1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34
35 #include "src/assembler.h"
36
37 #include <math.h>
38 #include <cmath>
39 #include "src/api.h"
40 #include "src/base/cpu.h"
41 #include "src/base/functional.h"
42 #include "src/base/ieee754.h"
43 #include "src/base/lazy-instance.h"
44 #include "src/base/platform/platform.h"
45 #include "src/base/utils/random-number-generator.h"
46 #include "src/codegen.h"
47 #include "src/counters.h"
48 #include "src/debug/debug.h"
49 #include "src/deoptimizer.h"
50 #include "src/disassembler.h"
51 #include "src/execution.h"
52 #include "src/ic/ic.h"
53 #include "src/ic/stub-cache.h"
54 #include "src/interpreter/interpreter.h"
55 #include "src/ostreams.h"
56 #include "src/regexp/jsregexp.h"
57 #include "src/regexp/regexp-macro-assembler.h"
58 #include "src/regexp/regexp-stack.h"
59 #include "src/register-configuration.h"
60 #include "src/runtime/runtime.h"
61 #include "src/simulator.h" // For flushing instruction cache.
62 #include "src/snapshot/serializer-common.h"
63 #include "src/wasm/wasm-external-refs.h"
64
65 #if V8_TARGET_ARCH_IA32
66 #include "src/ia32/assembler-ia32-inl.h" // NOLINT
67 #elif V8_TARGET_ARCH_X64
68 #include "src/x64/assembler-x64-inl.h" // NOLINT
69 #elif V8_TARGET_ARCH_ARM64
70 #include "src/arm64/assembler-arm64-inl.h" // NOLINT
71 #elif V8_TARGET_ARCH_ARM
72 #include "src/arm/assembler-arm-inl.h" // NOLINT
73 #elif V8_TARGET_ARCH_PPC
74 #include "src/ppc/assembler-ppc-inl.h" // NOLINT
75 #elif V8_TARGET_ARCH_MIPS
76 #include "src/mips/assembler-mips-inl.h" // NOLINT
77 #elif V8_TARGET_ARCH_MIPS64
78 #include "src/mips64/assembler-mips64-inl.h" // NOLINT
79 #elif V8_TARGET_ARCH_S390
80 #include "src/s390/assembler-s390-inl.h" // NOLINT
81 #elif V8_TARGET_ARCH_X87
82 #include "src/x87/assembler-x87-inl.h" // NOLINT
83 #else
84 #error "Unknown architecture."
85 #endif
86
87 // Include native regexp-macro-assembler.
88 #ifndef V8_INTERPRETED_REGEXP
89 #if V8_TARGET_ARCH_IA32
90 #include "src/regexp/ia32/regexp-macro-assembler-ia32.h" // NOLINT
91 #elif V8_TARGET_ARCH_X64
92 #include "src/regexp/x64/regexp-macro-assembler-x64.h" // NOLINT
93 #elif V8_TARGET_ARCH_ARM64
94 #include "src/regexp/arm64/regexp-macro-assembler-arm64.h" // NOLINT
95 #elif V8_TARGET_ARCH_ARM
96 #include "src/regexp/arm/regexp-macro-assembler-arm.h" // NOLINT
97 #elif V8_TARGET_ARCH_PPC
98 #include "src/regexp/ppc/regexp-macro-assembler-ppc.h" // NOLINT
99 #elif V8_TARGET_ARCH_MIPS
100 #include "src/regexp/mips/regexp-macro-assembler-mips.h" // NOLINT
101 #elif V8_TARGET_ARCH_MIPS64
102 #include "src/regexp/mips64/regexp-macro-assembler-mips64.h" // NOLINT
103 #elif V8_TARGET_ARCH_S390
104 #include "src/regexp/s390/regexp-macro-assembler-s390.h" // NOLINT
105 #elif V8_TARGET_ARCH_X87
106 #include "src/regexp/x87/regexp-macro-assembler-x87.h" // NOLINT
107 #else // Unknown architecture.
108 #error "Unknown architecture."
109 #endif // Target architecture.
110 #endif // V8_INTERPRETED_REGEXP
111
112 namespace v8 {
113 namespace internal {
114
115 // -----------------------------------------------------------------------------
116 // Common double constants.
117
118 struct DoubleConstant BASE_EMBEDDED {
119 double min_int;
120 double one_half;
121 double minus_one_half;
122 double negative_infinity;
123 uint64_t the_hole_nan;
124 double uint32_bias;
125 };
126
127 static DoubleConstant double_constants;
128
129 static struct V8_ALIGNED(16) {
130 uint32_t a;
131 uint32_t b;
132 uint32_t c;
133 uint32_t d;
134 } float_absolute_constant = {0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF};
135
136 static struct V8_ALIGNED(16) {
137 uint32_t a;
138 uint32_t b;
139 uint32_t c;
140 uint32_t d;
141 } float_negate_constant = {0x80000000, 0x80000000, 0x80000000, 0x80000000};
142
143 static struct V8_ALIGNED(16) {
144 uint64_t a;
145 uint64_t b;
146 } double_absolute_constant = {V8_UINT64_C(0x7FFFFFFFFFFFFFFF),
147 V8_UINT64_C(0x7FFFFFFFFFFFFFFF)};
148
149 static struct V8_ALIGNED(16) {
150 uint64_t a;
151 uint64_t b;
152 } double_negate_constant = {V8_UINT64_C(0x8000000000000000),
153 V8_UINT64_C(0x8000000000000000)};
154
155 const char* const RelocInfo::kFillerCommentString = "DEOPTIMIZATION PADDING";
156
157 // -----------------------------------------------------------------------------
158 // Implementation of AssemblerBase
159
AssemblerBase(Isolate * isolate,void * buffer,int buffer_size)160 AssemblerBase::AssemblerBase(Isolate* isolate, void* buffer, int buffer_size)
161 : isolate_(isolate),
162 jit_cookie_(0),
163 enabled_cpu_features_(0),
164 emit_debug_code_(FLAG_debug_code),
165 predictable_code_size_(false),
166 // We may use the assembler without an isolate.
167 serializer_enabled_(isolate && isolate->serializer_enabled()),
168 constant_pool_available_(false) {
169 DCHECK_NOT_NULL(isolate);
170 if (FLAG_mask_constants_with_cookie) {
171 jit_cookie_ = isolate->random_number_generator()->NextInt();
172 }
173 own_buffer_ = buffer == NULL;
174 if (buffer_size == 0) buffer_size = kMinimalBufferSize;
175 DCHECK(buffer_size > 0);
176 if (own_buffer_) buffer = NewArray<byte>(buffer_size);
177 buffer_ = static_cast<byte*>(buffer);
178 buffer_size_ = buffer_size;
179
180 pc_ = buffer_;
181 }
182
183
~AssemblerBase()184 AssemblerBase::~AssemblerBase() {
185 if (own_buffer_) DeleteArray(buffer_);
186 }
187
188
FlushICache(Isolate * isolate,void * start,size_t size)189 void AssemblerBase::FlushICache(Isolate* isolate, void* start, size_t size) {
190 if (size == 0) return;
191
192 #if defined(USE_SIMULATOR)
193 base::LockGuard<base::Mutex> lock_guard(isolate->simulator_i_cache_mutex());
194 Simulator::FlushICache(isolate->simulator_i_cache(), start, size);
195 #else
196 CpuFeatures::FlushICache(start, size);
197 #endif // USE_SIMULATOR
198 }
199
200
Print()201 void AssemblerBase::Print() {
202 OFStream os(stdout);
203 v8::internal::Disassembler::Decode(isolate(), &os, buffer_, pc_, nullptr);
204 }
205
206
207 // -----------------------------------------------------------------------------
208 // Implementation of PredictableCodeSizeScope
209
PredictableCodeSizeScope(AssemblerBase * assembler)210 PredictableCodeSizeScope::PredictableCodeSizeScope(AssemblerBase* assembler)
211 : PredictableCodeSizeScope(assembler, -1) {}
212
213
PredictableCodeSizeScope(AssemblerBase * assembler,int expected_size)214 PredictableCodeSizeScope::PredictableCodeSizeScope(AssemblerBase* assembler,
215 int expected_size)
216 : assembler_(assembler),
217 expected_size_(expected_size),
218 start_offset_(assembler->pc_offset()),
219 old_value_(assembler->predictable_code_size()) {
220 assembler_->set_predictable_code_size(true);
221 }
222
223
~PredictableCodeSizeScope()224 PredictableCodeSizeScope::~PredictableCodeSizeScope() {
225 // TODO(svenpanne) Remove the 'if' when everything works.
226 if (expected_size_ >= 0) {
227 CHECK_EQ(expected_size_, assembler_->pc_offset() - start_offset_);
228 }
229 assembler_->set_predictable_code_size(old_value_);
230 }
231
232
233 // -----------------------------------------------------------------------------
234 // Implementation of CpuFeatureScope
235
236 #ifdef DEBUG
CpuFeatureScope(AssemblerBase * assembler,CpuFeature f,CheckPolicy check)237 CpuFeatureScope::CpuFeatureScope(AssemblerBase* assembler, CpuFeature f,
238 CheckPolicy check)
239 : assembler_(assembler) {
240 DCHECK_IMPLIES(check == kCheckSupported, CpuFeatures::IsSupported(f));
241 old_enabled_ = assembler_->enabled_cpu_features();
242 assembler_->EnableCpuFeature(f);
243 }
244
~CpuFeatureScope()245 CpuFeatureScope::~CpuFeatureScope() {
246 assembler_->set_enabled_cpu_features(old_enabled_);
247 }
248 #endif
249
250
251 bool CpuFeatures::initialized_ = false;
252 unsigned CpuFeatures::supported_ = 0;
253 unsigned CpuFeatures::icache_line_size_ = 0;
254 unsigned CpuFeatures::dcache_line_size_ = 0;
255
256 // -----------------------------------------------------------------------------
257 // Implementation of Label
258
pos() const259 int Label::pos() const {
260 if (pos_ < 0) return -pos_ - 1;
261 if (pos_ > 0) return pos_ - 1;
262 UNREACHABLE();
263 return 0;
264 }
265
266
267 // -----------------------------------------------------------------------------
268 // Implementation of RelocInfoWriter and RelocIterator
269 //
270 // Relocation information is written backwards in memory, from high addresses
271 // towards low addresses, byte by byte. Therefore, in the encodings listed
272 // below, the first byte listed it at the highest address, and successive
273 // bytes in the record are at progressively lower addresses.
274 //
275 // Encoding
276 //
277 // The most common modes are given single-byte encodings. Also, it is
278 // easy to identify the type of reloc info and skip unwanted modes in
279 // an iteration.
280 //
281 // The encoding relies on the fact that there are fewer than 14
282 // different relocation modes using standard non-compact encoding.
283 //
284 // The first byte of a relocation record has a tag in its low 2 bits:
285 // Here are the record schemes, depending on the low tag and optional higher
286 // tags.
287 //
288 // Low tag:
289 // 00: embedded_object: [6-bit pc delta] 00
290 //
291 // 01: code_target: [6-bit pc delta] 01
292 //
293 // 10: short_data_record: [6-bit pc delta] 10 followed by
294 // [6-bit data delta] [2-bit data type tag]
295 //
296 // 11: long_record [6 bit reloc mode] 11
297 // followed by pc delta
298 // followed by optional data depending on type.
299 //
300 // 1-bit data type tags, used in short_data_record and data_jump long_record:
301 // code_target_with_id: 0
302 // deopt_reason: 1
303 //
304 // If a pc delta exceeds 6 bits, it is split into a remainder that fits into
305 // 6 bits and a part that does not. The latter is encoded as a long record
306 // with PC_JUMP as pseudo reloc info mode. The former is encoded as part of
307 // the following record in the usual way. The long pc jump record has variable
308 // length:
309 // pc-jump: [PC_JUMP] 11
310 // [7 bits data] 0
311 // ...
312 // [7 bits data] 1
313 // (Bits 6..31 of pc delta, with leading zeroes
314 // dropped, and last non-zero chunk tagged with 1.)
315
316 const int kTagBits = 2;
317 const int kTagMask = (1 << kTagBits) - 1;
318 const int kLongTagBits = 6;
319 const int kShortDataTypeTagBits = 1;
320 const int kShortDataBits = kBitsPerByte - kShortDataTypeTagBits;
321
322 const int kEmbeddedObjectTag = 0;
323 const int kCodeTargetTag = 1;
324 const int kLocatableTag = 2;
325 const int kDefaultTag = 3;
326
327 const int kSmallPCDeltaBits = kBitsPerByte - kTagBits;
328 const int kSmallPCDeltaMask = (1 << kSmallPCDeltaBits) - 1;
329 const int RelocInfo::kMaxSmallPCDelta = kSmallPCDeltaMask;
330
331 const int kChunkBits = 7;
332 const int kChunkMask = (1 << kChunkBits) - 1;
333 const int kLastChunkTagBits = 1;
334 const int kLastChunkTagMask = 1;
335 const int kLastChunkTag = 1;
336
337 const int kCodeWithIdTag = 0;
338 const int kDeoptReasonTag = 1;
339
update_wasm_memory_reference(Address old_base,Address new_base,uint32_t old_size,uint32_t new_size,ICacheFlushMode icache_flush_mode)340 void RelocInfo::update_wasm_memory_reference(
341 Address old_base, Address new_base, uint32_t old_size, uint32_t new_size,
342 ICacheFlushMode icache_flush_mode) {
343 DCHECK(IsWasmMemoryReference(rmode_) || IsWasmMemorySizeReference(rmode_));
344 if (IsWasmMemoryReference(rmode_)) {
345 Address updated_reference;
346 DCHECK_GE(wasm_memory_reference(), old_base);
347 updated_reference = new_base + (wasm_memory_reference() - old_base);
348 // The reference is not checked here but at runtime. Validity of references
349 // may change over time.
350 unchecked_update_wasm_memory_reference(updated_reference,
351 icache_flush_mode);
352 } else if (IsWasmMemorySizeReference(rmode_)) {
353 uint32_t current_size_reference = wasm_memory_size_reference();
354 uint32_t updated_size_reference =
355 new_size + (current_size_reference - old_size);
356 unchecked_update_wasm_memory_size(updated_size_reference,
357 icache_flush_mode);
358 } else {
359 UNREACHABLE();
360 }
361 if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
362 Assembler::FlushICache(isolate_, pc_, sizeof(int64_t));
363 }
364 }
365
update_wasm_global_reference(Address old_base,Address new_base,ICacheFlushMode icache_flush_mode)366 void RelocInfo::update_wasm_global_reference(
367 Address old_base, Address new_base, ICacheFlushMode icache_flush_mode) {
368 DCHECK(IsWasmGlobalReference(rmode_));
369 Address updated_reference;
370 DCHECK(reinterpret_cast<uintptr_t>(old_base) <=
371 reinterpret_cast<uintptr_t>(wasm_global_reference()));
372 updated_reference = new_base + (wasm_global_reference() - old_base);
373 DCHECK(reinterpret_cast<uintptr_t>(new_base) <=
374 reinterpret_cast<uintptr_t>(updated_reference));
375 unchecked_update_wasm_memory_reference(updated_reference, icache_flush_mode);
376 if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
377 Assembler::FlushICache(isolate_, pc_, sizeof(int32_t));
378 }
379 }
380
set_target_address(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)381 void RelocInfo::set_target_address(Address target,
382 WriteBarrierMode write_barrier_mode,
383 ICacheFlushMode icache_flush_mode) {
384 DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
385 Assembler::set_target_address_at(isolate_, pc_, host_, target,
386 icache_flush_mode);
387 if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL &&
388 IsCodeTarget(rmode_)) {
389 Object* target_code = Code::GetCodeFromTargetAddress(target);
390 host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
391 host(), this, HeapObject::cast(target_code));
392 }
393 }
394
WriteLongPCJump(uint32_t pc_delta)395 uint32_t RelocInfoWriter::WriteLongPCJump(uint32_t pc_delta) {
396 // Return if the pc_delta can fit in kSmallPCDeltaBits bits.
397 // Otherwise write a variable length PC jump for the bits that do
398 // not fit in the kSmallPCDeltaBits bits.
399 if (is_uintn(pc_delta, kSmallPCDeltaBits)) return pc_delta;
400 WriteMode(RelocInfo::PC_JUMP);
401 uint32_t pc_jump = pc_delta >> kSmallPCDeltaBits;
402 DCHECK(pc_jump > 0);
403 // Write kChunkBits size chunks of the pc_jump.
404 for (; pc_jump > 0; pc_jump = pc_jump >> kChunkBits) {
405 byte b = pc_jump & kChunkMask;
406 *--pos_ = b << kLastChunkTagBits;
407 }
408 // Tag the last chunk so it can be identified.
409 *pos_ = *pos_ | kLastChunkTag;
410 // Return the remaining kSmallPCDeltaBits of the pc_delta.
411 return pc_delta & kSmallPCDeltaMask;
412 }
413
414
WriteShortTaggedPC(uint32_t pc_delta,int tag)415 void RelocInfoWriter::WriteShortTaggedPC(uint32_t pc_delta, int tag) {
416 // Write a byte of tagged pc-delta, possibly preceded by an explicit pc-jump.
417 pc_delta = WriteLongPCJump(pc_delta);
418 *--pos_ = pc_delta << kTagBits | tag;
419 }
420
421
WriteShortTaggedData(intptr_t data_delta,int tag)422 void RelocInfoWriter::WriteShortTaggedData(intptr_t data_delta, int tag) {
423 *--pos_ = static_cast<byte>(data_delta << kShortDataTypeTagBits | tag);
424 }
425
426
WriteMode(RelocInfo::Mode rmode)427 void RelocInfoWriter::WriteMode(RelocInfo::Mode rmode) {
428 STATIC_ASSERT(RelocInfo::NUMBER_OF_MODES <= (1 << kLongTagBits));
429 *--pos_ = static_cast<int>((rmode << kTagBits) | kDefaultTag);
430 }
431
432
WriteModeAndPC(uint32_t pc_delta,RelocInfo::Mode rmode)433 void RelocInfoWriter::WriteModeAndPC(uint32_t pc_delta, RelocInfo::Mode rmode) {
434 // Write two-byte tagged pc-delta, possibly preceded by var. length pc-jump.
435 pc_delta = WriteLongPCJump(pc_delta);
436 WriteMode(rmode);
437 *--pos_ = pc_delta;
438 }
439
440
WriteIntData(int number)441 void RelocInfoWriter::WriteIntData(int number) {
442 for (int i = 0; i < kIntSize; i++) {
443 *--pos_ = static_cast<byte>(number);
444 // Signed right shift is arithmetic shift. Tested in test-utils.cc.
445 number = number >> kBitsPerByte;
446 }
447 }
448
449
WriteData(intptr_t data_delta)450 void RelocInfoWriter::WriteData(intptr_t data_delta) {
451 for (int i = 0; i < kIntptrSize; i++) {
452 *--pos_ = static_cast<byte>(data_delta);
453 // Signed right shift is arithmetic shift. Tested in test-utils.cc.
454 data_delta = data_delta >> kBitsPerByte;
455 }
456 }
457
458
Write(const RelocInfo * rinfo)459 void RelocInfoWriter::Write(const RelocInfo* rinfo) {
460 RelocInfo::Mode rmode = rinfo->rmode();
461 #ifdef DEBUG
462 byte* begin_pos = pos_;
463 #endif
464 DCHECK(rinfo->rmode() < RelocInfo::NUMBER_OF_MODES);
465 DCHECK(rinfo->pc() - last_pc_ >= 0);
466 // Use unsigned delta-encoding for pc.
467 uint32_t pc_delta = static_cast<uint32_t>(rinfo->pc() - last_pc_);
468
469 // The two most common modes are given small tags, and usually fit in a byte.
470 if (rmode == RelocInfo::EMBEDDED_OBJECT) {
471 WriteShortTaggedPC(pc_delta, kEmbeddedObjectTag);
472 } else if (rmode == RelocInfo::CODE_TARGET) {
473 WriteShortTaggedPC(pc_delta, kCodeTargetTag);
474 DCHECK(begin_pos - pos_ <= RelocInfo::kMaxCallSize);
475 } else if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
476 // Use signed delta-encoding for id.
477 DCHECK_EQ(static_cast<int>(rinfo->data()), rinfo->data());
478 int id_delta = static_cast<int>(rinfo->data()) - last_id_;
479 // Check if delta is small enough to fit in a tagged byte.
480 if (is_intn(id_delta, kShortDataBits)) {
481 WriteShortTaggedPC(pc_delta, kLocatableTag);
482 WriteShortTaggedData(id_delta, kCodeWithIdTag);
483 } else {
484 // Otherwise, use costly encoding.
485 WriteModeAndPC(pc_delta, rmode);
486 WriteIntData(id_delta);
487 }
488 last_id_ = static_cast<int>(rinfo->data());
489 } else if (rmode == RelocInfo::DEOPT_REASON) {
490 DCHECK(rinfo->data() < (1 << kShortDataBits));
491 WriteShortTaggedPC(pc_delta, kLocatableTag);
492 WriteShortTaggedData(rinfo->data(), kDeoptReasonTag);
493 } else {
494 WriteModeAndPC(pc_delta, rmode);
495 if (RelocInfo::IsComment(rmode)) {
496 WriteData(rinfo->data());
497 } else if (RelocInfo::IsConstPool(rmode) ||
498 RelocInfo::IsVeneerPool(rmode) || RelocInfo::IsDeoptId(rmode) ||
499 RelocInfo::IsDeoptPosition(rmode)) {
500 WriteIntData(static_cast<int>(rinfo->data()));
501 }
502 }
503 last_pc_ = rinfo->pc();
504 last_mode_ = rmode;
505 #ifdef DEBUG
506 DCHECK(begin_pos - pos_ <= kMaxSize);
507 #endif
508 }
509
510
AdvanceGetTag()511 inline int RelocIterator::AdvanceGetTag() {
512 return *--pos_ & kTagMask;
513 }
514
515
GetMode()516 inline RelocInfo::Mode RelocIterator::GetMode() {
517 return static_cast<RelocInfo::Mode>((*pos_ >> kTagBits) &
518 ((1 << kLongTagBits) - 1));
519 }
520
521
ReadShortTaggedPC()522 inline void RelocIterator::ReadShortTaggedPC() {
523 rinfo_.pc_ += *pos_ >> kTagBits;
524 }
525
526
AdvanceReadPC()527 inline void RelocIterator::AdvanceReadPC() {
528 rinfo_.pc_ += *--pos_;
529 }
530
531
AdvanceReadId()532 void RelocIterator::AdvanceReadId() {
533 int x = 0;
534 for (int i = 0; i < kIntSize; i++) {
535 x |= static_cast<int>(*--pos_) << i * kBitsPerByte;
536 }
537 last_id_ += x;
538 rinfo_.data_ = last_id_;
539 }
540
541
AdvanceReadInt()542 void RelocIterator::AdvanceReadInt() {
543 int x = 0;
544 for (int i = 0; i < kIntSize; i++) {
545 x |= static_cast<int>(*--pos_) << i * kBitsPerByte;
546 }
547 rinfo_.data_ = x;
548 }
549
550
AdvanceReadData()551 void RelocIterator::AdvanceReadData() {
552 intptr_t x = 0;
553 for (int i = 0; i < kIntptrSize; i++) {
554 x |= static_cast<intptr_t>(*--pos_) << i * kBitsPerByte;
555 }
556 rinfo_.data_ = x;
557 }
558
559
AdvanceReadLongPCJump()560 void RelocIterator::AdvanceReadLongPCJump() {
561 // Read the 32-kSmallPCDeltaBits most significant bits of the
562 // pc jump in kChunkBits bit chunks and shift them into place.
563 // Stop when the last chunk is encountered.
564 uint32_t pc_jump = 0;
565 for (int i = 0; i < kIntSize; i++) {
566 byte pc_jump_part = *--pos_;
567 pc_jump |= (pc_jump_part >> kLastChunkTagBits) << i * kChunkBits;
568 if ((pc_jump_part & kLastChunkTagMask) == 1) break;
569 }
570 // The least significant kSmallPCDeltaBits bits will be added
571 // later.
572 rinfo_.pc_ += pc_jump << kSmallPCDeltaBits;
573 }
574
575
GetShortDataTypeTag()576 inline int RelocIterator::GetShortDataTypeTag() {
577 return *pos_ & ((1 << kShortDataTypeTagBits) - 1);
578 }
579
580
ReadShortTaggedId()581 inline void RelocIterator::ReadShortTaggedId() {
582 int8_t signed_b = *pos_;
583 // Signed right shift is arithmetic shift. Tested in test-utils.cc.
584 last_id_ += signed_b >> kShortDataTypeTagBits;
585 rinfo_.data_ = last_id_;
586 }
587
588
ReadShortTaggedData()589 inline void RelocIterator::ReadShortTaggedData() {
590 uint8_t unsigned_b = *pos_;
591 rinfo_.data_ = unsigned_b >> kShortDataTypeTagBits;
592 }
593
594
next()595 void RelocIterator::next() {
596 DCHECK(!done());
597 // Basically, do the opposite of RelocInfoWriter::Write.
598 // Reading of data is as far as possible avoided for unwanted modes,
599 // but we must always update the pc.
600 //
601 // We exit this loop by returning when we find a mode we want.
602 while (pos_ > end_) {
603 int tag = AdvanceGetTag();
604 if (tag == kEmbeddedObjectTag) {
605 ReadShortTaggedPC();
606 if (SetMode(RelocInfo::EMBEDDED_OBJECT)) return;
607 } else if (tag == kCodeTargetTag) {
608 ReadShortTaggedPC();
609 if (SetMode(RelocInfo::CODE_TARGET)) return;
610 } else if (tag == kLocatableTag) {
611 ReadShortTaggedPC();
612 Advance();
613 int data_type_tag = GetShortDataTypeTag();
614 if (data_type_tag == kCodeWithIdTag) {
615 if (SetMode(RelocInfo::CODE_TARGET_WITH_ID)) {
616 ReadShortTaggedId();
617 return;
618 }
619 } else {
620 DCHECK(data_type_tag == kDeoptReasonTag);
621 if (SetMode(RelocInfo::DEOPT_REASON)) {
622 ReadShortTaggedData();
623 return;
624 }
625 }
626 } else {
627 DCHECK(tag == kDefaultTag);
628 RelocInfo::Mode rmode = GetMode();
629 if (rmode == RelocInfo::PC_JUMP) {
630 AdvanceReadLongPCJump();
631 } else {
632 AdvanceReadPC();
633 if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
634 if (SetMode(rmode)) {
635 AdvanceReadId();
636 return;
637 }
638 Advance(kIntSize);
639 } else if (RelocInfo::IsComment(rmode)) {
640 if (SetMode(rmode)) {
641 AdvanceReadData();
642 return;
643 }
644 Advance(kIntptrSize);
645 } else if (RelocInfo::IsConstPool(rmode) ||
646 RelocInfo::IsVeneerPool(rmode) ||
647 RelocInfo::IsDeoptId(rmode) ||
648 RelocInfo::IsDeoptPosition(rmode)) {
649 if (SetMode(rmode)) {
650 AdvanceReadInt();
651 return;
652 }
653 Advance(kIntSize);
654 } else if (SetMode(static_cast<RelocInfo::Mode>(rmode))) {
655 return;
656 }
657 }
658 }
659 }
660 if (code_age_sequence_ != NULL) {
661 byte* old_code_age_sequence = code_age_sequence_;
662 code_age_sequence_ = NULL;
663 if (SetMode(RelocInfo::CODE_AGE_SEQUENCE)) {
664 rinfo_.data_ = 0;
665 rinfo_.pc_ = old_code_age_sequence;
666 return;
667 }
668 }
669 done_ = true;
670 }
671
672
RelocIterator(Code * code,int mode_mask)673 RelocIterator::RelocIterator(Code* code, int mode_mask)
674 : rinfo_(code->map()->GetIsolate()) {
675 rinfo_.host_ = code;
676 rinfo_.pc_ = code->instruction_start();
677 rinfo_.data_ = 0;
678 // Relocation info is read backwards.
679 pos_ = code->relocation_start() + code->relocation_size();
680 end_ = code->relocation_start();
681 done_ = false;
682 mode_mask_ = mode_mask;
683 last_id_ = 0;
684 byte* sequence = code->FindCodeAgeSequence();
685 // We get the isolate from the map, because at serialization time
686 // the code pointer has been cloned and isn't really in heap space.
687 Isolate* isolate = code->map()->GetIsolate();
688 if (sequence != NULL && !Code::IsYoungSequence(isolate, sequence)) {
689 code_age_sequence_ = sequence;
690 } else {
691 code_age_sequence_ = NULL;
692 }
693 if (mode_mask_ == 0) pos_ = end_;
694 next();
695 }
696
697
RelocIterator(const CodeDesc & desc,int mode_mask)698 RelocIterator::RelocIterator(const CodeDesc& desc, int mode_mask)
699 : rinfo_(desc.origin->isolate()) {
700 rinfo_.pc_ = desc.buffer;
701 rinfo_.data_ = 0;
702 // Relocation info is read backwards.
703 pos_ = desc.buffer + desc.buffer_size;
704 end_ = pos_ - desc.reloc_size;
705 done_ = false;
706 mode_mask_ = mode_mask;
707 last_id_ = 0;
708 code_age_sequence_ = NULL;
709 if (mode_mask_ == 0) pos_ = end_;
710 next();
711 }
712
713
714 // -----------------------------------------------------------------------------
715 // Implementation of RelocInfo
716
IsPatchedDebugBreakSlotSequence()717 bool RelocInfo::IsPatchedDebugBreakSlotSequence() {
718 return DebugCodegen::DebugBreakSlotIsPatched(pc_);
719 }
720
721 #ifdef DEBUG
RequiresRelocation(const CodeDesc & desc)722 bool RelocInfo::RequiresRelocation(const CodeDesc& desc) {
723 // Ensure there are no code targets or embedded objects present in the
724 // deoptimization entries, they would require relocation after code
725 // generation.
726 int mode_mask = RelocInfo::kCodeTargetMask |
727 RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
728 RelocInfo::ModeMask(RelocInfo::CELL) |
729 RelocInfo::kApplyMask;
730 RelocIterator it(desc, mode_mask);
731 return !it.done();
732 }
733 #endif
734
735
736 #ifdef ENABLE_DISASSEMBLER
RelocModeName(RelocInfo::Mode rmode)737 const char* RelocInfo::RelocModeName(RelocInfo::Mode rmode) {
738 switch (rmode) {
739 case NONE32:
740 return "no reloc 32";
741 case NONE64:
742 return "no reloc 64";
743 case EMBEDDED_OBJECT:
744 return "embedded object";
745 case DEBUGGER_STATEMENT:
746 return "debugger statement";
747 case CODE_TARGET:
748 return "code target";
749 case CODE_TARGET_WITH_ID:
750 return "code target with id";
751 case CELL:
752 return "property cell";
753 case RUNTIME_ENTRY:
754 return "runtime entry";
755 case COMMENT:
756 return "comment";
757 case EXTERNAL_REFERENCE:
758 return "external reference";
759 case INTERNAL_REFERENCE:
760 return "internal reference";
761 case INTERNAL_REFERENCE_ENCODED:
762 return "encoded internal reference";
763 case DEOPT_SCRIPT_OFFSET:
764 return "deopt script offset";
765 case DEOPT_INLINING_ID:
766 return "deopt inlining id";
767 case DEOPT_REASON:
768 return "deopt reason";
769 case DEOPT_ID:
770 return "deopt index";
771 case CONST_POOL:
772 return "constant pool";
773 case VENEER_POOL:
774 return "veneer pool";
775 case DEBUG_BREAK_SLOT_AT_POSITION:
776 return "debug break slot at position";
777 case DEBUG_BREAK_SLOT_AT_RETURN:
778 return "debug break slot at return";
779 case DEBUG_BREAK_SLOT_AT_CALL:
780 return "debug break slot at call";
781 case DEBUG_BREAK_SLOT_AT_TAIL_CALL:
782 return "debug break slot at tail call";
783 case CODE_AGE_SEQUENCE:
784 return "code age sequence";
785 case GENERATOR_CONTINUATION:
786 return "generator continuation";
787 case WASM_MEMORY_REFERENCE:
788 return "wasm memory reference";
789 case WASM_MEMORY_SIZE_REFERENCE:
790 return "wasm memory size reference";
791 case WASM_GLOBAL_REFERENCE:
792 return "wasm global value reference";
793 case NUMBER_OF_MODES:
794 case PC_JUMP:
795 UNREACHABLE();
796 return "number_of_modes";
797 }
798 return "unknown relocation type";
799 }
800
801
Print(Isolate * isolate,std::ostream & os)802 void RelocInfo::Print(Isolate* isolate, std::ostream& os) { // NOLINT
803 os << static_cast<const void*>(pc_) << " " << RelocModeName(rmode_);
804 if (IsComment(rmode_)) {
805 os << " (" << reinterpret_cast<char*>(data_) << ")";
806 } else if (rmode_ == DEOPT_SCRIPT_OFFSET || rmode_ == DEOPT_INLINING_ID) {
807 os << " (" << data() << ")";
808 } else if (rmode_ == DEOPT_REASON) {
809 os << " ("
810 << DeoptimizeReasonToString(static_cast<DeoptimizeReason>(data_)) << ")";
811 } else if (rmode_ == EMBEDDED_OBJECT) {
812 os << " (" << Brief(target_object()) << ")";
813 } else if (rmode_ == EXTERNAL_REFERENCE) {
814 ExternalReferenceEncoder ref_encoder(isolate);
815 os << " ("
816 << ref_encoder.NameOfAddress(isolate, target_external_reference())
817 << ") (" << static_cast<const void*>(target_external_reference())
818 << ")";
819 } else if (IsCodeTarget(rmode_)) {
820 Code* code = Code::GetCodeFromTargetAddress(target_address());
821 os << " (" << Code::Kind2String(code->kind()) << ") ("
822 << static_cast<const void*>(target_address()) << ")";
823 if (rmode_ == CODE_TARGET_WITH_ID) {
824 os << " (id=" << static_cast<int>(data_) << ")";
825 }
826 } else if (IsRuntimeEntry(rmode_) &&
827 isolate->deoptimizer_data() != NULL) {
828 // Depotimization bailouts are stored as runtime entries.
829 int id = Deoptimizer::GetDeoptimizationId(
830 isolate, target_address(), Deoptimizer::EAGER);
831 if (id != Deoptimizer::kNotDeoptimizationEntry) {
832 os << " (deoptimization bailout " << id << ")";
833 }
834 } else if (IsConstPool(rmode_)) {
835 os << " (size " << static_cast<int>(data_) << ")";
836 }
837
838 os << "\n";
839 }
840 #endif // ENABLE_DISASSEMBLER
841
842
843 #ifdef VERIFY_HEAP
Verify(Isolate * isolate)844 void RelocInfo::Verify(Isolate* isolate) {
845 switch (rmode_) {
846 case EMBEDDED_OBJECT:
847 Object::VerifyPointer(target_object());
848 break;
849 case CELL:
850 Object::VerifyPointer(target_cell());
851 break;
852 case DEBUGGER_STATEMENT:
853 case CODE_TARGET_WITH_ID:
854 case CODE_TARGET: {
855 // convert inline target address to code object
856 Address addr = target_address();
857 CHECK(addr != NULL);
858 // Check that we can find the right code object.
859 Code* code = Code::GetCodeFromTargetAddress(addr);
860 Object* found = isolate->FindCodeObject(addr);
861 CHECK(found->IsCode());
862 CHECK(code->address() == HeapObject::cast(found)->address());
863 break;
864 }
865 case INTERNAL_REFERENCE:
866 case INTERNAL_REFERENCE_ENCODED: {
867 Address target = target_internal_reference();
868 Address pc = target_internal_reference_address();
869 Code* code = Code::cast(isolate->FindCodeObject(pc));
870 CHECK(target >= code->instruction_start());
871 CHECK(target <= code->instruction_end());
872 break;
873 }
874 case RUNTIME_ENTRY:
875 case COMMENT:
876 case EXTERNAL_REFERENCE:
877 case DEOPT_SCRIPT_OFFSET:
878 case DEOPT_INLINING_ID:
879 case DEOPT_REASON:
880 case DEOPT_ID:
881 case CONST_POOL:
882 case VENEER_POOL:
883 case DEBUG_BREAK_SLOT_AT_POSITION:
884 case DEBUG_BREAK_SLOT_AT_RETURN:
885 case DEBUG_BREAK_SLOT_AT_CALL:
886 case DEBUG_BREAK_SLOT_AT_TAIL_CALL:
887 case GENERATOR_CONTINUATION:
888 case WASM_MEMORY_REFERENCE:
889 case WASM_MEMORY_SIZE_REFERENCE:
890 case WASM_GLOBAL_REFERENCE:
891 case NONE32:
892 case NONE64:
893 break;
894 case NUMBER_OF_MODES:
895 case PC_JUMP:
896 UNREACHABLE();
897 break;
898 case CODE_AGE_SEQUENCE:
899 DCHECK(Code::IsYoungSequence(isolate, pc_) || code_age_stub()->IsCode());
900 break;
901 }
902 }
903 #endif // VERIFY_HEAP
904
905
906 // Implementation of ExternalReference
907
BuiltinCallTypeForResultSize(int result_size)908 static ExternalReference::Type BuiltinCallTypeForResultSize(int result_size) {
909 switch (result_size) {
910 case 1:
911 return ExternalReference::BUILTIN_CALL;
912 case 2:
913 return ExternalReference::BUILTIN_CALL_PAIR;
914 case 3:
915 return ExternalReference::BUILTIN_CALL_TRIPLE;
916 }
917 UNREACHABLE();
918 return ExternalReference::BUILTIN_CALL;
919 }
920
921
SetUp()922 void ExternalReference::SetUp() {
923 double_constants.min_int = kMinInt;
924 double_constants.one_half = 0.5;
925 double_constants.minus_one_half = -0.5;
926 double_constants.the_hole_nan = kHoleNanInt64;
927 double_constants.negative_infinity = -V8_INFINITY;
928 double_constants.uint32_bias =
929 static_cast<double>(static_cast<uint32_t>(0xFFFFFFFF)) + 1;
930 }
931
ExternalReference(Address address,Isolate * isolate)932 ExternalReference::ExternalReference(Address address, Isolate* isolate)
933 : address_(Redirect(isolate, address)) {}
934
ExternalReference(ApiFunction * fun,Type type=ExternalReference::BUILTIN_CALL,Isolate * isolate=NULL)935 ExternalReference::ExternalReference(
936 ApiFunction* fun,
937 Type type = ExternalReference::BUILTIN_CALL,
938 Isolate* isolate = NULL)
939 : address_(Redirect(isolate, fun->address(), type)) {}
940
941
ExternalReference(Builtins::Name name,Isolate * isolate)942 ExternalReference::ExternalReference(Builtins::Name name, Isolate* isolate)
943 : address_(isolate->builtins()->builtin_address(name)) {}
944
945
ExternalReference(Runtime::FunctionId id,Isolate * isolate)946 ExternalReference::ExternalReference(Runtime::FunctionId id, Isolate* isolate)
947 : ExternalReference(Runtime::FunctionForId(id), isolate) {}
948
949
ExternalReference(const Runtime::Function * f,Isolate * isolate)950 ExternalReference::ExternalReference(const Runtime::Function* f,
951 Isolate* isolate)
952 : address_(Redirect(isolate, f->entry,
953 BuiltinCallTypeForResultSize(f->result_size))) {}
954
955
isolate_address(Isolate * isolate)956 ExternalReference ExternalReference::isolate_address(Isolate* isolate) {
957 return ExternalReference(isolate);
958 }
959
interpreter_dispatch_table_address(Isolate * isolate)960 ExternalReference ExternalReference::interpreter_dispatch_table_address(
961 Isolate* isolate) {
962 return ExternalReference(isolate->interpreter()->dispatch_table_address());
963 }
964
interpreter_dispatch_counters(Isolate * isolate)965 ExternalReference ExternalReference::interpreter_dispatch_counters(
966 Isolate* isolate) {
967 return ExternalReference(
968 isolate->interpreter()->bytecode_dispatch_counters_table());
969 }
970
ExternalReference(StatsCounter * counter)971 ExternalReference::ExternalReference(StatsCounter* counter)
972 : address_(reinterpret_cast<Address>(counter->GetInternalPointer())) {}
973
974
ExternalReference(Isolate::AddressId id,Isolate * isolate)975 ExternalReference::ExternalReference(Isolate::AddressId id, Isolate* isolate)
976 : address_(isolate->get_address_from_id(id)) {}
977
978
ExternalReference(const SCTableReference & table_ref)979 ExternalReference::ExternalReference(const SCTableReference& table_ref)
980 : address_(table_ref.address()) {}
981
982
983 ExternalReference ExternalReference::
incremental_marking_record_write_function(Isolate * isolate)984 incremental_marking_record_write_function(Isolate* isolate) {
985 return ExternalReference(Redirect(
986 isolate,
987 FUNCTION_ADDR(IncrementalMarking::RecordWriteFromCode)));
988 }
989
990 ExternalReference
incremental_marking_record_write_code_entry_function(Isolate * isolate)991 ExternalReference::incremental_marking_record_write_code_entry_function(
992 Isolate* isolate) {
993 return ExternalReference(Redirect(
994 isolate,
995 FUNCTION_ADDR(IncrementalMarking::RecordWriteOfCodeEntryFromCode)));
996 }
997
store_buffer_overflow_function(Isolate * isolate)998 ExternalReference ExternalReference::store_buffer_overflow_function(
999 Isolate* isolate) {
1000 return ExternalReference(Redirect(
1001 isolate,
1002 FUNCTION_ADDR(StoreBuffer::StoreBufferOverflow)));
1003 }
1004
1005
delete_handle_scope_extensions(Isolate * isolate)1006 ExternalReference ExternalReference::delete_handle_scope_extensions(
1007 Isolate* isolate) {
1008 return ExternalReference(Redirect(
1009 isolate,
1010 FUNCTION_ADDR(HandleScope::DeleteExtensions)));
1011 }
1012
1013
get_date_field_function(Isolate * isolate)1014 ExternalReference ExternalReference::get_date_field_function(
1015 Isolate* isolate) {
1016 return ExternalReference(Redirect(isolate, FUNCTION_ADDR(JSDate::GetField)));
1017 }
1018
1019
get_make_code_young_function(Isolate * isolate)1020 ExternalReference ExternalReference::get_make_code_young_function(
1021 Isolate* isolate) {
1022 return ExternalReference(Redirect(
1023 isolate, FUNCTION_ADDR(Code::MakeCodeAgeSequenceYoung)));
1024 }
1025
1026
get_mark_code_as_executed_function(Isolate * isolate)1027 ExternalReference ExternalReference::get_mark_code_as_executed_function(
1028 Isolate* isolate) {
1029 return ExternalReference(Redirect(
1030 isolate, FUNCTION_ADDR(Code::MarkCodeAsExecuted)));
1031 }
1032
1033
date_cache_stamp(Isolate * isolate)1034 ExternalReference ExternalReference::date_cache_stamp(Isolate* isolate) {
1035 return ExternalReference(isolate->date_cache()->stamp_address());
1036 }
1037
1038
stress_deopt_count(Isolate * isolate)1039 ExternalReference ExternalReference::stress_deopt_count(Isolate* isolate) {
1040 return ExternalReference(isolate->stress_deopt_count_address());
1041 }
1042
1043
new_deoptimizer_function(Isolate * isolate)1044 ExternalReference ExternalReference::new_deoptimizer_function(
1045 Isolate* isolate) {
1046 return ExternalReference(
1047 Redirect(isolate, FUNCTION_ADDR(Deoptimizer::New)));
1048 }
1049
1050
compute_output_frames_function(Isolate * isolate)1051 ExternalReference ExternalReference::compute_output_frames_function(
1052 Isolate* isolate) {
1053 return ExternalReference(
1054 Redirect(isolate, FUNCTION_ADDR(Deoptimizer::ComputeOutputFrames)));
1055 }
1056
wasm_f32_trunc(Isolate * isolate)1057 ExternalReference ExternalReference::wasm_f32_trunc(Isolate* isolate) {
1058 return ExternalReference(
1059 Redirect(isolate, FUNCTION_ADDR(wasm::f32_trunc_wrapper)));
1060 }
wasm_f32_floor(Isolate * isolate)1061 ExternalReference ExternalReference::wasm_f32_floor(Isolate* isolate) {
1062 return ExternalReference(
1063 Redirect(isolate, FUNCTION_ADDR(wasm::f32_floor_wrapper)));
1064 }
wasm_f32_ceil(Isolate * isolate)1065 ExternalReference ExternalReference::wasm_f32_ceil(Isolate* isolate) {
1066 return ExternalReference(
1067 Redirect(isolate, FUNCTION_ADDR(wasm::f32_ceil_wrapper)));
1068 }
wasm_f32_nearest_int(Isolate * isolate)1069 ExternalReference ExternalReference::wasm_f32_nearest_int(Isolate* isolate) {
1070 return ExternalReference(
1071 Redirect(isolate, FUNCTION_ADDR(wasm::f32_nearest_int_wrapper)));
1072 }
1073
wasm_f64_trunc(Isolate * isolate)1074 ExternalReference ExternalReference::wasm_f64_trunc(Isolate* isolate) {
1075 return ExternalReference(
1076 Redirect(isolate, FUNCTION_ADDR(wasm::f64_trunc_wrapper)));
1077 }
1078
wasm_f64_floor(Isolate * isolate)1079 ExternalReference ExternalReference::wasm_f64_floor(Isolate* isolate) {
1080 return ExternalReference(
1081 Redirect(isolate, FUNCTION_ADDR(wasm::f64_floor_wrapper)));
1082 }
1083
wasm_f64_ceil(Isolate * isolate)1084 ExternalReference ExternalReference::wasm_f64_ceil(Isolate* isolate) {
1085 return ExternalReference(
1086 Redirect(isolate, FUNCTION_ADDR(wasm::f64_ceil_wrapper)));
1087 }
1088
wasm_f64_nearest_int(Isolate * isolate)1089 ExternalReference ExternalReference::wasm_f64_nearest_int(Isolate* isolate) {
1090 return ExternalReference(
1091 Redirect(isolate, FUNCTION_ADDR(wasm::f64_nearest_int_wrapper)));
1092 }
1093
wasm_int64_to_float32(Isolate * isolate)1094 ExternalReference ExternalReference::wasm_int64_to_float32(Isolate* isolate) {
1095 return ExternalReference(
1096 Redirect(isolate, FUNCTION_ADDR(wasm::int64_to_float32_wrapper)));
1097 }
1098
wasm_uint64_to_float32(Isolate * isolate)1099 ExternalReference ExternalReference::wasm_uint64_to_float32(Isolate* isolate) {
1100 return ExternalReference(
1101 Redirect(isolate, FUNCTION_ADDR(wasm::uint64_to_float32_wrapper)));
1102 }
1103
wasm_int64_to_float64(Isolate * isolate)1104 ExternalReference ExternalReference::wasm_int64_to_float64(Isolate* isolate) {
1105 return ExternalReference(
1106 Redirect(isolate, FUNCTION_ADDR(wasm::int64_to_float64_wrapper)));
1107 }
1108
wasm_uint64_to_float64(Isolate * isolate)1109 ExternalReference ExternalReference::wasm_uint64_to_float64(Isolate* isolate) {
1110 return ExternalReference(
1111 Redirect(isolate, FUNCTION_ADDR(wasm::uint64_to_float64_wrapper)));
1112 }
1113
wasm_float32_to_int64(Isolate * isolate)1114 ExternalReference ExternalReference::wasm_float32_to_int64(Isolate* isolate) {
1115 return ExternalReference(
1116 Redirect(isolate, FUNCTION_ADDR(wasm::float32_to_int64_wrapper)));
1117 }
1118
wasm_float32_to_uint64(Isolate * isolate)1119 ExternalReference ExternalReference::wasm_float32_to_uint64(Isolate* isolate) {
1120 return ExternalReference(
1121 Redirect(isolate, FUNCTION_ADDR(wasm::float32_to_uint64_wrapper)));
1122 }
1123
wasm_float64_to_int64(Isolate * isolate)1124 ExternalReference ExternalReference::wasm_float64_to_int64(Isolate* isolate) {
1125 return ExternalReference(
1126 Redirect(isolate, FUNCTION_ADDR(wasm::float64_to_int64_wrapper)));
1127 }
1128
wasm_float64_to_uint64(Isolate * isolate)1129 ExternalReference ExternalReference::wasm_float64_to_uint64(Isolate* isolate) {
1130 return ExternalReference(
1131 Redirect(isolate, FUNCTION_ADDR(wasm::float64_to_uint64_wrapper)));
1132 }
1133
wasm_int64_div(Isolate * isolate)1134 ExternalReference ExternalReference::wasm_int64_div(Isolate* isolate) {
1135 return ExternalReference(
1136 Redirect(isolate, FUNCTION_ADDR(wasm::int64_div_wrapper)));
1137 }
1138
wasm_int64_mod(Isolate * isolate)1139 ExternalReference ExternalReference::wasm_int64_mod(Isolate* isolate) {
1140 return ExternalReference(
1141 Redirect(isolate, FUNCTION_ADDR(wasm::int64_mod_wrapper)));
1142 }
1143
wasm_uint64_div(Isolate * isolate)1144 ExternalReference ExternalReference::wasm_uint64_div(Isolate* isolate) {
1145 return ExternalReference(
1146 Redirect(isolate, FUNCTION_ADDR(wasm::uint64_div_wrapper)));
1147 }
1148
wasm_uint64_mod(Isolate * isolate)1149 ExternalReference ExternalReference::wasm_uint64_mod(Isolate* isolate) {
1150 return ExternalReference(
1151 Redirect(isolate, FUNCTION_ADDR(wasm::uint64_mod_wrapper)));
1152 }
1153
wasm_word32_ctz(Isolate * isolate)1154 ExternalReference ExternalReference::wasm_word32_ctz(Isolate* isolate) {
1155 return ExternalReference(
1156 Redirect(isolate, FUNCTION_ADDR(wasm::word32_ctz_wrapper)));
1157 }
1158
wasm_word64_ctz(Isolate * isolate)1159 ExternalReference ExternalReference::wasm_word64_ctz(Isolate* isolate) {
1160 return ExternalReference(
1161 Redirect(isolate, FUNCTION_ADDR(wasm::word64_ctz_wrapper)));
1162 }
1163
wasm_word32_popcnt(Isolate * isolate)1164 ExternalReference ExternalReference::wasm_word32_popcnt(Isolate* isolate) {
1165 return ExternalReference(
1166 Redirect(isolate, FUNCTION_ADDR(wasm::word32_popcnt_wrapper)));
1167 }
1168
wasm_word64_popcnt(Isolate * isolate)1169 ExternalReference ExternalReference::wasm_word64_popcnt(Isolate* isolate) {
1170 return ExternalReference(
1171 Redirect(isolate, FUNCTION_ADDR(wasm::word64_popcnt_wrapper)));
1172 }
1173
f64_acos_wrapper(double * param)1174 static void f64_acos_wrapper(double* param) {
1175 WriteDoubleValue(param, base::ieee754::acos(ReadDoubleValue(param)));
1176 }
1177
f64_acos_wrapper_function(Isolate * isolate)1178 ExternalReference ExternalReference::f64_acos_wrapper_function(
1179 Isolate* isolate) {
1180 return ExternalReference(Redirect(isolate, FUNCTION_ADDR(f64_acos_wrapper)));
1181 }
1182
f64_asin_wrapper(double * param)1183 static void f64_asin_wrapper(double* param) {
1184 WriteDoubleValue(param, base::ieee754::asin(ReadDoubleValue(param)));
1185 }
1186
f64_asin_wrapper_function(Isolate * isolate)1187 ExternalReference ExternalReference::f64_asin_wrapper_function(
1188 Isolate* isolate) {
1189 return ExternalReference(Redirect(isolate, FUNCTION_ADDR(f64_asin_wrapper)));
1190 }
1191
wasm_float64_pow(Isolate * isolate)1192 ExternalReference ExternalReference::wasm_float64_pow(Isolate* isolate) {
1193 return ExternalReference(
1194 Redirect(isolate, FUNCTION_ADDR(wasm::float64_pow_wrapper)));
1195 }
1196
f64_mod_wrapper(double * param0,double * param1)1197 static void f64_mod_wrapper(double* param0, double* param1) {
1198 WriteDoubleValue(param0,
1199 modulo(ReadDoubleValue(param0), ReadDoubleValue(param1)));
1200 }
1201
f64_mod_wrapper_function(Isolate * isolate)1202 ExternalReference ExternalReference::f64_mod_wrapper_function(
1203 Isolate* isolate) {
1204 return ExternalReference(Redirect(isolate, FUNCTION_ADDR(f64_mod_wrapper)));
1205 }
1206
log_enter_external_function(Isolate * isolate)1207 ExternalReference ExternalReference::log_enter_external_function(
1208 Isolate* isolate) {
1209 return ExternalReference(
1210 Redirect(isolate, FUNCTION_ADDR(Logger::EnterExternal)));
1211 }
1212
1213
log_leave_external_function(Isolate * isolate)1214 ExternalReference ExternalReference::log_leave_external_function(
1215 Isolate* isolate) {
1216 return ExternalReference(
1217 Redirect(isolate, FUNCTION_ADDR(Logger::LeaveExternal)));
1218 }
1219
roots_array_start(Isolate * isolate)1220 ExternalReference ExternalReference::roots_array_start(Isolate* isolate) {
1221 return ExternalReference(isolate->heap()->roots_array_start());
1222 }
1223
1224
allocation_sites_list_address(Isolate * isolate)1225 ExternalReference ExternalReference::allocation_sites_list_address(
1226 Isolate* isolate) {
1227 return ExternalReference(isolate->heap()->allocation_sites_list_address());
1228 }
1229
1230
address_of_stack_limit(Isolate * isolate)1231 ExternalReference ExternalReference::address_of_stack_limit(Isolate* isolate) {
1232 return ExternalReference(isolate->stack_guard()->address_of_jslimit());
1233 }
1234
1235
address_of_real_stack_limit(Isolate * isolate)1236 ExternalReference ExternalReference::address_of_real_stack_limit(
1237 Isolate* isolate) {
1238 return ExternalReference(isolate->stack_guard()->address_of_real_jslimit());
1239 }
1240
1241
address_of_regexp_stack_limit(Isolate * isolate)1242 ExternalReference ExternalReference::address_of_regexp_stack_limit(
1243 Isolate* isolate) {
1244 return ExternalReference(isolate->regexp_stack()->limit_address());
1245 }
1246
store_buffer_top(Isolate * isolate)1247 ExternalReference ExternalReference::store_buffer_top(Isolate* isolate) {
1248 return ExternalReference(isolate->heap()->store_buffer_top_address());
1249 }
1250
1251
new_space_allocation_top_address(Isolate * isolate)1252 ExternalReference ExternalReference::new_space_allocation_top_address(
1253 Isolate* isolate) {
1254 return ExternalReference(isolate->heap()->NewSpaceAllocationTopAddress());
1255 }
1256
1257
new_space_allocation_limit_address(Isolate * isolate)1258 ExternalReference ExternalReference::new_space_allocation_limit_address(
1259 Isolate* isolate) {
1260 return ExternalReference(isolate->heap()->NewSpaceAllocationLimitAddress());
1261 }
1262
1263
old_space_allocation_top_address(Isolate * isolate)1264 ExternalReference ExternalReference::old_space_allocation_top_address(
1265 Isolate* isolate) {
1266 return ExternalReference(isolate->heap()->OldSpaceAllocationTopAddress());
1267 }
1268
1269
old_space_allocation_limit_address(Isolate * isolate)1270 ExternalReference ExternalReference::old_space_allocation_limit_address(
1271 Isolate* isolate) {
1272 return ExternalReference(isolate->heap()->OldSpaceAllocationLimitAddress());
1273 }
1274
1275
handle_scope_level_address(Isolate * isolate)1276 ExternalReference ExternalReference::handle_scope_level_address(
1277 Isolate* isolate) {
1278 return ExternalReference(HandleScope::current_level_address(isolate));
1279 }
1280
1281
handle_scope_next_address(Isolate * isolate)1282 ExternalReference ExternalReference::handle_scope_next_address(
1283 Isolate* isolate) {
1284 return ExternalReference(HandleScope::current_next_address(isolate));
1285 }
1286
1287
handle_scope_limit_address(Isolate * isolate)1288 ExternalReference ExternalReference::handle_scope_limit_address(
1289 Isolate* isolate) {
1290 return ExternalReference(HandleScope::current_limit_address(isolate));
1291 }
1292
1293
scheduled_exception_address(Isolate * isolate)1294 ExternalReference ExternalReference::scheduled_exception_address(
1295 Isolate* isolate) {
1296 return ExternalReference(isolate->scheduled_exception_address());
1297 }
1298
1299
address_of_pending_message_obj(Isolate * isolate)1300 ExternalReference ExternalReference::address_of_pending_message_obj(
1301 Isolate* isolate) {
1302 return ExternalReference(isolate->pending_message_obj_address());
1303 }
1304
1305
address_of_min_int()1306 ExternalReference ExternalReference::address_of_min_int() {
1307 return ExternalReference(reinterpret_cast<void*>(&double_constants.min_int));
1308 }
1309
1310
address_of_one_half()1311 ExternalReference ExternalReference::address_of_one_half() {
1312 return ExternalReference(reinterpret_cast<void*>(&double_constants.one_half));
1313 }
1314
1315
address_of_minus_one_half()1316 ExternalReference ExternalReference::address_of_minus_one_half() {
1317 return ExternalReference(
1318 reinterpret_cast<void*>(&double_constants.minus_one_half));
1319 }
1320
1321
address_of_negative_infinity()1322 ExternalReference ExternalReference::address_of_negative_infinity() {
1323 return ExternalReference(
1324 reinterpret_cast<void*>(&double_constants.negative_infinity));
1325 }
1326
1327
address_of_the_hole_nan()1328 ExternalReference ExternalReference::address_of_the_hole_nan() {
1329 return ExternalReference(
1330 reinterpret_cast<void*>(&double_constants.the_hole_nan));
1331 }
1332
1333
address_of_uint32_bias()1334 ExternalReference ExternalReference::address_of_uint32_bias() {
1335 return ExternalReference(
1336 reinterpret_cast<void*>(&double_constants.uint32_bias));
1337 }
1338
1339
address_of_float_abs_constant()1340 ExternalReference ExternalReference::address_of_float_abs_constant() {
1341 return ExternalReference(reinterpret_cast<void*>(&float_absolute_constant));
1342 }
1343
1344
address_of_float_neg_constant()1345 ExternalReference ExternalReference::address_of_float_neg_constant() {
1346 return ExternalReference(reinterpret_cast<void*>(&float_negate_constant));
1347 }
1348
1349
address_of_double_abs_constant()1350 ExternalReference ExternalReference::address_of_double_abs_constant() {
1351 return ExternalReference(reinterpret_cast<void*>(&double_absolute_constant));
1352 }
1353
1354
address_of_double_neg_constant()1355 ExternalReference ExternalReference::address_of_double_neg_constant() {
1356 return ExternalReference(reinterpret_cast<void*>(&double_negate_constant));
1357 }
1358
1359
is_profiling_address(Isolate * isolate)1360 ExternalReference ExternalReference::is_profiling_address(Isolate* isolate) {
1361 return ExternalReference(isolate->is_profiling_address());
1362 }
1363
1364
invoke_function_callback(Isolate * isolate)1365 ExternalReference ExternalReference::invoke_function_callback(
1366 Isolate* isolate) {
1367 Address thunk_address = FUNCTION_ADDR(&InvokeFunctionCallback);
1368 ExternalReference::Type thunk_type = ExternalReference::PROFILING_API_CALL;
1369 ApiFunction thunk_fun(thunk_address);
1370 return ExternalReference(&thunk_fun, thunk_type, isolate);
1371 }
1372
1373
invoke_accessor_getter_callback(Isolate * isolate)1374 ExternalReference ExternalReference::invoke_accessor_getter_callback(
1375 Isolate* isolate) {
1376 Address thunk_address = FUNCTION_ADDR(&InvokeAccessorGetterCallback);
1377 ExternalReference::Type thunk_type =
1378 ExternalReference::PROFILING_GETTER_CALL;
1379 ApiFunction thunk_fun(thunk_address);
1380 return ExternalReference(&thunk_fun, thunk_type, isolate);
1381 }
1382
1383
1384 #ifndef V8_INTERPRETED_REGEXP
1385
re_check_stack_guard_state(Isolate * isolate)1386 ExternalReference ExternalReference::re_check_stack_guard_state(
1387 Isolate* isolate) {
1388 Address function;
1389 #if V8_TARGET_ARCH_X64
1390 function = FUNCTION_ADDR(RegExpMacroAssemblerX64::CheckStackGuardState);
1391 #elif V8_TARGET_ARCH_IA32
1392 function = FUNCTION_ADDR(RegExpMacroAssemblerIA32::CheckStackGuardState);
1393 #elif V8_TARGET_ARCH_ARM64
1394 function = FUNCTION_ADDR(RegExpMacroAssemblerARM64::CheckStackGuardState);
1395 #elif V8_TARGET_ARCH_ARM
1396 function = FUNCTION_ADDR(RegExpMacroAssemblerARM::CheckStackGuardState);
1397 #elif V8_TARGET_ARCH_PPC
1398 function = FUNCTION_ADDR(RegExpMacroAssemblerPPC::CheckStackGuardState);
1399 #elif V8_TARGET_ARCH_MIPS
1400 function = FUNCTION_ADDR(RegExpMacroAssemblerMIPS::CheckStackGuardState);
1401 #elif V8_TARGET_ARCH_MIPS64
1402 function = FUNCTION_ADDR(RegExpMacroAssemblerMIPS::CheckStackGuardState);
1403 #elif V8_TARGET_ARCH_S390
1404 function = FUNCTION_ADDR(RegExpMacroAssemblerS390::CheckStackGuardState);
1405 #elif V8_TARGET_ARCH_X87
1406 function = FUNCTION_ADDR(RegExpMacroAssemblerX87::CheckStackGuardState);
1407 #else
1408 UNREACHABLE();
1409 #endif
1410 return ExternalReference(Redirect(isolate, function));
1411 }
1412
1413
re_grow_stack(Isolate * isolate)1414 ExternalReference ExternalReference::re_grow_stack(Isolate* isolate) {
1415 return ExternalReference(
1416 Redirect(isolate, FUNCTION_ADDR(NativeRegExpMacroAssembler::GrowStack)));
1417 }
1418
re_case_insensitive_compare_uc16(Isolate * isolate)1419 ExternalReference ExternalReference::re_case_insensitive_compare_uc16(
1420 Isolate* isolate) {
1421 return ExternalReference(Redirect(
1422 isolate,
1423 FUNCTION_ADDR(NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16)));
1424 }
1425
1426
re_word_character_map()1427 ExternalReference ExternalReference::re_word_character_map() {
1428 return ExternalReference(
1429 NativeRegExpMacroAssembler::word_character_map_address());
1430 }
1431
address_of_static_offsets_vector(Isolate * isolate)1432 ExternalReference ExternalReference::address_of_static_offsets_vector(
1433 Isolate* isolate) {
1434 return ExternalReference(
1435 reinterpret_cast<Address>(isolate->jsregexp_static_offsets_vector()));
1436 }
1437
address_of_regexp_stack_memory_address(Isolate * isolate)1438 ExternalReference ExternalReference::address_of_regexp_stack_memory_address(
1439 Isolate* isolate) {
1440 return ExternalReference(
1441 isolate->regexp_stack()->memory_address());
1442 }
1443
address_of_regexp_stack_memory_size(Isolate * isolate)1444 ExternalReference ExternalReference::address_of_regexp_stack_memory_size(
1445 Isolate* isolate) {
1446 return ExternalReference(isolate->regexp_stack()->memory_size_address());
1447 }
1448
1449 #endif // V8_INTERPRETED_REGEXP
1450
ieee754_acos_function(Isolate * isolate)1451 ExternalReference ExternalReference::ieee754_acos_function(Isolate* isolate) {
1452 return ExternalReference(
1453 Redirect(isolate, FUNCTION_ADDR(base::ieee754::acos), BUILTIN_FP_CALL));
1454 }
1455
ieee754_acosh_function(Isolate * isolate)1456 ExternalReference ExternalReference::ieee754_acosh_function(Isolate* isolate) {
1457 return ExternalReference(Redirect(
1458 isolate, FUNCTION_ADDR(base::ieee754::acosh), BUILTIN_FP_FP_CALL));
1459 }
1460
ieee754_asin_function(Isolate * isolate)1461 ExternalReference ExternalReference::ieee754_asin_function(Isolate* isolate) {
1462 return ExternalReference(
1463 Redirect(isolate, FUNCTION_ADDR(base::ieee754::asin), BUILTIN_FP_CALL));
1464 }
1465
ieee754_asinh_function(Isolate * isolate)1466 ExternalReference ExternalReference::ieee754_asinh_function(Isolate* isolate) {
1467 return ExternalReference(Redirect(
1468 isolate, FUNCTION_ADDR(base::ieee754::asinh), BUILTIN_FP_FP_CALL));
1469 }
1470
ieee754_atan_function(Isolate * isolate)1471 ExternalReference ExternalReference::ieee754_atan_function(Isolate* isolate) {
1472 return ExternalReference(
1473 Redirect(isolate, FUNCTION_ADDR(base::ieee754::atan), BUILTIN_FP_CALL));
1474 }
1475
ieee754_atanh_function(Isolate * isolate)1476 ExternalReference ExternalReference::ieee754_atanh_function(Isolate* isolate) {
1477 return ExternalReference(Redirect(
1478 isolate, FUNCTION_ADDR(base::ieee754::atanh), BUILTIN_FP_FP_CALL));
1479 }
1480
ieee754_atan2_function(Isolate * isolate)1481 ExternalReference ExternalReference::ieee754_atan2_function(Isolate* isolate) {
1482 return ExternalReference(Redirect(
1483 isolate, FUNCTION_ADDR(base::ieee754::atan2), BUILTIN_FP_FP_CALL));
1484 }
1485
ieee754_cbrt_function(Isolate * isolate)1486 ExternalReference ExternalReference::ieee754_cbrt_function(Isolate* isolate) {
1487 return ExternalReference(Redirect(isolate, FUNCTION_ADDR(base::ieee754::cbrt),
1488 BUILTIN_FP_FP_CALL));
1489 }
1490
ieee754_cos_function(Isolate * isolate)1491 ExternalReference ExternalReference::ieee754_cos_function(Isolate* isolate) {
1492 return ExternalReference(
1493 Redirect(isolate, FUNCTION_ADDR(base::ieee754::cos), BUILTIN_FP_CALL));
1494 }
1495
ieee754_cosh_function(Isolate * isolate)1496 ExternalReference ExternalReference::ieee754_cosh_function(Isolate* isolate) {
1497 return ExternalReference(
1498 Redirect(isolate, FUNCTION_ADDR(base::ieee754::cosh), BUILTIN_FP_CALL));
1499 }
1500
ieee754_exp_function(Isolate * isolate)1501 ExternalReference ExternalReference::ieee754_exp_function(Isolate* isolate) {
1502 return ExternalReference(
1503 Redirect(isolate, FUNCTION_ADDR(base::ieee754::exp), BUILTIN_FP_CALL));
1504 }
1505
ieee754_expm1_function(Isolate * isolate)1506 ExternalReference ExternalReference::ieee754_expm1_function(Isolate* isolate) {
1507 return ExternalReference(Redirect(
1508 isolate, FUNCTION_ADDR(base::ieee754::expm1), BUILTIN_FP_FP_CALL));
1509 }
1510
ieee754_log_function(Isolate * isolate)1511 ExternalReference ExternalReference::ieee754_log_function(Isolate* isolate) {
1512 return ExternalReference(
1513 Redirect(isolate, FUNCTION_ADDR(base::ieee754::log), BUILTIN_FP_CALL));
1514 }
1515
ieee754_log1p_function(Isolate * isolate)1516 ExternalReference ExternalReference::ieee754_log1p_function(Isolate* isolate) {
1517 return ExternalReference(
1518 Redirect(isolate, FUNCTION_ADDR(base::ieee754::log1p), BUILTIN_FP_CALL));
1519 }
1520
ieee754_log10_function(Isolate * isolate)1521 ExternalReference ExternalReference::ieee754_log10_function(Isolate* isolate) {
1522 return ExternalReference(
1523 Redirect(isolate, FUNCTION_ADDR(base::ieee754::log10), BUILTIN_FP_CALL));
1524 }
1525
ieee754_log2_function(Isolate * isolate)1526 ExternalReference ExternalReference::ieee754_log2_function(Isolate* isolate) {
1527 return ExternalReference(
1528 Redirect(isolate, FUNCTION_ADDR(base::ieee754::log2), BUILTIN_FP_CALL));
1529 }
1530
ieee754_sin_function(Isolate * isolate)1531 ExternalReference ExternalReference::ieee754_sin_function(Isolate* isolate) {
1532 return ExternalReference(
1533 Redirect(isolate, FUNCTION_ADDR(base::ieee754::sin), BUILTIN_FP_CALL));
1534 }
1535
ieee754_sinh_function(Isolate * isolate)1536 ExternalReference ExternalReference::ieee754_sinh_function(Isolate* isolate) {
1537 return ExternalReference(
1538 Redirect(isolate, FUNCTION_ADDR(base::ieee754::sinh), BUILTIN_FP_CALL));
1539 }
1540
ieee754_tan_function(Isolate * isolate)1541 ExternalReference ExternalReference::ieee754_tan_function(Isolate* isolate) {
1542 return ExternalReference(
1543 Redirect(isolate, FUNCTION_ADDR(base::ieee754::tan), BUILTIN_FP_CALL));
1544 }
1545
ieee754_tanh_function(Isolate * isolate)1546 ExternalReference ExternalReference::ieee754_tanh_function(Isolate* isolate) {
1547 return ExternalReference(
1548 Redirect(isolate, FUNCTION_ADDR(base::ieee754::tanh), BUILTIN_FP_CALL));
1549 }
1550
page_flags(Page * page)1551 ExternalReference ExternalReference::page_flags(Page* page) {
1552 return ExternalReference(reinterpret_cast<Address>(page) +
1553 MemoryChunk::kFlagsOffset);
1554 }
1555
1556
ForDeoptEntry(Address entry)1557 ExternalReference ExternalReference::ForDeoptEntry(Address entry) {
1558 return ExternalReference(entry);
1559 }
1560
1561
cpu_features()1562 ExternalReference ExternalReference::cpu_features() {
1563 DCHECK(CpuFeatures::initialized_);
1564 return ExternalReference(&CpuFeatures::supported_);
1565 }
1566
is_tail_call_elimination_enabled_address(Isolate * isolate)1567 ExternalReference ExternalReference::is_tail_call_elimination_enabled_address(
1568 Isolate* isolate) {
1569 return ExternalReference(isolate->is_tail_call_elimination_enabled_address());
1570 }
1571
debug_is_active_address(Isolate * isolate)1572 ExternalReference ExternalReference::debug_is_active_address(
1573 Isolate* isolate) {
1574 return ExternalReference(isolate->debug()->is_active_address());
1575 }
1576
1577
debug_after_break_target_address(Isolate * isolate)1578 ExternalReference ExternalReference::debug_after_break_target_address(
1579 Isolate* isolate) {
1580 return ExternalReference(isolate->debug()->after_break_target_address());
1581 }
1582
1583
runtime_function_table_address(Isolate * isolate)1584 ExternalReference ExternalReference::runtime_function_table_address(
1585 Isolate* isolate) {
1586 return ExternalReference(
1587 const_cast<Runtime::Function*>(Runtime::RuntimeFunctionTable(isolate)));
1588 }
1589
1590
power_helper(Isolate * isolate,double x,double y)1591 double power_helper(Isolate* isolate, double x, double y) {
1592 int y_int = static_cast<int>(y);
1593 if (y == y_int) {
1594 return power_double_int(x, y_int); // Returns 1 if exponent is 0.
1595 }
1596 if (y == 0.5) {
1597 lazily_initialize_fast_sqrt(isolate);
1598 return (std::isinf(x)) ? V8_INFINITY
1599 : fast_sqrt(x + 0.0, isolate); // Convert -0 to +0.
1600 }
1601 if (y == -0.5) {
1602 lazily_initialize_fast_sqrt(isolate);
1603 return (std::isinf(x)) ? 0 : 1.0 / fast_sqrt(x + 0.0,
1604 isolate); // Convert -0 to +0.
1605 }
1606 return power_double_double(x, y);
1607 }
1608
1609
1610 // Helper function to compute x^y, where y is known to be an
1611 // integer. Uses binary decomposition to limit the number of
1612 // multiplications; see the discussion in "Hacker's Delight" by Henry
1613 // S. Warren, Jr., figure 11-6, page 213.
power_double_int(double x,int y)1614 double power_double_int(double x, int y) {
1615 double m = (y < 0) ? 1 / x : x;
1616 unsigned n = (y < 0) ? -y : y;
1617 double p = 1;
1618 while (n != 0) {
1619 if ((n & 1) != 0) p *= m;
1620 m *= m;
1621 if ((n & 2) != 0) p *= m;
1622 m *= m;
1623 n >>= 2;
1624 }
1625 return p;
1626 }
1627
1628
power_double_double(double x,double y)1629 double power_double_double(double x, double y) {
1630 // The checks for special cases can be dropped in ia32 because it has already
1631 // been done in generated code before bailing out here.
1632 if (std::isnan(y) || ((x == 1 || x == -1) && std::isinf(y))) {
1633 return std::numeric_limits<double>::quiet_NaN();
1634 }
1635 return Pow(x, y);
1636 }
1637
1638
power_double_double_function(Isolate * isolate)1639 ExternalReference ExternalReference::power_double_double_function(
1640 Isolate* isolate) {
1641 return ExternalReference(Redirect(isolate,
1642 FUNCTION_ADDR(power_double_double),
1643 BUILTIN_FP_FP_CALL));
1644 }
1645
1646
mod_two_doubles_operation(Isolate * isolate)1647 ExternalReference ExternalReference::mod_two_doubles_operation(
1648 Isolate* isolate) {
1649 return ExternalReference(Redirect(isolate,
1650 FUNCTION_ADDR(modulo),
1651 BUILTIN_FP_FP_CALL));
1652 }
1653
debug_last_step_action_address(Isolate * isolate)1654 ExternalReference ExternalReference::debug_last_step_action_address(
1655 Isolate* isolate) {
1656 return ExternalReference(isolate->debug()->last_step_action_address());
1657 }
1658
debug_suspended_generator_address(Isolate * isolate)1659 ExternalReference ExternalReference::debug_suspended_generator_address(
1660 Isolate* isolate) {
1661 return ExternalReference(isolate->debug()->suspended_generator_address());
1662 }
1663
fixed_typed_array_base_data_offset()1664 ExternalReference ExternalReference::fixed_typed_array_base_data_offset() {
1665 return ExternalReference(reinterpret_cast<void*>(
1666 FixedTypedArrayBase::kDataOffset - kHeapObjectTag));
1667 }
1668
1669
operator ==(ExternalReference lhs,ExternalReference rhs)1670 bool operator==(ExternalReference lhs, ExternalReference rhs) {
1671 return lhs.address() == rhs.address();
1672 }
1673
1674
operator !=(ExternalReference lhs,ExternalReference rhs)1675 bool operator!=(ExternalReference lhs, ExternalReference rhs) {
1676 return !(lhs == rhs);
1677 }
1678
1679
hash_value(ExternalReference reference)1680 size_t hash_value(ExternalReference reference) {
1681 return base::hash<Address>()(reference.address());
1682 }
1683
1684
operator <<(std::ostream & os,ExternalReference reference)1685 std::ostream& operator<<(std::ostream& os, ExternalReference reference) {
1686 os << static_cast<const void*>(reference.address());
1687 const Runtime::Function* fn = Runtime::FunctionForEntry(reference.address());
1688 if (fn) os << "<" << fn->name << ".entry>";
1689 return os;
1690 }
1691
1692
ConstantPoolBuilder(int ptr_reach_bits,int double_reach_bits)1693 ConstantPoolBuilder::ConstantPoolBuilder(int ptr_reach_bits,
1694 int double_reach_bits) {
1695 info_[ConstantPoolEntry::INTPTR].entries.reserve(64);
1696 info_[ConstantPoolEntry::INTPTR].regular_reach_bits = ptr_reach_bits;
1697 info_[ConstantPoolEntry::DOUBLE].regular_reach_bits = double_reach_bits;
1698 }
1699
1700
NextAccess(ConstantPoolEntry::Type type) const1701 ConstantPoolEntry::Access ConstantPoolBuilder::NextAccess(
1702 ConstantPoolEntry::Type type) const {
1703 const PerTypeEntryInfo& info = info_[type];
1704
1705 if (info.overflow()) return ConstantPoolEntry::OVERFLOWED;
1706
1707 int dbl_count = info_[ConstantPoolEntry::DOUBLE].regular_count;
1708 int dbl_offset = dbl_count * kDoubleSize;
1709 int ptr_count = info_[ConstantPoolEntry::INTPTR].regular_count;
1710 int ptr_offset = ptr_count * kPointerSize + dbl_offset;
1711
1712 if (type == ConstantPoolEntry::DOUBLE) {
1713 // Double overflow detection must take into account the reach for both types
1714 int ptr_reach_bits = info_[ConstantPoolEntry::INTPTR].regular_reach_bits;
1715 if (!is_uintn(dbl_offset, info.regular_reach_bits) ||
1716 (ptr_count > 0 &&
1717 !is_uintn(ptr_offset + kDoubleSize - kPointerSize, ptr_reach_bits))) {
1718 return ConstantPoolEntry::OVERFLOWED;
1719 }
1720 } else {
1721 DCHECK(type == ConstantPoolEntry::INTPTR);
1722 if (!is_uintn(ptr_offset, info.regular_reach_bits)) {
1723 return ConstantPoolEntry::OVERFLOWED;
1724 }
1725 }
1726
1727 return ConstantPoolEntry::REGULAR;
1728 }
1729
1730
AddEntry(ConstantPoolEntry & entry,ConstantPoolEntry::Type type)1731 ConstantPoolEntry::Access ConstantPoolBuilder::AddEntry(
1732 ConstantPoolEntry& entry, ConstantPoolEntry::Type type) {
1733 DCHECK(!emitted_label_.is_bound());
1734 PerTypeEntryInfo& info = info_[type];
1735 const int entry_size = ConstantPoolEntry::size(type);
1736 bool merged = false;
1737
1738 if (entry.sharing_ok()) {
1739 // Try to merge entries
1740 std::vector<ConstantPoolEntry>::iterator it = info.shared_entries.begin();
1741 int end = static_cast<int>(info.shared_entries.size());
1742 for (int i = 0; i < end; i++, it++) {
1743 if ((entry_size == kPointerSize) ? entry.value() == it->value()
1744 : entry.value64() == it->value64()) {
1745 // Merge with found entry.
1746 entry.set_merged_index(i);
1747 merged = true;
1748 break;
1749 }
1750 }
1751 }
1752
1753 // By definition, merged entries have regular access.
1754 DCHECK(!merged || entry.merged_index() < info.regular_count);
1755 ConstantPoolEntry::Access access =
1756 (merged ? ConstantPoolEntry::REGULAR : NextAccess(type));
1757
1758 // Enforce an upper bound on search time by limiting the search to
1759 // unique sharable entries which fit in the regular section.
1760 if (entry.sharing_ok() && !merged && access == ConstantPoolEntry::REGULAR) {
1761 info.shared_entries.push_back(entry);
1762 } else {
1763 info.entries.push_back(entry);
1764 }
1765
1766 // We're done if we found a match or have already triggered the
1767 // overflow state.
1768 if (merged || info.overflow()) return access;
1769
1770 if (access == ConstantPoolEntry::REGULAR) {
1771 info.regular_count++;
1772 } else {
1773 info.overflow_start = static_cast<int>(info.entries.size()) - 1;
1774 }
1775
1776 return access;
1777 }
1778
1779
EmitSharedEntries(Assembler * assm,ConstantPoolEntry::Type type)1780 void ConstantPoolBuilder::EmitSharedEntries(Assembler* assm,
1781 ConstantPoolEntry::Type type) {
1782 PerTypeEntryInfo& info = info_[type];
1783 std::vector<ConstantPoolEntry>& shared_entries = info.shared_entries;
1784 const int entry_size = ConstantPoolEntry::size(type);
1785 int base = emitted_label_.pos();
1786 DCHECK(base > 0);
1787 int shared_end = static_cast<int>(shared_entries.size());
1788 std::vector<ConstantPoolEntry>::iterator shared_it = shared_entries.begin();
1789 for (int i = 0; i < shared_end; i++, shared_it++) {
1790 int offset = assm->pc_offset() - base;
1791 shared_it->set_offset(offset); // Save offset for merged entries.
1792 if (entry_size == kPointerSize) {
1793 assm->dp(shared_it->value());
1794 } else {
1795 assm->dq(shared_it->value64());
1796 }
1797 DCHECK(is_uintn(offset, info.regular_reach_bits));
1798
1799 // Patch load sequence with correct offset.
1800 assm->PatchConstantPoolAccessInstruction(shared_it->position(), offset,
1801 ConstantPoolEntry::REGULAR, type);
1802 }
1803 }
1804
1805
EmitGroup(Assembler * assm,ConstantPoolEntry::Access access,ConstantPoolEntry::Type type)1806 void ConstantPoolBuilder::EmitGroup(Assembler* assm,
1807 ConstantPoolEntry::Access access,
1808 ConstantPoolEntry::Type type) {
1809 PerTypeEntryInfo& info = info_[type];
1810 const bool overflow = info.overflow();
1811 std::vector<ConstantPoolEntry>& entries = info.entries;
1812 std::vector<ConstantPoolEntry>& shared_entries = info.shared_entries;
1813 const int entry_size = ConstantPoolEntry::size(type);
1814 int base = emitted_label_.pos();
1815 DCHECK(base > 0);
1816 int begin;
1817 int end;
1818
1819 if (access == ConstantPoolEntry::REGULAR) {
1820 // Emit any shared entries first
1821 EmitSharedEntries(assm, type);
1822 }
1823
1824 if (access == ConstantPoolEntry::REGULAR) {
1825 begin = 0;
1826 end = overflow ? info.overflow_start : static_cast<int>(entries.size());
1827 } else {
1828 DCHECK(access == ConstantPoolEntry::OVERFLOWED);
1829 if (!overflow) return;
1830 begin = info.overflow_start;
1831 end = static_cast<int>(entries.size());
1832 }
1833
1834 std::vector<ConstantPoolEntry>::iterator it = entries.begin();
1835 if (begin > 0) std::advance(it, begin);
1836 for (int i = begin; i < end; i++, it++) {
1837 // Update constant pool if necessary and get the entry's offset.
1838 int offset;
1839 ConstantPoolEntry::Access entry_access;
1840 if (!it->is_merged()) {
1841 // Emit new entry
1842 offset = assm->pc_offset() - base;
1843 entry_access = access;
1844 if (entry_size == kPointerSize) {
1845 assm->dp(it->value());
1846 } else {
1847 assm->dq(it->value64());
1848 }
1849 } else {
1850 // Retrieve offset from shared entry.
1851 offset = shared_entries[it->merged_index()].offset();
1852 entry_access = ConstantPoolEntry::REGULAR;
1853 }
1854
1855 DCHECK(entry_access == ConstantPoolEntry::OVERFLOWED ||
1856 is_uintn(offset, info.regular_reach_bits));
1857
1858 // Patch load sequence with correct offset.
1859 assm->PatchConstantPoolAccessInstruction(it->position(), offset,
1860 entry_access, type);
1861 }
1862 }
1863
1864
1865 // Emit and return position of pool. Zero implies no constant pool.
Emit(Assembler * assm)1866 int ConstantPoolBuilder::Emit(Assembler* assm) {
1867 bool emitted = emitted_label_.is_bound();
1868 bool empty = IsEmpty();
1869
1870 if (!emitted) {
1871 // Mark start of constant pool. Align if necessary.
1872 if (!empty) assm->DataAlign(kDoubleSize);
1873 assm->bind(&emitted_label_);
1874 if (!empty) {
1875 // Emit in groups based on access and type.
1876 // Emit doubles first for alignment purposes.
1877 EmitGroup(assm, ConstantPoolEntry::REGULAR, ConstantPoolEntry::DOUBLE);
1878 EmitGroup(assm, ConstantPoolEntry::REGULAR, ConstantPoolEntry::INTPTR);
1879 if (info_[ConstantPoolEntry::DOUBLE].overflow()) {
1880 assm->DataAlign(kDoubleSize);
1881 EmitGroup(assm, ConstantPoolEntry::OVERFLOWED,
1882 ConstantPoolEntry::DOUBLE);
1883 }
1884 if (info_[ConstantPoolEntry::INTPTR].overflow()) {
1885 EmitGroup(assm, ConstantPoolEntry::OVERFLOWED,
1886 ConstantPoolEntry::INTPTR);
1887 }
1888 }
1889 }
1890
1891 return !empty ? emitted_label_.pos() : 0;
1892 }
1893
1894
1895 // Platform specific but identical code for all the platforms.
1896
RecordDeoptReason(DeoptimizeReason reason,SourcePosition position,int id)1897 void Assembler::RecordDeoptReason(DeoptimizeReason reason,
1898 SourcePosition position, int id) {
1899 if (FLAG_trace_deopt || isolate()->is_profiling()) {
1900 EnsureSpace ensure_space(this);
1901 RecordRelocInfo(RelocInfo::DEOPT_SCRIPT_OFFSET, position.ScriptOffset());
1902 RecordRelocInfo(RelocInfo::DEOPT_INLINING_ID, position.InliningId());
1903 RecordRelocInfo(RelocInfo::DEOPT_REASON, static_cast<int>(reason));
1904 RecordRelocInfo(RelocInfo::DEOPT_ID, id);
1905 }
1906 }
1907
1908
RecordComment(const char * msg)1909 void Assembler::RecordComment(const char* msg) {
1910 if (FLAG_code_comments) {
1911 EnsureSpace ensure_space(this);
1912 RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
1913 }
1914 }
1915
1916
RecordGeneratorContinuation()1917 void Assembler::RecordGeneratorContinuation() {
1918 EnsureSpace ensure_space(this);
1919 RecordRelocInfo(RelocInfo::GENERATOR_CONTINUATION);
1920 }
1921
1922
RecordDebugBreakSlot(RelocInfo::Mode mode)1923 void Assembler::RecordDebugBreakSlot(RelocInfo::Mode mode) {
1924 EnsureSpace ensure_space(this);
1925 DCHECK(RelocInfo::IsDebugBreakSlot(mode));
1926 RecordRelocInfo(mode);
1927 }
1928
1929
DataAlign(int m)1930 void Assembler::DataAlign(int m) {
1931 DCHECK(m >= 2 && base::bits::IsPowerOfTwo32(m));
1932 while ((pc_offset() & (m - 1)) != 0) {
1933 db(0);
1934 }
1935 }
1936 } // namespace internal
1937 } // namespace v8
1938