1 // Copyright 2015 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // SSE2 variant of methods for lossless encoder
11 //
12 // Author: Skal (pascal.massimino@gmail.com)
13 
14 #include "./dsp.h"
15 
16 #if defined(WEBP_USE_SSE2)
17 #include <assert.h>
18 #include <emmintrin.h>
19 #include "./lossless.h"
20 #include "./common_sse2.h"
21 #include "./lossless_common.h"
22 
23 // For sign-extended multiplying constants, pre-shifted by 5:
24 #define CST_5b(X)  (((int16_t)((uint16_t)X << 8)) >> 5)
25 
26 //------------------------------------------------------------------------------
27 // Subtract-Green Transform
28 
SubtractGreenFromBlueAndRed(uint32_t * argb_data,int num_pixels)29 static void SubtractGreenFromBlueAndRed(uint32_t* argb_data, int num_pixels) {
30   int i;
31   for (i = 0; i + 4 <= num_pixels; i += 4) {
32     const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb
33     const __m128i A = _mm_srli_epi16(in, 8);     // 0 a 0 g
34     const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
35     const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0));  // 0g0g
36     const __m128i out = _mm_sub_epi8(in, C);
37     _mm_storeu_si128((__m128i*)&argb_data[i], out);
38   }
39   // fallthrough and finish off with plain-C
40   if (i != num_pixels) {
41     VP8LSubtractGreenFromBlueAndRed_C(argb_data + i, num_pixels - i);
42   }
43 }
44 
45 //------------------------------------------------------------------------------
46 // Color Transform
47 
TransformColor(const VP8LMultipliers * const m,uint32_t * argb_data,int num_pixels)48 static void TransformColor(const VP8LMultipliers* const m,
49                            uint32_t* argb_data, int num_pixels) {
50   const __m128i mults_rb = _mm_set_epi16(
51       CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_),
52       CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_),
53       CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_),
54       CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_));
55   const __m128i mults_b2 = _mm_set_epi16(
56       CST_5b(m->red_to_blue_), 0, CST_5b(m->red_to_blue_), 0,
57       CST_5b(m->red_to_blue_), 0, CST_5b(m->red_to_blue_), 0);
58   const __m128i mask_ag = _mm_set1_epi32(0xff00ff00);  // alpha-green masks
59   const __m128i mask_rb = _mm_set1_epi32(0x00ff00ff);  // red-blue masks
60   int i;
61   for (i = 0; i + 4 <= num_pixels; i += 4) {
62     const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb
63     const __m128i A = _mm_and_si128(in, mask_ag);     // a   0   g   0
64     const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
65     const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0));  // g0g0
66     const __m128i D = _mm_mulhi_epi16(C, mults_rb);    // x dr  x db1
67     const __m128i E = _mm_slli_epi16(in, 8);           // r 0   b   0
68     const __m128i F = _mm_mulhi_epi16(E, mults_b2);    // x db2 0   0
69     const __m128i G = _mm_srli_epi32(F, 16);           // 0 0   x db2
70     const __m128i H = _mm_add_epi8(G, D);              // x dr  x  db
71     const __m128i I = _mm_and_si128(H, mask_rb);       // 0 dr  0  db
72     const __m128i out = _mm_sub_epi8(in, I);
73     _mm_storeu_si128((__m128i*)&argb_data[i], out);
74   }
75   // fallthrough and finish off with plain-C
76   if (i != num_pixels) {
77     VP8LTransformColor_C(m, argb_data + i, num_pixels - i);
78   }
79 }
80 
81 //------------------------------------------------------------------------------
82 #define SPAN 8
CollectColorBlueTransforms(const uint32_t * argb,int stride,int tile_width,int tile_height,int green_to_blue,int red_to_blue,int histo[])83 static void CollectColorBlueTransforms(const uint32_t* argb, int stride,
84                                        int tile_width, int tile_height,
85                                        int green_to_blue, int red_to_blue,
86                                        int histo[]) {
87   const __m128i mults_r = _mm_set_epi16(
88       CST_5b(red_to_blue), 0, CST_5b(red_to_blue), 0,
89       CST_5b(red_to_blue), 0, CST_5b(red_to_blue), 0);
90   const __m128i mults_g = _mm_set_epi16(
91       0, CST_5b(green_to_blue), 0, CST_5b(green_to_blue),
92       0, CST_5b(green_to_blue), 0, CST_5b(green_to_blue));
93   const __m128i mask_g = _mm_set1_epi32(0x00ff00);  // green mask
94   const __m128i mask_b = _mm_set1_epi32(0x0000ff);  // blue mask
95   int y;
96   for (y = 0; y < tile_height; ++y) {
97     const uint32_t* const src = argb + y * stride;
98     int i, x;
99     for (x = 0; x + SPAN <= tile_width; x += SPAN) {
100       uint16_t values[SPAN];
101       const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x +        0]);
102       const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]);
103       const __m128i A0 = _mm_slli_epi16(in0, 8);        // r 0  | b 0
104       const __m128i A1 = _mm_slli_epi16(in1, 8);
105       const __m128i B0 = _mm_and_si128(in0, mask_g);    // 0 0  | g 0
106       const __m128i B1 = _mm_and_si128(in1, mask_g);
107       const __m128i C0 = _mm_mulhi_epi16(A0, mults_r);  // x db | 0 0
108       const __m128i C1 = _mm_mulhi_epi16(A1, mults_r);
109       const __m128i D0 = _mm_mulhi_epi16(B0, mults_g);  // 0 0  | x db
110       const __m128i D1 = _mm_mulhi_epi16(B1, mults_g);
111       const __m128i E0 = _mm_sub_epi8(in0, D0);         // x x  | x b'
112       const __m128i E1 = _mm_sub_epi8(in1, D1);
113       const __m128i F0 = _mm_srli_epi32(C0, 16);        // 0 0  | x db
114       const __m128i F1 = _mm_srli_epi32(C1, 16);
115       const __m128i G0 = _mm_sub_epi8(E0, F0);          // 0 0  | x b'
116       const __m128i G1 = _mm_sub_epi8(E1, F1);
117       const __m128i H0 = _mm_and_si128(G0, mask_b);     // 0 0  | 0 b
118       const __m128i H1 = _mm_and_si128(G1, mask_b);
119       const __m128i I = _mm_packs_epi32(H0, H1);        // 0 b' | 0 b'
120       _mm_storeu_si128((__m128i*)values, I);
121       for (i = 0; i < SPAN; ++i) ++histo[values[i]];
122     }
123   }
124   {
125     const int left_over = tile_width & (SPAN - 1);
126     if (left_over > 0) {
127       VP8LCollectColorBlueTransforms_C(argb + tile_width - left_over, stride,
128                                        left_over, tile_height,
129                                        green_to_blue, red_to_blue, histo);
130     }
131   }
132 }
133 
CollectColorRedTransforms(const uint32_t * argb,int stride,int tile_width,int tile_height,int green_to_red,int histo[])134 static void CollectColorRedTransforms(const uint32_t* argb, int stride,
135                                       int tile_width, int tile_height,
136                                       int green_to_red, int histo[]) {
137   const __m128i mults_g = _mm_set_epi16(
138       0, CST_5b(green_to_red), 0, CST_5b(green_to_red),
139       0, CST_5b(green_to_red), 0, CST_5b(green_to_red));
140   const __m128i mask_g = _mm_set1_epi32(0x00ff00);  // green mask
141   const __m128i mask = _mm_set1_epi32(0xff);
142 
143   int y;
144   for (y = 0; y < tile_height; ++y) {
145     const uint32_t* const src = argb + y * stride;
146     int i, x;
147     for (x = 0; x + SPAN <= tile_width; x += SPAN) {
148       uint16_t values[SPAN];
149       const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x +        0]);
150       const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]);
151       const __m128i A0 = _mm_and_si128(in0, mask_g);    // 0 0  | g 0
152       const __m128i A1 = _mm_and_si128(in1, mask_g);
153       const __m128i B0 = _mm_srli_epi32(in0, 16);       // 0 0  | x r
154       const __m128i B1 = _mm_srli_epi32(in1, 16);
155       const __m128i C0 = _mm_mulhi_epi16(A0, mults_g);  // 0 0  | x dr
156       const __m128i C1 = _mm_mulhi_epi16(A1, mults_g);
157       const __m128i E0 = _mm_sub_epi8(B0, C0);          // x x  | x r'
158       const __m128i E1 = _mm_sub_epi8(B1, C1);
159       const __m128i F0 = _mm_and_si128(E0, mask);       // 0 0  | 0 r'
160       const __m128i F1 = _mm_and_si128(E1, mask);
161       const __m128i I = _mm_packs_epi32(F0, F1);
162       _mm_storeu_si128((__m128i*)values, I);
163       for (i = 0; i < SPAN; ++i) ++histo[values[i]];
164     }
165   }
166   {
167     const int left_over = tile_width & (SPAN - 1);
168     if (left_over > 0) {
169       VP8LCollectColorRedTransforms_C(argb + tile_width - left_over, stride,
170                                       left_over, tile_height,
171                                       green_to_red, histo);
172     }
173   }
174 }
175 #undef SPAN
176 
177 //------------------------------------------------------------------------------
178 
179 #define LINE_SIZE 16    // 8 or 16
AddVector(const uint32_t * a,const uint32_t * b,uint32_t * out,int size)180 static void AddVector(const uint32_t* a, const uint32_t* b, uint32_t* out,
181                       int size) {
182   int i;
183   assert(size % LINE_SIZE == 0);
184   for (i = 0; i < size; i += LINE_SIZE) {
185     const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i +  0]);
186     const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i +  4]);
187 #if (LINE_SIZE == 16)
188     const __m128i a2 = _mm_loadu_si128((const __m128i*)&a[i +  8]);
189     const __m128i a3 = _mm_loadu_si128((const __m128i*)&a[i + 12]);
190 #endif
191     const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[i +  0]);
192     const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[i +  4]);
193 #if (LINE_SIZE == 16)
194     const __m128i b2 = _mm_loadu_si128((const __m128i*)&b[i +  8]);
195     const __m128i b3 = _mm_loadu_si128((const __m128i*)&b[i + 12]);
196 #endif
197     _mm_storeu_si128((__m128i*)&out[i +  0], _mm_add_epi32(a0, b0));
198     _mm_storeu_si128((__m128i*)&out[i +  4], _mm_add_epi32(a1, b1));
199 #if (LINE_SIZE == 16)
200     _mm_storeu_si128((__m128i*)&out[i +  8], _mm_add_epi32(a2, b2));
201     _mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3));
202 #endif
203   }
204 }
205 
AddVectorEq(const uint32_t * a,uint32_t * out,int size)206 static void AddVectorEq(const uint32_t* a, uint32_t* out, int size) {
207   int i;
208   assert(size % LINE_SIZE == 0);
209   for (i = 0; i < size; i += LINE_SIZE) {
210     const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i +  0]);
211     const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i +  4]);
212 #if (LINE_SIZE == 16)
213     const __m128i a2 = _mm_loadu_si128((const __m128i*)&a[i +  8]);
214     const __m128i a3 = _mm_loadu_si128((const __m128i*)&a[i + 12]);
215 #endif
216     const __m128i b0 = _mm_loadu_si128((const __m128i*)&out[i +  0]);
217     const __m128i b1 = _mm_loadu_si128((const __m128i*)&out[i +  4]);
218 #if (LINE_SIZE == 16)
219     const __m128i b2 = _mm_loadu_si128((const __m128i*)&out[i +  8]);
220     const __m128i b3 = _mm_loadu_si128((const __m128i*)&out[i + 12]);
221 #endif
222     _mm_storeu_si128((__m128i*)&out[i +  0], _mm_add_epi32(a0, b0));
223     _mm_storeu_si128((__m128i*)&out[i +  4], _mm_add_epi32(a1, b1));
224 #if (LINE_SIZE == 16)
225     _mm_storeu_si128((__m128i*)&out[i +  8], _mm_add_epi32(a2, b2));
226     _mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3));
227 #endif
228   }
229 }
230 #undef LINE_SIZE
231 
232 // Note we are adding uint32_t's as *signed* int32's (using _mm_add_epi32). But
233 // that's ok since the histogram values are less than 1<<28 (max picture size).
HistogramAdd(const VP8LHistogram * const a,const VP8LHistogram * const b,VP8LHistogram * const out)234 static void HistogramAdd(const VP8LHistogram* const a,
235                          const VP8LHistogram* const b,
236                          VP8LHistogram* const out) {
237   int i;
238   const int literal_size = VP8LHistogramNumCodes(a->palette_code_bits_);
239   assert(a->palette_code_bits_ == b->palette_code_bits_);
240   if (b != out) {
241     AddVector(a->literal_, b->literal_, out->literal_, NUM_LITERAL_CODES);
242     AddVector(a->red_, b->red_, out->red_, NUM_LITERAL_CODES);
243     AddVector(a->blue_, b->blue_, out->blue_, NUM_LITERAL_CODES);
244     AddVector(a->alpha_, b->alpha_, out->alpha_, NUM_LITERAL_CODES);
245   } else {
246     AddVectorEq(a->literal_, out->literal_, NUM_LITERAL_CODES);
247     AddVectorEq(a->red_, out->red_, NUM_LITERAL_CODES);
248     AddVectorEq(a->blue_, out->blue_, NUM_LITERAL_CODES);
249     AddVectorEq(a->alpha_, out->alpha_, NUM_LITERAL_CODES);
250   }
251   for (i = NUM_LITERAL_CODES; i < literal_size; ++i) {
252     out->literal_[i] = a->literal_[i] + b->literal_[i];
253   }
254   for (i = 0; i < NUM_DISTANCE_CODES; ++i) {
255     out->distance_[i] = a->distance_[i] + b->distance_[i];
256   }
257 }
258 
259 //------------------------------------------------------------------------------
260 // Entropy
261 
262 // Checks whether the X or Y contribution is worth computing and adding.
263 // Used in loop unrolling.
264 #define ANALYZE_X_OR_Y(x_or_y, j)                                   \
265   do {                                                              \
266     if (x_or_y[i + j] != 0) retval -= VP8LFastSLog2(x_or_y[i + j]); \
267   } while (0)
268 
269 // Checks whether the X + Y contribution is worth computing and adding.
270 // Used in loop unrolling.
271 #define ANALYZE_XY(j)                  \
272   do {                                 \
273     if (tmp[j] != 0) {                 \
274       retval -= VP8LFastSLog2(tmp[j]); \
275       ANALYZE_X_OR_Y(X, j);            \
276     }                                  \
277   } while (0)
278 
CombinedShannonEntropy(const int X[256],const int Y[256])279 static float CombinedShannonEntropy(const int X[256], const int Y[256]) {
280   int i;
281   double retval = 0.;
282   int sumX, sumXY;
283   int32_t tmp[4];
284   __m128i zero = _mm_setzero_si128();
285   // Sums up X + Y, 4 ints at a time (and will merge it at the end for sumXY).
286   __m128i sumXY_128 = zero;
287   __m128i sumX_128 = zero;
288 
289   for (i = 0; i < 256; i += 4) {
290     const __m128i x = _mm_loadu_si128((const __m128i*)(X + i));
291     const __m128i y = _mm_loadu_si128((const __m128i*)(Y + i));
292 
293     // Check if any X is non-zero: this actually provides a speedup as X is
294     // usually sparse.
295     if (_mm_movemask_epi8(_mm_cmpeq_epi32(x, zero)) != 0xFFFF) {
296       const __m128i xy_128 = _mm_add_epi32(x, y);
297       sumXY_128 = _mm_add_epi32(sumXY_128, xy_128);
298 
299       sumX_128 = _mm_add_epi32(sumX_128, x);
300 
301       // Analyze the different X + Y.
302       _mm_storeu_si128((__m128i*)tmp, xy_128);
303 
304       ANALYZE_XY(0);
305       ANALYZE_XY(1);
306       ANALYZE_XY(2);
307       ANALYZE_XY(3);
308     } else {
309       // X is fully 0, so only deal with Y.
310       sumXY_128 = _mm_add_epi32(sumXY_128, y);
311 
312       ANALYZE_X_OR_Y(Y, 0);
313       ANALYZE_X_OR_Y(Y, 1);
314       ANALYZE_X_OR_Y(Y, 2);
315       ANALYZE_X_OR_Y(Y, 3);
316     }
317   }
318 
319   // Sum up sumX_128 to get sumX.
320   _mm_storeu_si128((__m128i*)tmp, sumX_128);
321   sumX = tmp[3] + tmp[2] + tmp[1] + tmp[0];
322 
323   // Sum up sumXY_128 to get sumXY.
324   _mm_storeu_si128((__m128i*)tmp, sumXY_128);
325   sumXY = tmp[3] + tmp[2] + tmp[1] + tmp[0];
326 
327   retval += VP8LFastSLog2(sumX) + VP8LFastSLog2(sumXY);
328   return (float)retval;
329 }
330 #undef ANALYZE_X_OR_Y
331 #undef ANALYZE_XY
332 
333 //------------------------------------------------------------------------------
334 
VectorMismatch(const uint32_t * const array1,const uint32_t * const array2,int length)335 static int VectorMismatch(const uint32_t* const array1,
336                           const uint32_t* const array2, int length) {
337   int match_len;
338 
339   if (length >= 12) {
340     __m128i A0 = _mm_loadu_si128((const __m128i*)&array1[0]);
341     __m128i A1 = _mm_loadu_si128((const __m128i*)&array2[0]);
342     match_len = 0;
343     do {
344       // Loop unrolling and early load both provide a speedup of 10% for the
345       // current function. Also, max_limit can be MAX_LENGTH=4096 at most.
346       const __m128i cmpA = _mm_cmpeq_epi32(A0, A1);
347       const __m128i B0 =
348           _mm_loadu_si128((const __m128i*)&array1[match_len + 4]);
349       const __m128i B1 =
350           _mm_loadu_si128((const __m128i*)&array2[match_len + 4]);
351       if (_mm_movemask_epi8(cmpA) != 0xffff) break;
352       match_len += 4;
353 
354       {
355         const __m128i cmpB = _mm_cmpeq_epi32(B0, B1);
356         A0 = _mm_loadu_si128((const __m128i*)&array1[match_len + 4]);
357         A1 = _mm_loadu_si128((const __m128i*)&array2[match_len + 4]);
358         if (_mm_movemask_epi8(cmpB) != 0xffff) break;
359         match_len += 4;
360       }
361     } while (match_len + 12 < length);
362   } else {
363     match_len = 0;
364     // Unroll the potential first two loops.
365     if (length >= 4 &&
366         _mm_movemask_epi8(_mm_cmpeq_epi32(
367             _mm_loadu_si128((const __m128i*)&array1[0]),
368             _mm_loadu_si128((const __m128i*)&array2[0]))) == 0xffff) {
369       match_len = 4;
370       if (length >= 8 &&
371           _mm_movemask_epi8(_mm_cmpeq_epi32(
372               _mm_loadu_si128((const __m128i*)&array1[4]),
373               _mm_loadu_si128((const __m128i*)&array2[4]))) == 0xffff) {
374         match_len = 8;
375       }
376     }
377   }
378 
379   while (match_len < length && array1[match_len] == array2[match_len]) {
380     ++match_len;
381   }
382   return match_len;
383 }
384 
385 // Bundles multiple (1, 2, 4 or 8) pixels into a single pixel.
BundleColorMap_SSE2(const uint8_t * const row,int width,int xbits,uint32_t * dst)386 static void BundleColorMap_SSE2(const uint8_t* const row, int width, int xbits,
387                                 uint32_t* dst) {
388   int x;
389   assert(xbits >= 0);
390   assert(xbits <= 3);
391   switch (xbits) {
392     case 0: {
393       const __m128i ff = _mm_set1_epi16(0xff00);
394       const __m128i zero = _mm_setzero_si128();
395       // Store 0xff000000 | (row[x] << 8).
396       for (x = 0; x + 16 <= width; x += 16, dst += 16) {
397         const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
398         const __m128i in_lo = _mm_unpacklo_epi8(zero, in);
399         const __m128i dst0 = _mm_unpacklo_epi16(in_lo, ff);
400         const __m128i dst1 = _mm_unpackhi_epi16(in_lo, ff);
401         const __m128i in_hi = _mm_unpackhi_epi8(zero, in);
402         const __m128i dst2 = _mm_unpacklo_epi16(in_hi, ff);
403         const __m128i dst3 = _mm_unpackhi_epi16(in_hi, ff);
404         _mm_storeu_si128((__m128i*)&dst[0], dst0);
405         _mm_storeu_si128((__m128i*)&dst[4], dst1);
406         _mm_storeu_si128((__m128i*)&dst[8], dst2);
407         _mm_storeu_si128((__m128i*)&dst[12], dst3);
408       }
409       break;
410     }
411     case 1: {
412       const __m128i ff = _mm_set1_epi16(0xff00);
413       const __m128i mul = _mm_set1_epi16(0x110);
414       for (x = 0; x + 16 <= width; x += 16, dst += 8) {
415         // 0a0b | (where a/b are 4 bits).
416         const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
417         const __m128i tmp = _mm_mullo_epi16(in, mul);  // aba0
418         const __m128i pack = _mm_and_si128(tmp, ff);   // ab00
419         const __m128i dst0 = _mm_unpacklo_epi16(pack, ff);
420         const __m128i dst1 = _mm_unpackhi_epi16(pack, ff);
421         _mm_storeu_si128((__m128i*)&dst[0], dst0);
422         _mm_storeu_si128((__m128i*)&dst[4], dst1);
423       }
424       break;
425     }
426     case 2: {
427       const __m128i mask_or = _mm_set1_epi32(0xff000000);
428       const __m128i mul_cst = _mm_set1_epi16(0x0104);
429       const __m128i mask_mul = _mm_set1_epi16(0x0f00);
430       for (x = 0; x + 16 <= width; x += 16, dst += 4) {
431         // 000a000b000c000d | (where a/b/c/d are 2 bits).
432         const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
433         const __m128i mul = _mm_mullo_epi16(in, mul_cst);  // 00ab00b000cd00d0
434         const __m128i tmp = _mm_and_si128(mul, mask_mul);  // 00ab000000cd0000
435         const __m128i shift = _mm_srli_epi32(tmp, 12);     // 00000000ab000000
436         const __m128i pack = _mm_or_si128(shift, tmp);     // 00000000abcd0000
437         // Convert to 0xff00**00.
438         const __m128i res = _mm_or_si128(pack, mask_or);
439         _mm_storeu_si128((__m128i*)dst, res);
440       }
441       break;
442     }
443     default: {
444       assert(xbits == 3);
445       for (x = 0; x + 16 <= width; x += 16, dst += 2) {
446         // 0000000a00000000b... | (where a/b are 1 bit).
447         const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
448         const __m128i shift = _mm_slli_epi64(in, 7);
449         const uint32_t move = _mm_movemask_epi8(shift);
450         dst[0] = 0xff000000 | ((move & 0xff) << 8);
451         dst[1] = 0xff000000 | (move & 0xff00);
452       }
453       break;
454     }
455   }
456   if (x != width) {
457     VP8LBundleColorMap_C(row + x, width - x, xbits, dst);
458   }
459 }
460 
461 //------------------------------------------------------------------------------
462 // Batch version of Predictor Transform subtraction
463 
Average2_m128i(const __m128i * const a0,const __m128i * const a1,__m128i * const avg)464 static WEBP_INLINE void Average2_m128i(const __m128i* const a0,
465                                        const __m128i* const a1,
466                                        __m128i* const avg) {
467   // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1)
468   const __m128i ones = _mm_set1_epi8(1);
469   const __m128i avg1 = _mm_avg_epu8(*a0, *a1);
470   const __m128i one = _mm_and_si128(_mm_xor_si128(*a0, *a1), ones);
471   *avg = _mm_sub_epi8(avg1, one);
472 }
473 
474 // Predictor0: ARGB_BLACK.
PredictorSub0_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)475 static void PredictorSub0_SSE2(const uint32_t* in, const uint32_t* upper,
476                                int num_pixels, uint32_t* out) {
477   int i;
478   const __m128i black = _mm_set1_epi32(ARGB_BLACK);
479   for (i = 0; i + 4 <= num_pixels; i += 4) {
480     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
481     const __m128i res = _mm_sub_epi8(src, black);
482     _mm_storeu_si128((__m128i*)&out[i], res);
483   }
484   if (i != num_pixels) {
485     VP8LPredictorsSub_C[0](in + i, upper + i, num_pixels - i, out + i);
486   }
487 }
488 
489 #define GENERATE_PREDICTOR_1(X, IN)                                           \
490 static void PredictorSub##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
491                                    int num_pixels, uint32_t* out) {           \
492   int i;                                                                      \
493   for (i = 0; i + 4 <= num_pixels; i += 4) {                                  \
494     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);              \
495     const __m128i pred = _mm_loadu_si128((const __m128i*)&(IN));              \
496     const __m128i res = _mm_sub_epi8(src, pred);                              \
497     _mm_storeu_si128((__m128i*)&out[i], res);                                 \
498   }                                                                           \
499   if (i != num_pixels) {                                                      \
500     VP8LPredictorsSub_C[(X)](in + i, upper + i, num_pixels - i, out + i);     \
501   }                                                                           \
502 }
503 
504 GENERATE_PREDICTOR_1(1, in[i - 1])       // Predictor1: L
505 GENERATE_PREDICTOR_1(2, upper[i])        // Predictor2: T
506 GENERATE_PREDICTOR_1(3, upper[i + 1])    // Predictor3: TR
507 GENERATE_PREDICTOR_1(4, upper[i - 1])    // Predictor4: TL
508 #undef GENERATE_PREDICTOR_1
509 
510 // Predictor5: avg2(avg2(L, TR), T)
PredictorSub5_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)511 static void PredictorSub5_SSE2(const uint32_t* in, const uint32_t* upper,
512                                int num_pixels, uint32_t* out) {
513   int i;
514   for (i = 0; i + 4 <= num_pixels; i += 4) {
515     const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
516     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
517     const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]);
518     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
519     __m128i avg, pred, res;
520     Average2_m128i(&L, &TR, &avg);
521     Average2_m128i(&avg, &T, &pred);
522     res = _mm_sub_epi8(src, pred);
523     _mm_storeu_si128((__m128i*)&out[i], res);
524   }
525   if (i != num_pixels) {
526     VP8LPredictorsSub_C[5](in + i, upper + i, num_pixels - i, out + i);
527   }
528 }
529 
530 #define GENERATE_PREDICTOR_2(X, A, B)                                         \
531 static void PredictorSub##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
532                                    int num_pixels, uint32_t* out) {           \
533   int i;                                                                      \
534   for (i = 0; i + 4 <= num_pixels; i += 4) {                                  \
535     const __m128i tA = _mm_loadu_si128((const __m128i*)&(A));                 \
536     const __m128i tB = _mm_loadu_si128((const __m128i*)&(B));                 \
537     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);              \
538     __m128i pred, res;                                                        \
539     Average2_m128i(&tA, &tB, &pred);                                          \
540     res = _mm_sub_epi8(src, pred);                                            \
541     _mm_storeu_si128((__m128i*)&out[i], res);                                 \
542   }                                                                           \
543   if (i != num_pixels) {                                                      \
544     VP8LPredictorsSub_C[(X)](in + i, upper + i, num_pixels - i, out + i);     \
545   }                                                                           \
546 }
547 
548 GENERATE_PREDICTOR_2(6, in[i - 1], upper[i - 1])   // Predictor6: avg(L, TL)
549 GENERATE_PREDICTOR_2(7, in[i - 1], upper[i])       // Predictor7: avg(L, T)
550 GENERATE_PREDICTOR_2(8, upper[i - 1], upper[i])    // Predictor8: avg(TL, T)
551 GENERATE_PREDICTOR_2(9, upper[i], upper[i + 1])    // Predictor9: average(T, TR)
552 #undef GENERATE_PREDICTOR_2
553 
554 // Predictor10: avg(avg(L,TL), avg(T, TR)).
PredictorSub10_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)555 static void PredictorSub10_SSE2(const uint32_t* in, const uint32_t* upper,
556                                 int num_pixels, uint32_t* out) {
557   int i;
558   for (i = 0; i + 4 <= num_pixels; i += 4) {
559     const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
560     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
561     const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
562     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
563     const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]);
564     __m128i avgTTR, avgLTL, avg, res;
565     Average2_m128i(&T, &TR, &avgTTR);
566     Average2_m128i(&L, &TL, &avgLTL);
567     Average2_m128i(&avgTTR, &avgLTL, &avg);
568     res = _mm_sub_epi8(src, avg);
569     _mm_storeu_si128((__m128i*)&out[i], res);
570   }
571   if (i != num_pixels) {
572     VP8LPredictorsSub_C[10](in + i, upper + i, num_pixels - i, out + i);
573   }
574 }
575 
576 // Predictor11: select.
GetSumAbsDiff32(const __m128i * const A,const __m128i * const B,__m128i * const out)577 static void GetSumAbsDiff32(const __m128i* const A, const __m128i* const B,
578                             __m128i* const out) {
579   // We can unpack with any value on the upper 32 bits, provided it's the same
580   // on both operands (to that their sum of abs diff is zero). Here we use *A.
581   const __m128i A_lo = _mm_unpacklo_epi32(*A, *A);
582   const __m128i B_lo = _mm_unpacklo_epi32(*B, *A);
583   const __m128i A_hi = _mm_unpackhi_epi32(*A, *A);
584   const __m128i B_hi = _mm_unpackhi_epi32(*B, *A);
585   const __m128i s_lo = _mm_sad_epu8(A_lo, B_lo);
586   const __m128i s_hi = _mm_sad_epu8(A_hi, B_hi);
587   *out = _mm_packs_epi32(s_lo, s_hi);
588 }
589 
PredictorSub11_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)590 static void PredictorSub11_SSE2(const uint32_t* in, const uint32_t* upper,
591                                 int num_pixels, uint32_t* out) {
592   int i;
593   for (i = 0; i + 4 <= num_pixels; i += 4) {
594     const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
595     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
596     const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
597     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
598     __m128i pa, pb;
599     GetSumAbsDiff32(&T, &TL, &pa);   // pa = sum |T-TL|
600     GetSumAbsDiff32(&L, &TL, &pb);   // pb = sum |L-TL|
601     {
602       const __m128i mask = _mm_cmpgt_epi32(pb, pa);
603       const __m128i A = _mm_and_si128(mask, L);
604       const __m128i B = _mm_andnot_si128(mask, T);
605       const __m128i pred = _mm_or_si128(A, B);    // pred = (L > T)? L : T
606       const __m128i res = _mm_sub_epi8(src, pred);
607       _mm_storeu_si128((__m128i*)&out[i], res);
608     }
609   }
610   if (i != num_pixels) {
611     VP8LPredictorsSub_C[11](in + i, upper + i, num_pixels - i, out + i);
612   }
613 }
614 
615 // Predictor12: ClampedSubSubtractFull.
PredictorSub12_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)616 static void PredictorSub12_SSE2(const uint32_t* in, const uint32_t* upper,
617                                 int num_pixels, uint32_t* out) {
618   int i;
619   const __m128i zero = _mm_setzero_si128();
620   for (i = 0; i + 4 <= num_pixels; i += 4) {
621     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
622     const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
623     const __m128i L_lo = _mm_unpacklo_epi8(L, zero);
624     const __m128i L_hi = _mm_unpackhi_epi8(L, zero);
625     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
626     const __m128i T_lo = _mm_unpacklo_epi8(T, zero);
627     const __m128i T_hi = _mm_unpackhi_epi8(T, zero);
628     const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
629     const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero);
630     const __m128i TL_hi = _mm_unpackhi_epi8(TL, zero);
631     const __m128i diff_lo = _mm_sub_epi16(T_lo, TL_lo);
632     const __m128i diff_hi = _mm_sub_epi16(T_hi, TL_hi);
633     const __m128i pred_lo = _mm_add_epi16(L_lo, diff_lo);
634     const __m128i pred_hi = _mm_add_epi16(L_hi, diff_hi);
635     const __m128i pred = _mm_packus_epi16(pred_lo, pred_hi);
636     const __m128i res = _mm_sub_epi8(src, pred);
637     _mm_storeu_si128((__m128i*)&out[i], res);
638   }
639   if (i != num_pixels) {
640     VP8LPredictorsSub_C[12](in + i, upper + i, num_pixels - i, out + i);
641   }
642 }
643 
644 // Predictors13: ClampedAddSubtractHalf
PredictorSub13_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)645 static void PredictorSub13_SSE2(const uint32_t* in, const uint32_t* upper,
646                                 int num_pixels, uint32_t* out) {
647   int i;
648   const __m128i zero = _mm_setzero_si128();
649   for (i = 0; i + 2 <= num_pixels; i += 2) {
650     // we can only process two pixels at a time
651     const __m128i L = _mm_loadl_epi64((const __m128i*)&in[i - 1]);
652     const __m128i src = _mm_loadl_epi64((const __m128i*)&in[i]);
653     const __m128i T = _mm_loadl_epi64((const __m128i*)&upper[i]);
654     const __m128i TL = _mm_loadl_epi64((const __m128i*)&upper[i - 1]);
655     const __m128i L_lo = _mm_unpacklo_epi8(L, zero);
656     const __m128i T_lo = _mm_unpacklo_epi8(T, zero);
657     const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero);
658     const __m128i sum = _mm_add_epi16(T_lo, L_lo);
659     const __m128i avg = _mm_srli_epi16(sum, 1);
660     const __m128i A1 = _mm_sub_epi16(avg, TL_lo);
661     const __m128i bit_fix = _mm_cmpgt_epi16(TL_lo, avg);
662     const __m128i A2 = _mm_sub_epi16(A1, bit_fix);
663     const __m128i A3 = _mm_srai_epi16(A2, 1);
664     const __m128i A4 = _mm_add_epi16(avg, A3);
665     const __m128i pred = _mm_packus_epi16(A4, A4);
666     const __m128i res = _mm_sub_epi8(src, pred);
667     _mm_storel_epi64((__m128i*)&out[i], res);
668   }
669   if (i != num_pixels) {
670     VP8LPredictorsSub_C[13](in + i, upper + i, num_pixels - i, out + i);
671   }
672 }
673 
674 //------------------------------------------------------------------------------
675 // Entry point
676 
677 extern void VP8LEncDspInitSSE2(void);
678 
VP8LEncDspInitSSE2(void)679 WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInitSSE2(void) {
680   VP8LSubtractGreenFromBlueAndRed = SubtractGreenFromBlueAndRed;
681   VP8LTransformColor = TransformColor;
682   VP8LCollectColorBlueTransforms = CollectColorBlueTransforms;
683   VP8LCollectColorRedTransforms = CollectColorRedTransforms;
684   VP8LHistogramAdd = HistogramAdd;
685   VP8LCombinedShannonEntropy = CombinedShannonEntropy;
686   VP8LVectorMismatch = VectorMismatch;
687   VP8LBundleColorMap = BundleColorMap_SSE2;
688 
689   VP8LPredictorsSub[0] = PredictorSub0_SSE2;
690   VP8LPredictorsSub[1] = PredictorSub1_SSE2;
691   VP8LPredictorsSub[2] = PredictorSub2_SSE2;
692   VP8LPredictorsSub[3] = PredictorSub3_SSE2;
693   VP8LPredictorsSub[4] = PredictorSub4_SSE2;
694   VP8LPredictorsSub[5] = PredictorSub5_SSE2;
695   VP8LPredictorsSub[6] = PredictorSub6_SSE2;
696   VP8LPredictorsSub[7] = PredictorSub7_SSE2;
697   VP8LPredictorsSub[8] = PredictorSub8_SSE2;
698   VP8LPredictorsSub[9] = PredictorSub9_SSE2;
699   VP8LPredictorsSub[10] = PredictorSub10_SSE2;
700   VP8LPredictorsSub[11] = PredictorSub11_SSE2;
701   VP8LPredictorsSub[12] = PredictorSub12_SSE2;
702   VP8LPredictorsSub[13] = PredictorSub13_SSE2;
703   VP8LPredictorsSub[14] = PredictorSub0_SSE2;  // <- padding security sentinels
704   VP8LPredictorsSub[15] = PredictorSub0_SSE2;
705 }
706 
707 #else  // !WEBP_USE_SSE2
708 
709 WEBP_DSP_INIT_STUB(VP8LEncDspInitSSE2)
710 
711 #endif  // WEBP_USE_SSE2
712