1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.] */
56 
57 #include <openssl/bn.h>
58 
59 #include <assert.h>
60 #include <string.h>
61 
62 #include "internal.h"
63 
64 
65 #define BN_MUL_RECURSIVE_SIZE_NORMAL 16
66 #define BN_SQR_RECURSIVE_SIZE_NORMAL BN_MUL_RECURSIVE_SIZE_NORMAL
67 
68 
bn_mul_normal(BN_ULONG * r,BN_ULONG * a,int na,BN_ULONG * b,int nb)69 static void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b,
70                           int nb) {
71   BN_ULONG *rr;
72 
73   if (na < nb) {
74     int itmp;
75     BN_ULONG *ltmp;
76 
77     itmp = na;
78     na = nb;
79     nb = itmp;
80     ltmp = a;
81     a = b;
82     b = ltmp;
83   }
84   rr = &(r[na]);
85   if (nb <= 0) {
86     (void)bn_mul_words(r, a, na, 0);
87     return;
88   } else {
89     rr[0] = bn_mul_words(r, a, na, b[0]);
90   }
91 
92   for (;;) {
93     if (--nb <= 0) {
94       return;
95     }
96     rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]);
97     if (--nb <= 0) {
98       return;
99     }
100     rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]);
101     if (--nb <= 0) {
102       return;
103     }
104     rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]);
105     if (--nb <= 0) {
106       return;
107     }
108     rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]);
109     rr += 4;
110     r += 4;
111     b += 4;
112   }
113 }
114 
115 #if !defined(OPENSSL_X86) || defined(OPENSSL_NO_ASM)
116 /* Here follows specialised variants of bn_add_words() and bn_sub_words(). They
117  * have the property performing operations on arrays of different sizes. The
118  * sizes of those arrays is expressed through cl, which is the common length (
119  * basicall, min(len(a),len(b)) ), and dl, which is the delta between the two
120  * lengths, calculated as len(a)-len(b). All lengths are the number of
121  * BN_ULONGs...  For the operations that require a result array as parameter,
122  * it must have the length cl+abs(dl). These functions should probably end up
123  * in bn_asm.c as soon as there are assembler counterparts for the systems that
124  * use assembler files.  */
125 
bn_sub_part_words(BN_ULONG * r,const BN_ULONG * a,const BN_ULONG * b,int cl,int dl)126 static BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a,
127                                   const BN_ULONG *b, int cl, int dl) {
128   BN_ULONG c, t;
129 
130   assert(cl >= 0);
131   c = bn_sub_words(r, a, b, cl);
132 
133   if (dl == 0) {
134     return c;
135   }
136 
137   r += cl;
138   a += cl;
139   b += cl;
140 
141   if (dl < 0) {
142     for (;;) {
143       t = b[0];
144       r[0] = (0 - t - c) & BN_MASK2;
145       if (t != 0) {
146         c = 1;
147       }
148       if (++dl >= 0) {
149         break;
150       }
151 
152       t = b[1];
153       r[1] = (0 - t - c) & BN_MASK2;
154       if (t != 0) {
155         c = 1;
156       }
157       if (++dl >= 0) {
158         break;
159       }
160 
161       t = b[2];
162       r[2] = (0 - t - c) & BN_MASK2;
163       if (t != 0) {
164         c = 1;
165       }
166       if (++dl >= 0) {
167         break;
168       }
169 
170       t = b[3];
171       r[3] = (0 - t - c) & BN_MASK2;
172       if (t != 0) {
173         c = 1;
174       }
175       if (++dl >= 0) {
176         break;
177       }
178 
179       b += 4;
180       r += 4;
181     }
182   } else {
183     int save_dl = dl;
184     while (c) {
185       t = a[0];
186       r[0] = (t - c) & BN_MASK2;
187       if (t != 0) {
188         c = 0;
189       }
190       if (--dl <= 0) {
191         break;
192       }
193 
194       t = a[1];
195       r[1] = (t - c) & BN_MASK2;
196       if (t != 0) {
197         c = 0;
198       }
199       if (--dl <= 0) {
200         break;
201       }
202 
203       t = a[2];
204       r[2] = (t - c) & BN_MASK2;
205       if (t != 0) {
206         c = 0;
207       }
208       if (--dl <= 0) {
209         break;
210       }
211 
212       t = a[3];
213       r[3] = (t - c) & BN_MASK2;
214       if (t != 0) {
215         c = 0;
216       }
217       if (--dl <= 0) {
218         break;
219       }
220 
221       save_dl = dl;
222       a += 4;
223       r += 4;
224     }
225     if (dl > 0) {
226       if (save_dl > dl) {
227         switch (save_dl - dl) {
228           case 1:
229             r[1] = a[1];
230             if (--dl <= 0) {
231               break;
232             }
233           case 2:
234             r[2] = a[2];
235             if (--dl <= 0) {
236               break;
237             }
238           case 3:
239             r[3] = a[3];
240             if (--dl <= 0) {
241               break;
242             }
243         }
244         a += 4;
245         r += 4;
246       }
247     }
248 
249     if (dl > 0) {
250       for (;;) {
251         r[0] = a[0];
252         if (--dl <= 0) {
253           break;
254         }
255         r[1] = a[1];
256         if (--dl <= 0) {
257           break;
258         }
259         r[2] = a[2];
260         if (--dl <= 0) {
261           break;
262         }
263         r[3] = a[3];
264         if (--dl <= 0) {
265           break;
266         }
267 
268         a += 4;
269         r += 4;
270       }
271     }
272   }
273 
274   return c;
275 }
276 #else
277 /* On other platforms the function is defined in asm. */
278 BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
279                            int cl, int dl);
280 #endif
281 
282 /* Karatsuba recursive multiplication algorithm
283  * (cf. Knuth, The Art of Computer Programming, Vol. 2) */
284 
285 /* r is 2*n2 words in size,
286  * a and b are both n2 words in size.
287  * n2 must be a power of 2.
288  * We multiply and return the result.
289  * t must be 2*n2 words in size
290  * We calculate
291  * a[0]*b[0]
292  * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
293  * a[1]*b[1]
294  */
295 /* dnX may not be positive, but n2/2+dnX has to be */
bn_mul_recursive(BN_ULONG * r,BN_ULONG * a,BN_ULONG * b,int n2,int dna,int dnb,BN_ULONG * t)296 static void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
297                              int dna, int dnb, BN_ULONG *t) {
298   int n = n2 / 2, c1, c2;
299   int tna = n + dna, tnb = n + dnb;
300   unsigned int neg, zero;
301   BN_ULONG ln, lo, *p;
302 
303   /* Only call bn_mul_comba 8 if n2 == 8 and the
304    * two arrays are complete [steve]
305    */
306   if (n2 == 8 && dna == 0 && dnb == 0) {
307     bn_mul_comba8(r, a, b);
308     return;
309   }
310 
311   /* Else do normal multiply */
312   if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) {
313     bn_mul_normal(r, a, n2 + dna, b, n2 + dnb);
314     if ((dna + dnb) < 0) {
315       OPENSSL_memset(&r[2 * n2 + dna + dnb], 0,
316                      sizeof(BN_ULONG) * -(dna + dnb));
317     }
318     return;
319   }
320 
321   /* r=(a[0]-a[1])*(b[1]-b[0]) */
322   c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
323   c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
324   zero = neg = 0;
325   switch (c1 * 3 + c2) {
326     case -4:
327       bn_sub_part_words(t, &(a[n]), a, tna, tna - n);       /* - */
328       bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
329       break;
330     case -3:
331       zero = 1;
332       break;
333     case -2:
334       bn_sub_part_words(t, &(a[n]), a, tna, tna - n);       /* - */
335       bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
336       neg = 1;
337       break;
338     case -1:
339     case 0:
340     case 1:
341       zero = 1;
342       break;
343     case 2:
344       bn_sub_part_words(t, a, &(a[n]), tna, n - tna);       /* + */
345       bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
346       neg = 1;
347       break;
348     case 3:
349       zero = 1;
350       break;
351     case 4:
352       bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
353       bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
354       break;
355   }
356 
357   if (n == 4 && dna == 0 && dnb == 0) {
358     /* XXX: bn_mul_comba4 could take extra args to do this well */
359     if (!zero) {
360       bn_mul_comba4(&(t[n2]), t, &(t[n]));
361     } else {
362       OPENSSL_memset(&(t[n2]), 0, 8 * sizeof(BN_ULONG));
363     }
364 
365     bn_mul_comba4(r, a, b);
366     bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n]));
367   } else if (n == 8 && dna == 0 && dnb == 0) {
368     /* XXX: bn_mul_comba8 could take extra args to do this well */
369     if (!zero) {
370       bn_mul_comba8(&(t[n2]), t, &(t[n]));
371     } else {
372       OPENSSL_memset(&(t[n2]), 0, 16 * sizeof(BN_ULONG));
373     }
374 
375     bn_mul_comba8(r, a, b);
376     bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n]));
377   } else {
378     p = &(t[n2 * 2]);
379     if (!zero) {
380       bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
381     } else {
382       OPENSSL_memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG));
383     }
384     bn_mul_recursive(r, a, b, n, 0, 0, p);
385     bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p);
386   }
387 
388   /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
389    * r[10] holds (a[0]*b[0])
390    * r[32] holds (b[1]*b[1]) */
391 
392   c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
393 
394   if (neg) {
395     /* if t[32] is negative */
396     c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
397   } else {
398     /* Might have a carry */
399     c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
400   }
401 
402   /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
403    * r[10] holds (a[0]*b[0])
404    * r[32] holds (b[1]*b[1])
405    * c1 holds the carry bits */
406   c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
407   if (c1) {
408     p = &(r[n + n2]);
409     lo = *p;
410     ln = (lo + c1) & BN_MASK2;
411     *p = ln;
412 
413     /* The overflow will stop before we over write
414      * words we should not overwrite */
415     if (ln < (BN_ULONG)c1) {
416       do {
417         p++;
418         lo = *p;
419         ln = (lo + 1) & BN_MASK2;
420         *p = ln;
421       } while (ln == 0);
422     }
423   }
424 }
425 
426 /* n+tn is the word length
427  * t needs to be n*4 is size, as does r */
428 /* tnX may not be negative but less than n */
bn_mul_part_recursive(BN_ULONG * r,BN_ULONG * a,BN_ULONG * b,int n,int tna,int tnb,BN_ULONG * t)429 static void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n,
430                                   int tna, int tnb, BN_ULONG *t) {
431   int i, j, n2 = n * 2;
432   int c1, c2, neg;
433   BN_ULONG ln, lo, *p;
434 
435   if (n < 8) {
436     bn_mul_normal(r, a, n + tna, b, n + tnb);
437     return;
438   }
439 
440   /* r=(a[0]-a[1])*(b[1]-b[0]) */
441   c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
442   c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
443   neg = 0;
444   switch (c1 * 3 + c2) {
445     case -4:
446       bn_sub_part_words(t, &(a[n]), a, tna, tna - n);       /* - */
447       bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
448       break;
449     case -3:
450     /* break; */
451     case -2:
452       bn_sub_part_words(t, &(a[n]), a, tna, tna - n);       /* - */
453       bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
454       neg = 1;
455       break;
456     case -1:
457     case 0:
458     case 1:
459     /* break; */
460     case 2:
461       bn_sub_part_words(t, a, &(a[n]), tna, n - tna);       /* + */
462       bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
463       neg = 1;
464       break;
465     case 3:
466     /* break; */
467     case 4:
468       bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
469       bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
470       break;
471   }
472 
473   if (n == 8) {
474     bn_mul_comba8(&(t[n2]), t, &(t[n]));
475     bn_mul_comba8(r, a, b);
476     bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
477     OPENSSL_memset(&(r[n2 + tna + tnb]), 0, sizeof(BN_ULONG) * (n2 - tna - tnb));
478   } else {
479     p = &(t[n2 * 2]);
480     bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
481     bn_mul_recursive(r, a, b, n, 0, 0, p);
482     i = n / 2;
483     /* If there is only a bottom half to the number,
484      * just do it */
485     if (tna > tnb) {
486       j = tna - i;
487     } else {
488       j = tnb - i;
489     }
490 
491     if (j == 0) {
492       bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p);
493       OPENSSL_memset(&(r[n2 + i * 2]), 0, sizeof(BN_ULONG) * (n2 - i * 2));
494     } else if (j > 0) {
495       /* eg, n == 16, i == 8 and tn == 11 */
496       bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p);
497       OPENSSL_memset(&(r[n2 + tna + tnb]), 0,
498                      sizeof(BN_ULONG) * (n2 - tna - tnb));
499     } else {
500       /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
501       OPENSSL_memset(&(r[n2]), 0, sizeof(BN_ULONG) * n2);
502       if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL &&
503           tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) {
504         bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
505       } else {
506         for (;;) {
507           i /= 2;
508           /* these simplified conditions work
509            * exclusively because difference
510            * between tna and tnb is 1 or 0 */
511           if (i < tna || i < tnb) {
512             bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i,
513                                   tnb - i, p);
514             break;
515           } else if (i == tna || i == tnb) {
516             bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i,
517                              p);
518             break;
519           }
520         }
521       }
522     }
523   }
524 
525   /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
526    * r[10] holds (a[0]*b[0])
527    * r[32] holds (b[1]*b[1])
528    */
529 
530   c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
531 
532   if (neg) {
533     /* if t[32] is negative */
534     c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
535   } else {
536     /* Might have a carry */
537     c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
538   }
539 
540   /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
541    * r[10] holds (a[0]*b[0])
542    * r[32] holds (b[1]*b[1])
543    * c1 holds the carry bits */
544   c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
545   if (c1) {
546     p = &(r[n + n2]);
547     lo = *p;
548     ln = (lo + c1) & BN_MASK2;
549     *p = ln;
550 
551     /* The overflow will stop before we over write
552      * words we should not overwrite */
553     if (ln < (BN_ULONG)c1) {
554       do {
555         p++;
556         lo = *p;
557         ln = (lo + 1) & BN_MASK2;
558         *p = ln;
559       } while (ln == 0);
560     }
561   }
562 }
563 
BN_mul(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,BN_CTX * ctx)564 int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
565   int ret = 0;
566   int top, al, bl;
567   BIGNUM *rr;
568   int i;
569   BIGNUM *t = NULL;
570   int j = 0, k;
571 
572   al = a->top;
573   bl = b->top;
574 
575   if ((al == 0) || (bl == 0)) {
576     BN_zero(r);
577     return 1;
578   }
579   top = al + bl;
580 
581   BN_CTX_start(ctx);
582   if ((r == a) || (r == b)) {
583     if ((rr = BN_CTX_get(ctx)) == NULL) {
584       goto err;
585     }
586   } else {
587     rr = r;
588   }
589   rr->neg = a->neg ^ b->neg;
590 
591   i = al - bl;
592   if (i == 0) {
593     if (al == 8) {
594       if (bn_wexpand(rr, 16) == NULL) {
595         goto err;
596       }
597       rr->top = 16;
598       bn_mul_comba8(rr->d, a->d, b->d);
599       goto end;
600     }
601   }
602 
603   static const int kMulNormalSize = 16;
604   if (al >= kMulNormalSize && bl >= kMulNormalSize) {
605     if (i >= -1 && i <= 1) {
606       /* Find out the power of two lower or equal
607          to the longest of the two numbers */
608       if (i >= 0) {
609         j = BN_num_bits_word((BN_ULONG)al);
610       }
611       if (i == -1) {
612         j = BN_num_bits_word((BN_ULONG)bl);
613       }
614       j = 1 << (j - 1);
615       assert(j <= al || j <= bl);
616       k = j + j;
617       t = BN_CTX_get(ctx);
618       if (t == NULL) {
619         goto err;
620       }
621       if (al > j || bl > j) {
622         if (bn_wexpand(t, k * 4) == NULL) {
623           goto err;
624         }
625         if (bn_wexpand(rr, k * 4) == NULL) {
626           goto err;
627         }
628         bn_mul_part_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
629       } else {
630         /* al <= j || bl <= j */
631         if (bn_wexpand(t, k * 2) == NULL) {
632           goto err;
633         }
634         if (bn_wexpand(rr, k * 2) == NULL) {
635           goto err;
636         }
637         bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
638       }
639       rr->top = top;
640       goto end;
641     }
642   }
643 
644   if (bn_wexpand(rr, top) == NULL) {
645     goto err;
646   }
647   rr->top = top;
648   bn_mul_normal(rr->d, a->d, al, b->d, bl);
649 
650 end:
651   bn_correct_top(rr);
652   if (r != rr && !BN_copy(r, rr)) {
653     goto err;
654   }
655   ret = 1;
656 
657 err:
658   BN_CTX_end(ctx);
659   return ret;
660 }
661 
662 /* tmp must have 2*n words */
bn_sqr_normal(BN_ULONG * r,const BN_ULONG * a,int n,BN_ULONG * tmp)663 static void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp) {
664   int i, j, max;
665   const BN_ULONG *ap;
666   BN_ULONG *rp;
667 
668   max = n * 2;
669   ap = a;
670   rp = r;
671   rp[0] = rp[max - 1] = 0;
672   rp++;
673   j = n;
674 
675   if (--j > 0) {
676     ap++;
677     rp[j] = bn_mul_words(rp, ap, j, ap[-1]);
678     rp += 2;
679   }
680 
681   for (i = n - 2; i > 0; i--) {
682     j--;
683     ap++;
684     rp[j] = bn_mul_add_words(rp, ap, j, ap[-1]);
685     rp += 2;
686   }
687 
688   bn_add_words(r, r, r, max);
689 
690   /* There will not be a carry */
691 
692   bn_sqr_words(tmp, a, n);
693 
694   bn_add_words(r, r, tmp, max);
695 }
696 
697 /* r is 2*n words in size,
698  * a and b are both n words in size.    (There's not actually a 'b' here ...)
699  * n must be a power of 2.
700  * We multiply and return the result.
701  * t must be 2*n words in size
702  * We calculate
703  * a[0]*b[0]
704  * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
705  * a[1]*b[1]
706  */
bn_sqr_recursive(BN_ULONG * r,const BN_ULONG * a,int n2,BN_ULONG * t)707 static void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t) {
708   int n = n2 / 2;
709   int zero, c1;
710   BN_ULONG ln, lo, *p;
711 
712   if (n2 == 4) {
713     bn_sqr_comba4(r, a);
714     return;
715   } else if (n2 == 8) {
716     bn_sqr_comba8(r, a);
717     return;
718   }
719   if (n2 < BN_SQR_RECURSIVE_SIZE_NORMAL) {
720     bn_sqr_normal(r, a, n2, t);
721     return;
722   }
723   /* r=(a[0]-a[1])*(a[1]-a[0]) */
724   c1 = bn_cmp_words(a, &(a[n]), n);
725   zero = 0;
726   if (c1 > 0) {
727     bn_sub_words(t, a, &(a[n]), n);
728   } else if (c1 < 0) {
729     bn_sub_words(t, &(a[n]), a, n);
730   } else {
731     zero = 1;
732   }
733 
734   /* The result will always be negative unless it is zero */
735   p = &(t[n2 * 2]);
736 
737   if (!zero) {
738     bn_sqr_recursive(&(t[n2]), t, n, p);
739   } else {
740     OPENSSL_memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG));
741   }
742   bn_sqr_recursive(r, a, n, p);
743   bn_sqr_recursive(&(r[n2]), &(a[n]), n, p);
744 
745   /* t[32] holds (a[0]-a[1])*(a[1]-a[0]), it is negative or zero
746    * r[10] holds (a[0]*b[0])
747    * r[32] holds (b[1]*b[1]) */
748 
749   c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
750 
751   /* t[32] is negative */
752   c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
753 
754   /* t[32] holds (a[0]-a[1])*(a[1]-a[0])+(a[0]*a[0])+(a[1]*a[1])
755    * r[10] holds (a[0]*a[0])
756    * r[32] holds (a[1]*a[1])
757    * c1 holds the carry bits */
758   c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
759   if (c1) {
760     p = &(r[n + n2]);
761     lo = *p;
762     ln = (lo + c1) & BN_MASK2;
763     *p = ln;
764 
765     /* The overflow will stop before we over write
766      * words we should not overwrite */
767     if (ln < (BN_ULONG)c1) {
768       do {
769         p++;
770         lo = *p;
771         ln = (lo + 1) & BN_MASK2;
772         *p = ln;
773       } while (ln == 0);
774     }
775   }
776 }
777 
BN_mul_word(BIGNUM * bn,BN_ULONG w)778 int BN_mul_word(BIGNUM *bn, BN_ULONG w) {
779   BN_ULONG ll;
780 
781   w &= BN_MASK2;
782   if (!bn->top) {
783     return 1;
784   }
785 
786   if (w == 0) {
787     BN_zero(bn);
788     return 1;
789   }
790 
791   ll = bn_mul_words(bn->d, bn->d, bn->top, w);
792   if (ll) {
793     if (bn_wexpand(bn, bn->top + 1) == NULL) {
794       return 0;
795     }
796     bn->d[bn->top++] = ll;
797   }
798 
799   return 1;
800 }
801 
BN_sqr(BIGNUM * r,const BIGNUM * a,BN_CTX * ctx)802 int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) {
803   int max, al;
804   int ret = 0;
805   BIGNUM *tmp, *rr;
806 
807   al = a->top;
808   if (al <= 0) {
809     r->top = 0;
810     r->neg = 0;
811     return 1;
812   }
813 
814   BN_CTX_start(ctx);
815   rr = (a != r) ? r : BN_CTX_get(ctx);
816   tmp = BN_CTX_get(ctx);
817   if (!rr || !tmp) {
818     goto err;
819   }
820 
821   max = 2 * al; /* Non-zero (from above) */
822   if (bn_wexpand(rr, max) == NULL) {
823     goto err;
824   }
825 
826   if (al == 4) {
827     bn_sqr_comba4(rr->d, a->d);
828   } else if (al == 8) {
829     bn_sqr_comba8(rr->d, a->d);
830   } else {
831     if (al < BN_SQR_RECURSIVE_SIZE_NORMAL) {
832       BN_ULONG t[BN_SQR_RECURSIVE_SIZE_NORMAL * 2];
833       bn_sqr_normal(rr->d, a->d, al, t);
834     } else {
835       int j, k;
836 
837       j = BN_num_bits_word((BN_ULONG)al);
838       j = 1 << (j - 1);
839       k = j + j;
840       if (al == j) {
841         if (bn_wexpand(tmp, k * 2) == NULL) {
842           goto err;
843         }
844         bn_sqr_recursive(rr->d, a->d, al, tmp->d);
845       } else {
846         if (bn_wexpand(tmp, max) == NULL) {
847           goto err;
848         }
849         bn_sqr_normal(rr->d, a->d, al, tmp->d);
850       }
851     }
852   }
853 
854   rr->neg = 0;
855   /* If the most-significant half of the top word of 'a' is zero, then
856    * the square of 'a' will max-1 words. */
857   if (a->d[al - 1] == (a->d[al - 1] & BN_MASK2l)) {
858     rr->top = max - 1;
859   } else {
860     rr->top = max;
861   }
862 
863   if (rr != r && !BN_copy(r, rr)) {
864     goto err;
865   }
866   ret = 1;
867 
868 err:
869   BN_CTX_end(ctx);
870   return ret;
871 }
872