1 //===-- ARMSubtarget.h - Define Subtarget for the ARM ----------*- C++ -*--===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the ARM specific subclass of TargetSubtargetInfo.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H
15 #define LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H
16 
17 
18 #include "ARMFrameLowering.h"
19 #include "ARMISelLowering.h"
20 #include "ARMInstrInfo.h"
21 #include "ARMSelectionDAGInfo.h"
22 #include "ARMSubtarget.h"
23 #include "MCTargetDesc/ARMMCTargetDesc.h"
24 #include "Thumb1FrameLowering.h"
25 #include "Thumb1InstrInfo.h"
26 #include "Thumb2InstrInfo.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/MC/MCInstrItineraries.h"
30 #include "llvm/Target/TargetSubtargetInfo.h"
31 #include <string>
32 
33 #define GET_SUBTARGETINFO_HEADER
34 #include "ARMGenSubtargetInfo.inc"
35 
36 namespace llvm {
37 class GlobalValue;
38 class StringRef;
39 class TargetOptions;
40 class ARMBaseTargetMachine;
41 
42 class ARMSubtarget : public ARMGenSubtargetInfo {
43 protected:
44   enum ARMProcFamilyEnum {
45     Others, CortexA5, CortexA7, CortexA8, CortexA9, CortexA12, CortexA15,
46     CortexA17, CortexR4, CortexR4F, CortexR5, CortexR7, CortexM3,
47     CortexA32, CortexA35, CortexA53, CortexA57, CortexA72, CortexA73,
48     Krait, Swift, ExynosM1
49   };
50   enum ARMProcClassEnum {
51     None, AClass, RClass, MClass
52   };
53   enum ARMArchEnum {
54     ARMv2, ARMv2a, ARMv3, ARMv3m, ARMv4, ARMv4t, ARMv5, ARMv5t, ARMv5te,
55     ARMv5tej, ARMv6, ARMv6k, ARMv6kz, ARMv6t2, ARMv6m, ARMv6sm, ARMv7a, ARMv7r,
56     ARMv7m, ARMv7em, ARMv8a, ARMv81a, ARMv82a, ARMv8mMainline, ARMv8mBaseline
57   };
58 
59 public:
60   /// What kind of timing do load multiple/store multiple instructions have.
61   enum ARMLdStMultipleTiming {
62     /// Can load/store 2 registers/cycle.
63     DoubleIssue,
64     /// Can load/store 2 registers/cycle, but needs an extra cycle if the access
65     /// is not 64-bit aligned.
66     DoubleIssueCheckUnalignedAccess,
67     /// Can load/store 1 register/cycle.
68     SingleIssue,
69     /// Can load/store 1 register/cycle, but needs an extra cycle for address
70     /// computation and potentially also for register writeback.
71     SingleIssuePlusExtras,
72   };
73 
74 protected:
75   /// ARMProcFamily - ARM processor family: Cortex-A8, Cortex-A9, and others.
76   ARMProcFamilyEnum ARMProcFamily = Others;
77 
78   /// ARMProcClass - ARM processor class: None, AClass, RClass or MClass.
79   ARMProcClassEnum ARMProcClass = None;
80 
81   /// ARMArch - ARM architecture
82   ARMArchEnum ARMArch = ARMv4t;
83 
84   /// HasV4TOps, HasV5TOps, HasV5TEOps,
85   /// HasV6Ops, HasV6MOps, HasV6KOps, HasV6T2Ops, HasV7Ops, HasV8Ops -
86   /// Specify whether target support specific ARM ISA variants.
87   bool HasV4TOps = false;
88   bool HasV5TOps = false;
89   bool HasV5TEOps = false;
90   bool HasV6Ops = false;
91   bool HasV6MOps = false;
92   bool HasV6KOps = false;
93   bool HasV6T2Ops = false;
94   bool HasV7Ops = false;
95   bool HasV8Ops = false;
96   bool HasV8_1aOps = false;
97   bool HasV8_2aOps = false;
98   bool HasV8MBaselineOps = false;
99   bool HasV8MMainlineOps = false;
100 
101   /// HasVFPv2, HasVFPv3, HasVFPv4, HasFPARMv8, HasNEON - Specify what
102   /// floating point ISAs are supported.
103   bool HasVFPv2 = false;
104   bool HasVFPv3 = false;
105   bool HasVFPv4 = false;
106   bool HasFPARMv8 = false;
107   bool HasNEON = false;
108 
109   /// UseNEONForSinglePrecisionFP - if the NEONFP attribute has been
110   /// specified. Use the method useNEONForSinglePrecisionFP() to
111   /// determine if NEON should actually be used.
112   bool UseNEONForSinglePrecisionFP = false;
113 
114   /// UseMulOps - True if non-microcoded fused integer multiply-add and
115   /// multiply-subtract instructions should be used.
116   bool UseMulOps = false;
117 
118   /// SlowFPVMLx - If the VFP2 / NEON instructions are available, indicates
119   /// whether the FP VML[AS] instructions are slow (if so, don't use them).
120   bool SlowFPVMLx = false;
121 
122   /// HasVMLxForwarding - If true, NEON has special multiplier accumulator
123   /// forwarding to allow mul + mla being issued back to back.
124   bool HasVMLxForwarding = false;
125 
126   /// SlowFPBrcc - True if floating point compare + branch is slow.
127   bool SlowFPBrcc = false;
128 
129   /// InThumbMode - True if compiling for Thumb, false for ARM.
130   bool InThumbMode = false;
131 
132   /// UseSoftFloat - True if we're using software floating point features.
133   bool UseSoftFloat = false;
134 
135   /// HasThumb2 - True if Thumb2 instructions are supported.
136   bool HasThumb2 = false;
137 
138   /// NoARM - True if subtarget does not support ARM mode execution.
139   bool NoARM = false;
140 
141   /// ReserveR9 - True if R9 is not available as a general purpose register.
142   bool ReserveR9 = false;
143 
144   /// NoMovt - True if MOVT / MOVW pairs are not used for materialization of
145   /// 32-bit imms (including global addresses).
146   bool NoMovt = false;
147 
148   /// SupportsTailCall - True if the OS supports tail call. The dynamic linker
149   /// must be able to synthesize call stubs for interworking between ARM and
150   /// Thumb.
151   bool SupportsTailCall = false;
152 
153   /// HasFP16 - True if subtarget supports half-precision FP conversions
154   bool HasFP16 = false;
155 
156   /// HasFullFP16 - True if subtarget supports half-precision FP operations
157   bool HasFullFP16 = false;
158 
159   /// HasD16 - True if subtarget is limited to 16 double precision
160   /// FP registers for VFPv3.
161   bool HasD16 = false;
162 
163   /// HasHardwareDivide - True if subtarget supports [su]div
164   bool HasHardwareDivide = false;
165 
166   /// HasHardwareDivideInARM - True if subtarget supports [su]div in ARM mode
167   bool HasHardwareDivideInARM = false;
168 
169   /// HasT2ExtractPack - True if subtarget supports thumb2 extract/pack
170   /// instructions.
171   bool HasT2ExtractPack = false;
172 
173   /// HasDataBarrier - True if the subtarget supports DMB / DSB data barrier
174   /// instructions.
175   bool HasDataBarrier = false;
176 
177   /// HasV7Clrex - True if the subtarget supports CLREX instructions
178   bool HasV7Clrex = false;
179 
180   /// HasAcquireRelease - True if the subtarget supports v8 atomics (LDA/LDAEX etc)
181   /// instructions
182   bool HasAcquireRelease = false;
183 
184   /// Pref32BitThumb - If true, codegen would prefer 32-bit Thumb instructions
185   /// over 16-bit ones.
186   bool Pref32BitThumb = false;
187 
188   /// AvoidCPSRPartialUpdate - If true, codegen would avoid using instructions
189   /// that partially update CPSR and add false dependency on the previous
190   /// CPSR setting instruction.
191   bool AvoidCPSRPartialUpdate = false;
192 
193   /// AvoidMOVsShifterOperand - If true, codegen should avoid using flag setting
194   /// movs with shifter operand (i.e. asr, lsl, lsr).
195   bool AvoidMOVsShifterOperand = false;
196 
197   /// HasRetAddrStack - Some processors perform return stack prediction. CodeGen should
198   /// avoid issue "normal" call instructions to callees which do not return.
199   bool HasRetAddrStack = false;
200 
201   /// HasMPExtension - True if the subtarget supports Multiprocessing
202   /// extension (ARMv7 only).
203   bool HasMPExtension = false;
204 
205   /// HasVirtualization - True if the subtarget supports the Virtualization
206   /// extension.
207   bool HasVirtualization = false;
208 
209   /// FPOnlySP - If true, the floating point unit only supports single
210   /// precision.
211   bool FPOnlySP = false;
212 
213   /// If true, the processor supports the Performance Monitor Extensions. These
214   /// include a generic cycle-counter as well as more fine-grained (often
215   /// implementation-specific) events.
216   bool HasPerfMon = false;
217 
218   /// HasTrustZone - if true, processor supports TrustZone security extensions
219   bool HasTrustZone = false;
220 
221   /// Has8MSecExt - if true, processor supports ARMv8-M Security Extensions
222   bool Has8MSecExt = false;
223 
224   /// HasCrypto - if true, processor supports Cryptography extensions
225   bool HasCrypto = false;
226 
227   /// HasCRC - if true, processor supports CRC instructions
228   bool HasCRC = false;
229 
230   /// HasRAS - if true, the processor supports RAS extensions
231   bool HasRAS = false;
232 
233   /// If true, the instructions "vmov.i32 d0, #0" and "vmov.i32 q0, #0" are
234   /// particularly effective at zeroing a VFP register.
235   bool HasZeroCycleZeroing = false;
236 
237   /// If true, if conversion may decide to leave some instructions unpredicated.
238   bool IsProfitableToUnpredicate = false;
239 
240   /// If true, VMOV will be favored over VGETLNi32.
241   bool HasSlowVGETLNi32 = false;
242 
243   /// If true, VMOV will be favored over VDUP.
244   bool HasSlowVDUP32 = false;
245 
246   /// If true, VMOVSR will be favored over VMOVDRR.
247   bool PreferVMOVSR = false;
248 
249   /// If true, ISHST barriers will be used for Release semantics.
250   bool PreferISHST = false;
251 
252   /// If true, a VLDM/VSTM starting with an odd register number is considered to
253   /// take more microops than single VLDRS/VSTRS.
254   bool SlowOddRegister = false;
255 
256   /// If true, loading into a D subregister will be penalized.
257   bool SlowLoadDSubregister = false;
258 
259   /// If true, the AGU and NEON/FPU units are multiplexed.
260   bool HasMuxedUnits = false;
261 
262   /// If true, VMOVS will never be widened to VMOVD
263   bool DontWidenVMOVS = false;
264 
265   /// If true, run the MLx expansion pass.
266   bool ExpandMLx = false;
267 
268   /// If true, VFP/NEON VMLA/VMLS have special RAW hazards.
269   bool HasVMLxHazards = false;
270 
271   /// If true, VMOVRS, VMOVSR and VMOVS will be converted from VFP to NEON.
272   bool UseNEONForFPMovs = false;
273 
274   /// If true, VLDn instructions take an extra cycle for unaligned accesses.
275   bool CheckVLDnAlign = false;
276 
277   /// If true, VFP instructions are not pipelined.
278   bool NonpipelinedVFP = false;
279 
280   /// StrictAlign - If true, the subtarget disallows unaligned memory
281   /// accesses for some types.  For details, see
282   /// ARMTargetLowering::allowsMisalignedMemoryAccesses().
283   bool StrictAlign = false;
284 
285   /// RestrictIT - If true, the subtarget disallows generation of deprecated IT
286   ///  blocks to conform to ARMv8 rule.
287   bool RestrictIT = false;
288 
289   /// HasDSP - If true, the subtarget supports the DSP (saturating arith
290   /// and such) instructions.
291   bool HasDSP = false;
292 
293   /// NaCl TRAP instruction is generated instead of the regular TRAP.
294   bool UseNaClTrap = false;
295 
296   /// Generate calls via indirect call instructions.
297   bool GenLongCalls = false;
298 
299   /// Target machine allowed unsafe FP math (such as use of NEON fp)
300   bool UnsafeFPMath = false;
301 
302   /// UseSjLjEH - If true, the target uses SjLj exception handling (e.g. iOS).
303   bool UseSjLjEH = false;
304 
305   /// stackAlignment - The minimum alignment known to hold of the stack frame on
306   /// entry to the function and which must be maintained by every function.
307   unsigned stackAlignment = 4;
308 
309   /// CPUString - String name of used CPU.
310   std::string CPUString;
311 
312   unsigned MaxInterleaveFactor = 1;
313 
314   /// Clearance before partial register updates (in number of instructions)
315   unsigned PartialUpdateClearance = 0;
316 
317   /// What kind of timing do load multiple/store multiple have (double issue,
318   /// single issue etc).
319   ARMLdStMultipleTiming LdStMultipleTiming = SingleIssue;
320 
321   /// The adjustment that we need to apply to get the operand latency from the
322   /// operand cycle returned by the itinerary data for pre-ISel operands.
323   int PreISelOperandLatencyAdjustment = 2;
324 
325   /// IsLittle - The target is Little Endian
326   bool IsLittle;
327 
328   /// TargetTriple - What processor and OS we're targeting.
329   Triple TargetTriple;
330 
331   /// SchedModel - Processor specific instruction costs.
332   MCSchedModel SchedModel;
333 
334   /// Selected instruction itineraries (one entry per itinerary class.)
335   InstrItineraryData InstrItins;
336 
337   /// Options passed via command line that could influence the target
338   const TargetOptions &Options;
339 
340   const ARMBaseTargetMachine &TM;
341 
342 public:
343   /// This constructor initializes the data members to match that
344   /// of the specified triple.
345   ///
346   ARMSubtarget(const Triple &TT, const std::string &CPU, const std::string &FS,
347                const ARMBaseTargetMachine &TM, bool IsLittle);
348 
349   /// getMaxInlineSizeThreshold - Returns the maximum memset / memcpy size
350   /// that still makes it profitable to inline the call.
getMaxInlineSizeThreshold()351   unsigned getMaxInlineSizeThreshold() const {
352     return 64;
353   }
354   /// ParseSubtargetFeatures - Parses features string setting specified
355   /// subtarget options.  Definition of function is auto generated by tblgen.
356   void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
357 
358   /// initializeSubtargetDependencies - Initializes using a CPU and feature string
359   /// so that we can use initializer lists for subtarget initialization.
360   ARMSubtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS);
361 
getSelectionDAGInfo()362   const ARMSelectionDAGInfo *getSelectionDAGInfo() const override {
363     return &TSInfo;
364   }
getInstrInfo()365   const ARMBaseInstrInfo *getInstrInfo() const override {
366     return InstrInfo.get();
367   }
getTargetLowering()368   const ARMTargetLowering *getTargetLowering() const override {
369     return &TLInfo;
370   }
getFrameLowering()371   const ARMFrameLowering *getFrameLowering() const override {
372     return FrameLowering.get();
373   }
getRegisterInfo()374   const ARMBaseRegisterInfo *getRegisterInfo() const override {
375     return &InstrInfo->getRegisterInfo();
376   }
377 
378 private:
379   ARMSelectionDAGInfo TSInfo;
380   // Either Thumb1FrameLowering or ARMFrameLowering.
381   std::unique_ptr<ARMFrameLowering> FrameLowering;
382   // Either Thumb1InstrInfo or Thumb2InstrInfo.
383   std::unique_ptr<ARMBaseInstrInfo> InstrInfo;
384   ARMTargetLowering   TLInfo;
385 
386   void initializeEnvironment();
387   void initSubtargetFeatures(StringRef CPU, StringRef FS);
388   ARMFrameLowering *initializeFrameLowering(StringRef CPU, StringRef FS);
389 
390 public:
391   void computeIssueWidth();
392 
hasV4TOps()393   bool hasV4TOps()  const { return HasV4TOps;  }
hasV5TOps()394   bool hasV5TOps()  const { return HasV5TOps;  }
hasV5TEOps()395   bool hasV5TEOps() const { return HasV5TEOps; }
hasV6Ops()396   bool hasV6Ops()   const { return HasV6Ops;   }
hasV6MOps()397   bool hasV6MOps()  const { return HasV6MOps;  }
hasV6KOps()398   bool hasV6KOps()  const { return HasV6KOps; }
hasV6T2Ops()399   bool hasV6T2Ops() const { return HasV6T2Ops; }
hasV7Ops()400   bool hasV7Ops()   const { return HasV7Ops;  }
hasV8Ops()401   bool hasV8Ops()   const { return HasV8Ops;  }
hasV8_1aOps()402   bool hasV8_1aOps() const { return HasV8_1aOps; }
hasV8_2aOps()403   bool hasV8_2aOps() const { return HasV8_2aOps; }
hasV8MBaselineOps()404   bool hasV8MBaselineOps() const { return HasV8MBaselineOps; }
hasV8MMainlineOps()405   bool hasV8MMainlineOps() const { return HasV8MMainlineOps; }
406 
407   /// @{
408   /// These functions are obsolete, please consider adding subtarget features
409   /// or properties instead of calling them.
isCortexA5()410   bool isCortexA5() const { return ARMProcFamily == CortexA5; }
isCortexA7()411   bool isCortexA7() const { return ARMProcFamily == CortexA7; }
isCortexA8()412   bool isCortexA8() const { return ARMProcFamily == CortexA8; }
isCortexA9()413   bool isCortexA9() const { return ARMProcFamily == CortexA9; }
isCortexA15()414   bool isCortexA15() const { return ARMProcFamily == CortexA15; }
isSwift()415   bool isSwift()    const { return ARMProcFamily == Swift; }
isCortexM3()416   bool isCortexM3() const { return ARMProcFamily == CortexM3; }
isLikeA9()417   bool isLikeA9() const { return isCortexA9() || isCortexA15() || isKrait(); }
isCortexR5()418   bool isCortexR5() const { return ARMProcFamily == CortexR5; }
isKrait()419   bool isKrait() const { return ARMProcFamily == Krait; }
420   /// @}
421 
hasARMOps()422   bool hasARMOps() const { return !NoARM; }
423 
hasVFP2()424   bool hasVFP2() const { return HasVFPv2; }
hasVFP3()425   bool hasVFP3() const { return HasVFPv3; }
hasVFP4()426   bool hasVFP4() const { return HasVFPv4; }
hasFPARMv8()427   bool hasFPARMv8() const { return HasFPARMv8; }
hasNEON()428   bool hasNEON() const { return HasNEON;  }
hasCrypto()429   bool hasCrypto() const { return HasCrypto; }
hasCRC()430   bool hasCRC() const { return HasCRC; }
hasRAS()431   bool hasRAS() const { return HasRAS; }
hasVirtualization()432   bool hasVirtualization() const { return HasVirtualization; }
useNEONForSinglePrecisionFP()433   bool useNEONForSinglePrecisionFP() const {
434     return hasNEON() && UseNEONForSinglePrecisionFP;
435   }
436 
hasDivide()437   bool hasDivide() const { return HasHardwareDivide; }
hasDivideInARMMode()438   bool hasDivideInARMMode() const { return HasHardwareDivideInARM; }
hasT2ExtractPack()439   bool hasT2ExtractPack() const { return HasT2ExtractPack; }
hasDataBarrier()440   bool hasDataBarrier() const { return HasDataBarrier; }
hasV7Clrex()441   bool hasV7Clrex() const { return HasV7Clrex; }
hasAcquireRelease()442   bool hasAcquireRelease() const { return HasAcquireRelease; }
hasAnyDataBarrier()443   bool hasAnyDataBarrier() const {
444     return HasDataBarrier || (hasV6Ops() && !isThumb());
445   }
useMulOps()446   bool useMulOps() const { return UseMulOps; }
useFPVMLx()447   bool useFPVMLx() const { return !SlowFPVMLx; }
hasVMLxForwarding()448   bool hasVMLxForwarding() const { return HasVMLxForwarding; }
isFPBrccSlow()449   bool isFPBrccSlow() const { return SlowFPBrcc; }
isFPOnlySP()450   bool isFPOnlySP() const { return FPOnlySP; }
hasPerfMon()451   bool hasPerfMon() const { return HasPerfMon; }
hasTrustZone()452   bool hasTrustZone() const { return HasTrustZone; }
has8MSecExt()453   bool has8MSecExt() const { return Has8MSecExt; }
hasZeroCycleZeroing()454   bool hasZeroCycleZeroing() const { return HasZeroCycleZeroing; }
isProfitableToUnpredicate()455   bool isProfitableToUnpredicate() const { return IsProfitableToUnpredicate; }
hasSlowVGETLNi32()456   bool hasSlowVGETLNi32() const { return HasSlowVGETLNi32; }
hasSlowVDUP32()457   bool hasSlowVDUP32() const { return HasSlowVDUP32; }
preferVMOVSR()458   bool preferVMOVSR() const { return PreferVMOVSR; }
preferISHSTBarriers()459   bool preferISHSTBarriers() const { return PreferISHST; }
expandMLx()460   bool expandMLx() const { return ExpandMLx; }
hasVMLxHazards()461   bool hasVMLxHazards() const { return HasVMLxHazards; }
hasSlowOddRegister()462   bool hasSlowOddRegister() const { return SlowOddRegister; }
hasSlowLoadDSubregister()463   bool hasSlowLoadDSubregister() const { return SlowLoadDSubregister; }
hasMuxedUnits()464   bool hasMuxedUnits() const { return HasMuxedUnits; }
dontWidenVMOVS()465   bool dontWidenVMOVS() const { return DontWidenVMOVS; }
useNEONForFPMovs()466   bool useNEONForFPMovs() const { return UseNEONForFPMovs; }
checkVLDnAccessAlignment()467   bool checkVLDnAccessAlignment() const { return CheckVLDnAlign; }
nonpipelinedVFP()468   bool nonpipelinedVFP() const { return NonpipelinedVFP; }
prefers32BitThumb()469   bool prefers32BitThumb() const { return Pref32BitThumb; }
avoidCPSRPartialUpdate()470   bool avoidCPSRPartialUpdate() const { return AvoidCPSRPartialUpdate; }
avoidMOVsShifterOperand()471   bool avoidMOVsShifterOperand() const { return AvoidMOVsShifterOperand; }
hasRetAddrStack()472   bool hasRetAddrStack() const { return HasRetAddrStack; }
hasMPExtension()473   bool hasMPExtension() const { return HasMPExtension; }
hasDSP()474   bool hasDSP() const { return HasDSP; }
useNaClTrap()475   bool useNaClTrap() const { return UseNaClTrap; }
useSjLjEH()476   bool useSjLjEH() const { return UseSjLjEH; }
genLongCalls()477   bool genLongCalls() const { return GenLongCalls; }
478 
hasFP16()479   bool hasFP16() const { return HasFP16; }
hasD16()480   bool hasD16() const { return HasD16; }
hasFullFP16()481   bool hasFullFP16() const { return HasFullFP16; }
482 
getTargetTriple()483   const Triple &getTargetTriple() const { return TargetTriple; }
484 
isTargetDarwin()485   bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); }
isTargetIOS()486   bool isTargetIOS() const { return TargetTriple.isiOS(); }
isTargetWatchOS()487   bool isTargetWatchOS() const { return TargetTriple.isWatchOS(); }
isTargetWatchABI()488   bool isTargetWatchABI() const { return TargetTriple.isWatchABI(); }
isTargetLinux()489   bool isTargetLinux() const { return TargetTriple.isOSLinux(); }
isTargetNaCl()490   bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); }
isTargetNetBSD()491   bool isTargetNetBSD() const { return TargetTriple.isOSNetBSD(); }
isTargetWindows()492   bool isTargetWindows() const { return TargetTriple.isOSWindows(); }
493 
isTargetCOFF()494   bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); }
isTargetELF()495   bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); }
isTargetMachO()496   bool isTargetMachO() const { return TargetTriple.isOSBinFormatMachO(); }
497 
498   // ARM EABI is the bare-metal EABI described in ARM ABI documents and
499   // can be accessed via -target arm-none-eabi. This is NOT GNUEABI.
500   // FIXME: Add a flag for bare-metal for that target and set Triple::EABI
501   // even for GNUEABI, so we can make a distinction here and still conform to
502   // the EABI on GNU (and Android) mode. This requires change in Clang, too.
503   // FIXME: The Darwin exception is temporary, while we move users to
504   // "*-*-*-macho" triples as quickly as possible.
isTargetAEABI()505   bool isTargetAEABI() const {
506     return (TargetTriple.getEnvironment() == Triple::EABI ||
507             TargetTriple.getEnvironment() == Triple::EABIHF) &&
508            !isTargetDarwin() && !isTargetWindows();
509   }
isTargetGNUAEABI()510   bool isTargetGNUAEABI() const {
511     return (TargetTriple.getEnvironment() == Triple::GNUEABI ||
512             TargetTriple.getEnvironment() == Triple::GNUEABIHF) &&
513            !isTargetDarwin() && !isTargetWindows();
514   }
isTargetMuslAEABI()515   bool isTargetMuslAEABI() const {
516     return (TargetTriple.getEnvironment() == Triple::MuslEABI ||
517             TargetTriple.getEnvironment() == Triple::MuslEABIHF) &&
518            !isTargetDarwin() && !isTargetWindows();
519   }
520 
521   // ARM Targets that support EHABI exception handling standard
522   // Darwin uses SjLj. Other targets might need more checks.
isTargetEHABICompatible()523   bool isTargetEHABICompatible() const {
524     return (TargetTriple.getEnvironment() == Triple::EABI ||
525             TargetTriple.getEnvironment() == Triple::GNUEABI ||
526             TargetTriple.getEnvironment() == Triple::MuslEABI ||
527             TargetTriple.getEnvironment() == Triple::EABIHF ||
528             TargetTriple.getEnvironment() == Triple::GNUEABIHF ||
529             TargetTriple.getEnvironment() == Triple::MuslEABIHF ||
530             isTargetAndroid()) &&
531            !isTargetDarwin() && !isTargetWindows();
532   }
533 
isTargetHardFloat()534   bool isTargetHardFloat() const {
535     // FIXME: this is invalid for WindowsCE
536     return TargetTriple.getEnvironment() == Triple::GNUEABIHF ||
537            TargetTriple.getEnvironment() == Triple::MuslEABIHF ||
538            TargetTriple.getEnvironment() == Triple::EABIHF ||
539            isTargetWindows() || isAAPCS16_ABI();
540   }
isTargetAndroid()541   bool isTargetAndroid() const { return TargetTriple.isAndroid(); }
542 
543   bool isAPCS_ABI() const;
544   bool isAAPCS_ABI() const;
545   bool isAAPCS16_ABI() const;
546 
useSoftFloat()547   bool useSoftFloat() const { return UseSoftFloat; }
isThumb()548   bool isThumb() const { return InThumbMode; }
isThumb1Only()549   bool isThumb1Only() const { return InThumbMode && !HasThumb2; }
isThumb2()550   bool isThumb2() const { return InThumbMode && HasThumb2; }
hasThumb2()551   bool hasThumb2() const { return HasThumb2; }
isMClass()552   bool isMClass() const { return ARMProcClass == MClass; }
isRClass()553   bool isRClass() const { return ARMProcClass == RClass; }
isAClass()554   bool isAClass() const { return ARMProcClass == AClass; }
555 
isR9Reserved()556   bool isR9Reserved() const {
557     return isTargetMachO() ? (ReserveR9 || !HasV6Ops) : ReserveR9;
558   }
559 
560   /// Returns true if the frame setup is split into two separate pushes (first
561   /// r0-r7,lr then r8-r11), principally so that the frame pointer is adjacent
562   /// to lr.
splitFramePushPop()563   bool splitFramePushPop() const {
564     return isTargetMachO();
565   }
566 
567   bool useStride4VFPs(const MachineFunction &MF) const;
568 
569   bool useMovt(const MachineFunction &MF) const;
570 
supportsTailCall()571   bool supportsTailCall() const { return SupportsTailCall; }
572 
allowsUnalignedMem()573   bool allowsUnalignedMem() const { return !StrictAlign; }
574 
restrictIT()575   bool restrictIT() const { return RestrictIT; }
576 
getCPUString()577   const std::string & getCPUString() const { return CPUString; }
578 
isLittle()579   bool isLittle() const { return IsLittle; }
580 
581   unsigned getMispredictionPenalty() const;
582 
583   /// This function returns true if the target has sincos() routine in its
584   /// compiler runtime or math libraries.
585   bool hasSinCos() const;
586 
587   /// Returns true if machine scheduler should be enabled.
588   bool enableMachineScheduler() const override;
589 
590   /// True for some subtargets at > -O0.
591   bool enablePostRAScheduler() const override;
592 
593   // enableAtomicExpand- True if we need to expand our atomics.
594   bool enableAtomicExpand() const override;
595 
596   /// getInstrItins - Return the instruction itineraries based on subtarget
597   /// selection.
getInstrItineraryData()598   const InstrItineraryData *getInstrItineraryData() const override {
599     return &InstrItins;
600   }
601 
602   /// getStackAlignment - Returns the minimum alignment known to hold of the
603   /// stack frame on entry to the function and which must be maintained by every
604   /// function for this subtarget.
getStackAlignment()605   unsigned getStackAlignment() const { return stackAlignment; }
606 
getMaxInterleaveFactor()607   unsigned getMaxInterleaveFactor() const { return MaxInterleaveFactor; }
608 
getPartialUpdateClearance()609   unsigned getPartialUpdateClearance() const { return PartialUpdateClearance; }
610 
getLdStMultipleTiming()611   ARMLdStMultipleTiming getLdStMultipleTiming() const {
612     return LdStMultipleTiming;
613   }
614 
getPreISelOperandLatencyAdjustment()615   int getPreISelOperandLatencyAdjustment() const {
616     return PreISelOperandLatencyAdjustment;
617   }
618 
619   /// True if the GV will be accessed via an indirect symbol.
620   bool isGVIndirectSymbol(const GlobalValue *GV) const;
621 
622   /// True if fast-isel is used.
623   bool useFastISel() const;
624 };
625 } // End llvm namespace
626 
627 #endif  // ARMSUBTARGET_H
628