
406     Offset -= PI->getOperand(2).getImm();
407     MBB.erase(PI);
408     if (!doMergeWithPrevious) MBBI = NI;
409   }
410 
411   return Offset;
412 }
413 
BuildCFI(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,const MCCFIInstruction & CFIInst) const414 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB,
415                                 MachineBasicBlock::iterator MBBI,
416                                 const DebugLoc &DL,
417                                 const MCCFIInstruction &CFIInst) const {
418   MachineFunction &MF = *MBB.getParent();
419   unsigned CFIIndex = MF.getMMI().addFrameInst(CFIInst);
420   BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
421       .addCFIIndex(CFIIndex);
422 }
423 
emitCalleeSavedFrameMoves(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL) const424 void X86FrameLowering::emitCalleeSavedFrameMoves(
425     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
426     const DebugLoc &DL) const {
427   MachineFunction &MF = *MBB.getParent();
428   MachineFrameInfo *MFI = MF.getFrameInfo();
429   MachineModuleInfo &MMI = MF.getMMI();
430   const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
431 
432   // Add callee saved registers to move list.
433   const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
434   if (CSI.empty()) return;
435 
436   // Calculate offsets.
437   for (std::vector<CalleeSavedInfo>::const_iterator
438          I = CSI.begin(), E = CSI.end(); I != E; ++I) {
439     int64_t Offset = MFI->getObjectOffset(I->getFrameIdx());
440     unsigned Reg = I->getReg();
441 
442     unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
443     BuildCFI(MBB, MBBI, DL,
444              MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
445   }
446 }
447 
emitStackProbe(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool InProlog) const448 MachineInstr *X86FrameLowering::emitStackProbe(MachineFunction &MF,
449                                                MachineBasicBlock &MBB,
450                                                MachineBasicBlock::iterator MBBI,
451                                                const DebugLoc &DL,
452                                                bool InProlog) const {
453   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
454   if (STI.isTargetWindowsCoreCLR()) {
455     if (InProlog) {
456       return emitStackProbeInlineStub(MF, MBB, MBBI, DL, true);
457     } else {
458       return emitStackProbeInline(MF, MBB, MBBI, DL, false);
459     }
460   } else {
461     return emitStackProbeCall(MF, MBB, MBBI, DL, InProlog);
462   }
463 }
464 
inlineStackProbe(MachineFunction & MF,MachineBasicBlock & PrologMBB) const465 void X86FrameLowering::inlineStackProbe(MachineFunction &MF,
466                                         MachineBasicBlock &PrologMBB) const {
467   const StringRef ChkStkStubSymbol = "__chkstk_stub";
468   MachineInstr *ChkStkStub = nullptr;
469 
470   for (MachineInstr &MI : PrologMBB) {
471     if (MI.isCall() && MI.getOperand(0).isSymbol() &&
472         ChkStkStubSymbol == MI.getOperand(0).getSymbolName()) {
473       ChkStkStub = &MI;
474       break;
475     }
476   }
477 
478   if (ChkStkStub != nullptr) {
479     assert(!ChkStkStub->isBundled() &&
480            "Not expecting bundled instructions here");
481     MachineBasicBlock::iterator MBBI = std::next(ChkStkStub->getIterator());
482     assert(std::prev(MBBI).operator==(ChkStkStub) &&
483       "MBBI expected after __chkstk_stub.");
484     DebugLoc DL = PrologMBB.findDebugLoc(MBBI);
485     emitStackProbeInline(MF, PrologMBB, MBBI, DL, true);
486     ChkStkStub->eraseFromParent();
487   }
488 }
489 
emitStackProbeInline(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool InProlog) const490 MachineInstr *X86FrameLowering::emitStackProbeInline(
491     MachineFunction &MF, MachineBasicBlock &MBB,
492     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
493   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
494   assert(STI.is64Bit() && "different expansion needed for 32 bit");
495   assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR");
496   const TargetInstrInfo &TII = *STI.getInstrInfo();
497   const BasicBlock *LLVM_BB = MBB.getBasicBlock();
498 
499   // RAX contains the number of bytes of desired stack adjustment.
500   // The handling here assumes this value has already been updated so as to
501   // maintain stack alignment.
502   //
503   // We need to exit with RSP modified by this amount and execute suitable
504   // page touches to notify the OS that we're growing the stack responsibly.
505   // All stack probing must be done without modifying RSP.
506   //
507   // MBB:
508   //    SizeReg = RAX;
509   //    ZeroReg = 0
510   //    CopyReg = RSP
511   //    Flags, TestReg = CopyReg - SizeReg
512   //    FinalReg = !Flags.Ovf ? TestReg : ZeroReg
513   //    LimitReg = gs magic thread env access
514   //    if FinalReg >= LimitReg goto ContinueMBB
515   // RoundBB:
516   //    RoundReg = page address of FinalReg
517   // LoopMBB:
518   //    LoopReg = PHI(LimitReg,ProbeReg)
519   //    ProbeReg = LoopReg - PageSize
520   //    [ProbeReg] = 0
521   //    if (ProbeReg > RoundReg) goto LoopMBB
522   // ContinueMBB:
523   //    RSP = RSP - RAX
524   //    [rest of original MBB]
525 
526   // Set up the new basic blocks
527   MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB);
528   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
529   MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB);
530 
531   MachineFunction::iterator MBBIter = std::next(MBB.getIterator());
532   MF.insert(MBBIter, RoundMBB);
533   MF.insert(MBBIter, LoopMBB);
534   MF.insert(MBBIter, ContinueMBB);
535 
536   // Split MBB and move the tail portion down to ContinueMBB.
537   MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI);
538   ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end());
539   ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB);
540 
541   // Some useful constants
542   const int64_t ThreadEnvironmentStackLimit = 0x10;
543   const int64_t PageSize = 0x1000;
544   const int64_t PageMask = ~(PageSize - 1);
545 
546   // Registers we need. For the normal case we use virtual
547   // registers. For the prolog expansion we use RAX, RCX and RDX.
548   MachineRegisterInfo &MRI = MF.getRegInfo();
549   const TargetRegisterClass *RegClass = &X86::GR64RegClass;
550   const unsigned SizeReg = InProlog ? (unsigned)X86::RAX
551                                     : MRI.createVirtualRegister(RegClass),
552                  ZeroReg = InProlog ? (unsigned)X86::RCX
553                                     : MRI.createVirtualRegister(RegClass),
554                  CopyReg = InProlog ? (unsigned)X86::RDX
555                                     : MRI.createVirtualRegister(RegClass),
556                  TestReg = InProlog ? (unsigned)X86::RDX
557                                     : MRI.createVirtualRegister(RegClass),
558                  FinalReg = InProlog ? (unsigned)X86::RDX
559                                      : MRI.createVirtualRegister(RegClass),
560                  RoundedReg = InProlog ? (unsigned)X86::RDX
561                                        : MRI.createVirtualRegister(RegClass),
562                  LimitReg = InProlog ? (unsigned)X86::RCX
563                                      : MRI.createVirtualRegister(RegClass),
564                  JoinReg = InProlog ? (unsigned)X86::RCX
565                                     : MRI.createVirtualRegister(RegClass),
566                  ProbeReg = InProlog ? (unsigned)X86::RCX
567                                      : MRI.createVirtualRegister(RegClass);
568 
569   // SP-relative offsets where we can save RCX and RDX.
570   int64_t RCXShadowSlot = 0;
571   int64_t RDXShadowSlot = 0;
572 
573   // If inlining in the prolog, save RCX and RDX.
574   // Future optimization: don't save or restore if not live in.
575   if (InProlog) {
576     // Compute the offsets. We need to account for things already
577     // pushed onto the stack at this point: return address, frame
578     // pointer (if used), and callee saves.
579     X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
580     const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize();
581     const bool HasFP = hasFP(MF);
582     RCXShadowSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0);
583     RDXShadowSlot = RCXShadowSlot + 8;
584     // Emit the saves.
585     addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
586                  RCXShadowSlot)
587         .addReg(X86::RCX);
588     addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
589                  RDXShadowSlot)
590         .addReg(X86::RDX);
591   } else {
592     // Not in the prolog. Copy RAX to a virtual reg.
593     BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX);
594   }
595 
596   // Add code to MBB to check for overflow and set the new target stack pointer
597   // to zero if so.
598   BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg)
599       .addReg(ZeroReg, RegState::Undef)
600       .addReg(ZeroReg, RegState::Undef);
601   BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP);
602   BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg)
603       .addReg(CopyReg)
604       .addReg(SizeReg);
605   BuildMI(&MBB, DL, TII.get(X86::CMOVB64rr), FinalReg)
606       .addReg(TestReg)
607       .addReg(ZeroReg);
608 
609   // FinalReg now holds final stack pointer value, or zero if
610   // allocation would overflow. Compare against the current stack
611   // limit from the thread environment block. Note this limit is the
612   // lowest touched page on the stack, not the point at which the OS
613   // will cause an overflow exception, so this is just an optimization
614   // to avoid unnecessarily touching pages that are below the current
615   // SP but already commited to the stack by the OS.
616   BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg)
617       .addReg(0)
618       .addImm(1)
619       .addReg(0)
620       .addImm(ThreadEnvironmentStackLimit)
621       .addReg(X86::GS);
622   BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg);
623   // Jump if the desired stack pointer is at or above the stack limit.
624   BuildMI(&MBB, DL, TII.get(X86::JAE_1)).addMBB(ContinueMBB);
625 
626   // Add code to roundMBB to round the final stack pointer to a page boundary.
627   BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg)
628       .addReg(FinalReg)
629       .addImm(PageMask);
630   BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB);
631 
632   // LimitReg now holds the current stack limit, RoundedReg page-rounded
633   // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page
634   // and probe until we reach RoundedReg.
635   if (!InProlog) {
636     BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg)
637         .addReg(LimitReg)
638         .addMBB(RoundMBB)
639         .addReg(ProbeReg)
640         .addMBB(LoopMBB);
641   }
642 
643   addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg,
644                false, -PageSize);
645 
646   // Probe by storing a byte onto the stack.
647   BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi))
648       .addReg(ProbeReg)
649       .addImm(1)
650       .addReg(0)
651       .addImm(0)
652       .addReg(0)
653       .addImm(0);
654   BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr))
655       .addReg(RoundedReg)
656       .addReg(ProbeReg);
657   BuildMI(LoopMBB, DL, TII.get(X86::JNE_1)).addMBB(LoopMBB);
658 
659   MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI();
660 
661   // If in prolog, restore RDX and RCX.
662   if (InProlog) {
663     addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::MOV64rm),
664                          X86::RCX),
665                  X86::RSP, false, RCXShadowSlot);
666     addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::MOV64rm),
667                          X86::RDX),
668                  X86::RSP, false, RDXShadowSlot);
669   }
670 
671   // Now that the probing is done, add code to continueMBB to update
672   // the stack pointer for real.
673   BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
674       .addReg(X86::RSP)
675       .addReg(SizeReg);
676 
677   // Add the control flow edges we need.
678   MBB.addSuccessor(ContinueMBB);
679   MBB.addSuccessor(RoundMBB);
680   RoundMBB->addSuccessor(LoopMBB);
681   LoopMBB->addSuccessor(ContinueMBB);
682   LoopMBB->addSuccessor(LoopMBB);
683 
684   // Mark all the instructions added to the prolog as frame setup.
685   if (InProlog) {
686     for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) {
687       BeforeMBBI->setFlag(MachineInstr::FrameSetup);
688     }
689     for (MachineInstr &MI : *RoundMBB) {
690       MI.setFlag(MachineInstr::FrameSetup);
691     }
692     for (MachineInstr &MI : *LoopMBB) {
693       MI.setFlag(MachineInstr::FrameSetup);
694     }
695     for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin();
696          CMBBI != ContinueMBBI; ++CMBBI) {
697       CMBBI->setFlag(MachineInstr::FrameSetup);
698     }
699   }
700 
701   // Possible TODO: physreg liveness for InProlog case.
702 
703   return &*ContinueMBBI;
704 }
705 
emitStackProbeCall(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool InProlog) const706 MachineInstr *X86FrameLowering::emitStackProbeCall(
707     MachineFunction &MF, MachineBasicBlock &MBB,
708     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
709   bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large;
710 
711   unsigned CallOp;
712   if (Is64Bit)
713     CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32;
714   else
715     CallOp = X86::CALLpcrel32;
716 
717   const char *Symbol;
718   if (Is64Bit) {
719     if (STI.isTargetCygMing()) {
720       Symbol = "___chkstk_ms";
721     } else {
722       Symbol = "__chkstk";
723     }
724   } else if (STI.isTargetCygMing())
725     Symbol = "_alloca";
726   else
727     Symbol = "_chkstk";
728 
729   MachineInstrBuilder CI;
730   MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI);
731 
732   // All current stack probes take AX and SP as input, clobber flags, and
733   // preserve all registers. x86_64 probes leave RSP unmodified.
734   if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
735     // For the large code model, we have to call through a register. Use R11,
736     // as it is scratch in all supported calling conventions.
737     BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
738         .addExternalSymbol(Symbol);
739     CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11);
740   } else {
741     CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addExternalSymbol(Symbol);
742   }
743 
744   unsigned AX = Is64Bit ? X86::RAX : X86::EAX;
745   unsigned SP = Is64Bit ? X86::RSP : X86::ESP;
746   CI.addReg(AX, RegState::Implicit)
747       .addReg(SP, RegState::Implicit)
748       .addReg(AX, RegState::Define | RegState::Implicit)
749       .addReg(SP, RegState::Define | RegState::Implicit)
750       .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
751 
752   if (Is64Bit) {
753     // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
754     // themselves. It also does not clobber %rax so we can reuse it when
755     // adjusting %rsp.
756     BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
757         .addReg(X86::RSP)
758         .addReg(X86::RAX);
759   }
760 
761   if (InProlog) {
762     // Apply the frame setup flag to all inserted instrs.
763     for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI)
764       ExpansionMBBI->setFlag(MachineInstr::FrameSetup);
765   }
766 
767   return &*MBBI;
768 }
769 
emitStackProbeInlineStub(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool InProlog) const770 MachineInstr *X86FrameLowering::emitStackProbeInlineStub(
771     MachineFunction &MF, MachineBasicBlock &MBB,
772     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
773 
774   assert(InProlog && "ChkStkStub called outside prolog!");
775 
776   BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
777       .addExternalSymbol("__chkstk_stub");
778 
779   return &*MBBI;
780 }
781 
calculateSetFPREG(uint64_t SPAdjust)782 static unsigned calculateSetFPREG(uint64_t SPAdjust) {
783   // Win64 ABI has a less restrictive limitation of 240; 128 works equally well
784   // and might require smaller successive adjustments.
785   const uint64_t Win64MaxSEHOffset = 128;
786   uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset);
787   // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode.
788   return SEHFrameOffset & -16;
789 }
790 
791 // If we're forcing a stack realignment we can't rely on just the frame
792 // info, we need to know the ABI stack alignment as well in case we
793 // have a call out.  Otherwise just make sure we have some alignment - we'll
794 // go with the minimum SlotSize.
calculateMaxStackAlign(const MachineFunction & MF) const795 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const {
796   const MachineFrameInfo *MFI = MF.getFrameInfo();
797   uint64_t MaxAlign = MFI->getMaxAlignment(); // Desired stack alignment.
798   unsigned StackAlign = getStackAlignment();
799   if (MF.getFunction()->hasFnAttribute("stackrealign")) {
800     if (MFI->hasCalls())
801       MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
802     else if (MaxAlign < SlotSize)
803       MaxAlign = SlotSize;
804   }
805   return MaxAlign;
806 }
807 
BuildStackAlignAND(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,unsigned Reg,uint64_t MaxAlign) const808 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB,
809                                           MachineBasicBlock::iterator MBBI,
810                                           const DebugLoc &DL, unsigned Reg,
811                                           uint64_t MaxAlign) const {
812   uint64_t Val = -MaxAlign;
813   unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val);
814   MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg)
815                          .addReg(Reg)
816                          .addImm(Val)
817                          .setMIFlag(MachineInstr::FrameSetup);
818 
819   // The EFLAGS implicit def is dead.
820   MI->getOperand(3).setIsDead();
821 }
822 
823 /// emitPrologue - Push callee-saved registers onto the stack, which
824 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate
825 /// space for local variables. Also emit labels used by the exception handler to
826 /// generate the exception handling frames.
827 
828 /*
829   Here's a gist of what gets emitted:
830 
831   ; Establish frame pointer, if needed
832   [if needs FP]
833       push  %rbp
834       .cfi_def_cfa_offset 16
835       .cfi_offset %rbp, -16
836       .seh_pushreg %rpb
837       mov  %rsp, %rbp
838       .cfi_def_cfa_register %rbp
839 
840   ; Spill general-purpose registers
841   [for all callee-saved GPRs]
842       pushq %<reg>
843       [if not needs FP]
844          .cfi_def_cfa_offset (offset from RETADDR)
845       .seh_pushreg %<reg>
846 
847   ; If the required stack alignment > default stack alignment
848   ; rsp needs to be re-aligned.  This creates a "re-alignment gap"
849   ; of unknown size in the stack frame.
850   [if stack needs re-alignment]
851       and  $MASK, %rsp
852 
853   ; Allocate space for locals
854   [if target is Windows and allocated space > 4096 bytes]
855       ; Windows needs special care for allocations larger
856       ; than one page.
857       mov $NNN, %rax
858       call ___chkstk_ms/___chkstk
859       sub  %rax, %rsp
860   [else]
861       sub  $NNN, %rsp
862 
863   [if needs FP]
864       .seh_stackalloc (size of XMM spill slots)
865       .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
866   [else]
867       .seh_stackalloc NNN
868 
869   ; Spill XMMs
870   ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
871   ; they may get spilled on any platform, if the current function
872   ; calls @llvm.eh.unwind.init
873   [if needs FP]
874       [for all callee-saved XMM registers]
875           movaps  %<xmm reg>, -MMM(%rbp)
876       [for all callee-saved XMM registers]
877           .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
878               ; i.e. the offset relative to (%rbp - SEHFrameOffset)
879   [else]
880       [for all callee-saved XMM registers]
881           movaps  %<xmm reg>, KKK(%rsp)
882       [for all callee-saved XMM registers]
883           .seh_savexmm %<xmm reg>, KKK
884 
885   .seh_endprologue
886 
887   [if needs base pointer]
888       mov  %rsp, %rbx
889       [if needs to restore base pointer]
890           mov %rsp, -MMM(%rbp)
891 
892   ; Emit CFI info
893   [if needs FP]
894       [for all callee-saved registers]
895           .cfi_offset %<reg>, (offset from %rbp)
896   [else]
897        .cfi_def_cfa_offset (offset from RETADDR)
898       [for all callee-saved registers]
899           .cfi_offset %<reg>, (offset from %rsp)
900 
901   Notes:
902   - .seh directives are emitted only for Windows 64 ABI
903   - .cfi directives are emitted for all other ABIs
904   - for 32-bit code, substitute %e?? registers for %r??
905 */
906 
emitPrologue(MachineFunction & MF,MachineBasicBlock & MBB) const907 void X86FrameLowering::emitPrologue(MachineFunction &MF,
908                                     MachineBasicBlock &MBB) const {
909   assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
910          "MF used frame lowering for wrong subtarget");
911   MachineBasicBlock::iterator MBBI = MBB.begin();
912   MachineFrameInfo *MFI = MF.getFrameInfo();
913   const Function *Fn = MF.getFunction();
914   MachineModuleInfo &MMI = MF.getMMI();
915   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
916   uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment.
917   uint64_t StackSize = MFI->getStackSize();    // Number of bytes to allocate.
918   bool IsFunclet = MBB.isEHFuncletEntry();
919   EHPersonality Personality = EHPersonality::Unknown;
920   if (Fn->hasPersonalityFn())
921     Personality = classifyEHPersonality(Fn->getPersonalityFn());
922   bool FnHasClrFunclet =
923       MMI.hasEHFunclets() && Personality == EHPersonality::CoreCLR;
924   bool IsClrFunclet = IsFunclet && FnHasClrFunclet;
925   bool HasFP = hasFP(MF);
926   bool IsWin64CC = STI.isCallingConvWin64(Fn->getCallingConv());
927   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
928   bool NeedsWinCFI = IsWin64Prologue && Fn->needsUnwindTableEntry();
929   bool NeedsDwarfCFI =
930       !IsWin64Prologue && (MMI.hasDebugInfo() || Fn->needsUnwindTableEntry());
931   unsigned FramePtr = TRI->getFrameRegister(MF);
932   const unsigned MachineFramePtr =
933       STI.isTarget64BitILP32()
934           ? getX86SubSuperRegister(FramePtr, 64) : FramePtr;
935   unsigned BasePtr = TRI->getBaseRegister();
936 
937   // Debug location must be unknown since the first debug location is used
938   // to determine the end of the prologue.
939   DebugLoc DL;
940 
941   // Add RETADDR move area to callee saved frame size.
942   int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
943   if (TailCallReturnAddrDelta && IsWin64Prologue)
944     report_fatal_error("Can't handle guaranteed tail call under win64 yet");
945 
946   if (TailCallReturnAddrDelta < 0)
947     X86FI->setCalleeSavedFrameSize(
948       X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
949 
950   bool UseStackProbe = (STI.isOSWindows() && !STI.isTargetMachO());
951 
952   // The default stack probe size is 4096 if the function has no stackprobesize
953   // attribute.
954   unsigned StackProbeSize = 4096;
955   if (Fn->hasFnAttribute("stack-probe-size"))
956     Fn->getFnAttribute("stack-probe-size")
957         .getValueAsString()
958         .getAsInteger(0, StackProbeSize);
959 
960   // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
961   // function, and use up to 128 bytes of stack space, don't have a frame
962   // pointer, calls, or dynamic alloca then we do not need to adjust the
963   // stack pointer (we fit in the Red Zone). We also check that we don't
964   // push and pop from the stack.
965   if (Is64Bit && !Fn->hasFnAttribute(Attribute::NoRedZone) &&
966       !TRI->needsStackRealignment(MF) &&
967       !MFI->hasVarSizedObjects() &&             // No dynamic alloca.
968       !MFI->adjustsStack() &&                   // No calls.
969       !IsWin64CC &&                             // Win64 has no Red Zone
970       !MFI->hasCopyImplyingStackAdjustment() && // Don't push and pop.
971       !MF.shouldSplitStack()) {                 // Regular stack
972     uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
973     if (HasFP) MinSize += SlotSize;
974     X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0);
975     StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
976     MFI->setStackSize(StackSize);
977   }
978 
979   // Insert stack pointer adjustment for later moving of return addr.  Only
980   // applies to tail call optimized functions where the callee argument stack
981   // size is bigger than the callers.
982   if (TailCallReturnAddrDelta < 0) {
983     BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta,
984                          /*InEpilogue=*/false)
985         .setMIFlag(MachineInstr::FrameSetup);
986   }
987 
988   // Mapping for machine moves:
989   //
990   //   DST: VirtualFP AND
991   //        SRC: VirtualFP              => DW_CFA_def_cfa_offset
992   //        ELSE                        => DW_CFA_def_cfa
993   //
994   //   SRC: VirtualFP AND
995   //        DST: Register               => DW_CFA_def_cfa_register
996   //
997   //   ELSE
998   //        OFFSET < 0                  => DW_CFA_offset_extended_sf
999   //        REG < 64                    => DW_CFA_offset + Reg
1000   //        ELSE                        => DW_CFA_offset_extended
1001 
1002   uint64_t NumBytes = 0;
1003   int stackGrowth = -SlotSize;
1004 
1005   // Find the funclet establisher parameter
1006   unsigned Establisher = X86::NoRegister;
1007   if (IsClrFunclet)
1008     Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX;
1009   else if (IsFunclet)
1010     Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX;
1011 
1012   if (IsWin64Prologue && IsFunclet && !IsClrFunclet) {
1013     // Immediately spill establisher into the home slot.
1014     // The runtime cares about this.
1015     // MOV64mr %rdx, 16(%rsp)
1016     unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1017     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16)
1018         .addReg(Establisher)
1019         .setMIFlag(MachineInstr::FrameSetup);
1020     MBB.addLiveIn(Establisher);
1021   }
1022 
1023   if (HasFP) {
1024     // Calculate required stack adjustment.
1025     uint64_t FrameSize = StackSize - SlotSize;
1026     // If required, include space for extra hidden slot for stashing base pointer.
1027     if (X86FI->getRestoreBasePointer())
1028       FrameSize += SlotSize;
1029 
1030     NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
1031 
1032     // Callee-saved registers are pushed on stack before the stack is realigned.
1033     if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
1034       NumBytes = alignTo(NumBytes, MaxAlign);
1035 
1036     // Get the offset of the stack slot for the EBP register, which is
1037     // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
1038     // Update the frame offset adjustment.
1039     if (!IsFunclet)
1040       MFI->setOffsetAdjustment(-NumBytes);
1041     else
1042       assert(MFI->getOffsetAdjustment() == -(int)NumBytes &&
1043              "should calculate same local variable offset for funclets");
1044 
1045     // Save EBP/RBP into the appropriate stack slot.
1046     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
1047       .addReg(MachineFramePtr, RegState::Kill)
1048       .setMIFlag(MachineInstr::FrameSetup);
1049 
1050     if (NeedsDwarfCFI) {
1051       // Mark the place where EBP/RBP was saved.
1052       // Define the current CFA rule to use the provided offset.
1053       assert(StackSize);
1054       BuildCFI(MBB, MBBI, DL,
1055                MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth));
1056 
1057       // Change the rule for the FramePtr to be an "offset" rule.
1058       unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1059       BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset(
1060                                   nullptr, DwarfFramePtr, 2 * stackGrowth));
1061     }
1062 
1063     if (NeedsWinCFI) {
1064       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1065           .addImm(FramePtr)
1066           .setMIFlag(MachineInstr::FrameSetup);
1067     }
1068 
1069     if (!IsWin64Prologue && !IsFunclet) {
1070       // Update EBP with the new base value.
1071       BuildMI(MBB, MBBI, DL,
1072               TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
1073               FramePtr)
1074           .addReg(StackPtr)
1075           .setMIFlag(MachineInstr::FrameSetup);
1076 
1077       if (NeedsDwarfCFI) {
1078         // Mark effective beginning of when frame pointer becomes valid.
1079         // Define the current CFA to use the EBP/RBP register.
1080         unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1081         BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister(
1082                                     nullptr, DwarfFramePtr));
1083       }
1084     }
1085 
1086     // Mark the FramePtr as live-in in every block. Don't do this again for
1087     // funclet prologues.
1088     if (!IsFunclet) {
1089       for (MachineBasicBlock &EveryMBB : MF)
1090         EveryMBB.addLiveIn(MachineFramePtr);
1091     }
1092   } else {
1093     assert(!IsFunclet && "funclets without FPs not yet implemented");
1094     NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
1095   }
1096 
1097   // For EH funclets, only allocate enough space for outgoing calls. Save the
1098   // NumBytes value that we would've used for the parent frame.
1099   unsigned ParentFrameNumBytes = NumBytes;
1100   if (IsFunclet)
1101     NumBytes = getWinEHFuncletFrameSize(MF);
1102 
1103   // Skip the callee-saved push instructions.
1104   bool PushedRegs = false;
1105   int StackOffset = 2 * stackGrowth;
1106 
1107   while (MBBI != MBB.end() &&
1108          MBBI->getFlag(MachineInstr::FrameSetup) &&
1109          (MBBI->getOpcode() == X86::PUSH32r ||
1110           MBBI->getOpcode() == X86::PUSH64r)) {
1111     PushedRegs = true;
1112     unsigned Reg = MBBI->getOperand(0).getReg();
1113     ++MBBI;
1114 
1115     if (!HasFP && NeedsDwarfCFI) {
1116       // Mark callee-saved push instruction.
1117       // Define the current CFA rule to use the provided offset.
1118       assert(StackSize);
1119       BuildCFI(MBB, MBBI, DL,
1120                MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset));
1121       StackOffset += stackGrowth;
1122     }
1123 
1124     if (NeedsWinCFI) {
1125       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)).addImm(Reg).setMIFlag(
1126           MachineInstr::FrameSetup);
1127     }
1128   }
1129 
1130   // Realign stack after we pushed callee-saved registers (so that we'll be
1131   // able to calculate their offsets from the frame pointer).
1132   // Don't do this for Win64, it needs to realign the stack after the prologue.
1133   if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) {
1134     assert(HasFP && "There should be a frame pointer if stack is realigned.");
1135     BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign);
1136   }
1137 
1138   // If there is an SUB32ri of ESP immediately before this instruction, merge
1139   // the two. This can be the case when tail call elimination is enabled and
1140   // the callee has more arguments then the caller.
1141   NumBytes -= mergeSPUpdates(MBB, MBBI, true);
1142 
1143   // Adjust stack pointer: ESP -= numbytes.
1144 
1145   // Windows and cygwin/mingw require a prologue helper routine when allocating
1146   // more than 4K bytes on the stack.  Windows uses __chkstk and cygwin/mingw
1147   // uses __alloca.  __alloca and the 32-bit version of __chkstk will probe the
1148   // stack and adjust the stack pointer in one go.  The 64-bit version of
1149   // __chkstk is only responsible for probing the stack.  The 64-bit prologue is
1150   // responsible for adjusting the stack pointer.  Touching the stack at 4K
1151   // increments is necessary to ensure that the guard pages used by the OS
1152   // virtual memory manager are allocated in correct sequence.
1153   uint64_t AlignedNumBytes = NumBytes;
1154   if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF))
1155     AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign);
1156   if (AlignedNumBytes >= StackProbeSize && UseStackProbe) {
1157     // Check whether EAX is livein for this block.
1158     bool isEAXAlive = isEAXLiveIn(MBB);
1159 
1160     if (isEAXAlive) {
1161       // Sanity check that EAX is not livein for this function.
1162       // It should not be, so throw an assert.
1163       assert(!Is64Bit && "EAX is livein in x64 case!");
1164 
1165       // Save EAX
1166       BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
1167         .addReg(X86::EAX, RegState::Kill)
1168         .setMIFlag(MachineInstr::FrameSetup);
1169     }
1170 
1171     if (Is64Bit) {
1172       // Handle the 64-bit Windows ABI case where we need to call __chkstk.
1173       // Function prologue is responsible for adjusting the stack pointer.
1174       if (isUInt<32>(NumBytes)) {
1175         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1176             .addImm(NumBytes)
1177             .setMIFlag(MachineInstr::FrameSetup);
1178       } else if (isInt<32>(NumBytes)) {
1179         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX)
1180             .addImm(NumBytes)
1181             .setMIFlag(MachineInstr::FrameSetup);
1182       } else {
1183         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
1184             .addImm(NumBytes)
1185             .setMIFlag(MachineInstr::FrameSetup);
1186       }
1187     } else {
1188       // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
1189       // We'll also use 4 already allocated bytes for EAX.
1190       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1191           .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
1192           .setMIFlag(MachineInstr::FrameSetup);
1193     }
1194 
1195     // Call __chkstk, __chkstk_ms, or __alloca.
1196     emitStackProbe(MF, MBB, MBBI, DL, true);
1197 
1198     if (isEAXAlive) {
1199       // Restore EAX
1200       MachineInstr *MI =
1201           addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX),
1202                        StackPtr, false, NumBytes - 4);
1203       MI->setFlag(MachineInstr::FrameSetup);
1204       MBB.insert(MBBI, MI);
1205     }
1206   } else if (NumBytes) {
1207     emitSPUpdate(MBB, MBBI, -(int64_t)NumBytes, /*InEpilogue=*/false);
1208   }
1209 
1210   if (NeedsWinCFI && NumBytes)
1211     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
1212         .addImm(NumBytes)
1213         .setMIFlag(MachineInstr::FrameSetup);
1214 
1215   int SEHFrameOffset = 0;
1216   unsigned SPOrEstablisher;
1217   if (IsFunclet) {
1218     if (IsClrFunclet) {
1219       // The establisher parameter passed to a CLR funclet is actually a pointer
1220       // to the (mostly empty) frame of its nearest enclosing funclet; we have
1221       // to find the root function establisher frame by loading the PSPSym from
1222       // the intermediate frame.
1223       unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1224       MachinePointerInfo NoInfo;
1225       MBB.addLiveIn(Establisher);
1226       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher),
1227                    Establisher, false, PSPSlotOffset)
1228           .addMemOperand(MF.getMachineMemOperand(
1229               NoInfo, MachineMemOperand::MOLoad, SlotSize, SlotSize));
1230       ;
1231       // Save the root establisher back into the current funclet's (mostly
1232       // empty) frame, in case a sub-funclet or the GC needs it.
1233       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr,
1234                    false, PSPSlotOffset)
1235           .addReg(Establisher)
1236           .addMemOperand(
1237               MF.getMachineMemOperand(NoInfo, MachineMemOperand::MOStore |
1238                                                   MachineMemOperand::MOVolatile,
1239                                       SlotSize, SlotSize));
1240     }
1241     SPOrEstablisher = Establisher;
1242   } else {
1243     SPOrEstablisher = StackPtr;
1244   }
1245 
1246   if (IsWin64Prologue && HasFP) {
1247     // Set RBP to a small fixed offset from RSP. In the funclet case, we base
1248     // this calculation on the incoming establisher, which holds the value of
1249     // RSP from the parent frame at the end of the prologue.
1250     SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes);
1251     if (SEHFrameOffset)
1252       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr),
1253                    SPOrEstablisher, false, SEHFrameOffset);
1254     else
1255       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr)
1256           .addReg(SPOrEstablisher);
1257 
1258     // If this is not a funclet, emit the CFI describing our frame pointer.
1259     if (NeedsWinCFI && !IsFunclet) {
1260       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1261           .addImm(FramePtr)
1262           .addImm(SEHFrameOffset)
1263           .setMIFlag(MachineInstr::FrameSetup);
1264       if (isAsynchronousEHPersonality(Personality))
1265         MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset;
1266     }
1267   } else if (IsFunclet && STI.is32Bit()) {
1268     // Reset EBP / ESI to something good for funclets.
1269     MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL);
1270     // If we're a catch funclet, we can be returned to via catchret. Save ESP
1271     // into the registration node so that the runtime will restore it for us.
1272     if (!MBB.isCleanupFuncletEntry()) {
1273       assert(Personality == EHPersonality::MSVC_CXX);
1274       unsigned FrameReg;
1275       int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex;
1276       int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg);
1277       // ESP is the first field, so no extra displacement is needed.
1278       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg,
1279                    false, EHRegOffset)
1280           .addReg(X86::ESP);
1281     }
1282   }
1283 
1284   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) {
1285     const MachineInstr &FrameInstr = *MBBI;
1286     ++MBBI;
1287 
1288     if (NeedsWinCFI) {
1289       int FI;
1290       if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) {
1291         if (X86::FR64RegClass.contains(Reg)) {
1292           unsigned IgnoredFrameReg;
1293           int Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg);
1294           Offset += SEHFrameOffset;
1295 
1296           BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
1297               .addImm(Reg)
1298               .addImm(Offset)
1299               .setMIFlag(MachineInstr::FrameSetup);
1300         }
1301       }
1302     }
1303   }
1304 
1305   if (NeedsWinCFI)
1306     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
1307         .setMIFlag(MachineInstr::FrameSetup);
1308 
1309   if (FnHasClrFunclet && !IsFunclet) {
1310     // Save the so-called Initial-SP (i.e. the value of the stack pointer
1311     // immediately after the prolog)  into the PSPSlot so that funclets
1312     // and the GC can recover it.
1313     unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1314     auto PSPInfo = MachinePointerInfo::getFixedStack(
1315         MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx);
1316     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false,
1317                  PSPSlotOffset)
1318         .addReg(StackPtr)
1319         .addMemOperand(MF.getMachineMemOperand(
1320             PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
1321             SlotSize, SlotSize));
1322   }
1323 
1324   // Realign stack after we spilled callee-saved registers (so that we'll be
1325   // able to calculate their offsets from the frame pointer).
1326   // Win64 requires aligning the stack after the prologue.
1327   if (IsWin64Prologue && TRI->needsStackRealignment(MF)) {
1328     assert(HasFP && "There should be a frame pointer if stack is realigned.");
1329     BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign);
1330   }
1331 
1332   // We already dealt with stack realignment and funclets above.
1333   if (IsFunclet && STI.is32Bit())
1334     return;
1335 
1336   // If we need a base pointer, set it up here. It's whatever the value
1337   // of the stack pointer is at this point. Any variable size objects
1338   // will be allocated after this, so we can still use the base pointer
1339   // to reference locals.
1340   if (TRI->hasBasePointer(MF)) {
1341     // Update the base pointer with the current stack pointer.
1342     unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
1343     BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
1344       .addReg(SPOrEstablisher)
1345       .setMIFlag(MachineInstr::FrameSetup);
1346     if (X86FI->getRestoreBasePointer()) {
1347       // Stash value of base pointer.  Saving RSP instead of EBP shortens
1348       // dependence chain. Used by SjLj EH.
1349       unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1350       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)),
1351                    FramePtr, true, X86FI->getRestoreBasePointerOffset())
1352         .addReg(SPOrEstablisher)
1353         .setMIFlag(MachineInstr::FrameSetup);
1354     }
1355 
1356     if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) {
1357       // Stash the value of the frame pointer relative to the base pointer for
1358       // Win32 EH. This supports Win32 EH, which does the inverse of the above:
1359       // it recovers the frame pointer from the base pointer rather than the
1360       // other way around.
1361       unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1362       unsigned UsedReg;
1363       int Offset =
1364           getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
1365       assert(UsedReg == BasePtr);
1366       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset)
1367           .addReg(FramePtr)
1368           .setMIFlag(MachineInstr::FrameSetup);
1369     }
1370   }
1371 
1372   if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
1373     // Mark end of stack pointer adjustment.
1374     if (!HasFP && NumBytes) {
1375       // Define the current CFA rule to use the provided offset.
1376       assert(StackSize);
1377       BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset(
1378                                   nullptr, -StackSize + stackGrowth));
1379     }
1380 
1381     // Emit DWARF info specifying the offsets of the callee-saved registers.
1382     if (PushedRegs)
1383       emitCalleeSavedFrameMoves(MBB, MBBI, DL);
1384   }
1385 
1386   // X86 Interrupt handling function cannot assume anything about the direction
1387   // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction
1388   // in each prologue of interrupt handler function.
1389   //
1390   // FIXME: Create "cld" instruction only in these cases:
1391   // 1. The interrupt handling function uses any of the "rep" instructions.
1392   // 2. Interrupt handling function calls another function.
1393   //
1394   if (Fn->getCallingConv() == CallingConv::X86_INTR)
1395     BuildMI(MBB, MBBI, DL, TII.get(X86::CLD))
1396         .setMIFlag(MachineInstr::FrameSetup);
1397 }
1398 
canUseLEAForSPInEpilogue(const MachineFunction & MF) const1399 bool X86FrameLowering::canUseLEAForSPInEpilogue(
1400     const MachineFunction &MF) const {
1401   // We can't use LEA instructions for adjusting the stack pointer if this is a
1402   // leaf function in the Win64 ABI.  Only ADD instructions may be used to
1403   // deallocate the stack.
1404   // This means that we can use LEA for SP in two situations:
1405   // 1. We *aren't* using the Win64 ABI which means we are free to use LEA.
1406   // 2. We *have* a frame pointer which means we are permitted to use LEA.
1407   return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF);
1408 }
1409 
isFuncletReturnInstr(MachineInstr & MI)1410 static bool isFuncletReturnInstr(MachineInstr &MI) {
1411   switch (MI.getOpcode()) {
1412   case X86::CATCHRET:
1413   case X86::CLEANUPRET:
1414     return true;
1415   default:
1416     return false;
1417   }
1418   llvm_unreachable("impossible");
1419 }
1420 
1421 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the
1422 // stack. It holds a pointer to the bottom of the root function frame.  The
1423 // establisher frame pointer passed to a nested funclet may point to the
1424 // (mostly empty) frame of its parent funclet, but it will need to find
1425 // the frame of the root function to access locals.  To facilitate this,
1426 // every funclet copies the pointer to the bottom of the root function
1427 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the
1428 // same offset for the PSPSym in the root function frame that's used in the
1429 // funclets' frames allows each funclet to dynamically accept any ancestor
1430 // frame as its establisher argument (the runtime doesn't guarantee the
1431 // immediate parent for some reason lost to history), and also allows the GC,
1432 // which uses the PSPSym for some bookkeeping, to find it in any funclet's
1433 // frame with only a single offset reported for the entire method.
1434 unsigned
getPSPSlotOffsetFromSP(const MachineFunction & MF) const1435 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const {
1436   const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo();
1437   unsigned SPReg;
1438   int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg,
1439                                               /*IgnoreSPUpdates*/ true);
1440   assert(Offset >= 0 && SPReg == TRI->getStackRegister());
1441   return static_cast<unsigned>(Offset);
1442 }
1443 
1444 unsigned
getWinEHFuncletFrameSize(const MachineFunction & MF) const1445 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const {
1446   // This is the size of the pushed CSRs.
1447   unsigned CSSize =
1448       MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
1449   // This is the amount of stack a funclet needs to allocate.
1450   unsigned UsedSize;
1451   EHPersonality Personality =
1452       classifyEHPersonality(MF.getFunction()->getPersonalityFn());
1453   if (Personality == EHPersonality::CoreCLR) {
1454     // CLR funclets need to hold enough space to include the PSPSym, at the
1455     // same offset from the stack pointer (immediately after the prolog) as it
1456     // resides at in the main function.
1457     UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize;
1458   } else {
1459     // Other funclets just need enough stack for outgoing call arguments.
1460     UsedSize = MF.getFrameInfo()->getMaxCallFrameSize();
1461   }
1462   // RBP is not included in the callee saved register block. After pushing RBP,
1463   // everything is 16 byte aligned. Everything we allocate before an outgoing
1464   // call must also be 16 byte aligned.
1465   unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlignment());
1466   // Subtract out the size of the callee saved registers. This is how much stack
1467   // each funclet will allocate.
1468   return FrameSizeMinusRBP - CSSize;
1469 }
1470 
isTailCallOpcode(unsigned Opc)1471 static bool isTailCallOpcode(unsigned Opc) {
1472     return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi ||
1473         Opc == X86::TCRETURNmi ||
1474         Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 ||
1475         Opc == X86::TCRETURNmi64;
1476 }
1477 
emitEpilogue(MachineFunction & MF,MachineBasicBlock & MBB) const1478 void X86FrameLowering::emitEpilogue(MachineFunction &MF,
1479                                     MachineBasicBlock &MBB) const {
1480   const MachineFrameInfo *MFI = MF.getFrameInfo();
1481   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1482   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1483   unsigned RetOpcode = MBBI->getOpcode();
1484   DebugLoc DL;
1485   if (MBBI != MBB.end())
1486     DL = MBBI->getDebugLoc();
1487   // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
1488   const bool Is64BitILP32 = STI.isTarget64BitILP32();
1489   unsigned FramePtr = TRI->getFrameRegister(MF);
1490   unsigned MachineFramePtr =
1491       Is64BitILP32 ? getX86SubSuperRegister(FramePtr, 64) : FramePtr;
1492 
1493   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1494   bool NeedsWinCFI =
1495       IsWin64Prologue && MF.getFunction()->needsUnwindTableEntry();
1496   bool IsFunclet = isFuncletReturnInstr(*MBBI);
1497   MachineBasicBlock *TargetMBB = nullptr;
1498 
1499   // Get the number of bytes to allocate from the FrameInfo.
1500   uint64_t StackSize = MFI->getStackSize();
1501   uint64_t MaxAlign = calculateMaxStackAlign(MF);
1502   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1503   uint64_t NumBytes = 0;
1504 
1505   if (MBBI->getOpcode() == X86::CATCHRET) {
1506     // SEH shouldn't use catchret.
1507     assert(!isAsynchronousEHPersonality(
1508                classifyEHPersonality(MF.getFunction()->getPersonalityFn())) &&
1509            "SEH should not use CATCHRET");
1510 
1511     NumBytes = getWinEHFuncletFrameSize(MF);
1512     assert(hasFP(MF) && "EH funclets without FP not yet implemented");
1513     TargetMBB = MBBI->getOperand(0).getMBB();
1514 
1515     // Pop EBP.
1516     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
1517             MachineFramePtr)
1518         .setMIFlag(MachineInstr::FrameDestroy);
1519   } else if (MBBI->getOpcode() == X86::CLEANUPRET) {
1520     NumBytes = getWinEHFuncletFrameSize(MF);
1521     assert(hasFP(MF) && "EH funclets without FP not yet implemented");
1522     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
1523             MachineFramePtr)
1524         .setMIFlag(MachineInstr::FrameDestroy);
1525   } else if (hasFP(MF)) {
1526     // Calculate required stack adjustment.
1527     uint64_t FrameSize = StackSize - SlotSize;
1528     NumBytes = FrameSize - CSSize;
1529 
1530     // Callee-saved registers were pushed on stack before the stack was
1531     // realigned.
1532     if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
1533       NumBytes = alignTo(FrameSize, MaxAlign);
1534 
1535     // Pop EBP.
1536     BuildMI(MBB, MBBI, DL,
1537             TII.get(Is64Bit ? X86::POP64r : X86::POP32r), MachineFramePtr)
1538         .setMIFlag(MachineInstr::FrameDestroy);
1539   } else {
1540     NumBytes = StackSize - CSSize;
1541   }
1542   uint64_t SEHStackAllocAmt = NumBytes;
1543 
1544   // Skip the callee-saved pop instructions.
1545   while (MBBI != MBB.begin()) {
1546     MachineBasicBlock::iterator PI = std::prev(MBBI);
1547     unsigned Opc = PI->getOpcode();
1548 
1549     if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
1550         (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
1551         Opc != X86::DBG_VALUE && !PI->isTerminator())
1552       break;
1553 
1554     --MBBI;
1555   }
1556   MachineBasicBlock::iterator FirstCSPop = MBBI;
1557 
1558   if (TargetMBB) {
1559     // Fill EAX/RAX with the address of the target block.
1560     unsigned ReturnReg = STI.is64Bit() ? X86::RAX : X86::EAX;
1561     if (STI.is64Bit()) {
1562       // LEA64r TargetMBB(%rip), %rax
1563       BuildMI(MBB, FirstCSPop, DL, TII.get(X86::LEA64r), ReturnReg)
1564           .addReg(X86::RIP)
1565           .addImm(0)
1566           .addReg(0)
1567           .addMBB(TargetMBB)
1568           .addReg(0);
1569     } else {
1570       // MOV32ri $TargetMBB, %eax
1571       BuildMI(MBB, FirstCSPop, DL, TII.get(X86::MOV32ri), ReturnReg)
1572           .addMBB(TargetMBB);
1573     }
1574     // Record that we've taken the address of TargetMBB and no longer just
1575     // reference it in a terminator.
1576     TargetMBB->setHasAddressTaken();
1577   }
1578 
1579   if (MBBI != MBB.end())
1580     DL = MBBI->getDebugLoc();
1581 
1582   // If there is an ADD32ri or SUB32ri of ESP immediately before this
1583   // instruction, merge the two instructions.
1584   if (NumBytes || MFI->hasVarSizedObjects())
1585     NumBytes += mergeSPUpdates(MBB, MBBI, true);
1586 
1587   // If dynamic alloca is used, then reset esp to point to the last callee-saved
1588   // slot before popping them off! Same applies for the case, when stack was
1589   // realigned. Don't do this if this was a funclet epilogue, since the funclets
1590   // will not do realignment or dynamic stack allocation.
1591   if ((TRI->needsStackRealignment(MF) || MFI->hasVarSizedObjects()) &&
1592       !IsFunclet) {
1593     if (TRI->needsStackRealignment(MF))
1594       MBBI = FirstCSPop;
1595     unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt);
1596     uint64_t LEAAmount =
1597         IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize;
1598 
1599     // There are only two legal forms of epilogue:
1600     // - add SEHAllocationSize, %rsp
1601     // - lea SEHAllocationSize(%FramePtr), %rsp
1602     //
1603     // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence.
1604     // However, we may use this sequence if we have a frame pointer because the
1605     // effects of the prologue can safely be undone.
1606     if (LEAAmount != 0) {
1607       unsigned Opc = getLEArOpcode(Uses64BitFramePtr);
1608       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
1609                    FramePtr, false, LEAAmount);
1610       --MBBI;
1611     } else {
1612       unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
1613       BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
1614         .addReg(FramePtr);
1615       --MBBI;
1616     }
1617   } else if (NumBytes) {
1618     // Adjust stack pointer back: ESP += numbytes.
1619     emitSPUpdate(MBB, MBBI, NumBytes, /*InEpilogue=*/true);
1620     --MBBI;
1621   }
1622 
1623   // Windows unwinder will not invoke function's exception handler if IP is
1624   // either in prologue or in epilogue.  This behavior causes a problem when a
1625   // call immediately precedes an epilogue, because the return address points
1626   // into the epilogue.  To cope with that, we insert an epilogue marker here,
1627   // then replace it with a 'nop' if it ends up immediately after a CALL in the
1628   // final emitted code.
1629   if (NeedsWinCFI)
1630     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));
1631 
1632   if (!isTailCallOpcode(RetOpcode)) {
1633     // Add the return addr area delta back since we are not tail calling.
1634     int Offset = -1 * X86FI->getTCReturnAddrDelta();
1635     assert(Offset >= 0 && "TCDelta should never be positive");
1636     if (Offset) {
1637       MBBI = MBB.getFirstTerminator();
1638 
1639       // Check for possible merge with preceding ADD instruction.
1640       Offset += mergeSPUpdates(MBB, MBBI, true);
1641       emitSPUpdate(MBB, MBBI, Offset, /*InEpilogue=*/true);
1642     }
1643   }
1644 }
1645 
1646 // NOTE: this only has a subset of the full frame index logic. In
1647 // particular, the FI < 0 and AfterFPPop logic is handled in
1648 // X86RegisterInfo::eliminateFrameIndex, but not here. Possibly
1649 // (probably?) it should be moved into here.
getFrameIndexReference(const MachineFunction & MF,int FI,unsigned & FrameReg) const1650 int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
1651                                              unsigned &FrameReg) const {
1652   const MachineFrameInfo *MFI = MF.getFrameInfo();
1653 
1654   // We can't calculate offset from frame pointer if the stack is realigned,
1655   // so enforce usage of stack/base pointer.  The base pointer is used when we
1656   // have dynamic allocas in addition to dynamic realignment.
1657   if (TRI->hasBasePointer(MF))
1658     FrameReg = TRI->getBaseRegister();
1659   else if (TRI->needsStackRealignment(MF))
1660     FrameReg = TRI->getStackRegister();
1661   else
1662     FrameReg = TRI->getFrameRegister(MF);
1663 
1664   // Offset will hold the offset from the stack pointer at function entry to the
1665   // object.
1666   // We need to factor in additional offsets applied during the prologue to the
1667   // frame, base, and stack pointer depending on which is used.
1668   int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea();
1669   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1670   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1671   uint64_t StackSize = MFI->getStackSize();
1672   bool HasFP = hasFP(MF);
1673   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1674   int64_t FPDelta = 0;
1675 
1676   if (IsWin64Prologue) {
1677     assert(!MFI->hasCalls() || (StackSize % 16) == 8);
1678 
1679     // Calculate required stack adjustment.
1680     uint64_t FrameSize = StackSize - SlotSize;
1681     // If required, include space for extra hidden slot for stashing base pointer.
1682     if (X86FI->getRestoreBasePointer())
1683       FrameSize += SlotSize;
1684     uint64_t NumBytes = FrameSize - CSSize;
1685 
1686     uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes);
1687     if (FI && FI == X86FI->getFAIndex())
1688       return -SEHFrameOffset;
1689 
1690     // FPDelta is the offset from the "traditional" FP location of the old base
1691     // pointer followed by return address and the location required by the
1692     // restricted Win64 prologue.
1693     // Add FPDelta to all offsets below that go through the frame pointer.
1694     FPDelta = FrameSize - SEHFrameOffset;
1695     assert((!MFI->hasCalls() || (FPDelta % 16) == 0) &&
1696            "FPDelta isn't aligned per the Win64 ABI!");
1697   }
1698 
1699 
1700   if (TRI->hasBasePointer(MF)) {
1701     assert(HasFP && "VLAs and dynamic stack realign, but no FP?!");
1702     if (FI < 0) {
1703       // Skip the saved EBP.
1704       return Offset + SlotSize + FPDelta;
1705     } else {
1706       assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
1707       return Offset + StackSize;
1708     }
1709   } else if (TRI->needsStackRealignment(MF)) {
1710     if (FI < 0) {
1711       // Skip the saved EBP.
1712       return Offset + SlotSize + FPDelta;
1713     } else {
1714       assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
1715       return Offset + StackSize;
1716     }
1717     // FIXME: Support tail calls
1718   } else {
1719     if (!HasFP)
1720       return Offset + StackSize;
1721 
1722     // Skip the saved EBP.
1723     Offset += SlotSize;
1724 
1725     // Skip the RETADDR move area
1726     int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1727     if (TailCallReturnAddrDelta < 0)
1728       Offset -= TailCallReturnAddrDelta;
1729   }
1730 
1731   return Offset + FPDelta;
1732 }
1733 
1734 int
getFrameIndexReferencePreferSP(const MachineFunction & MF,int FI,unsigned & FrameReg,bool IgnoreSPUpdates) const1735 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF,
1736                                                  int FI, unsigned &FrameReg,
1737                                                  bool IgnoreSPUpdates) const {
1738 
1739   const MachineFrameInfo *MFI = MF.getFrameInfo();
1740   // Does not include any dynamic realign.
1741   const uint64_t StackSize = MFI->getStackSize();
1742   // LLVM arranges the stack as follows:
1743   //   ...
1744   //   ARG2
1745   //   ARG1
1746   //   RETADDR
1747   //   PUSH RBP   <-- RBP points here
1748   //   PUSH CSRs
1749   //   ~~~~~~~    <-- possible stack realignment (non-win64)
1750   //   ...
1751   //   STACK OBJECTS
1752   //   ...        <-- RSP after prologue points here
1753   //   ~~~~~~~    <-- possible stack realignment (win64)
1754   //
1755   // if (hasVarSizedObjects()):
1756   //   ...        <-- "base pointer" (ESI/RBX) points here
1757   //   DYNAMIC ALLOCAS
1758   //   ...        <-- RSP points here
1759   //
1760   // Case 1: In the simple case of no stack realignment and no dynamic
1761   // allocas, both "fixed" stack objects (arguments and CSRs) are addressable
1762   // with fixed offsets from RSP.
1763   //
1764   // Case 2: In the case of stack realignment with no dynamic allocas, fixed
1765   // stack objects are addressed with RBP and regular stack objects with RSP.
1766   //
1767   // Case 3: In the case of dynamic allocas and stack realignment, RSP is used
1768   // to address stack arguments for outgoing calls and nothing else. The "base
1769   // pointer" points to local variables, and RBP points to fixed objects.
1770   //
1771   // In cases 2 and 3, we can only answer for non-fixed stack objects, and the
1772   // answer we give is relative to the SP after the prologue, and not the
1773   // SP in the middle of the function.
1774 
1775   if (MFI->isFixedObjectIndex(FI) && TRI->needsStackRealignment(MF) &&
1776       !STI.isTargetWin64())
1777     return getFrameIndexReference(MF, FI, FrameReg);
1778 
1779   // If !hasReservedCallFrame the function might have SP adjustement in the
1780   // body.  So, even though the offset is statically known, it depends on where
1781   // we are in the function.
1782   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
1783   if (!IgnoreSPUpdates && !TFI->hasReservedCallFrame(MF))
1784     return getFrameIndexReference(MF, FI, FrameReg);
1785 
1786   // We don't handle tail calls, and shouldn't be seeing them either.
1787   assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 &&
1788          "we don't handle this case!");
1789 
1790   // Fill in FrameReg output argument.
1791   FrameReg = TRI->getStackRegister();
1792 
1793   // This is how the math works out:
1794   //
1795   //  %rsp grows (i.e. gets lower) left to right. Each box below is
1796   //  one word (eight bytes).  Obj0 is the stack slot we're trying to
1797   //  get to.
1798   //
1799   //    ----------------------------------
1800   //    | BP | Obj0 | Obj1 | ... | ObjN |
1801   //    ----------------------------------
1802   //    ^    ^      ^                   ^
1803   //    A    B      C                   E
1804   //
1805   // A is the incoming stack pointer.
1806   // (B - A) is the local area offset (-8 for x86-64) [1]
1807   // (C - A) is the Offset returned by MFI->getObjectOffset for Obj0 [2]
1808   //
1809   // |(E - B)| is the StackSize (absolute value, positive).  For a
1810   // stack that grown down, this works out to be (B - E). [3]
1811   //
1812   // E is also the value of %rsp after stack has been set up, and we
1813   // want (C - E) -- the value we can add to %rsp to get to Obj0.  Now
1814   // (C - E) == (C - A) - (B - A) + (B - E)
1815   //            { Using [1], [2] and [3] above }
1816   //         == getObjectOffset - LocalAreaOffset + StackSize
1817   //
1818 
1819   // Get the Offset from the StackPointer
1820   int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea();
1821 
1822   return Offset + StackSize;
1823 }
1824 
assignCalleeSavedSpillSlots(MachineFunction & MF,const TargetRegisterInfo * TRI,std::vector<CalleeSavedInfo> & CSI) const1825 bool X86FrameLowering::assignCalleeSavedSpillSlots(
1826     MachineFunction &MF, const TargetRegisterInfo *TRI,
1827     std::vector<CalleeSavedInfo> &CSI) const {
1828   MachineFrameInfo *MFI = MF.getFrameInfo();
1829   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1830 
1831   unsigned CalleeSavedFrameSize = 0;
1832   int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();
1833 
1834   if (hasFP(MF)) {
1835     // emitPrologue always spills frame register the first thing.
1836     SpillSlotOffset -= SlotSize;
1837     MFI->CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
1838 
1839     // Since emitPrologue and emitEpilogue will handle spilling and restoring of
1840     // the frame register, we can delete it from CSI list and not have to worry
1841     // about avoiding it later.
1842     unsigned FPReg = TRI->getFrameRegister(MF);
1843     for (unsigned i = 0; i < CSI.size(); ++i) {
1844       if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) {
1845         CSI.erase(CSI.begin() + i);
1846         break;
1847       }
1848     }
1849   }
1850 
1851   // Assign slots for GPRs. It increases frame size.
1852   for (unsigned i = CSI.size(); i != 0; --i) {
1853     unsigned Reg = CSI[i - 1].getReg();
1854 
1855     if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
1856       continue;
1857 
1858     SpillSlotOffset -= SlotSize;
1859     CalleeSavedFrameSize += SlotSize;
1860 
1861     int SlotIndex = MFI->CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
1862     CSI[i - 1].setFrameIdx(SlotIndex);
1863   }
1864 
1865   X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);
1866 
1867   // Assign slots for XMMs.
1868   for (unsigned i = CSI.size(); i != 0; --i) {
1869     unsigned Reg = CSI[i - 1].getReg();
1870     if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
1871       continue;
1872 
1873     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
1874     // ensure alignment
1875     SpillSlotOffset -= std::abs(SpillSlotOffset) % RC->getAlignment();
1876     // spill into slot
1877     SpillSlotOffset -= RC->getSize();
1878     int SlotIndex =
1879         MFI->CreateFixedSpillStackObject(RC->getSize(), SpillSlotOffset);
1880     CSI[i - 1].setFrameIdx(SlotIndex);
1881     MFI->ensureMaxAlignment(RC->getAlignment());
1882   }
1883 
1884   return true;
1885 }
1886 
spillCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const std::vector<CalleeSavedInfo> & CSI,const TargetRegisterInfo * TRI) const1887 bool X86FrameLowering::spillCalleeSavedRegisters(
1888     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
1889     const std::vector<CalleeSavedInfo> &CSI,
1890     const TargetRegisterInfo *TRI) const {
1891   DebugLoc DL = MBB.findDebugLoc(MI);
1892 
1893   // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI
1894   // for us, and there are no XMM CSRs on Win32.
1895   if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows())
1896     return true;
1897 
1898   // Push GPRs. It increases frame size.
1899   const MachineFunction &MF = *MBB.getParent();
1900   unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
1901   for (unsigned i = CSI.size(); i != 0; --i) {
1902     unsigned Reg = CSI[i - 1].getReg();
1903 
1904     if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
1905       continue;
1906 
1907     const MachineRegisterInfo &MRI = MF.getRegInfo();
1908     bool isLiveIn = MRI.isLiveIn(Reg);
1909     if (!isLiveIn)
1910       MBB.addLiveIn(Reg);
1911 
1912     // Decide whether we can add a kill flag to the use.
1913     bool CanKill = !isLiveIn;
1914     // Check if any subregister is live-in
1915     if (CanKill) {
1916       for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) {
1917         if (MRI.isLiveIn(*AReg)) {
1918           CanKill = false;
1919           break;
1920         }
1921       }
1922     }
1923 
1924     // Do not set a kill flag on values that are also marked as live-in. This
1925     // happens with the @llvm-returnaddress intrinsic and with arguments
1926     // passed in callee saved registers.
1927     // Omitting the kill flags is conservatively correct even if the live-in
1928     // is not used after all.
1929     BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill))
1930       .setMIFlag(MachineInstr::FrameSetup);
1931   }
1932 
1933   // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
1934   // It can be done by spilling XMMs to stack frame.
1935   for (unsigned i = CSI.size(); i != 0; --i) {
1936     unsigned Reg = CSI[i-1].getReg();
1937     if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
1938       continue;
1939     // Add the callee-saved register as live-in. It's killed at the spill.
1940     MBB.addLiveIn(Reg);
1941     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
1942 
1943     TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC,
1944                             TRI);
1945     --MI;
1946     MI->setFlag(MachineInstr::FrameSetup);
1947     ++MI;
1948   }
1949 
1950   return true;
1951 }
1952 
restoreCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const std::vector<CalleeSavedInfo> & CSI,const TargetRegisterInfo * TRI) const1953 bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1954                                                MachineBasicBlock::iterator MI,
1955                                         const std::vector<CalleeSavedInfo> &CSI,
1956                                           const TargetRegisterInfo *TRI) const {
1957   if (CSI.empty())
1958     return false;
1959 
1960   if (isFuncletReturnInstr(*MI) && STI.isOSWindows()) {
1961     // Don't restore CSRs in 32-bit EH funclets. Matches
1962     // spillCalleeSavedRegisters.
1963     if (STI.is32Bit())
1964       return true;
1965     // Don't restore CSRs before an SEH catchret. SEH except blocks do not form
1966     // funclets. emitEpilogue transforms these to normal jumps.
1967     if (MI->getOpcode() == X86::CATCHRET) {
1968       const Function *Func = MBB.getParent()->getFunction();
1969       bool IsSEH = isAsynchronousEHPersonality(
1970           classifyEHPersonality(Func->getPersonalityFn()));
1971       if (IsSEH)
1972         return true;
1973     }
1974   }
1975 
1976   DebugLoc DL = MBB.findDebugLoc(MI);
1977 
1978   // Reload XMMs from stack frame.
1979   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1980     unsigned Reg = CSI[i].getReg();
1981     if (X86::GR64RegClass.contains(Reg) ||
1982         X86::GR32RegClass.contains(Reg))
1983       continue;
1984 
1985     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
1986     TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI);
1987   }
1988 
1989   // POP GPRs.
1990   unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
1991   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1992     unsigned Reg = CSI[i].getReg();
1993     if (!X86::GR64RegClass.contains(Reg) &&
1994         !X86::GR32RegClass.contains(Reg))
1995       continue;
1996 
1997     BuildMI(MBB, MI, DL, TII.get(Opc), Reg)
1998         .setMIFlag(MachineInstr::FrameDestroy);
1999   }
2000   return true;
2001 }
2002 
determineCalleeSaves(MachineFunction & MF,BitVector & SavedRegs,RegScavenger * RS) const2003 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF,
2004                                             BitVector &SavedRegs,
2005                                             RegScavenger *RS) const {
2006   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2007 
2008   MachineFrameInfo *MFI = MF.getFrameInfo();
2009 
2010   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2011   int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
2012 
2013   if (TailCallReturnAddrDelta < 0) {
2014     // create RETURNADDR area
2015     //   arg
2016     //   arg
2017     //   RETADDR
2018     //   { ...
2019     //     RETADDR area
2020     //     ...
2021     //   }
2022     //   [EBP]
2023     MFI->CreateFixedObject(-TailCallReturnAddrDelta,
2024                            TailCallReturnAddrDelta - SlotSize, true);
2025   }
2026 
2027   // Spill the BasePtr if it's used.
2028   if (TRI->hasBasePointer(MF)) {
2029     SavedRegs.set(TRI->getBaseRegister());
2030 
2031     // Allocate a spill slot for EBP if we have a base pointer and EH funclets.
2032     if (MF.getMMI().hasEHFunclets()) {
2033       int FI = MFI->CreateSpillStackObject(SlotSize, SlotSize);
2034       X86FI->setHasSEHFramePtrSave(true);
2035       X86FI->setSEHFramePtrSaveIndex(FI);
2036     }
2037   }
2038 }
2039 
2040 static bool
HasNestArgument(const MachineFunction * MF)2041 HasNestArgument(const MachineFunction *MF) {
2042   const Function *F = MF->getFunction();
2043   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
2044        I != E; I++) {
2045     if (I->hasNestAttr())
2046       return true;
2047   }
2048   return false;
2049 }
2050 
2051 /// GetScratchRegister - Get a temp register for performing work in the
2052 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
2053 /// and the properties of the function either one or two registers will be
2054 /// needed. Set primary to true for the first register, false for the second.
2055 static unsigned
GetScratchRegister(bool Is64Bit,bool IsLP64,const MachineFunction & MF,bool Primary)2056 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) {
2057   CallingConv::ID CallingConvention = MF.getFunction()->getCallingConv();
2058 
2059   // Erlang stuff.
2060   if (CallingConvention == CallingConv::HiPE) {
2061     if (Is64Bit)
2062       return Primary ? X86::R14 : X86::R13;
2063     else
2064       return Primary ? X86::EBX : X86::EDI;
2065   }
2066 
2067   if (Is64Bit) {
2068     if (IsLP64)
2069       return Primary ? X86::R11 : X86::R12;
2070     else
2071       return Primary ? X86::R11D : X86::R12D;
2072   }
2073 
2074   bool IsNested = HasNestArgument(&MF);
2075 
2076   if (CallingConvention == CallingConv::X86_FastCall ||
2077       CallingConvention == CallingConv::Fast) {
2078     if (IsNested)
2079       report_fatal_error("Segmented stacks does not support fastcall with "
2080                          "nested function.");
2081     return Primary ? X86::EAX : X86::ECX;
2082   }
2083   if (IsNested)
2084     return Primary ? X86::EDX : X86::EAX;
2085   return Primary ? X86::ECX : X86::EAX;
2086 }
2087 
2088 // The stack limit in the TCB is set to this many bytes above the actual stack
2089 // limit.
2090 static const uint64_t kSplitStackAvailable = 256;
2091 
adjustForSegmentedStacks(MachineFunction & MF,MachineBasicBlock & PrologueMBB) const2092 void X86FrameLowering::adjustForSegmentedStacks(
2093     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2094   MachineFrameInfo *MFI = MF.getFrameInfo();
2095   uint64_t StackSize;
2096   unsigned TlsReg, TlsOffset;
2097   DebugLoc DL;
2098 
2099   // To support shrink-wrapping we would need to insert the new blocks
2100   // at the right place and update the branches to PrologueMBB.
2101   assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
2102 
2103   unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2104   assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2105          "Scratch register is live-in");
2106 
2107   if (MF.getFunction()->isVarArg())
2108     report_fatal_error("Segmented stacks do not support vararg functions.");
2109   if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
2110       !STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
2111       !STI.isTargetDragonFly())
2112     report_fatal_error("Segmented stacks not supported on this platform.");
2113 
2114   // Eventually StackSize will be calculated by a link-time pass; which will
2115   // also decide whether checking code needs to be injected into this particular
2116   // prologue.
2117   StackSize = MFI->getStackSize();
2118 
2119   // Do not generate a prologue for functions with a stack of size zero
2120   if (StackSize == 0)
2121     return;
2122 
2123   MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
2124   MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
2125   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2126   bool IsNested = false;
2127 
2128   // We need to know if the function has a nest argument only in 64 bit mode.
2129   if (Is64Bit)
2130     IsNested = HasNestArgument(&MF);
2131 
2132   // The MOV R10, RAX needs to be in a different block, since the RET we emit in
2133   // allocMBB needs to be last (terminating) instruction.
2134 
2135   for (const auto &LI : PrologueMBB.liveins()) {
2136     allocMBB->addLiveIn(LI);
2137     checkMBB->addLiveIn(LI);
2138   }
2139 
2140   if (IsNested)
2141     allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);
2142 
2143   MF.push_front(allocMBB);
2144   MF.push_front(checkMBB);
2145 
2146   // When the frame size is less than 256 we just compare the stack
2147   // boundary directly to the value of the stack pointer, per gcc.
2148   bool CompareStackPointer = StackSize < kSplitStackAvailable;
2149 
2150   // Read the limit off the current stacklet off the stack_guard location.
2151   if (Is64Bit) {
2152     if (STI.isTargetLinux()) {
2153       TlsReg = X86::FS;
2154       TlsOffset = IsLP64 ? 0x70 : 0x40;
2155     } else if (STI.isTargetDarwin()) {
2156       TlsReg = X86::GS;
2157       TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
2158     } else if (STI.isTargetWin64()) {
2159       TlsReg = X86::GS;
2160       TlsOffset = 0x28; // pvArbitrary, reserved for application use
2161     } else if (STI.isTargetFreeBSD()) {
2162       TlsReg = X86::FS;
2163       TlsOffset = 0x18;
2164     } else if (STI.isTargetDragonFly()) {
2165       TlsReg = X86::FS;
2166       TlsOffset = 0x20; // use tls_tcb.tcb_segstack
2167     } else {
2168       report_fatal_error("Segmented stacks not supported on this platform.");
2169     }
2170 
2171     if (CompareStackPointer)
2172       ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
2173     else
2174       BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP)
2175         .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2176 
2177     BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg)
2178       .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2179   } else {
2180     if (STI.isTargetLinux()) {
2181       TlsReg = X86::GS;
2182       TlsOffset = 0x30;
2183     } else if (STI.isTargetDarwin()) {
2184       TlsReg = X86::GS;
2185       TlsOffset = 0x48 + 90*4;
2186     } else if (STI.isTargetWin32()) {
2187       TlsReg = X86::FS;
2188       TlsOffset = 0x14; // pvArbitrary, reserved for application use
2189     } else if (STI.isTargetDragonFly()) {
2190       TlsReg = X86::FS;
2191       TlsOffset = 0x10; // use tls_tcb.tcb_segstack
2192     } else if (STI.isTargetFreeBSD()) {
2193       report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
2194     } else {
2195       report_fatal_error("Segmented stacks not supported on this platform.");
2196     }
2197 
2198     if (CompareStackPointer)
2199       ScratchReg = X86::ESP;
2200     else
2201       BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
2202         .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2203 
2204     if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
2205         STI.isTargetDragonFly()) {
2206       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
2207         .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2208     } else if (STI.isTargetDarwin()) {
2209 
2210       // TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
2211       unsigned ScratchReg2;
2212       bool SaveScratch2;
2213       if (CompareStackPointer) {
2214         // The primary scratch register is available for holding the TLS offset.
2215         ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2216         SaveScratch2 = false;
2217       } else {
2218         // Need to use a second register to hold the TLS offset
2219         ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false);
2220 
2221         // Unfortunately, with fastcc the second scratch register may hold an
2222         // argument.
2223         SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
2224       }
2225 
2226       // If Scratch2 is live-in then it needs to be saved.
2227       assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
2228              "Scratch register is live-in and not saved");
2229 
2230       if (SaveScratch2)
2231         BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
2232           .addReg(ScratchReg2, RegState::Kill);
2233 
2234       BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
2235         .addImm(TlsOffset);
2236       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
2237         .addReg(ScratchReg)
2238         .addReg(ScratchReg2).addImm(1).addReg(0)
2239         .addImm(0)
2240         .addReg(TlsReg);
2241 
2242       if (SaveScratch2)
2243         BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
2244     }
2245   }
2246 
2247   // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
2248   // It jumps to normal execution of the function body.
2249   BuildMI(checkMBB, DL, TII.get(X86::JA_1)).addMBB(&PrologueMBB);
2250 
2251   // On 32 bit we first push the arguments size and then the frame size. On 64
2252   // bit, we pass the stack frame size in r10 and the argument size in r11.
2253   if (Is64Bit) {
2254     // Functions with nested arguments use R10, so it needs to be saved across
2255     // the call to _morestack
2256 
2257     const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
2258     const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
2259     const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
2260     const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
2261     const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri;
2262 
2263     if (IsNested)
2264       BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);
2265 
2266     BuildMI(allocMBB, DL, TII.get(MOVri), Reg10)
2267       .addImm(StackSize);
2268     BuildMI(allocMBB, DL, TII.get(MOVri), Reg11)
2269       .addImm(X86FI->getArgumentStackSize());
2270   } else {
2271     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2272       .addImm(X86FI->getArgumentStackSize());
2273     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2274       .addImm(StackSize);
2275   }
2276 
2277   // __morestack is in libgcc
2278   if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
2279     // Under the large code model, we cannot assume that __morestack lives
2280     // within 2^31 bytes of the call site, so we cannot use pc-relative
2281     // addressing. We cannot perform the call via a temporary register,
2282     // as the rax register may be used to store the static chain, and all
2283     // other suitable registers may be either callee-save or used for
2284     // parameter passing. We cannot use the stack at this point either
2285     // because __morestack manipulates the stack directly.
2286     //
2287     // To avoid these issues, perform an indirect call via a read-only memory
2288     // location containing the address.
2289     //
2290     // This solution is not perfect, as it assumes that the .rodata section
2291     // is laid out within 2^31 bytes of each function body, but this seems
2292     // to be sufficient for JIT.
2293     BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
2294         .addReg(X86::RIP)
2295         .addImm(0)
2296         .addReg(0)
2297         .addExternalSymbol("__morestack_addr")
2298         .addReg(0);
2299     MF.getMMI().setUsesMorestackAddr(true);
2300   } else {
2301     if (Is64Bit)
2302       BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
2303         .addExternalSymbol("__morestack");
2304     else
2305       BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
2306         .addExternalSymbol("__morestack");
2307   }
2308 
2309   if (IsNested)
2310     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
2311   else
2312     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
2313 
2314   allocMBB->addSuccessor(&PrologueMBB);
2315 
2316   checkMBB->addSuccessor(allocMBB);
2317   checkMBB->addSuccessor(&PrologueMBB);
2318 
2319 #ifdef EXPENSIVE_CHECKS
2320   MF.verify();
2321 #endif
2322 }
2323 
2324 /// Lookup an ERTS parameter in the !hipe.literals named metadata node.
2325 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets
2326 /// to fields it needs, through a named metadata node "hipe.literals" containing
2327 /// name-value pairs.
getHiPELiteral(NamedMDNode * HiPELiteralsMD,const StringRef LiteralName)2328 static unsigned getHiPELiteral(
2329     NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) {
2330   for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) {
2331     MDNode *Node = HiPELiteralsMD->getOperand(i);
2332     if (Node->getNumOperands() != 2) continue;
2333     MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0));
2334     ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1));
2335     if (!NodeName || !NodeVal) continue;
2336     ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue());
2337     if (ValConst && NodeName->getString() == LiteralName) {
2338       return ValConst->getZExtValue();
2339     }
2340   }
2341 
2342   report_fatal_error("HiPE literal " + LiteralName
2343                      + " required but not provided");
2344 }
2345 
2346 /// Erlang programs may need a special prologue to handle the stack size they
2347 /// might need at runtime. That is because Erlang/OTP does not implement a C
2348 /// stack but uses a custom implementation of hybrid stack/heap architecture.
2349 /// (for more information see Eric Stenman's Ph.D. thesis:
2350 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
2351 ///
2352 /// CheckStack:
2353 ///       temp0 = sp - MaxStack
2354 ///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
2355 /// OldStart:
2356 ///       ...
2357 /// IncStack:
2358 ///       call inc_stack   # doubles the stack space
2359 ///       temp0 = sp - MaxStack
2360 ///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
adjustForHiPEPrologue(MachineFunction & MF,MachineBasicBlock & PrologueMBB) const2361 void X86FrameLowering::adjustForHiPEPrologue(
2362     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2363   MachineFrameInfo *MFI = MF.getFrameInfo();
2364   DebugLoc DL;
2365 
2366   // To support shrink-wrapping we would need to insert the new blocks
2367   // at the right place and update the branches to PrologueMBB.
2368   assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
2369 
2370   // HiPE-specific values
2371   NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule()
2372     ->getNamedMetadata("hipe.literals");
2373   if (!HiPELiteralsMD)
2374     report_fatal_error(
2375         "Can't generate HiPE prologue without runtime parameters");
2376   const unsigned HipeLeafWords
2377     = getHiPELiteral(HiPELiteralsMD,
2378                      Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS");
2379   const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
2380   const unsigned Guaranteed = HipeLeafWords * SlotSize;
2381   unsigned CallerStkArity = MF.getFunction()->arg_size() > CCRegisteredArgs ?
2382                             MF.getFunction()->arg_size() - CCRegisteredArgs : 0;
2383   unsigned MaxStack = MFI->getStackSize() + CallerStkArity*SlotSize + SlotSize;
2384 
2385   assert(STI.isTargetLinux() &&
2386          "HiPE prologue is only supported on Linux operating systems.");
2387 
2388   // Compute the largest caller's frame that is needed to fit the callees'
2389   // frames. This 'MaxStack' is computed from:
2390   //
2391   // a) the fixed frame size, which is the space needed for all spilled temps,
2392   // b) outgoing on-stack parameter areas, and
2393   // c) the minimum stack space this function needs to make available for the
2394   //    functions it calls (a tunable ABI property).
2395   if (MFI->hasCalls()) {
2396     unsigned MoreStackForCalls = 0;
2397 
2398     for (auto &MBB : MF) {
2399       for (auto &MI : MBB) {
2400         if (!MI.isCall())
2401           continue;
2402 
2403         // Get callee operand.
2404         const MachineOperand &MO = MI.getOperand(0);
2405 
2406         // Only take account of global function calls (no closures etc.).
2407         if (!MO.isGlobal())
2408           continue;
2409 
2410         const Function *F = dyn_cast<Function>(MO.getGlobal());
2411         if (!F)
2412           continue;
2413 
2414         // Do not update 'MaxStack' for primitive and built-in functions
2415         // (encoded with names either starting with "erlang."/"bif_" or not
2416         // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
2417         // "_", such as the BIF "suspend_0") as they are executed on another
2418         // stack.
2419         if (F->getName().find("erlang.") != StringRef::npos ||
2420             F->getName().find("bif_") != StringRef::npos ||
2421             F->getName().find_first_of("._") == StringRef::npos)
2422           continue;
2423 
2424         unsigned CalleeStkArity =
2425           F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
2426         if (HipeLeafWords - 1 > CalleeStkArity)
2427           MoreStackForCalls = std::max(MoreStackForCalls,
2428                                (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
2429       }
2430     }
2431     MaxStack += MoreStackForCalls;
2432   }
2433 
2434   // If the stack frame needed is larger than the guaranteed then runtime checks
2435   // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
2436   if (MaxStack > Guaranteed) {
2437     MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
2438     MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
2439 
2440     for (const auto &LI : PrologueMBB.liveins()) {
2441       stackCheckMBB->addLiveIn(LI);
2442       incStackMBB->addLiveIn(LI);
2443     }
2444 
2445     MF.push_front(incStackMBB);
2446     MF.push_front(stackCheckMBB);
2447 
2448     unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
2449     unsigned LEAop, CMPop, CALLop;
2450     SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT");
2451     if (Is64Bit) {
2452       SPReg = X86::RSP;
2453       PReg  = X86::RBP;
2454       LEAop = X86::LEA64r;
2455       CMPop = X86::CMP64rm;
2456       CALLop = X86::CALL64pcrel32;
2457     } else {
2458       SPReg = X86::ESP;
2459       PReg  = X86::EBP;
2460       LEAop = X86::LEA32r;
2461       CMPop = X86::CMP32rm;
2462       CALLop = X86::CALLpcrel32;
2463     }
2464 
2465     ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2466     assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2467            "HiPE prologue scratch register is live-in");
2468 
2469     // Create new MBB for StackCheck:
2470     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
2471                  SPReg, false, -MaxStack);
2472     // SPLimitOffset is in a fixed heap location (pointed by BP).
2473     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
2474                  .addReg(ScratchReg), PReg, false, SPLimitOffset);
2475     BuildMI(stackCheckMBB, DL, TII.get(X86::JAE_1)).addMBB(&PrologueMBB);
2476 
2477     // Create new MBB for IncStack:
2478     BuildMI(incStackMBB, DL, TII.get(CALLop)).
2479       addExternalSymbol("inc_stack_0");
2480     addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
2481                  SPReg, false, -MaxStack);
2482     addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
2483                  .addReg(ScratchReg), PReg, false, SPLimitOffset);
2484     BuildMI(incStackMBB, DL, TII.get(X86::JLE_1)).addMBB(incStackMBB);
2485 
2486     stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100});
2487     stackCheckMBB->addSuccessor(incStackMBB, {1, 100});
2488     incStackMBB->addSuccessor(&PrologueMBB, {99, 100});
2489     incStackMBB->addSuccessor(incStackMBB, {1, 100});
2490   }
2491 #ifdef EXPENSIVE_CHECKS
2492   MF.verify();
2493 #endif
2494 }
2495 
adjustStackWithPops(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,int Offset) const2496 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB,
2497                                            MachineBasicBlock::iterator MBBI,
2498                                            const DebugLoc &DL,
2499                                            int Offset) const {
2500 
2501   if (Offset <= 0)
2502     return false;
2503 
2504   if (Offset % SlotSize)
2505     return false;
2506 
2507   int NumPops = Offset / SlotSize;
2508   // This is only worth it if we have at most 2 pops.
2509   if (NumPops != 1 && NumPops != 2)
2510     return false;
2511 
2512   // Handle only the trivial case where the adjustment directly follows
2513   // a call. This is the most common one, anyway.
2514   if (MBBI == MBB.begin())
2515     return false;
2516   MachineBasicBlock::iterator Prev = std::prev(MBBI);
2517   if (!Prev->isCall() || !Prev->getOperand(1).isRegMask())
2518     return false;
2519 
2520   unsigned Regs[2];
2521   unsigned FoundRegs = 0;
2522 
2523   auto RegMask = Prev->getOperand(1);
2524 
2525   auto &RegClass =
2526       Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass;
2527   // Try to find up to NumPops free registers.
2528   for (auto Candidate : RegClass) {
2529 
2530     // Poor man's liveness:
2531     // Since we're immediately after a call, any register that is clobbered
2532     // by the call and not defined by it can be considered dead.
2533     if (!RegMask.clobbersPhysReg(Candidate))
2534       continue;
2535 
2536     bool IsDef = false;
2537     for (const MachineOperand &MO : Prev->implicit_operands()) {
2538       if (MO.isReg() && MO.isDef() &&
2539           TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) {
2540         IsDef = true;
2541         break;
2542       }
2543     }
2544 
2545     if (IsDef)
2546       continue;
2547 
2548     Regs[FoundRegs++] = Candidate;
2549     if (FoundRegs == (unsigned)NumPops)
2550       break;
2551   }
2552 
2553   if (FoundRegs == 0)
2554     return false;
2555 
2556   // If we found only one free register, but need two, reuse the same one twice.
2557   while (FoundRegs < (unsigned)NumPops)
2558     Regs[FoundRegs++] = Regs[0];
2559 
2560   for (int i = 0; i < NumPops; ++i)
2561     BuildMI(MBB, MBBI, DL,
2562             TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]);
2563 
2564   return true;
2565 }
2566 
2567 MachineBasicBlock::iterator X86FrameLowering::
eliminateCallFramePseudoInstr(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator I) const2568 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
2569                               MachineBasicBlock::iterator I) const {
2570   bool reserveCallFrame = hasReservedCallFrame(MF);
2571   unsigned Opcode = I->getOpcode();
2572   bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
2573   DebugLoc DL = I->getDebugLoc();
2574   uint64_t Amount = !reserveCallFrame ? I->getOperand(0).getImm() : 0;
2575   uint64_t InternalAmt = (isDestroy || Amount) ? I->getOperand(1).getImm() : 0;
2576   I = MBB.erase(I);
2577 
2578   if (!reserveCallFrame) {
2579     // If the stack pointer can be changed after prologue, turn the
2580     // adjcallstackup instruction into a 'sub ESP, <amt>' and the
2581     // adjcallstackdown instruction into 'add ESP, <amt>'
2582 
2583     // We need to keep the stack aligned properly.  To do this, we round the
2584     // amount of space needed for the outgoing arguments up to the next
2585     // alignment boundary.
2586     unsigned StackAlign = getStackAlignment();
2587     Amount = alignTo(Amount, StackAlign);
2588 
2589     MachineModuleInfo &MMI = MF.getMMI();
2590     const Function *Fn = MF.getFunction();
2591     bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
2592     bool DwarfCFI = !WindowsCFI &&
2593                     (MMI.hasDebugInfo() || Fn->needsUnwindTableEntry());
2594 
2595     // If we have any exception handlers in this function, and we adjust
2596     // the SP before calls, we may need to indicate this to the unwinder
2597     // using GNU_ARGS_SIZE. Note that this may be necessary even when
2598     // Amount == 0, because the preceding function may have set a non-0
2599     // GNU_ARGS_SIZE.
2600     // TODO: We don't need to reset this between subsequent functions,
2601     // if it didn't change.
2602     bool HasDwarfEHHandlers = !WindowsCFI &&
2603                               !MF.getMMI().getLandingPads().empty();
2604 
2605     if (HasDwarfEHHandlers && !isDestroy &&
2606         MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences())
2607       BuildCFI(MBB, I, DL,
2608                MCCFIInstruction::createGnuArgsSize(nullptr, Amount));
2609 
2610     if (Amount == 0)
2611       return I;
2612 
2613     // Factor out the amount that gets handled inside the sequence
2614     // (Pushes of argument for frame setup, callee pops for frame destroy)
2615     Amount -= InternalAmt;
2616 
2617     // TODO: This is needed only if we require precise CFA.
2618     // If this is a callee-pop calling convention, emit a CFA adjust for
2619     // the amount the callee popped.
2620     if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF))
2621       BuildCFI(MBB, I, DL,
2622                MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt));
2623 
2624     // Add Amount to SP to destroy a frame, or subtract to setup.
2625     int64_t StackAdjustment = isDestroy ? Amount : -Amount;
2626     int64_t CfaAdjustment = -StackAdjustment;
2627 
2628     if (StackAdjustment) {
2629       // Merge with any previous or following adjustment instruction. Note: the
2630       // instructions merged with here do not have CFI, so their stack
2631       // adjustments do not feed into CfaAdjustment.
2632       StackAdjustment += mergeSPUpdates(MBB, I, true);
2633       StackAdjustment += mergeSPUpdates(MBB, I, false);
2634 
2635       if (StackAdjustment) {
2636         if (!(Fn->optForMinSize() &&
2637               adjustStackWithPops(MBB, I, DL, StackAdjustment)))
2638           BuildStackAdjustment(MBB, I, DL, StackAdjustment,
2639                                /*InEpilogue=*/false);
2640       }
2641     }
2642 
2643     if (DwarfCFI && !hasFP(MF)) {
2644       // If we don't have FP, but need to generate unwind information,
2645       // we need to set the correct CFA offset after the stack adjustment.
2646       // How much we adjust the CFA offset depends on whether we're emitting
2647       // CFI only for EH purposes or for debugging. EH only requires the CFA
2648       // offset to be correct at each call site, while for debugging we want
2649       // it to be more precise.
2650 
2651       // TODO: When not using precise CFA, we also need to adjust for the
2652       // InternalAmt here.
2653       if (CfaAdjustment) {
2654         BuildCFI(MBB, I, DL, MCCFIInstruction::createAdjustCfaOffset(
2655                                  nullptr, CfaAdjustment));
2656       }
2657     }
2658 
2659     return I;
2660   }
2661 
2662   if (isDestroy && InternalAmt) {
2663     // If we are performing frame pointer elimination and if the callee pops
2664     // something off the stack pointer, add it back.  We do this until we have
2665     // more advanced stack pointer tracking ability.
2666     // We are not tracking the stack pointer adjustment by the callee, so make
2667     // sure we restore the stack pointer immediately after the call, there may
2668     // be spill code inserted between the CALL and ADJCALLSTACKUP instructions.
2669     MachineBasicBlock::iterator CI = I;
2670     MachineBasicBlock::iterator B = MBB.begin();
2671     while (CI != B && !std::prev(CI)->isCall())
2672       --CI;
2673     BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false);
2674   }
2675 
2676   return I;
2677 }
2678 
canUseAsPrologue(const MachineBasicBlock & MBB) const2679 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
2680   assert(MBB.getParent() && "Block is not attached to a function!");
2681   const MachineFunction &MF = *MBB.getParent();
2682   return !TRI->needsStackRealignment(MF) || !MBB.isLiveIn(X86::EFLAGS);
2683 }
2684 
canUseAsEpilogue(const MachineBasicBlock & MBB) const2685 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
2686   assert(MBB.getParent() && "Block is not attached to a function!");
2687 
2688   // Win64 has strict requirements in terms of epilogue and we are
2689   // not taking a chance at messing with them.
2690   // I.e., unless this block is already an exit block, we can't use
2691   // it as an epilogue.
2692   if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock())
2693     return false;
2694 
2695   if (canUseLEAForSPInEpilogue(*MBB.getParent()))
2696     return true;
2697 
2698   // If we cannot use LEA to adjust SP, we may need to use ADD, which
2699   // clobbers the EFLAGS. Check that we do not need to preserve it,
2700   // otherwise, conservatively assume this is not
2701   // safe to insert the epilogue here.
2702   return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
2703 }
2704 
enableShrinkWrapping(const MachineFunction & MF) const2705 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
2706   // If we may need to emit frameless compact unwind information, give
2707   // up as this is currently broken: PR25614.
2708   return (MF.getFunction()->hasFnAttribute(Attribute::NoUnwind) || hasFP(MF)) &&
2709          // The lowering of segmented stack and HiPE only support entry blocks
2710          // as prologue blocks: PR26107.
2711          // This limitation may be lifted if we fix:
2712          // - adjustForSegmentedStacks
2713          // - adjustForHiPEPrologue
2714          MF.getFunction()->getCallingConv() != CallingConv::HiPE &&
2715          !MF.shouldSplitStack();
2716 }
2717 
restoreWin32EHStackPointers(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool RestoreSP) const2718 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers(
2719     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
2720     const DebugLoc &DL, bool RestoreSP) const {
2721   assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env");
2722   assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32");
2723   assert(STI.is32Bit() && !Uses64BitFramePtr &&
2724          "restoring EBP/ESI on non-32-bit target");
2725 
2726   MachineFunction &MF = *MBB.getParent();
2727   unsigned FramePtr = TRI->getFrameRegister(MF);
2728   unsigned BasePtr = TRI->getBaseRegister();
2729   WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo();
2730   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2731   MachineFrameInfo *MFI = MF.getFrameInfo();
2732 
2733   // FIXME: Don't set FrameSetup flag in catchret case.
2734 
2735   int FI = FuncInfo.EHRegNodeFrameIndex;
2736   int EHRegSize = MFI->getObjectSize(FI);
2737 
2738   if (RestoreSP) {
2739     // MOV32rm -EHRegSize(%ebp), %esp
2740     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP),
2741                  X86::EBP, true, -EHRegSize)
2742         .setMIFlag(MachineInstr::FrameSetup);
2743   }
2744 
2745   unsigned UsedReg;
2746   int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg);
2747   int EndOffset = -EHRegOffset - EHRegSize;
2748   FuncInfo.EHRegNodeEndOffset = EndOffset;
2749 
2750   if (UsedReg == FramePtr) {
2751     // ADD $offset, %ebp
2752     unsigned ADDri = getADDriOpcode(false, EndOffset);
2753     BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr)
2754         .addReg(FramePtr)
2755         .addImm(EndOffset)
2756         .setMIFlag(MachineInstr::FrameSetup)
2757         ->getOperand(3)
2758         .setIsDead();
2759     assert(EndOffset >= 0 &&
2760            "end of registration object above normal EBP position!");
2761   } else if (UsedReg == BasePtr) {
2762     // LEA offset(%ebp), %esi
2763     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr),
2764                  FramePtr, false, EndOffset)
2765         .setMIFlag(MachineInstr::FrameSetup);
2766     // MOV32rm SavedEBPOffset(%esi), %ebp
2767     assert(X86FI->getHasSEHFramePtrSave());
2768     int Offset =
2769         getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
2770     assert(UsedReg == BasePtr);
2771     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr),
2772                  UsedReg, true, Offset)
2773         .setMIFlag(MachineInstr::FrameSetup);
2774   } else {
2775     llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr");
2776   }
2777   return MBBI;
2778 }
2779 
2780 namespace {
2781 // Struct used by orderFrameObjects to help sort the stack objects.
2782 struct X86FrameSortingObject {
2783   bool IsValid = false;         // true if we care about this Object.
2784   unsigned ObjectIndex = 0;     // Index of Object into MFI list.
2785   unsigned ObjectSize = 0;      // Size of Object in bytes.
2786   unsigned ObjectAlignment = 1; // Alignment of Object in bytes.
2787   unsigned ObjectNumUses = 0;   // Object static number of uses.
2788 };
2789 
2790 // The comparison function we use for std::sort to order our local
2791 // stack symbols. The current algorithm is to use an estimated
2792 // "density". This takes into consideration the size and number of
2793 // uses each object has in order to roughly minimize code size.
2794 // So, for example, an object of size 16B that is referenced 5 times
2795 // will get higher priority than 4 4B objects referenced 1 time each.
2796 // It's not perfect and we may be able to squeeze a few more bytes out of
2797 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the
2798 // fringe end can have special consideration, given their size is less
2799 // important, etc.), but the algorithmic complexity grows too much to be
2800 // worth the extra gains we get. This gets us pretty close.
2801 // The final order leaves us with objects with highest priority going
2802 // at the end of our list.
2803 struct X86FrameSortingComparator {
operator ()__anon4d9d05b50111::X86FrameSortingComparator2804   inline bool operator()(const X86FrameSortingObject &A,
2805                          const X86FrameSortingObject &B) {
2806     uint64_t DensityAScaled, DensityBScaled;
2807 
2808     // For consistency in our comparison, all invalid objects are placed
2809     // at the end. This also allows us to stop walking when we hit the
2810     // first invalid item after it's all sorted.
2811     if (!A.IsValid)
2812       return false;
2813     if (!B.IsValid)
2814       return true;
2815 
2816     // The density is calculated by doing :
2817     //     (double)DensityA = A.ObjectNumUses / A.ObjectSize
2818     //     (double)DensityB = B.ObjectNumUses / B.ObjectSize
2819     // Since this approach may cause inconsistencies in
2820     // the floating point <, >, == comparisons, depending on the floating
2821     // point model with which the compiler was built, we're going
2822     // to scale both sides by multiplying with
2823     // A.ObjectSize * B.ObjectSize. This ends up factoring away
2824     // the division and, with it, the need for any floating point
2825     // arithmetic.
2826     DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) *
2827       static_cast<uint64_t>(B.ObjectSize);
2828     DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) *
2829       static_cast<uint64_t>(A.ObjectSize);
2830 
2831     // If the two densities are equal, prioritize highest alignment
2832     // objects. This allows for similar alignment objects
2833     // to be packed together (given the same density).
2834     // There's room for improvement here, also, since we can pack
2835     // similar alignment (different density) objects next to each
2836     // other to save padding. This will also require further
2837     // complexity/iterations, and the overall gain isn't worth it,
2838     // in general. Something to keep in mind, though.
2839     if (DensityAScaled == DensityBScaled)
2840       return A.ObjectAlignment < B.ObjectAlignment;
2841 
2842     return DensityAScaled < DensityBScaled;
2843   }
2844 };
2845 } // namespace
2846 
2847 // Order the symbols in the local stack.
2848 // We want to place the local stack objects in some sort of sensible order.
2849 // The heuristic we use is to try and pack them according to static number
2850 // of uses and size of object in order to minimize code size.
orderFrameObjects(const MachineFunction & MF,SmallVectorImpl<int> & ObjectsToAllocate) const2851 void X86FrameLowering::orderFrameObjects(
2852     const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
2853   const MachineFrameInfo *MFI = MF.getFrameInfo();
2854 
2855   // Don't waste time if there's nothing to do.
2856   if (ObjectsToAllocate.empty())
2857     return;
2858 
2859   // Create an array of all MFI objects. We won't need all of these
2860   // objects, but we're going to create a full array of them to make
2861   // it easier to index into when we're counting "uses" down below.
2862   // We want to be able to easily/cheaply access an object by simply
2863   // indexing into it, instead of having to search for it every time.
2864   std::vector<X86FrameSortingObject> SortingObjects(MFI->getObjectIndexEnd());
2865 
2866   // Walk the objects we care about and mark them as such in our working
2867   // struct.
2868   for (auto &Obj : ObjectsToAllocate) {
2869     SortingObjects[Obj].IsValid = true;
2870     SortingObjects[Obj].ObjectIndex = Obj;
2871     SortingObjects[Obj].ObjectAlignment = MFI->getObjectAlignment(Obj);
2872     // Set the size.
2873     int ObjectSize = MFI->getObjectSize(Obj);
2874     if (ObjectSize == 0)
2875       // Variable size. Just use 4.
2876       SortingObjects[Obj].ObjectSize = 4;
2877     else
2878       SortingObjects[Obj].ObjectSize = ObjectSize;
2879   }
2880 
2881   // Count the number of uses for each object.
2882   for (auto &MBB : MF) {
2883     for (auto &MI : MBB) {
2884       if (MI.isDebugValue())
2885         continue;
2886       for (const MachineOperand &MO : MI.operands()) {
2887         // Check to see if it's a local stack symbol.
2888         if (!MO.isFI())
2889           continue;
2890         int Index = MO.getIndex();
2891         // Check to see if it falls within our range, and is tagged
2892         // to require ordering.
2893         if (Index >= 0 && Index < MFI->getObjectIndexEnd() &&
2894             SortingObjects[Index].IsValid)
2895           SortingObjects[Index].ObjectNumUses++;
2896       }
2897     }
2898   }
2899 
2900   // Sort the objects using X86FrameSortingAlgorithm (see its comment for
2901   // info).
2902   std::stable_sort(SortingObjects.begin(), SortingObjects.end(),
2903                    X86FrameSortingComparator());
2904 
2905   // Now modify the original list to represent the final order that
2906   // we want. The order will depend on whether we're going to access them
2907   // from the stack pointer or the frame pointer. For SP, the list should
2908   // end up with the END containing objects that we want with smaller offsets.
2909   // For FP, it should be flipped.
2910   int i = 0;
2911   for (auto &Obj : SortingObjects) {
2912     // All invalid items are sorted at the end, so it's safe to stop.
2913     if (!Obj.IsValid)
2914       break;
2915     ObjectsToAllocate[i++] = Obj.ObjectIndex;
2916   }
2917 
2918   // Flip it if we're accessing off of the FP.
2919   if (!TRI->needsStackRealignment(MF) && hasFP(MF))
2920     std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end());
2921 }
2922 
2923 
getWinEHParentFrameOffset(const MachineFunction & MF) const2924 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const {
2925   // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue.
2926   unsigned Offset = 16;
2927   // RBP is immediately pushed.
2928   Offset += SlotSize;
2929   // All callee-saved registers are then pushed.
2930   Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
2931   // Every funclet allocates enough stack space for the largest outgoing call.
2932   Offset += getWinEHFuncletFrameSize(MF);
2933   return Offset;
2934 }
2935 
processFunctionBeforeFrameFinalized(MachineFunction & MF,RegScavenger * RS) const2936 void X86FrameLowering::processFunctionBeforeFrameFinalized(
2937     MachineFunction &MF, RegScavenger *RS) const {
2938   // If this function isn't doing Win64-style C++ EH, we don't need to do
2939   // anything.
2940   const Function *Fn = MF.getFunction();
2941   if (!STI.is64Bit() || !MF.getMMI().hasEHFunclets() ||
2942       classifyEHPersonality(Fn->getPersonalityFn()) != EHPersonality::MSVC_CXX)
2943     return;
2944 
2945   // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset
2946   // relative to RSP after the prologue.  Find the offset of the last fixed
2947   // object, so that we can allocate a slot immediately following it. If there
2948   // were no fixed objects, use offset -SlotSize, which is immediately after the
2949   // return address. Fixed objects have negative frame indices.
2950   MachineFrameInfo *MFI = MF.getFrameInfo();
2951   WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
2952   int64_t MinFixedObjOffset = -SlotSize;
2953   for (int I = MFI->getObjectIndexBegin(); I < 0; ++I)
2954     MinFixedObjOffset = std::min(MinFixedObjOffset, MFI->getObjectOffset(I));
2955 
2956   for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
2957     for (WinEHHandlerType &H : TBME.HandlerArray) {
2958       int FrameIndex = H.CatchObj.FrameIndex;
2959       if (FrameIndex != INT_MAX) {
2960         // Ensure alignment.
2961         unsigned Align = MFI->getObjectAlignment(FrameIndex);
2962         MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align;
2963         MinFixedObjOffset -= MFI->getObjectSize(FrameIndex);
2964         MFI->setObjectOffset(FrameIndex, MinFixedObjOffset);
2965       }
2966     }
2967   }
2968 
2969   // Ensure alignment.
2970   MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8;
2971   int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize;
2972   int UnwindHelpFI =
2973       MFI->CreateFixedObject(SlotSize, UnwindHelpOffset, /*Immutable=*/false);
2974   EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
2975 
2976   // Store -2 into UnwindHelp on function entry. We have to scan forwards past
2977   // other frame setup instructions.
2978   MachineBasicBlock &MBB = MF.front();
2979   auto MBBI = MBB.begin();
2980   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
2981     ++MBBI;
2982 
2983   DebugLoc DL = MBB.findDebugLoc(MBBI);
2984   addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)),
2985                     UnwindHelpFI)
2986       .addImm(-2);
2987 }
2988