1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ART_COMPILER_OPTIMIZING_SCHEDULER_H_
18 #define ART_COMPILER_OPTIMIZING_SCHEDULER_H_
19
20 #include <fstream>
21
22 #include "base/time_utils.h"
23 #include "driver/compiler_driver.h"
24 #include "nodes.h"
25 #include "optimization.h"
26
27 namespace art {
28
29 // General description of instruction scheduling.
30 //
31 // This pass tries to improve the quality of the generated code by reordering
32 // instructions in the graph to avoid execution delays caused by execution
33 // dependencies.
34 // Currently, scheduling is performed at the block level, so no `HInstruction`
35 // ever leaves its block in this pass.
36 //
37 // The scheduling process iterates through blocks in the graph. For blocks that
38 // we can and want to schedule:
39 // 1) Build a dependency graph for instructions.
40 // It includes data dependencies (inputs/uses), but also environment
41 // dependencies and side-effect dependencies.
42 // 2) Schedule the dependency graph.
43 // This is a topological sort of the dependency graph, using heuristics to
44 // decide what node to scheduler first when there are multiple candidates.
45 //
46 // A few factors impacting the quality of the scheduling are:
47 // - The heuristics used to decide what node to schedule in the topological sort
48 // when there are multiple valid candidates. There is a wide range of
49 // complexity possible here, going from a simple model only considering
50 // latencies, to a super detailed CPU pipeline model.
51 // - Fewer dependencies in the dependency graph give more freedom for the
52 // scheduling heuristics. For example de-aliasing can allow possibilities for
53 // reordering of memory accesses.
54 // - The level of abstraction of the IR. It is easier to evaluate scheduling for
55 // IRs that translate to a single assembly instruction than for IRs
56 // that generate multiple assembly instructions or generate different code
57 // depending on properties of the IR.
58 // - Scheduling is performed before register allocation, it is not aware of the
59 // impact of moving instructions on register allocation.
60 //
61 //
62 // The scheduling code uses the terms predecessors, successors, and dependencies.
63 // This can be confusing at times, so here are clarifications.
64 // These terms are used from the point of view of the program dependency graph. So
65 // the inputs of an instruction are part of its dependencies, and hence part its
66 // predecessors. So the uses of an instruction are (part of) its successors.
67 // (Side-effect dependencies can yield predecessors or successors that are not
68 // inputs or uses.)
69 //
70 // Here is a trivial example. For the Java code:
71 //
72 // int a = 1 + 2;
73 //
74 // we would have the instructions
75 //
76 // i1 HIntConstant 1
77 // i2 HIntConstant 2
78 // i3 HAdd [i1,i2]
79 //
80 // `i1` and `i2` are predecessors of `i3`.
81 // `i3` is a successor of `i1` and a successor of `i2`.
82 // In a scheduling graph for this code we would have three nodes `n1`, `n2`,
83 // and `n3` (respectively for instructions `i1`, `i1`, and `i3`).
84 // Conceptually the program dependency graph for this would contain two edges
85 //
86 // n1 -> n3
87 // n2 -> n3
88 //
89 // Since we schedule backwards (starting from the last instruction in each basic
90 // block), the implementation of nodes keeps a list of pointers their
91 // predecessors. So `n3` would keep pointers to its predecessors `n1` and `n2`.
92 //
93 // Node dependencies are also referred to from the program dependency graph
94 // point of view: we say that node `B` immediately depends on `A` if there is an
95 // edge from `A` to `B` in the program dependency graph. `A` is a predecessor of
96 // `B`, `B` is a successor of `A`. In the example above `n3` depends on `n1` and
97 // `n2`.
98 // Since nodes in the scheduling graph keep a list of their predecessors, node
99 // `B` will have a pointer to its predecessor `A`.
100 // As we schedule backwards, `B` will be selected for scheduling before `A` is.
101 //
102 // So the scheduling for the example above could happen as follow
103 //
104 // |---------------------------+------------------------|
105 // | candidates for scheduling | instructions scheduled |
106 // | --------------------------+------------------------|
107 //
108 // The only node without successors is `n3`, so it is the only initial
109 // candidate.
110 //
111 // | n3 | (none) |
112 //
113 // We schedule `n3` as the last (and only) instruction. All its predecessors
114 // that do not have any unscheduled successors become candidate. That is, `n1`
115 // and `n2` become candidates.
116 //
117 // | n1, n2 | n3 |
118 //
119 // One of the candidates is selected. In practice this is where scheduling
120 // heuristics kick in, to decide which of the candidates should be selected.
121 // In this example, let it be `n1`. It is scheduled before previously scheduled
122 // nodes (in program order). There are no other nodes to add to the list of
123 // candidates.
124 //
125 // | n2 | n1 |
126 // | | n3 |
127 //
128 // The only candidate available for scheduling is `n2`. Schedule it before
129 // (in program order) the previously scheduled nodes.
130 //
131 // | (none) | n2 |
132 // | | n1 |
133 // | | n3 |
134 // |---------------------------+------------------------|
135 //
136 // So finally the instructions will be executed in the order `i2`, `i1`, and `i3`.
137 // In this trivial example, it does not matter which of `i1` and `i2` is
138 // scheduled first since they are constants. However the same process would
139 // apply if `i1` and `i2` were actual operations (for example `HMul` and `HDiv`).
140
141 // Set to true to have instruction scheduling dump scheduling graphs to the file
142 // `scheduling_graphs.dot`. See `SchedulingGraph::DumpAsDotGraph()`.
143 static constexpr bool kDumpDotSchedulingGraphs = false;
144
145 // Typically used as a default instruction latency.
146 static constexpr uint32_t kGenericInstructionLatency = 1;
147
148 class HScheduler;
149
150 /**
151 * A node representing an `HInstruction` in the `SchedulingGraph`.
152 */
153 class SchedulingNode : public ArenaObject<kArenaAllocScheduler> {
154 public:
SchedulingNode(HInstruction * instr,ArenaAllocator * arena,bool is_scheduling_barrier)155 SchedulingNode(HInstruction* instr, ArenaAllocator* arena, bool is_scheduling_barrier)
156 : latency_(0),
157 internal_latency_(0),
158 critical_path_(0),
159 instruction_(instr),
160 is_scheduling_barrier_(is_scheduling_barrier),
161 data_predecessors_(arena->Adapter(kArenaAllocScheduler)),
162 other_predecessors_(arena->Adapter(kArenaAllocScheduler)),
163 num_unscheduled_successors_(0) {
164 data_predecessors_.reserve(kPreallocatedPredecessors);
165 }
166
AddDataPredecessor(SchedulingNode * predecessor)167 void AddDataPredecessor(SchedulingNode* predecessor) {
168 data_predecessors_.push_back(predecessor);
169 predecessor->num_unscheduled_successors_++;
170 }
171
AddOtherPredecessor(SchedulingNode * predecessor)172 void AddOtherPredecessor(SchedulingNode* predecessor) {
173 other_predecessors_.push_back(predecessor);
174 predecessor->num_unscheduled_successors_++;
175 }
176
DecrementNumberOfUnscheduledSuccessors()177 void DecrementNumberOfUnscheduledSuccessors() {
178 num_unscheduled_successors_--;
179 }
180
MaybeUpdateCriticalPath(uint32_t other_critical_path)181 void MaybeUpdateCriticalPath(uint32_t other_critical_path) {
182 critical_path_ = std::max(critical_path_, other_critical_path);
183 }
184
HasUnscheduledSuccessors()185 bool HasUnscheduledSuccessors() const {
186 return num_unscheduled_successors_ != 0;
187 }
188
GetInstruction()189 HInstruction* GetInstruction() const { return instruction_; }
GetLatency()190 uint32_t GetLatency() const { return latency_; }
SetLatency(uint32_t latency)191 void SetLatency(uint32_t latency) { latency_ = latency; }
GetInternalLatency()192 uint32_t GetInternalLatency() const { return internal_latency_; }
SetInternalLatency(uint32_t internal_latency)193 void SetInternalLatency(uint32_t internal_latency) { internal_latency_ = internal_latency; }
GetCriticalPath()194 uint32_t GetCriticalPath() const { return critical_path_; }
IsSchedulingBarrier()195 bool IsSchedulingBarrier() const { return is_scheduling_barrier_; }
GetDataPredecessors()196 const ArenaVector<SchedulingNode*>& GetDataPredecessors() const { return data_predecessors_; }
GetOtherPredecessors()197 const ArenaVector<SchedulingNode*>& GetOtherPredecessors() const { return other_predecessors_; }
198
199 private:
200 // The latency of this node. It represents the latency between the moment the
201 // last instruction for this node has executed to the moment the result
202 // produced by this node is available to users.
203 uint32_t latency_;
204 // This represents the time spent *within* the generated code for this node.
205 // It should be zero for nodes that only generate a single instruction.
206 uint32_t internal_latency_;
207
208 // The critical path from this instruction to the end of scheduling. It is
209 // used by the scheduling heuristics to measure the priority of this instruction.
210 // It is defined as
211 // critical_path_ = latency_ + max((use.internal_latency_ + use.critical_path_) for all uses)
212 // (Note that here 'uses' is equivalent to 'data successors'. Also see comments in
213 // `HScheduler::Schedule(SchedulingNode* scheduling_node)`).
214 uint32_t critical_path_;
215
216 // The instruction that this node represents.
217 HInstruction* const instruction_;
218
219 // If a node is scheduling barrier, other nodes cannot be scheduled before it.
220 const bool is_scheduling_barrier_;
221
222 // The lists of predecessors. They cannot be scheduled before this node. Once
223 // this node is scheduled, we check whether any of its predecessors has become a
224 // valid candidate for scheduling.
225 // Predecessors in `data_predecessors_` are data dependencies. Those in
226 // `other_predecessors_` contain side-effect dependencies, environment
227 // dependencies, and scheduling barrier dependencies.
228 ArenaVector<SchedulingNode*> data_predecessors_;
229 ArenaVector<SchedulingNode*> other_predecessors_;
230
231 // The number of unscheduled successors for this node. This number is
232 // decremented as successors are scheduled. When it reaches zero this node
233 // becomes a valid candidate to schedule.
234 uint32_t num_unscheduled_successors_;
235
236 static constexpr size_t kPreallocatedPredecessors = 4;
237 };
238
239 /*
240 * Directed acyclic graph for scheduling.
241 */
242 class SchedulingGraph : public ValueObject {
243 public:
SchedulingGraph(const HScheduler * scheduler,ArenaAllocator * arena)244 SchedulingGraph(const HScheduler* scheduler, ArenaAllocator* arena)
245 : scheduler_(scheduler),
246 arena_(arena),
247 contains_scheduling_barrier_(false),
248 nodes_map_(arena_->Adapter(kArenaAllocScheduler)) {}
249
250 SchedulingNode* AddNode(HInstruction* instr, bool is_scheduling_barrier = false) {
251 SchedulingNode* node = new (arena_) SchedulingNode(instr, arena_, is_scheduling_barrier);
252 nodes_map_.Insert(std::make_pair(instr, node));
253 contains_scheduling_barrier_ |= is_scheduling_barrier;
254 AddDependencies(instr, is_scheduling_barrier);
255 return node;
256 }
257
Clear()258 void Clear() {
259 nodes_map_.Clear();
260 contains_scheduling_barrier_ = false;
261 }
262
GetNode(const HInstruction * instr)263 SchedulingNode* GetNode(const HInstruction* instr) const {
264 auto it = nodes_map_.Find(instr);
265 if (it == nodes_map_.end()) {
266 return nullptr;
267 } else {
268 return it->second;
269 }
270 }
271
272 bool IsSchedulingBarrier(const HInstruction* instruction) const;
273
274 bool HasImmediateDataDependency(const SchedulingNode* node, const SchedulingNode* other) const;
275 bool HasImmediateDataDependency(const HInstruction* node, const HInstruction* other) const;
276 bool HasImmediateOtherDependency(const SchedulingNode* node, const SchedulingNode* other) const;
277 bool HasImmediateOtherDependency(const HInstruction* node, const HInstruction* other) const;
278
Size()279 size_t Size() const {
280 return nodes_map_.Size();
281 }
282
283 // Dump the scheduling graph, in dot file format, appending it to the file
284 // `scheduling_graphs.dot`.
285 void DumpAsDotGraph(const std::string& description,
286 const ArenaVector<SchedulingNode*>& initial_candidates);
287
288 protected:
289 void AddDependency(SchedulingNode* node, SchedulingNode* dependency, bool is_data_dependency);
AddDataDependency(SchedulingNode * node,SchedulingNode * dependency)290 void AddDataDependency(SchedulingNode* node, SchedulingNode* dependency) {
291 AddDependency(node, dependency, /*is_data_dependency*/true);
292 }
AddOtherDependency(SchedulingNode * node,SchedulingNode * dependency)293 void AddOtherDependency(SchedulingNode* node, SchedulingNode* dependency) {
294 AddDependency(node, dependency, /*is_data_dependency*/false);
295 }
296
297 // Add dependencies nodes for the given `HInstruction`: inputs, environments, and side-effects.
298 void AddDependencies(HInstruction* instruction, bool is_scheduling_barrier = false);
299
300 const HScheduler* const scheduler_;
301
302 ArenaAllocator* const arena_;
303
304 bool contains_scheduling_barrier_;
305
306 ArenaHashMap<const HInstruction*, SchedulingNode*> nodes_map_;
307 };
308
309 /*
310 * The visitors derived from this base class are used by schedulers to evaluate
311 * the latencies of `HInstruction`s.
312 */
313 class SchedulingLatencyVisitor : public HGraphDelegateVisitor {
314 public:
315 // This class and its sub-classes will never be used to drive a visit of an
316 // `HGraph` but only to visit `HInstructions` one at a time, so we do not need
317 // to pass a valid graph to `HGraphDelegateVisitor()`.
SchedulingLatencyVisitor()318 SchedulingLatencyVisitor()
319 : HGraphDelegateVisitor(nullptr),
320 last_visited_latency_(0),
321 last_visited_internal_latency_(0) {}
322
VisitInstruction(HInstruction * instruction)323 void VisitInstruction(HInstruction* instruction) OVERRIDE {
324 LOG(FATAL) << "Error visiting " << instruction->DebugName() << ". "
325 "Architecture-specific scheduling latency visitors must handle all instructions"
326 " (potentially by overriding the generic `VisitInstruction()`.";
327 UNREACHABLE();
328 }
329
Visit(HInstruction * instruction)330 void Visit(HInstruction* instruction) {
331 instruction->Accept(this);
332 }
333
CalculateLatency(SchedulingNode * node)334 void CalculateLatency(SchedulingNode* node) {
335 // By default nodes have no internal latency.
336 last_visited_internal_latency_ = 0;
337 Visit(node->GetInstruction());
338 }
339
GetLastVisitedLatency()340 uint32_t GetLastVisitedLatency() const { return last_visited_latency_; }
GetLastVisitedInternalLatency()341 uint32_t GetLastVisitedInternalLatency() const { return last_visited_internal_latency_; }
342
343 protected:
344 // The latency of the most recent visited SchedulingNode.
345 // This is for reporting the latency value to the user of this visitor.
346 uint32_t last_visited_latency_;
347 // This represents the time spent *within* the generated code for the most recent visited
348 // SchedulingNode. This is for reporting the internal latency value to the user of this visitor.
349 uint32_t last_visited_internal_latency_;
350 };
351
352 class SchedulingNodeSelector : public ArenaObject<kArenaAllocScheduler> {
353 public:
354 virtual SchedulingNode* PopHighestPriorityNode(ArenaVector<SchedulingNode*>* nodes,
355 const SchedulingGraph& graph) = 0;
~SchedulingNodeSelector()356 virtual ~SchedulingNodeSelector() {}
357 protected:
DeleteNodeAtIndex(ArenaVector<SchedulingNode * > * nodes,size_t index)358 static void DeleteNodeAtIndex(ArenaVector<SchedulingNode*>* nodes, size_t index) {
359 (*nodes)[index] = nodes->back();
360 nodes->pop_back();
361 }
362 };
363
364 /*
365 * Select a `SchedulingNode` at random within the candidates.
366 */
367 class RandomSchedulingNodeSelector : public SchedulingNodeSelector {
368 public:
RandomSchedulingNodeSelector()369 explicit RandomSchedulingNodeSelector() : seed_(0) {
370 seed_ = static_cast<uint32_t>(NanoTime());
371 srand(seed_);
372 }
373
PopHighestPriorityNode(ArenaVector<SchedulingNode * > * nodes,const SchedulingGraph & graph)374 SchedulingNode* PopHighestPriorityNode(ArenaVector<SchedulingNode*>* nodes,
375 const SchedulingGraph& graph) OVERRIDE {
376 UNUSED(graph);
377 DCHECK(!nodes->empty());
378 size_t select = rand_r(&seed_) % nodes->size();
379 SchedulingNode* select_node = (*nodes)[select];
380 DeleteNodeAtIndex(nodes, select);
381 return select_node;
382 }
383
384 uint32_t seed_;
385 };
386
387 /*
388 * Select a `SchedulingNode` according to critical path information,
389 * with heuristics to favor certain instruction patterns like materialized condition.
390 */
391 class CriticalPathSchedulingNodeSelector : public SchedulingNodeSelector {
392 public:
CriticalPathSchedulingNodeSelector()393 CriticalPathSchedulingNodeSelector() : prev_select_(nullptr) {}
394
395 SchedulingNode* PopHighestPriorityNode(ArenaVector<SchedulingNode*>* nodes,
396 const SchedulingGraph& graph) OVERRIDE;
397
398 protected:
399 SchedulingNode* GetHigherPrioritySchedulingNode(SchedulingNode* candidate,
400 SchedulingNode* check) const;
401
402 SchedulingNode* SelectMaterializedCondition(ArenaVector<SchedulingNode*>* nodes,
403 const SchedulingGraph& graph) const;
404
405 private:
406 const SchedulingNode* prev_select_;
407 };
408
409 class HScheduler {
410 public:
HScheduler(ArenaAllocator * arena,SchedulingLatencyVisitor * latency_visitor,SchedulingNodeSelector * selector)411 HScheduler(ArenaAllocator* arena,
412 SchedulingLatencyVisitor* latency_visitor,
413 SchedulingNodeSelector* selector)
414 : arena_(arena),
415 latency_visitor_(latency_visitor),
416 selector_(selector),
417 only_optimize_loop_blocks_(true),
418 scheduling_graph_(this, arena),
419 cursor_(nullptr),
420 candidates_(arena_->Adapter(kArenaAllocScheduler)) {}
~HScheduler()421 virtual ~HScheduler() {}
422
423 void Schedule(HGraph* graph);
424
SetOnlyOptimizeLoopBlocks(bool loop_only)425 void SetOnlyOptimizeLoopBlocks(bool loop_only) { only_optimize_loop_blocks_ = loop_only; }
426
427 // Instructions can not be rescheduled across a scheduling barrier.
428 virtual bool IsSchedulingBarrier(const HInstruction* instruction) const;
429
430 protected:
431 void Schedule(HBasicBlock* block);
432 void Schedule(SchedulingNode* scheduling_node);
433 void Schedule(HInstruction* instruction);
434
435 // Any instruction returning `false` via this method will prevent its
436 // containing basic block from being scheduled.
437 // This method is used to restrict scheduling to instructions that we know are
438 // safe to handle.
439 virtual bool IsSchedulable(const HInstruction* instruction) const;
440 bool IsSchedulable(const HBasicBlock* block) const;
441
CalculateLatency(SchedulingNode * node)442 void CalculateLatency(SchedulingNode* node) {
443 latency_visitor_->CalculateLatency(node);
444 node->SetLatency(latency_visitor_->GetLastVisitedLatency());
445 node->SetInternalLatency(latency_visitor_->GetLastVisitedInternalLatency());
446 }
447
448 ArenaAllocator* const arena_;
449 SchedulingLatencyVisitor* const latency_visitor_;
450 SchedulingNodeSelector* const selector_;
451 bool only_optimize_loop_blocks_;
452
453 // We instantiate the members below as part of this class to avoid
454 // instantiating them locally for every chunk scheduled.
455 SchedulingGraph scheduling_graph_;
456 // A pointer indicating where the next instruction to be scheduled will be inserted.
457 HInstruction* cursor_;
458 // The list of candidates for scheduling. A node becomes a candidate when all
459 // its predecessors have been scheduled.
460 ArenaVector<SchedulingNode*> candidates_;
461
462 private:
463 DISALLOW_COPY_AND_ASSIGN(HScheduler);
464 };
465
IsSchedulingBarrier(const HInstruction * instruction)466 inline bool SchedulingGraph::IsSchedulingBarrier(const HInstruction* instruction) const {
467 return scheduler_->IsSchedulingBarrier(instruction);
468 }
469
470 class HInstructionScheduling : public HOptimization {
471 public:
HInstructionScheduling(HGraph * graph,InstructionSet instruction_set)472 HInstructionScheduling(HGraph* graph, InstructionSet instruction_set)
473 : HOptimization(graph, kInstructionScheduling),
474 instruction_set_(instruction_set) {}
475
Run()476 void Run() {
477 Run(/*only_optimize_loop_blocks*/ true, /*schedule_randomly*/ false);
478 }
479 void Run(bool only_optimize_loop_blocks, bool schedule_randomly);
480
481 static constexpr const char* kInstructionScheduling = "scheduler";
482
483 const InstructionSet instruction_set_;
484
485 private:
486 DISALLOW_COPY_AND_ASSIGN(HInstructionScheduling);
487 };
488
489 } // namespace art
490
491 #endif // ART_COMPILER_OPTIMIZING_SCHEDULER_H_
492