1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "assembler_mips.h"
18
19 #include "base/bit_utils.h"
20 #include "base/casts.h"
21 #include "entrypoints/quick/quick_entrypoints.h"
22 #include "entrypoints/quick/quick_entrypoints_enum.h"
23 #include "memory_region.h"
24 #include "thread.h"
25
26 namespace art {
27 namespace mips {
28
29 static_assert(static_cast<size_t>(kMipsPointerSize) == kMipsWordSize,
30 "Unexpected Mips pointer size.");
31 static_assert(kMipsPointerSize == PointerSize::k32, "Unexpected Mips pointer size.");
32
33
operator <<(std::ostream & os,const DRegister & rhs)34 std::ostream& operator<<(std::ostream& os, const DRegister& rhs) {
35 if (rhs >= D0 && rhs < kNumberOfDRegisters) {
36 os << "d" << static_cast<int>(rhs);
37 } else {
38 os << "DRegister[" << static_cast<int>(rhs) << "]";
39 }
40 return os;
41 }
42
DelaySlot()43 MipsAssembler::DelaySlot::DelaySlot()
44 : instruction_(0),
45 gpr_outs_mask_(0),
46 gpr_ins_mask_(0),
47 fpr_outs_mask_(0),
48 fpr_ins_mask_(0),
49 cc_outs_mask_(0),
50 cc_ins_mask_(0) {}
51
DsFsmInstr(uint32_t instruction,uint32_t gpr_outs_mask,uint32_t gpr_ins_mask,uint32_t fpr_outs_mask,uint32_t fpr_ins_mask,uint32_t cc_outs_mask,uint32_t cc_ins_mask)52 void MipsAssembler::DsFsmInstr(uint32_t instruction,
53 uint32_t gpr_outs_mask,
54 uint32_t gpr_ins_mask,
55 uint32_t fpr_outs_mask,
56 uint32_t fpr_ins_mask,
57 uint32_t cc_outs_mask,
58 uint32_t cc_ins_mask) {
59 if (!reordering_) {
60 CHECK_EQ(ds_fsm_state_, kExpectingLabel);
61 CHECK_EQ(delay_slot_.instruction_, 0u);
62 return;
63 }
64 switch (ds_fsm_state_) {
65 case kExpectingLabel:
66 break;
67 case kExpectingInstruction:
68 CHECK_EQ(ds_fsm_target_pc_ + sizeof(uint32_t), buffer_.Size());
69 // If the last instruction is not suitable for delay slots, drop
70 // the PC of the label preceding it so that no unconditional branch
71 // uses this instruction to fill its delay slot.
72 if (instruction == 0) {
73 DsFsmDropLabel(); // Sets ds_fsm_state_ = kExpectingLabel.
74 } else {
75 // Otherwise wait for another instruction or label before we can
76 // commit the label PC. The label PC will be dropped if instead
77 // of another instruction or label there's a call from the code
78 // generator to CodePosition() to record the buffer size.
79 // Instructions after which the buffer size is recorded cannot
80 // be moved into delay slots or anywhere else because they may
81 // trigger signals and the signal handlers expect these signals
82 // to be coming from the instructions immediately preceding the
83 // recorded buffer locations.
84 ds_fsm_state_ = kExpectingCommit;
85 }
86 break;
87 case kExpectingCommit:
88 CHECK_EQ(ds_fsm_target_pc_ + 2 * sizeof(uint32_t), buffer_.Size());
89 DsFsmCommitLabel(); // Sets ds_fsm_state_ = kExpectingLabel.
90 break;
91 }
92 delay_slot_.instruction_ = instruction;
93 delay_slot_.gpr_outs_mask_ = gpr_outs_mask & ~1u; // Ignore register ZERO.
94 delay_slot_.gpr_ins_mask_ = gpr_ins_mask & ~1u; // Ignore register ZERO.
95 delay_slot_.fpr_outs_mask_ = fpr_outs_mask;
96 delay_slot_.fpr_ins_mask_ = fpr_ins_mask;
97 delay_slot_.cc_outs_mask_ = cc_outs_mask;
98 delay_slot_.cc_ins_mask_ = cc_ins_mask;
99 }
100
DsFsmLabel()101 void MipsAssembler::DsFsmLabel() {
102 if (!reordering_) {
103 CHECK_EQ(ds_fsm_state_, kExpectingLabel);
104 CHECK_EQ(delay_slot_.instruction_, 0u);
105 return;
106 }
107 switch (ds_fsm_state_) {
108 case kExpectingLabel:
109 ds_fsm_target_pc_ = buffer_.Size();
110 ds_fsm_state_ = kExpectingInstruction;
111 break;
112 case kExpectingInstruction:
113 // Allow consecutive labels.
114 CHECK_EQ(ds_fsm_target_pc_, buffer_.Size());
115 break;
116 case kExpectingCommit:
117 CHECK_EQ(ds_fsm_target_pc_ + sizeof(uint32_t), buffer_.Size());
118 DsFsmCommitLabel();
119 ds_fsm_target_pc_ = buffer_.Size();
120 ds_fsm_state_ = kExpectingInstruction;
121 break;
122 }
123 // We cannot move instructions into delay slots across labels.
124 delay_slot_.instruction_ = 0;
125 }
126
DsFsmCommitLabel()127 void MipsAssembler::DsFsmCommitLabel() {
128 if (ds_fsm_state_ == kExpectingCommit) {
129 ds_fsm_target_pcs_.emplace_back(ds_fsm_target_pc_);
130 }
131 ds_fsm_state_ = kExpectingLabel;
132 }
133
DsFsmDropLabel()134 void MipsAssembler::DsFsmDropLabel() {
135 ds_fsm_state_ = kExpectingLabel;
136 }
137
SetReorder(bool enable)138 bool MipsAssembler::SetReorder(bool enable) {
139 bool last_state = reordering_;
140 if (last_state != enable) {
141 DsFsmCommitLabel();
142 DsFsmInstrNop(0);
143 }
144 reordering_ = enable;
145 return last_state;
146 }
147
CodePosition()148 size_t MipsAssembler::CodePosition() {
149 // The last instruction cannot be used in a delay slot, do not commit
150 // the label before it (if any) and clear the delay slot.
151 DsFsmDropLabel();
152 DsFsmInstrNop(0);
153 size_t size = buffer_.Size();
154 // In theory we can get the following sequence:
155 // label1:
156 // instr
157 // label2: # label1 gets committed when label2 is seen
158 // CodePosition() call
159 // and we need to uncommit label1.
160 if (ds_fsm_target_pcs_.size() != 0 && ds_fsm_target_pcs_.back() + sizeof(uint32_t) == size) {
161 ds_fsm_target_pcs_.pop_back();
162 }
163 return size;
164 }
165
DsFsmInstrNop(uint32_t instruction ATTRIBUTE_UNUSED)166 void MipsAssembler::DsFsmInstrNop(uint32_t instruction ATTRIBUTE_UNUSED) {
167 DsFsmInstr(0, 0, 0, 0, 0, 0, 0);
168 }
169
DsFsmInstrRrr(uint32_t instruction,Register out,Register in1,Register in2)170 void MipsAssembler::DsFsmInstrRrr(uint32_t instruction, Register out, Register in1, Register in2) {
171 DsFsmInstr(instruction, (1u << out), (1u << in1) | (1u << in2), 0, 0, 0, 0);
172 }
173
DsFsmInstrRrrr(uint32_t instruction,Register in1_out,Register in2,Register in3)174 void MipsAssembler::DsFsmInstrRrrr(uint32_t instruction,
175 Register in1_out,
176 Register in2,
177 Register in3) {
178 DsFsmInstr(instruction, (1u << in1_out), (1u << in1_out) | (1u << in2) | (1u << in3), 0, 0, 0, 0);
179 }
180
DsFsmInstrFff(uint32_t instruction,FRegister out,FRegister in1,FRegister in2)181 void MipsAssembler::DsFsmInstrFff(uint32_t instruction,
182 FRegister out,
183 FRegister in1,
184 FRegister in2) {
185 DsFsmInstr(instruction, 0, 0, (1u << out), (1u << in1) | (1u << in2), 0, 0);
186 }
187
DsFsmInstrFfff(uint32_t instruction,FRegister in1_out,FRegister in2,FRegister in3)188 void MipsAssembler::DsFsmInstrFfff(uint32_t instruction,
189 FRegister in1_out,
190 FRegister in2,
191 FRegister in3) {
192 DsFsmInstr(instruction, 0, 0, (1u << in1_out), (1u << in1_out) | (1u << in2) | (1u << in3), 0, 0);
193 }
194
DsFsmInstrFffr(uint32_t instruction,FRegister in1_out,FRegister in2,Register in3)195 void MipsAssembler::DsFsmInstrFffr(uint32_t instruction,
196 FRegister in1_out,
197 FRegister in2,
198 Register in3) {
199 DsFsmInstr(instruction, 0, (1u << in3), (1u << in1_out), (1u << in1_out) | (1u << in2), 0, 0);
200 }
201
DsFsmInstrRf(uint32_t instruction,Register out,FRegister in)202 void MipsAssembler::DsFsmInstrRf(uint32_t instruction, Register out, FRegister in) {
203 DsFsmInstr(instruction, (1u << out), 0, 0, (1u << in), 0, 0);
204 }
205
DsFsmInstrFr(uint32_t instruction,FRegister out,Register in)206 void MipsAssembler::DsFsmInstrFr(uint32_t instruction, FRegister out, Register in) {
207 DsFsmInstr(instruction, 0, (1u << in), (1u << out), 0, 0, 0);
208 }
209
DsFsmInstrFR(uint32_t instruction,FRegister in1,Register in2)210 void MipsAssembler::DsFsmInstrFR(uint32_t instruction, FRegister in1, Register in2) {
211 DsFsmInstr(instruction, 0, (1u << in2), 0, (1u << in1), 0, 0);
212 }
213
DsFsmInstrCff(uint32_t instruction,int cc_out,FRegister in1,FRegister in2)214 void MipsAssembler::DsFsmInstrCff(uint32_t instruction, int cc_out, FRegister in1, FRegister in2) {
215 DsFsmInstr(instruction, 0, 0, 0, (1u << in1) | (1u << in2), (1 << cc_out), 0);
216 }
217
DsFsmInstrRrrc(uint32_t instruction,Register in1_out,Register in2,int cc_in)218 void MipsAssembler::DsFsmInstrRrrc(uint32_t instruction,
219 Register in1_out,
220 Register in2,
221 int cc_in) {
222 DsFsmInstr(instruction, (1u << in1_out), (1u << in1_out) | (1u << in2), 0, 0, 0, (1 << cc_in));
223 }
224
DsFsmInstrFffc(uint32_t instruction,FRegister in1_out,FRegister in2,int cc_in)225 void MipsAssembler::DsFsmInstrFffc(uint32_t instruction,
226 FRegister in1_out,
227 FRegister in2,
228 int cc_in) {
229 DsFsmInstr(instruction, 0, 0, (1u << in1_out), (1u << in1_out) | (1u << in2), 0, (1 << cc_in));
230 }
231
FinalizeCode()232 void MipsAssembler::FinalizeCode() {
233 for (auto& exception_block : exception_blocks_) {
234 EmitExceptionPoll(&exception_block);
235 }
236 // Commit the last branch target label (if any) and disable instruction reordering.
237 DsFsmCommitLabel();
238 SetReorder(false);
239 EmitLiterals();
240 ReserveJumpTableSpace();
241 PromoteBranches();
242 }
243
FinalizeInstructions(const MemoryRegion & region)244 void MipsAssembler::FinalizeInstructions(const MemoryRegion& region) {
245 size_t number_of_delayed_adjust_pcs = cfi().NumberOfDelayedAdvancePCs();
246 EmitBranches();
247 EmitJumpTables();
248 Assembler::FinalizeInstructions(region);
249 PatchCFI(number_of_delayed_adjust_pcs);
250 }
251
PatchCFI(size_t number_of_delayed_adjust_pcs)252 void MipsAssembler::PatchCFI(size_t number_of_delayed_adjust_pcs) {
253 if (cfi().NumberOfDelayedAdvancePCs() == 0u) {
254 DCHECK_EQ(number_of_delayed_adjust_pcs, 0u);
255 return;
256 }
257
258 typedef DebugFrameOpCodeWriterForAssembler::DelayedAdvancePC DelayedAdvancePC;
259 const auto data = cfi().ReleaseStreamAndPrepareForDelayedAdvancePC();
260 const std::vector<uint8_t>& old_stream = data.first;
261 const std::vector<DelayedAdvancePC>& advances = data.second;
262
263 // PCs recorded before EmitBranches() need to be adjusted.
264 // PCs recorded during EmitBranches() are already adjusted.
265 // Both ranges are separately sorted but they may overlap.
266 if (kIsDebugBuild) {
267 auto cmp = [](const DelayedAdvancePC& lhs, const DelayedAdvancePC& rhs) {
268 return lhs.pc < rhs.pc;
269 };
270 CHECK(std::is_sorted(advances.begin(), advances.begin() + number_of_delayed_adjust_pcs, cmp));
271 CHECK(std::is_sorted(advances.begin() + number_of_delayed_adjust_pcs, advances.end(), cmp));
272 }
273
274 // Append initial CFI data if any.
275 size_t size = advances.size();
276 DCHECK_NE(size, 0u);
277 cfi().AppendRawData(old_stream, 0u, advances[0].stream_pos);
278 // Emit PC adjustments interleaved with the old CFI stream.
279 size_t adjust_pos = 0u;
280 size_t late_emit_pos = number_of_delayed_adjust_pcs;
281 while (adjust_pos != number_of_delayed_adjust_pcs || late_emit_pos != size) {
282 size_t adjusted_pc = (adjust_pos != number_of_delayed_adjust_pcs)
283 ? GetAdjustedPosition(advances[adjust_pos].pc)
284 : static_cast<size_t>(-1);
285 size_t late_emit_pc = (late_emit_pos != size)
286 ? advances[late_emit_pos].pc
287 : static_cast<size_t>(-1);
288 size_t advance_pc = std::min(adjusted_pc, late_emit_pc);
289 DCHECK_NE(advance_pc, static_cast<size_t>(-1));
290 size_t entry = (adjusted_pc <= late_emit_pc) ? adjust_pos : late_emit_pos;
291 if (adjusted_pc <= late_emit_pc) {
292 ++adjust_pos;
293 } else {
294 ++late_emit_pos;
295 }
296 cfi().AdvancePC(advance_pc);
297 size_t end_pos = (entry + 1u == size) ? old_stream.size() : advances[entry + 1u].stream_pos;
298 cfi().AppendRawData(old_stream, advances[entry].stream_pos, end_pos);
299 }
300 }
301
EmitBranches()302 void MipsAssembler::EmitBranches() {
303 CHECK(!overwriting_);
304 CHECK(!reordering_);
305 // Now that everything has its final position in the buffer (the branches have
306 // been promoted), adjust the target label PCs.
307 for (size_t cnt = ds_fsm_target_pcs_.size(), i = 0; i < cnt; i++) {
308 ds_fsm_target_pcs_[i] = GetAdjustedPosition(ds_fsm_target_pcs_[i]);
309 }
310 // Switch from appending instructions at the end of the buffer to overwriting
311 // existing instructions (branch placeholders) in the buffer.
312 overwriting_ = true;
313 for (auto& branch : branches_) {
314 EmitBranch(&branch);
315 }
316 overwriting_ = false;
317 }
318
Emit(uint32_t value)319 void MipsAssembler::Emit(uint32_t value) {
320 if (overwriting_) {
321 // Branches to labels are emitted into their placeholders here.
322 buffer_.Store<uint32_t>(overwrite_location_, value);
323 overwrite_location_ += sizeof(uint32_t);
324 } else {
325 // Other instructions are simply appended at the end here.
326 AssemblerBuffer::EnsureCapacity ensured(&buffer_);
327 buffer_.Emit<uint32_t>(value);
328 }
329 }
330
EmitR(int opcode,Register rs,Register rt,Register rd,int shamt,int funct)331 uint32_t MipsAssembler::EmitR(int opcode,
332 Register rs,
333 Register rt,
334 Register rd,
335 int shamt,
336 int funct) {
337 CHECK_NE(rs, kNoRegister);
338 CHECK_NE(rt, kNoRegister);
339 CHECK_NE(rd, kNoRegister);
340 uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift |
341 static_cast<uint32_t>(rs) << kRsShift |
342 static_cast<uint32_t>(rt) << kRtShift |
343 static_cast<uint32_t>(rd) << kRdShift |
344 shamt << kShamtShift |
345 funct;
346 Emit(encoding);
347 return encoding;
348 }
349
EmitI(int opcode,Register rs,Register rt,uint16_t imm)350 uint32_t MipsAssembler::EmitI(int opcode, Register rs, Register rt, uint16_t imm) {
351 CHECK_NE(rs, kNoRegister);
352 CHECK_NE(rt, kNoRegister);
353 uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift |
354 static_cast<uint32_t>(rs) << kRsShift |
355 static_cast<uint32_t>(rt) << kRtShift |
356 imm;
357 Emit(encoding);
358 return encoding;
359 }
360
EmitI21(int opcode,Register rs,uint32_t imm21)361 uint32_t MipsAssembler::EmitI21(int opcode, Register rs, uint32_t imm21) {
362 CHECK_NE(rs, kNoRegister);
363 CHECK(IsUint<21>(imm21)) << imm21;
364 uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift |
365 static_cast<uint32_t>(rs) << kRsShift |
366 imm21;
367 Emit(encoding);
368 return encoding;
369 }
370
EmitI26(int opcode,uint32_t imm26)371 uint32_t MipsAssembler::EmitI26(int opcode, uint32_t imm26) {
372 CHECK(IsUint<26>(imm26)) << imm26;
373 uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift | imm26;
374 Emit(encoding);
375 return encoding;
376 }
377
EmitFR(int opcode,int fmt,FRegister ft,FRegister fs,FRegister fd,int funct)378 uint32_t MipsAssembler::EmitFR(int opcode,
379 int fmt,
380 FRegister ft,
381 FRegister fs,
382 FRegister fd,
383 int funct) {
384 CHECK_NE(ft, kNoFRegister);
385 CHECK_NE(fs, kNoFRegister);
386 CHECK_NE(fd, kNoFRegister);
387 uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift |
388 fmt << kFmtShift |
389 static_cast<uint32_t>(ft) << kFtShift |
390 static_cast<uint32_t>(fs) << kFsShift |
391 static_cast<uint32_t>(fd) << kFdShift |
392 funct;
393 Emit(encoding);
394 return encoding;
395 }
396
EmitFI(int opcode,int fmt,FRegister ft,uint16_t imm)397 uint32_t MipsAssembler::EmitFI(int opcode, int fmt, FRegister ft, uint16_t imm) {
398 CHECK_NE(ft, kNoFRegister);
399 uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift |
400 fmt << kFmtShift |
401 static_cast<uint32_t>(ft) << kFtShift |
402 imm;
403 Emit(encoding);
404 return encoding;
405 }
406
Addu(Register rd,Register rs,Register rt)407 void MipsAssembler::Addu(Register rd, Register rs, Register rt) {
408 DsFsmInstrRrr(EmitR(0, rs, rt, rd, 0, 0x21), rd, rs, rt);
409 }
410
Addiu(Register rt,Register rs,uint16_t imm16)411 void MipsAssembler::Addiu(Register rt, Register rs, uint16_t imm16) {
412 DsFsmInstrRrr(EmitI(0x9, rs, rt, imm16), rt, rs, rs);
413 }
414
Subu(Register rd,Register rs,Register rt)415 void MipsAssembler::Subu(Register rd, Register rs, Register rt) {
416 DsFsmInstrRrr(EmitR(0, rs, rt, rd, 0, 0x23), rd, rs, rt);
417 }
418
MultR2(Register rs,Register rt)419 void MipsAssembler::MultR2(Register rs, Register rt) {
420 CHECK(!IsR6());
421 DsFsmInstrRrr(EmitR(0, rs, rt, static_cast<Register>(0), 0, 0x18), ZERO, rs, rt);
422 }
423
MultuR2(Register rs,Register rt)424 void MipsAssembler::MultuR2(Register rs, Register rt) {
425 CHECK(!IsR6());
426 DsFsmInstrRrr(EmitR(0, rs, rt, static_cast<Register>(0), 0, 0x19), ZERO, rs, rt);
427 }
428
DivR2(Register rs,Register rt)429 void MipsAssembler::DivR2(Register rs, Register rt) {
430 CHECK(!IsR6());
431 DsFsmInstrRrr(EmitR(0, rs, rt, static_cast<Register>(0), 0, 0x1a), ZERO, rs, rt);
432 }
433
DivuR2(Register rs,Register rt)434 void MipsAssembler::DivuR2(Register rs, Register rt) {
435 CHECK(!IsR6());
436 DsFsmInstrRrr(EmitR(0, rs, rt, static_cast<Register>(0), 0, 0x1b), ZERO, rs, rt);
437 }
438
MulR2(Register rd,Register rs,Register rt)439 void MipsAssembler::MulR2(Register rd, Register rs, Register rt) {
440 CHECK(!IsR6());
441 DsFsmInstrRrr(EmitR(0x1c, rs, rt, rd, 0, 2), rd, rs, rt);
442 }
443
DivR2(Register rd,Register rs,Register rt)444 void MipsAssembler::DivR2(Register rd, Register rs, Register rt) {
445 CHECK(!IsR6());
446 DivR2(rs, rt);
447 Mflo(rd);
448 }
449
ModR2(Register rd,Register rs,Register rt)450 void MipsAssembler::ModR2(Register rd, Register rs, Register rt) {
451 CHECK(!IsR6());
452 DivR2(rs, rt);
453 Mfhi(rd);
454 }
455
DivuR2(Register rd,Register rs,Register rt)456 void MipsAssembler::DivuR2(Register rd, Register rs, Register rt) {
457 CHECK(!IsR6());
458 DivuR2(rs, rt);
459 Mflo(rd);
460 }
461
ModuR2(Register rd,Register rs,Register rt)462 void MipsAssembler::ModuR2(Register rd, Register rs, Register rt) {
463 CHECK(!IsR6());
464 DivuR2(rs, rt);
465 Mfhi(rd);
466 }
467
MulR6(Register rd,Register rs,Register rt)468 void MipsAssembler::MulR6(Register rd, Register rs, Register rt) {
469 CHECK(IsR6());
470 DsFsmInstrRrr(EmitR(0, rs, rt, rd, 2, 0x18), rd, rs, rt);
471 }
472
MuhR6(Register rd,Register rs,Register rt)473 void MipsAssembler::MuhR6(Register rd, Register rs, Register rt) {
474 CHECK(IsR6());
475 DsFsmInstrRrr(EmitR(0, rs, rt, rd, 3, 0x18), rd, rs, rt);
476 }
477
MuhuR6(Register rd,Register rs,Register rt)478 void MipsAssembler::MuhuR6(Register rd, Register rs, Register rt) {
479 CHECK(IsR6());
480 DsFsmInstrRrr(EmitR(0, rs, rt, rd, 3, 0x19), rd, rs, rt);
481 }
482
DivR6(Register rd,Register rs,Register rt)483 void MipsAssembler::DivR6(Register rd, Register rs, Register rt) {
484 CHECK(IsR6());
485 DsFsmInstrRrr(EmitR(0, rs, rt, rd, 2, 0x1a), rd, rs, rt);
486 }
487
ModR6(Register rd,Register rs,Register rt)488 void MipsAssembler::ModR6(Register rd, Register rs, Register rt) {
489 CHECK(IsR6());
490 DsFsmInstrRrr(EmitR(0, rs, rt, rd, 3, 0x1a), rd, rs, rt);
491 }
492
DivuR6(Register rd,Register rs,Register rt)493 void MipsAssembler::DivuR6(Register rd, Register rs, Register rt) {
494 CHECK(IsR6());
495 DsFsmInstrRrr(EmitR(0, rs, rt, rd, 2, 0x1b), rd, rs, rt);
496 }
497
ModuR6(Register rd,Register rs,Register rt)498 void MipsAssembler::ModuR6(Register rd, Register rs, Register rt) {
499 CHECK(IsR6());
500 DsFsmInstrRrr(EmitR(0, rs, rt, rd, 3, 0x1b), rd, rs, rt);
501 }
502
And(Register rd,Register rs,Register rt)503 void MipsAssembler::And(Register rd, Register rs, Register rt) {
504 DsFsmInstrRrr(EmitR(0, rs, rt, rd, 0, 0x24), rd, rs, rt);
505 }
506
Andi(Register rt,Register rs,uint16_t imm16)507 void MipsAssembler::Andi(Register rt, Register rs, uint16_t imm16) {
508 DsFsmInstrRrr(EmitI(0xc, rs, rt, imm16), rt, rs, rs);
509 }
510
Or(Register rd,Register rs,Register rt)511 void MipsAssembler::Or(Register rd, Register rs, Register rt) {
512 DsFsmInstrRrr(EmitR(0, rs, rt, rd, 0, 0x25), rd, rs, rt);
513 }
514
Ori(Register rt,Register rs,uint16_t imm16)515 void MipsAssembler::Ori(Register rt, Register rs, uint16_t imm16) {
516 DsFsmInstrRrr(EmitI(0xd, rs, rt, imm16), rt, rs, rs);
517 }
518
Xor(Register rd,Register rs,Register rt)519 void MipsAssembler::Xor(Register rd, Register rs, Register rt) {
520 DsFsmInstrRrr(EmitR(0, rs, rt, rd, 0, 0x26), rd, rs, rt);
521 }
522
Xori(Register rt,Register rs,uint16_t imm16)523 void MipsAssembler::Xori(Register rt, Register rs, uint16_t imm16) {
524 DsFsmInstrRrr(EmitI(0xe, rs, rt, imm16), rt, rs, rs);
525 }
526
Nor(Register rd,Register rs,Register rt)527 void MipsAssembler::Nor(Register rd, Register rs, Register rt) {
528 DsFsmInstrRrr(EmitR(0, rs, rt, rd, 0, 0x27), rd, rs, rt);
529 }
530
Movz(Register rd,Register rs,Register rt)531 void MipsAssembler::Movz(Register rd, Register rs, Register rt) {
532 CHECK(!IsR6());
533 DsFsmInstrRrrr(EmitR(0, rs, rt, rd, 0, 0x0A), rd, rs, rt);
534 }
535
Movn(Register rd,Register rs,Register rt)536 void MipsAssembler::Movn(Register rd, Register rs, Register rt) {
537 CHECK(!IsR6());
538 DsFsmInstrRrrr(EmitR(0, rs, rt, rd, 0, 0x0B), rd, rs, rt);
539 }
540
Seleqz(Register rd,Register rs,Register rt)541 void MipsAssembler::Seleqz(Register rd, Register rs, Register rt) {
542 CHECK(IsR6());
543 DsFsmInstrRrr(EmitR(0, rs, rt, rd, 0, 0x35), rd, rs, rt);
544 }
545
Selnez(Register rd,Register rs,Register rt)546 void MipsAssembler::Selnez(Register rd, Register rs, Register rt) {
547 CHECK(IsR6());
548 DsFsmInstrRrr(EmitR(0, rs, rt, rd, 0, 0x37), rd, rs, rt);
549 }
550
ClzR6(Register rd,Register rs)551 void MipsAssembler::ClzR6(Register rd, Register rs) {
552 CHECK(IsR6());
553 DsFsmInstrRrr(EmitR(0, rs, static_cast<Register>(0), rd, 0x01, 0x10), rd, rs, rs);
554 }
555
ClzR2(Register rd,Register rs)556 void MipsAssembler::ClzR2(Register rd, Register rs) {
557 CHECK(!IsR6());
558 DsFsmInstrRrr(EmitR(0x1C, rs, rd, rd, 0, 0x20), rd, rs, rs);
559 }
560
CloR6(Register rd,Register rs)561 void MipsAssembler::CloR6(Register rd, Register rs) {
562 CHECK(IsR6());
563 DsFsmInstrRrr(EmitR(0, rs, static_cast<Register>(0), rd, 0x01, 0x11), rd, rs, rs);
564 }
565
CloR2(Register rd,Register rs)566 void MipsAssembler::CloR2(Register rd, Register rs) {
567 CHECK(!IsR6());
568 DsFsmInstrRrr(EmitR(0x1C, rs, rd, rd, 0, 0x21), rd, rs, rs);
569 }
570
Seb(Register rd,Register rt)571 void MipsAssembler::Seb(Register rd, Register rt) {
572 DsFsmInstrRrr(EmitR(0x1f, static_cast<Register>(0), rt, rd, 0x10, 0x20), rd, rt, rt);
573 }
574
Seh(Register rd,Register rt)575 void MipsAssembler::Seh(Register rd, Register rt) {
576 DsFsmInstrRrr(EmitR(0x1f, static_cast<Register>(0), rt, rd, 0x18, 0x20), rd, rt, rt);
577 }
578
Wsbh(Register rd,Register rt)579 void MipsAssembler::Wsbh(Register rd, Register rt) {
580 DsFsmInstrRrr(EmitR(0x1f, static_cast<Register>(0), rt, rd, 2, 0x20), rd, rt, rt);
581 }
582
Bitswap(Register rd,Register rt)583 void MipsAssembler::Bitswap(Register rd, Register rt) {
584 CHECK(IsR6());
585 DsFsmInstrRrr(EmitR(0x1f, static_cast<Register>(0), rt, rd, 0x0, 0x20), rd, rt, rt);
586 }
587
Sll(Register rd,Register rt,int shamt)588 void MipsAssembler::Sll(Register rd, Register rt, int shamt) {
589 CHECK(IsUint<5>(shamt)) << shamt;
590 DsFsmInstrRrr(EmitR(0, static_cast<Register>(0), rt, rd, shamt, 0x00), rd, rt, rt);
591 }
592
Srl(Register rd,Register rt,int shamt)593 void MipsAssembler::Srl(Register rd, Register rt, int shamt) {
594 CHECK(IsUint<5>(shamt)) << shamt;
595 DsFsmInstrRrr(EmitR(0, static_cast<Register>(0), rt, rd, shamt, 0x02), rd, rt, rt);
596 }
597
Rotr(Register rd,Register rt,int shamt)598 void MipsAssembler::Rotr(Register rd, Register rt, int shamt) {
599 CHECK(IsUint<5>(shamt)) << shamt;
600 DsFsmInstrRrr(EmitR(0, static_cast<Register>(1), rt, rd, shamt, 0x02), rd, rt, rt);
601 }
602
Sra(Register rd,Register rt,int shamt)603 void MipsAssembler::Sra(Register rd, Register rt, int shamt) {
604 CHECK(IsUint<5>(shamt)) << shamt;
605 DsFsmInstrRrr(EmitR(0, static_cast<Register>(0), rt, rd, shamt, 0x03), rd, rt, rt);
606 }
607
Sllv(Register rd,Register rt,Register rs)608 void MipsAssembler::Sllv(Register rd, Register rt, Register rs) {
609 DsFsmInstrRrr(EmitR(0, rs, rt, rd, 0, 0x04), rd, rs, rt);
610 }
611
Srlv(Register rd,Register rt,Register rs)612 void MipsAssembler::Srlv(Register rd, Register rt, Register rs) {
613 DsFsmInstrRrr(EmitR(0, rs, rt, rd, 0, 0x06), rd, rs, rt);
614 }
615
Rotrv(Register rd,Register rt,Register rs)616 void MipsAssembler::Rotrv(Register rd, Register rt, Register rs) {
617 DsFsmInstrRrr(EmitR(0, rs, rt, rd, 1, 0x06), rd, rs, rt);
618 }
619
Srav(Register rd,Register rt,Register rs)620 void MipsAssembler::Srav(Register rd, Register rt, Register rs) {
621 DsFsmInstrRrr(EmitR(0, rs, rt, rd, 0, 0x07), rd, rs, rt);
622 }
623
Ext(Register rd,Register rt,int pos,int size)624 void MipsAssembler::Ext(Register rd, Register rt, int pos, int size) {
625 CHECK(IsUint<5>(pos)) << pos;
626 CHECK(0 < size && size <= 32) << size;
627 CHECK(0 < pos + size && pos + size <= 32) << pos << " + " << size;
628 DsFsmInstrRrr(EmitR(0x1f, rt, rd, static_cast<Register>(size - 1), pos, 0x00), rd, rt, rt);
629 }
630
Ins(Register rd,Register rt,int pos,int size)631 void MipsAssembler::Ins(Register rd, Register rt, int pos, int size) {
632 CHECK(IsUint<5>(pos)) << pos;
633 CHECK(0 < size && size <= 32) << size;
634 CHECK(0 < pos + size && pos + size <= 32) << pos << " + " << size;
635 DsFsmInstrRrr(EmitR(0x1f, rt, rd, static_cast<Register>(pos + size - 1), pos, 0x04), rd, rd, rt);
636 }
637
638 // TODO: This instruction is available in both R6 and MSA and it should be used when available.
Lsa(Register rd,Register rs,Register rt,int saPlusOne)639 void MipsAssembler::Lsa(Register rd, Register rs, Register rt, int saPlusOne) {
640 CHECK(IsR6());
641 CHECK(1 <= saPlusOne && saPlusOne <= 4) << saPlusOne;
642 int sa = saPlusOne - 1;
643 DsFsmInstrRrr(EmitR(0x0, rs, rt, rd, sa, 0x05), rd, rs, rt);
644 }
645
ShiftAndAdd(Register dst,Register src_idx,Register src_base,int shamt,Register tmp)646 void MipsAssembler::ShiftAndAdd(Register dst,
647 Register src_idx,
648 Register src_base,
649 int shamt,
650 Register tmp) {
651 CHECK(0 <= shamt && shamt <= 4) << shamt;
652 CHECK_NE(src_base, tmp);
653 if (shamt == TIMES_1) {
654 // Catch the special case where the shift amount is zero (0).
655 Addu(dst, src_base, src_idx);
656 } else if (IsR6()) {
657 Lsa(dst, src_idx, src_base, shamt);
658 } else {
659 Sll(tmp, src_idx, shamt);
660 Addu(dst, src_base, tmp);
661 }
662 }
663
Lb(Register rt,Register rs,uint16_t imm16)664 void MipsAssembler::Lb(Register rt, Register rs, uint16_t imm16) {
665 DsFsmInstrRrr(EmitI(0x20, rs, rt, imm16), rt, rs, rs);
666 }
667
Lh(Register rt,Register rs,uint16_t imm16)668 void MipsAssembler::Lh(Register rt, Register rs, uint16_t imm16) {
669 DsFsmInstrRrr(EmitI(0x21, rs, rt, imm16), rt, rs, rs);
670 }
671
Lw(Register rt,Register rs,uint16_t imm16)672 void MipsAssembler::Lw(Register rt, Register rs, uint16_t imm16) {
673 DsFsmInstrRrr(EmitI(0x23, rs, rt, imm16), rt, rs, rs);
674 }
675
Lwl(Register rt,Register rs,uint16_t imm16)676 void MipsAssembler::Lwl(Register rt, Register rs, uint16_t imm16) {
677 CHECK(!IsR6());
678 DsFsmInstrRrr(EmitI(0x22, rs, rt, imm16), rt, rt, rs);
679 }
680
Lwr(Register rt,Register rs,uint16_t imm16)681 void MipsAssembler::Lwr(Register rt, Register rs, uint16_t imm16) {
682 CHECK(!IsR6());
683 DsFsmInstrRrr(EmitI(0x26, rs, rt, imm16), rt, rt, rs);
684 }
685
Lbu(Register rt,Register rs,uint16_t imm16)686 void MipsAssembler::Lbu(Register rt, Register rs, uint16_t imm16) {
687 DsFsmInstrRrr(EmitI(0x24, rs, rt, imm16), rt, rs, rs);
688 }
689
Lhu(Register rt,Register rs,uint16_t imm16)690 void MipsAssembler::Lhu(Register rt, Register rs, uint16_t imm16) {
691 DsFsmInstrRrr(EmitI(0x25, rs, rt, imm16), rt, rs, rs);
692 }
693
Lwpc(Register rs,uint32_t imm19)694 void MipsAssembler::Lwpc(Register rs, uint32_t imm19) {
695 CHECK(IsR6());
696 CHECK(IsUint<19>(imm19)) << imm19;
697 DsFsmInstrNop(EmitI21(0x3B, rs, (0x01 << 19) | imm19));
698 }
699
Lui(Register rt,uint16_t imm16)700 void MipsAssembler::Lui(Register rt, uint16_t imm16) {
701 DsFsmInstrRrr(EmitI(0xf, static_cast<Register>(0), rt, imm16), rt, ZERO, ZERO);
702 }
703
Aui(Register rt,Register rs,uint16_t imm16)704 void MipsAssembler::Aui(Register rt, Register rs, uint16_t imm16) {
705 CHECK(IsR6());
706 DsFsmInstrRrr(EmitI(0xf, rs, rt, imm16), rt, rt, rs);
707 }
708
Sync(uint32_t stype)709 void MipsAssembler::Sync(uint32_t stype) {
710 DsFsmInstrNop(EmitR(0, ZERO, ZERO, ZERO, stype & 0x1f, 0xf));
711 }
712
Mfhi(Register rd)713 void MipsAssembler::Mfhi(Register rd) {
714 CHECK(!IsR6());
715 DsFsmInstrRrr(EmitR(0, ZERO, ZERO, rd, 0, 0x10), rd, ZERO, ZERO);
716 }
717
Mflo(Register rd)718 void MipsAssembler::Mflo(Register rd) {
719 CHECK(!IsR6());
720 DsFsmInstrRrr(EmitR(0, ZERO, ZERO, rd, 0, 0x12), rd, ZERO, ZERO);
721 }
722
Sb(Register rt,Register rs,uint16_t imm16)723 void MipsAssembler::Sb(Register rt, Register rs, uint16_t imm16) {
724 DsFsmInstrRrr(EmitI(0x28, rs, rt, imm16), ZERO, rt, rs);
725 }
726
Sh(Register rt,Register rs,uint16_t imm16)727 void MipsAssembler::Sh(Register rt, Register rs, uint16_t imm16) {
728 DsFsmInstrRrr(EmitI(0x29, rs, rt, imm16), ZERO, rt, rs);
729 }
730
Sw(Register rt,Register rs,uint16_t imm16)731 void MipsAssembler::Sw(Register rt, Register rs, uint16_t imm16) {
732 DsFsmInstrRrr(EmitI(0x2b, rs, rt, imm16), ZERO, rt, rs);
733 }
734
Swl(Register rt,Register rs,uint16_t imm16)735 void MipsAssembler::Swl(Register rt, Register rs, uint16_t imm16) {
736 CHECK(!IsR6());
737 DsFsmInstrRrr(EmitI(0x2a, rs, rt, imm16), ZERO, rt, rs);
738 }
739
Swr(Register rt,Register rs,uint16_t imm16)740 void MipsAssembler::Swr(Register rt, Register rs, uint16_t imm16) {
741 CHECK(!IsR6());
742 DsFsmInstrRrr(EmitI(0x2e, rs, rt, imm16), ZERO, rt, rs);
743 }
744
LlR2(Register rt,Register base,int16_t imm16)745 void MipsAssembler::LlR2(Register rt, Register base, int16_t imm16) {
746 CHECK(!IsR6());
747 DsFsmInstrRrr(EmitI(0x30, base, rt, imm16), rt, base, base);
748 }
749
ScR2(Register rt,Register base,int16_t imm16)750 void MipsAssembler::ScR2(Register rt, Register base, int16_t imm16) {
751 CHECK(!IsR6());
752 DsFsmInstrRrr(EmitI(0x38, base, rt, imm16), rt, rt, base);
753 }
754
LlR6(Register rt,Register base,int16_t imm9)755 void MipsAssembler::LlR6(Register rt, Register base, int16_t imm9) {
756 CHECK(IsR6());
757 CHECK(IsInt<9>(imm9));
758 DsFsmInstrRrr(EmitI(0x1f, base, rt, ((imm9 & 0x1ff) << 7) | 0x36), rt, base, base);
759 }
760
ScR6(Register rt,Register base,int16_t imm9)761 void MipsAssembler::ScR6(Register rt, Register base, int16_t imm9) {
762 CHECK(IsR6());
763 CHECK(IsInt<9>(imm9));
764 DsFsmInstrRrr(EmitI(0x1f, base, rt, ((imm9 & 0x1ff) << 7) | 0x26), rt, rt, base);
765 }
766
Slt(Register rd,Register rs,Register rt)767 void MipsAssembler::Slt(Register rd, Register rs, Register rt) {
768 DsFsmInstrRrr(EmitR(0, rs, rt, rd, 0, 0x2a), rd, rs, rt);
769 }
770
Sltu(Register rd,Register rs,Register rt)771 void MipsAssembler::Sltu(Register rd, Register rs, Register rt) {
772 DsFsmInstrRrr(EmitR(0, rs, rt, rd, 0, 0x2b), rd, rs, rt);
773 }
774
Slti(Register rt,Register rs,uint16_t imm16)775 void MipsAssembler::Slti(Register rt, Register rs, uint16_t imm16) {
776 DsFsmInstrRrr(EmitI(0xa, rs, rt, imm16), rt, rs, rs);
777 }
778
Sltiu(Register rt,Register rs,uint16_t imm16)779 void MipsAssembler::Sltiu(Register rt, Register rs, uint16_t imm16) {
780 DsFsmInstrRrr(EmitI(0xb, rs, rt, imm16), rt, rs, rs);
781 }
782
B(uint16_t imm16)783 void MipsAssembler::B(uint16_t imm16) {
784 DsFsmInstrNop(EmitI(0x4, static_cast<Register>(0), static_cast<Register>(0), imm16));
785 }
786
Bal(uint16_t imm16)787 void MipsAssembler::Bal(uint16_t imm16) {
788 DsFsmInstrNop(EmitI(0x1, static_cast<Register>(0), static_cast<Register>(0x11), imm16));
789 }
790
Beq(Register rs,Register rt,uint16_t imm16)791 void MipsAssembler::Beq(Register rs, Register rt, uint16_t imm16) {
792 DsFsmInstrNop(EmitI(0x4, rs, rt, imm16));
793 }
794
Bne(Register rs,Register rt,uint16_t imm16)795 void MipsAssembler::Bne(Register rs, Register rt, uint16_t imm16) {
796 DsFsmInstrNop(EmitI(0x5, rs, rt, imm16));
797 }
798
Beqz(Register rt,uint16_t imm16)799 void MipsAssembler::Beqz(Register rt, uint16_t imm16) {
800 Beq(ZERO, rt, imm16);
801 }
802
Bnez(Register rt,uint16_t imm16)803 void MipsAssembler::Bnez(Register rt, uint16_t imm16) {
804 Bne(ZERO, rt, imm16);
805 }
806
Bltz(Register rt,uint16_t imm16)807 void MipsAssembler::Bltz(Register rt, uint16_t imm16) {
808 DsFsmInstrNop(EmitI(0x1, rt, static_cast<Register>(0), imm16));
809 }
810
Bgez(Register rt,uint16_t imm16)811 void MipsAssembler::Bgez(Register rt, uint16_t imm16) {
812 DsFsmInstrNop(EmitI(0x1, rt, static_cast<Register>(0x1), imm16));
813 }
814
Blez(Register rt,uint16_t imm16)815 void MipsAssembler::Blez(Register rt, uint16_t imm16) {
816 DsFsmInstrNop(EmitI(0x6, rt, static_cast<Register>(0), imm16));
817 }
818
Bgtz(Register rt,uint16_t imm16)819 void MipsAssembler::Bgtz(Register rt, uint16_t imm16) {
820 DsFsmInstrNop(EmitI(0x7, rt, static_cast<Register>(0), imm16));
821 }
822
Bc1f(uint16_t imm16)823 void MipsAssembler::Bc1f(uint16_t imm16) {
824 Bc1f(0, imm16);
825 }
826
Bc1f(int cc,uint16_t imm16)827 void MipsAssembler::Bc1f(int cc, uint16_t imm16) {
828 CHECK(!IsR6());
829 CHECK(IsUint<3>(cc)) << cc;
830 DsFsmInstrNop(EmitI(0x11, static_cast<Register>(0x8), static_cast<Register>(cc << 2), imm16));
831 }
832
Bc1t(uint16_t imm16)833 void MipsAssembler::Bc1t(uint16_t imm16) {
834 Bc1t(0, imm16);
835 }
836
Bc1t(int cc,uint16_t imm16)837 void MipsAssembler::Bc1t(int cc, uint16_t imm16) {
838 CHECK(!IsR6());
839 CHECK(IsUint<3>(cc)) << cc;
840 DsFsmInstrNop(EmitI(0x11,
841 static_cast<Register>(0x8),
842 static_cast<Register>((cc << 2) | 1),
843 imm16));
844 }
845
J(uint32_t addr26)846 void MipsAssembler::J(uint32_t addr26) {
847 DsFsmInstrNop(EmitI26(0x2, addr26));
848 }
849
Jal(uint32_t addr26)850 void MipsAssembler::Jal(uint32_t addr26) {
851 DsFsmInstrNop(EmitI26(0x3, addr26));
852 }
853
Jalr(Register rd,Register rs)854 void MipsAssembler::Jalr(Register rd, Register rs) {
855 uint32_t last_instruction = delay_slot_.instruction_;
856 bool exchange = (last_instruction != 0 &&
857 (delay_slot_.gpr_outs_mask_ & (1u << rs)) == 0 &&
858 ((delay_slot_.gpr_ins_mask_ | delay_slot_.gpr_outs_mask_) & (1u << rd)) == 0);
859 if (exchange) {
860 // The last instruction cannot be used in a different delay slot,
861 // do not commit the label before it (if any).
862 DsFsmDropLabel();
863 }
864 DsFsmInstrNop(EmitR(0, rs, static_cast<Register>(0), rd, 0, 0x09));
865 if (exchange) {
866 // Exchange the last two instructions in the assembler buffer.
867 size_t size = buffer_.Size();
868 CHECK_GE(size, 2 * sizeof(uint32_t));
869 size_t pos1 = size - 2 * sizeof(uint32_t);
870 size_t pos2 = size - sizeof(uint32_t);
871 uint32_t instr1 = buffer_.Load<uint32_t>(pos1);
872 uint32_t instr2 = buffer_.Load<uint32_t>(pos2);
873 CHECK_EQ(instr1, last_instruction);
874 buffer_.Store<uint32_t>(pos1, instr2);
875 buffer_.Store<uint32_t>(pos2, instr1);
876 } else if (reordering_) {
877 Nop();
878 }
879 }
880
Jalr(Register rs)881 void MipsAssembler::Jalr(Register rs) {
882 Jalr(RA, rs);
883 }
884
Jr(Register rs)885 void MipsAssembler::Jr(Register rs) {
886 Jalr(ZERO, rs);
887 }
888
Nal()889 void MipsAssembler::Nal() {
890 DsFsmInstrNop(EmitI(0x1, static_cast<Register>(0), static_cast<Register>(0x10), 0));
891 }
892
Auipc(Register rs,uint16_t imm16)893 void MipsAssembler::Auipc(Register rs, uint16_t imm16) {
894 CHECK(IsR6());
895 DsFsmInstrNop(EmitI(0x3B, rs, static_cast<Register>(0x1E), imm16));
896 }
897
Addiupc(Register rs,uint32_t imm19)898 void MipsAssembler::Addiupc(Register rs, uint32_t imm19) {
899 CHECK(IsR6());
900 CHECK(IsUint<19>(imm19)) << imm19;
901 DsFsmInstrNop(EmitI21(0x3B, rs, imm19));
902 }
903
Bc(uint32_t imm26)904 void MipsAssembler::Bc(uint32_t imm26) {
905 CHECK(IsR6());
906 DsFsmInstrNop(EmitI26(0x32, imm26));
907 }
908
Balc(uint32_t imm26)909 void MipsAssembler::Balc(uint32_t imm26) {
910 CHECK(IsR6());
911 DsFsmInstrNop(EmitI26(0x3A, imm26));
912 }
913
Jic(Register rt,uint16_t imm16)914 void MipsAssembler::Jic(Register rt, uint16_t imm16) {
915 CHECK(IsR6());
916 DsFsmInstrNop(EmitI(0x36, static_cast<Register>(0), rt, imm16));
917 }
918
Jialc(Register rt,uint16_t imm16)919 void MipsAssembler::Jialc(Register rt, uint16_t imm16) {
920 CHECK(IsR6());
921 DsFsmInstrNop(EmitI(0x3E, static_cast<Register>(0), rt, imm16));
922 }
923
Bltc(Register rs,Register rt,uint16_t imm16)924 void MipsAssembler::Bltc(Register rs, Register rt, uint16_t imm16) {
925 CHECK(IsR6());
926 CHECK_NE(rs, ZERO);
927 CHECK_NE(rt, ZERO);
928 CHECK_NE(rs, rt);
929 DsFsmInstrNop(EmitI(0x17, rs, rt, imm16));
930 }
931
Bltzc(Register rt,uint16_t imm16)932 void MipsAssembler::Bltzc(Register rt, uint16_t imm16) {
933 CHECK(IsR6());
934 CHECK_NE(rt, ZERO);
935 DsFsmInstrNop(EmitI(0x17, rt, rt, imm16));
936 }
937
Bgtzc(Register rt,uint16_t imm16)938 void MipsAssembler::Bgtzc(Register rt, uint16_t imm16) {
939 CHECK(IsR6());
940 CHECK_NE(rt, ZERO);
941 DsFsmInstrNop(EmitI(0x17, static_cast<Register>(0), rt, imm16));
942 }
943
Bgec(Register rs,Register rt,uint16_t imm16)944 void MipsAssembler::Bgec(Register rs, Register rt, uint16_t imm16) {
945 CHECK(IsR6());
946 CHECK_NE(rs, ZERO);
947 CHECK_NE(rt, ZERO);
948 CHECK_NE(rs, rt);
949 DsFsmInstrNop(EmitI(0x16, rs, rt, imm16));
950 }
951
Bgezc(Register rt,uint16_t imm16)952 void MipsAssembler::Bgezc(Register rt, uint16_t imm16) {
953 CHECK(IsR6());
954 CHECK_NE(rt, ZERO);
955 DsFsmInstrNop(EmitI(0x16, rt, rt, imm16));
956 }
957
Blezc(Register rt,uint16_t imm16)958 void MipsAssembler::Blezc(Register rt, uint16_t imm16) {
959 CHECK(IsR6());
960 CHECK_NE(rt, ZERO);
961 DsFsmInstrNop(EmitI(0x16, static_cast<Register>(0), rt, imm16));
962 }
963
Bltuc(Register rs,Register rt,uint16_t imm16)964 void MipsAssembler::Bltuc(Register rs, Register rt, uint16_t imm16) {
965 CHECK(IsR6());
966 CHECK_NE(rs, ZERO);
967 CHECK_NE(rt, ZERO);
968 CHECK_NE(rs, rt);
969 DsFsmInstrNop(EmitI(0x7, rs, rt, imm16));
970 }
971
Bgeuc(Register rs,Register rt,uint16_t imm16)972 void MipsAssembler::Bgeuc(Register rs, Register rt, uint16_t imm16) {
973 CHECK(IsR6());
974 CHECK_NE(rs, ZERO);
975 CHECK_NE(rt, ZERO);
976 CHECK_NE(rs, rt);
977 DsFsmInstrNop(EmitI(0x6, rs, rt, imm16));
978 }
979
Beqc(Register rs,Register rt,uint16_t imm16)980 void MipsAssembler::Beqc(Register rs, Register rt, uint16_t imm16) {
981 CHECK(IsR6());
982 CHECK_NE(rs, ZERO);
983 CHECK_NE(rt, ZERO);
984 CHECK_NE(rs, rt);
985 DsFsmInstrNop(EmitI(0x8, std::min(rs, rt), std::max(rs, rt), imm16));
986 }
987
Bnec(Register rs,Register rt,uint16_t imm16)988 void MipsAssembler::Bnec(Register rs, Register rt, uint16_t imm16) {
989 CHECK(IsR6());
990 CHECK_NE(rs, ZERO);
991 CHECK_NE(rt, ZERO);
992 CHECK_NE(rs, rt);
993 DsFsmInstrNop(EmitI(0x18, std::min(rs, rt), std::max(rs, rt), imm16));
994 }
995
Beqzc(Register rs,uint32_t imm21)996 void MipsAssembler::Beqzc(Register rs, uint32_t imm21) {
997 CHECK(IsR6());
998 CHECK_NE(rs, ZERO);
999 DsFsmInstrNop(EmitI21(0x36, rs, imm21));
1000 }
1001
Bnezc(Register rs,uint32_t imm21)1002 void MipsAssembler::Bnezc(Register rs, uint32_t imm21) {
1003 CHECK(IsR6());
1004 CHECK_NE(rs, ZERO);
1005 DsFsmInstrNop(EmitI21(0x3E, rs, imm21));
1006 }
1007
Bc1eqz(FRegister ft,uint16_t imm16)1008 void MipsAssembler::Bc1eqz(FRegister ft, uint16_t imm16) {
1009 CHECK(IsR6());
1010 DsFsmInstrNop(EmitFI(0x11, 0x9, ft, imm16));
1011 }
1012
Bc1nez(FRegister ft,uint16_t imm16)1013 void MipsAssembler::Bc1nez(FRegister ft, uint16_t imm16) {
1014 CHECK(IsR6());
1015 DsFsmInstrNop(EmitFI(0x11, 0xD, ft, imm16));
1016 }
1017
EmitBcondR2(BranchCondition cond,Register rs,Register rt,uint16_t imm16)1018 void MipsAssembler::EmitBcondR2(BranchCondition cond, Register rs, Register rt, uint16_t imm16) {
1019 switch (cond) {
1020 case kCondLTZ:
1021 CHECK_EQ(rt, ZERO);
1022 Bltz(rs, imm16);
1023 break;
1024 case kCondGEZ:
1025 CHECK_EQ(rt, ZERO);
1026 Bgez(rs, imm16);
1027 break;
1028 case kCondLEZ:
1029 CHECK_EQ(rt, ZERO);
1030 Blez(rs, imm16);
1031 break;
1032 case kCondGTZ:
1033 CHECK_EQ(rt, ZERO);
1034 Bgtz(rs, imm16);
1035 break;
1036 case kCondEQ:
1037 Beq(rs, rt, imm16);
1038 break;
1039 case kCondNE:
1040 Bne(rs, rt, imm16);
1041 break;
1042 case kCondEQZ:
1043 CHECK_EQ(rt, ZERO);
1044 Beqz(rs, imm16);
1045 break;
1046 case kCondNEZ:
1047 CHECK_EQ(rt, ZERO);
1048 Bnez(rs, imm16);
1049 break;
1050 case kCondF:
1051 CHECK_EQ(rt, ZERO);
1052 Bc1f(static_cast<int>(rs), imm16);
1053 break;
1054 case kCondT:
1055 CHECK_EQ(rt, ZERO);
1056 Bc1t(static_cast<int>(rs), imm16);
1057 break;
1058 case kCondLT:
1059 case kCondGE:
1060 case kCondLE:
1061 case kCondGT:
1062 case kCondLTU:
1063 case kCondGEU:
1064 case kUncond:
1065 // We don't support synthetic R2 branches (preceded with slt[u]) at this level
1066 // (R2 doesn't have branches to compare 2 registers using <, <=, >=, >).
1067 LOG(FATAL) << "Unexpected branch condition " << cond;
1068 UNREACHABLE();
1069 }
1070 }
1071
EmitBcondR6(BranchCondition cond,Register rs,Register rt,uint32_t imm16_21)1072 void MipsAssembler::EmitBcondR6(BranchCondition cond, Register rs, Register rt, uint32_t imm16_21) {
1073 switch (cond) {
1074 case kCondLT:
1075 Bltc(rs, rt, imm16_21);
1076 break;
1077 case kCondGE:
1078 Bgec(rs, rt, imm16_21);
1079 break;
1080 case kCondLE:
1081 Bgec(rt, rs, imm16_21);
1082 break;
1083 case kCondGT:
1084 Bltc(rt, rs, imm16_21);
1085 break;
1086 case kCondLTZ:
1087 CHECK_EQ(rt, ZERO);
1088 Bltzc(rs, imm16_21);
1089 break;
1090 case kCondGEZ:
1091 CHECK_EQ(rt, ZERO);
1092 Bgezc(rs, imm16_21);
1093 break;
1094 case kCondLEZ:
1095 CHECK_EQ(rt, ZERO);
1096 Blezc(rs, imm16_21);
1097 break;
1098 case kCondGTZ:
1099 CHECK_EQ(rt, ZERO);
1100 Bgtzc(rs, imm16_21);
1101 break;
1102 case kCondEQ:
1103 Beqc(rs, rt, imm16_21);
1104 break;
1105 case kCondNE:
1106 Bnec(rs, rt, imm16_21);
1107 break;
1108 case kCondEQZ:
1109 CHECK_EQ(rt, ZERO);
1110 Beqzc(rs, imm16_21);
1111 break;
1112 case kCondNEZ:
1113 CHECK_EQ(rt, ZERO);
1114 Bnezc(rs, imm16_21);
1115 break;
1116 case kCondLTU:
1117 Bltuc(rs, rt, imm16_21);
1118 break;
1119 case kCondGEU:
1120 Bgeuc(rs, rt, imm16_21);
1121 break;
1122 case kCondF:
1123 CHECK_EQ(rt, ZERO);
1124 Bc1eqz(static_cast<FRegister>(rs), imm16_21);
1125 break;
1126 case kCondT:
1127 CHECK_EQ(rt, ZERO);
1128 Bc1nez(static_cast<FRegister>(rs), imm16_21);
1129 break;
1130 case kUncond:
1131 LOG(FATAL) << "Unexpected branch condition " << cond;
1132 UNREACHABLE();
1133 }
1134 }
1135
AddS(FRegister fd,FRegister fs,FRegister ft)1136 void MipsAssembler::AddS(FRegister fd, FRegister fs, FRegister ft) {
1137 DsFsmInstrFff(EmitFR(0x11, 0x10, ft, fs, fd, 0x0), fd, fs, ft);
1138 }
1139
SubS(FRegister fd,FRegister fs,FRegister ft)1140 void MipsAssembler::SubS(FRegister fd, FRegister fs, FRegister ft) {
1141 DsFsmInstrFff(EmitFR(0x11, 0x10, ft, fs, fd, 0x1), fd, fs, ft);
1142 }
1143
MulS(FRegister fd,FRegister fs,FRegister ft)1144 void MipsAssembler::MulS(FRegister fd, FRegister fs, FRegister ft) {
1145 DsFsmInstrFff(EmitFR(0x11, 0x10, ft, fs, fd, 0x2), fd, fs, ft);
1146 }
1147
DivS(FRegister fd,FRegister fs,FRegister ft)1148 void MipsAssembler::DivS(FRegister fd, FRegister fs, FRegister ft) {
1149 DsFsmInstrFff(EmitFR(0x11, 0x10, ft, fs, fd, 0x3), fd, fs, ft);
1150 }
1151
AddD(FRegister fd,FRegister fs,FRegister ft)1152 void MipsAssembler::AddD(FRegister fd, FRegister fs, FRegister ft) {
1153 DsFsmInstrFff(EmitFR(0x11, 0x11, ft, fs, fd, 0x0), fd, fs, ft);
1154 }
1155
SubD(FRegister fd,FRegister fs,FRegister ft)1156 void MipsAssembler::SubD(FRegister fd, FRegister fs, FRegister ft) {
1157 DsFsmInstrFff(EmitFR(0x11, 0x11, ft, fs, fd, 0x1), fd, fs, ft);
1158 }
1159
MulD(FRegister fd,FRegister fs,FRegister ft)1160 void MipsAssembler::MulD(FRegister fd, FRegister fs, FRegister ft) {
1161 DsFsmInstrFff(EmitFR(0x11, 0x11, ft, fs, fd, 0x2), fd, fs, ft);
1162 }
1163
DivD(FRegister fd,FRegister fs,FRegister ft)1164 void MipsAssembler::DivD(FRegister fd, FRegister fs, FRegister ft) {
1165 DsFsmInstrFff(EmitFR(0x11, 0x11, ft, fs, fd, 0x3), fd, fs, ft);
1166 }
1167
SqrtS(FRegister fd,FRegister fs)1168 void MipsAssembler::SqrtS(FRegister fd, FRegister fs) {
1169 DsFsmInstrFff(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x4), fd, fs, fs);
1170 }
1171
SqrtD(FRegister fd,FRegister fs)1172 void MipsAssembler::SqrtD(FRegister fd, FRegister fs) {
1173 DsFsmInstrFff(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x4), fd, fs, fs);
1174 }
1175
AbsS(FRegister fd,FRegister fs)1176 void MipsAssembler::AbsS(FRegister fd, FRegister fs) {
1177 DsFsmInstrFff(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x5), fd, fs, fs);
1178 }
1179
AbsD(FRegister fd,FRegister fs)1180 void MipsAssembler::AbsD(FRegister fd, FRegister fs) {
1181 DsFsmInstrFff(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x5), fd, fs, fs);
1182 }
1183
MovS(FRegister fd,FRegister fs)1184 void MipsAssembler::MovS(FRegister fd, FRegister fs) {
1185 DsFsmInstrFff(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x6), fd, fs, fs);
1186 }
1187
MovD(FRegister fd,FRegister fs)1188 void MipsAssembler::MovD(FRegister fd, FRegister fs) {
1189 DsFsmInstrFff(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x6), fd, fs, fs);
1190 }
1191
NegS(FRegister fd,FRegister fs)1192 void MipsAssembler::NegS(FRegister fd, FRegister fs) {
1193 DsFsmInstrFff(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x7), fd, fs, fs);
1194 }
1195
NegD(FRegister fd,FRegister fs)1196 void MipsAssembler::NegD(FRegister fd, FRegister fs) {
1197 DsFsmInstrFff(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x7), fd, fs, fs);
1198 }
1199
CunS(FRegister fs,FRegister ft)1200 void MipsAssembler::CunS(FRegister fs, FRegister ft) {
1201 CunS(0, fs, ft);
1202 }
1203
CunS(int cc,FRegister fs,FRegister ft)1204 void MipsAssembler::CunS(int cc, FRegister fs, FRegister ft) {
1205 CHECK(!IsR6());
1206 CHECK(IsUint<3>(cc)) << cc;
1207 DsFsmInstrCff(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x31), cc, fs, ft);
1208 }
1209
CeqS(FRegister fs,FRegister ft)1210 void MipsAssembler::CeqS(FRegister fs, FRegister ft) {
1211 CeqS(0, fs, ft);
1212 }
1213
CeqS(int cc,FRegister fs,FRegister ft)1214 void MipsAssembler::CeqS(int cc, FRegister fs, FRegister ft) {
1215 CHECK(!IsR6());
1216 CHECK(IsUint<3>(cc)) << cc;
1217 DsFsmInstrCff(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x32), cc, fs, ft);
1218 }
1219
CueqS(FRegister fs,FRegister ft)1220 void MipsAssembler::CueqS(FRegister fs, FRegister ft) {
1221 CueqS(0, fs, ft);
1222 }
1223
CueqS(int cc,FRegister fs,FRegister ft)1224 void MipsAssembler::CueqS(int cc, FRegister fs, FRegister ft) {
1225 CHECK(!IsR6());
1226 CHECK(IsUint<3>(cc)) << cc;
1227 DsFsmInstrCff(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x33), cc, fs, ft);
1228 }
1229
ColtS(FRegister fs,FRegister ft)1230 void MipsAssembler::ColtS(FRegister fs, FRegister ft) {
1231 ColtS(0, fs, ft);
1232 }
1233
ColtS(int cc,FRegister fs,FRegister ft)1234 void MipsAssembler::ColtS(int cc, FRegister fs, FRegister ft) {
1235 CHECK(!IsR6());
1236 CHECK(IsUint<3>(cc)) << cc;
1237 DsFsmInstrCff(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x34), cc, fs, ft);
1238 }
1239
CultS(FRegister fs,FRegister ft)1240 void MipsAssembler::CultS(FRegister fs, FRegister ft) {
1241 CultS(0, fs, ft);
1242 }
1243
CultS(int cc,FRegister fs,FRegister ft)1244 void MipsAssembler::CultS(int cc, FRegister fs, FRegister ft) {
1245 CHECK(!IsR6());
1246 CHECK(IsUint<3>(cc)) << cc;
1247 DsFsmInstrCff(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x35), cc, fs, ft);
1248 }
1249
ColeS(FRegister fs,FRegister ft)1250 void MipsAssembler::ColeS(FRegister fs, FRegister ft) {
1251 ColeS(0, fs, ft);
1252 }
1253
ColeS(int cc,FRegister fs,FRegister ft)1254 void MipsAssembler::ColeS(int cc, FRegister fs, FRegister ft) {
1255 CHECK(!IsR6());
1256 CHECK(IsUint<3>(cc)) << cc;
1257 DsFsmInstrCff(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x36), cc, fs, ft);
1258 }
1259
CuleS(FRegister fs,FRegister ft)1260 void MipsAssembler::CuleS(FRegister fs, FRegister ft) {
1261 CuleS(0, fs, ft);
1262 }
1263
CuleS(int cc,FRegister fs,FRegister ft)1264 void MipsAssembler::CuleS(int cc, FRegister fs, FRegister ft) {
1265 CHECK(!IsR6());
1266 CHECK(IsUint<3>(cc)) << cc;
1267 DsFsmInstrCff(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x37), cc, fs, ft);
1268 }
1269
CunD(FRegister fs,FRegister ft)1270 void MipsAssembler::CunD(FRegister fs, FRegister ft) {
1271 CunD(0, fs, ft);
1272 }
1273
CunD(int cc,FRegister fs,FRegister ft)1274 void MipsAssembler::CunD(int cc, FRegister fs, FRegister ft) {
1275 CHECK(!IsR6());
1276 CHECK(IsUint<3>(cc)) << cc;
1277 DsFsmInstrCff(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x31), cc, fs, ft);
1278 }
1279
CeqD(FRegister fs,FRegister ft)1280 void MipsAssembler::CeqD(FRegister fs, FRegister ft) {
1281 CeqD(0, fs, ft);
1282 }
1283
CeqD(int cc,FRegister fs,FRegister ft)1284 void MipsAssembler::CeqD(int cc, FRegister fs, FRegister ft) {
1285 CHECK(!IsR6());
1286 CHECK(IsUint<3>(cc)) << cc;
1287 DsFsmInstrCff(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x32), cc, fs, ft);
1288 }
1289
CueqD(FRegister fs,FRegister ft)1290 void MipsAssembler::CueqD(FRegister fs, FRegister ft) {
1291 CueqD(0, fs, ft);
1292 }
1293
CueqD(int cc,FRegister fs,FRegister ft)1294 void MipsAssembler::CueqD(int cc, FRegister fs, FRegister ft) {
1295 CHECK(!IsR6());
1296 CHECK(IsUint<3>(cc)) << cc;
1297 DsFsmInstrCff(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x33), cc, fs, ft);
1298 }
1299
ColtD(FRegister fs,FRegister ft)1300 void MipsAssembler::ColtD(FRegister fs, FRegister ft) {
1301 ColtD(0, fs, ft);
1302 }
1303
ColtD(int cc,FRegister fs,FRegister ft)1304 void MipsAssembler::ColtD(int cc, FRegister fs, FRegister ft) {
1305 CHECK(!IsR6());
1306 CHECK(IsUint<3>(cc)) << cc;
1307 DsFsmInstrCff(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x34), cc, fs, ft);
1308 }
1309
CultD(FRegister fs,FRegister ft)1310 void MipsAssembler::CultD(FRegister fs, FRegister ft) {
1311 CultD(0, fs, ft);
1312 }
1313
CultD(int cc,FRegister fs,FRegister ft)1314 void MipsAssembler::CultD(int cc, FRegister fs, FRegister ft) {
1315 CHECK(!IsR6());
1316 CHECK(IsUint<3>(cc)) << cc;
1317 DsFsmInstrCff(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x35), cc, fs, ft);
1318 }
1319
ColeD(FRegister fs,FRegister ft)1320 void MipsAssembler::ColeD(FRegister fs, FRegister ft) {
1321 ColeD(0, fs, ft);
1322 }
1323
ColeD(int cc,FRegister fs,FRegister ft)1324 void MipsAssembler::ColeD(int cc, FRegister fs, FRegister ft) {
1325 CHECK(!IsR6());
1326 CHECK(IsUint<3>(cc)) << cc;
1327 DsFsmInstrCff(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x36), cc, fs, ft);
1328 }
1329
CuleD(FRegister fs,FRegister ft)1330 void MipsAssembler::CuleD(FRegister fs, FRegister ft) {
1331 CuleD(0, fs, ft);
1332 }
1333
CuleD(int cc,FRegister fs,FRegister ft)1334 void MipsAssembler::CuleD(int cc, FRegister fs, FRegister ft) {
1335 CHECK(!IsR6());
1336 CHECK(IsUint<3>(cc)) << cc;
1337 DsFsmInstrCff(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x37), cc, fs, ft);
1338 }
1339
CmpUnS(FRegister fd,FRegister fs,FRegister ft)1340 void MipsAssembler::CmpUnS(FRegister fd, FRegister fs, FRegister ft) {
1341 CHECK(IsR6());
1342 DsFsmInstrFff(EmitFR(0x11, 0x14, ft, fs, fd, 0x01), fd, fs, ft);
1343 }
1344
CmpEqS(FRegister fd,FRegister fs,FRegister ft)1345 void MipsAssembler::CmpEqS(FRegister fd, FRegister fs, FRegister ft) {
1346 CHECK(IsR6());
1347 DsFsmInstrFff(EmitFR(0x11, 0x14, ft, fs, fd, 0x02), fd, fs, ft);
1348 }
1349
CmpUeqS(FRegister fd,FRegister fs,FRegister ft)1350 void MipsAssembler::CmpUeqS(FRegister fd, FRegister fs, FRegister ft) {
1351 CHECK(IsR6());
1352 DsFsmInstrFff(EmitFR(0x11, 0x14, ft, fs, fd, 0x03), fd, fs, ft);
1353 }
1354
CmpLtS(FRegister fd,FRegister fs,FRegister ft)1355 void MipsAssembler::CmpLtS(FRegister fd, FRegister fs, FRegister ft) {
1356 CHECK(IsR6());
1357 DsFsmInstrFff(EmitFR(0x11, 0x14, ft, fs, fd, 0x04), fd, fs, ft);
1358 }
1359
CmpUltS(FRegister fd,FRegister fs,FRegister ft)1360 void MipsAssembler::CmpUltS(FRegister fd, FRegister fs, FRegister ft) {
1361 CHECK(IsR6());
1362 DsFsmInstrFff(EmitFR(0x11, 0x14, ft, fs, fd, 0x05), fd, fs, ft);
1363 }
1364
CmpLeS(FRegister fd,FRegister fs,FRegister ft)1365 void MipsAssembler::CmpLeS(FRegister fd, FRegister fs, FRegister ft) {
1366 CHECK(IsR6());
1367 DsFsmInstrFff(EmitFR(0x11, 0x14, ft, fs, fd, 0x06), fd, fs, ft);
1368 }
1369
CmpUleS(FRegister fd,FRegister fs,FRegister ft)1370 void MipsAssembler::CmpUleS(FRegister fd, FRegister fs, FRegister ft) {
1371 CHECK(IsR6());
1372 DsFsmInstrFff(EmitFR(0x11, 0x14, ft, fs, fd, 0x07), fd, fs, ft);
1373 }
1374
CmpOrS(FRegister fd,FRegister fs,FRegister ft)1375 void MipsAssembler::CmpOrS(FRegister fd, FRegister fs, FRegister ft) {
1376 CHECK(IsR6());
1377 DsFsmInstrFff(EmitFR(0x11, 0x14, ft, fs, fd, 0x11), fd, fs, ft);
1378 }
1379
CmpUneS(FRegister fd,FRegister fs,FRegister ft)1380 void MipsAssembler::CmpUneS(FRegister fd, FRegister fs, FRegister ft) {
1381 CHECK(IsR6());
1382 DsFsmInstrFff(EmitFR(0x11, 0x14, ft, fs, fd, 0x12), fd, fs, ft);
1383 }
1384
CmpNeS(FRegister fd,FRegister fs,FRegister ft)1385 void MipsAssembler::CmpNeS(FRegister fd, FRegister fs, FRegister ft) {
1386 CHECK(IsR6());
1387 DsFsmInstrFff(EmitFR(0x11, 0x14, ft, fs, fd, 0x13), fd, fs, ft);
1388 }
1389
CmpUnD(FRegister fd,FRegister fs,FRegister ft)1390 void MipsAssembler::CmpUnD(FRegister fd, FRegister fs, FRegister ft) {
1391 CHECK(IsR6());
1392 DsFsmInstrFff(EmitFR(0x11, 0x15, ft, fs, fd, 0x01), fd, fs, ft);
1393 }
1394
CmpEqD(FRegister fd,FRegister fs,FRegister ft)1395 void MipsAssembler::CmpEqD(FRegister fd, FRegister fs, FRegister ft) {
1396 CHECK(IsR6());
1397 DsFsmInstrFff(EmitFR(0x11, 0x15, ft, fs, fd, 0x02), fd, fs, ft);
1398 }
1399
CmpUeqD(FRegister fd,FRegister fs,FRegister ft)1400 void MipsAssembler::CmpUeqD(FRegister fd, FRegister fs, FRegister ft) {
1401 CHECK(IsR6());
1402 DsFsmInstrFff(EmitFR(0x11, 0x15, ft, fs, fd, 0x03), fd, fs, ft);
1403 }
1404
CmpLtD(FRegister fd,FRegister fs,FRegister ft)1405 void MipsAssembler::CmpLtD(FRegister fd, FRegister fs, FRegister ft) {
1406 CHECK(IsR6());
1407 DsFsmInstrFff(EmitFR(0x11, 0x15, ft, fs, fd, 0x04), fd, fs, ft);
1408 }
1409
CmpUltD(FRegister fd,FRegister fs,FRegister ft)1410 void MipsAssembler::CmpUltD(FRegister fd, FRegister fs, FRegister ft) {
1411 CHECK(IsR6());
1412 DsFsmInstrFff(EmitFR(0x11, 0x15, ft, fs, fd, 0x05), fd, fs, ft);
1413 }
1414
CmpLeD(FRegister fd,FRegister fs,FRegister ft)1415 void MipsAssembler::CmpLeD(FRegister fd, FRegister fs, FRegister ft) {
1416 CHECK(IsR6());
1417 DsFsmInstrFff(EmitFR(0x11, 0x15, ft, fs, fd, 0x06), fd, fs, ft);
1418 }
1419
CmpUleD(FRegister fd,FRegister fs,FRegister ft)1420 void MipsAssembler::CmpUleD(FRegister fd, FRegister fs, FRegister ft) {
1421 CHECK(IsR6());
1422 DsFsmInstrFff(EmitFR(0x11, 0x15, ft, fs, fd, 0x07), fd, fs, ft);
1423 }
1424
CmpOrD(FRegister fd,FRegister fs,FRegister ft)1425 void MipsAssembler::CmpOrD(FRegister fd, FRegister fs, FRegister ft) {
1426 CHECK(IsR6());
1427 DsFsmInstrFff(EmitFR(0x11, 0x15, ft, fs, fd, 0x11), fd, fs, ft);
1428 }
1429
CmpUneD(FRegister fd,FRegister fs,FRegister ft)1430 void MipsAssembler::CmpUneD(FRegister fd, FRegister fs, FRegister ft) {
1431 CHECK(IsR6());
1432 DsFsmInstrFff(EmitFR(0x11, 0x15, ft, fs, fd, 0x12), fd, fs, ft);
1433 }
1434
CmpNeD(FRegister fd,FRegister fs,FRegister ft)1435 void MipsAssembler::CmpNeD(FRegister fd, FRegister fs, FRegister ft) {
1436 CHECK(IsR6());
1437 DsFsmInstrFff(EmitFR(0x11, 0x15, ft, fs, fd, 0x13), fd, fs, ft);
1438 }
1439
Movf(Register rd,Register rs,int cc)1440 void MipsAssembler::Movf(Register rd, Register rs, int cc) {
1441 CHECK(!IsR6());
1442 CHECK(IsUint<3>(cc)) << cc;
1443 DsFsmInstrRrrc(EmitR(0, rs, static_cast<Register>(cc << 2), rd, 0, 0x01), rd, rs, cc);
1444 }
1445
Movt(Register rd,Register rs,int cc)1446 void MipsAssembler::Movt(Register rd, Register rs, int cc) {
1447 CHECK(!IsR6());
1448 CHECK(IsUint<3>(cc)) << cc;
1449 DsFsmInstrRrrc(EmitR(0, rs, static_cast<Register>((cc << 2) | 1), rd, 0, 0x01), rd, rs, cc);
1450 }
1451
MovfS(FRegister fd,FRegister fs,int cc)1452 void MipsAssembler::MovfS(FRegister fd, FRegister fs, int cc) {
1453 CHECK(!IsR6());
1454 CHECK(IsUint<3>(cc)) << cc;
1455 DsFsmInstrFffc(EmitFR(0x11, 0x10, static_cast<FRegister>(cc << 2), fs, fd, 0x11), fd, fs, cc);
1456 }
1457
MovfD(FRegister fd,FRegister fs,int cc)1458 void MipsAssembler::MovfD(FRegister fd, FRegister fs, int cc) {
1459 CHECK(!IsR6());
1460 CHECK(IsUint<3>(cc)) << cc;
1461 DsFsmInstrFffc(EmitFR(0x11, 0x11, static_cast<FRegister>(cc << 2), fs, fd, 0x11), fd, fs, cc);
1462 }
1463
MovtS(FRegister fd,FRegister fs,int cc)1464 void MipsAssembler::MovtS(FRegister fd, FRegister fs, int cc) {
1465 CHECK(!IsR6());
1466 CHECK(IsUint<3>(cc)) << cc;
1467 DsFsmInstrFffc(EmitFR(0x11, 0x10, static_cast<FRegister>((cc << 2) | 1), fs, fd, 0x11),
1468 fd,
1469 fs,
1470 cc);
1471 }
1472
MovtD(FRegister fd,FRegister fs,int cc)1473 void MipsAssembler::MovtD(FRegister fd, FRegister fs, int cc) {
1474 CHECK(!IsR6());
1475 CHECK(IsUint<3>(cc)) << cc;
1476 DsFsmInstrFffc(EmitFR(0x11, 0x11, static_cast<FRegister>((cc << 2) | 1), fs, fd, 0x11),
1477 fd,
1478 fs,
1479 cc);
1480 }
1481
MovzS(FRegister fd,FRegister fs,Register rt)1482 void MipsAssembler::MovzS(FRegister fd, FRegister fs, Register rt) {
1483 CHECK(!IsR6());
1484 DsFsmInstrFffr(EmitFR(0x11, 0x10, static_cast<FRegister>(rt), fs, fd, 0x12), fd, fs, rt);
1485 }
1486
MovzD(FRegister fd,FRegister fs,Register rt)1487 void MipsAssembler::MovzD(FRegister fd, FRegister fs, Register rt) {
1488 CHECK(!IsR6());
1489 DsFsmInstrFffr(EmitFR(0x11, 0x11, static_cast<FRegister>(rt), fs, fd, 0x12), fd, fs, rt);
1490 }
1491
MovnS(FRegister fd,FRegister fs,Register rt)1492 void MipsAssembler::MovnS(FRegister fd, FRegister fs, Register rt) {
1493 CHECK(!IsR6());
1494 DsFsmInstrFffr(EmitFR(0x11, 0x10, static_cast<FRegister>(rt), fs, fd, 0x13), fd, fs, rt);
1495 }
1496
MovnD(FRegister fd,FRegister fs,Register rt)1497 void MipsAssembler::MovnD(FRegister fd, FRegister fs, Register rt) {
1498 CHECK(!IsR6());
1499 DsFsmInstrFffr(EmitFR(0x11, 0x11, static_cast<FRegister>(rt), fs, fd, 0x13), fd, fs, rt);
1500 }
1501
SelS(FRegister fd,FRegister fs,FRegister ft)1502 void MipsAssembler::SelS(FRegister fd, FRegister fs, FRegister ft) {
1503 CHECK(IsR6());
1504 DsFsmInstrFfff(EmitFR(0x11, 0x10, ft, fs, fd, 0x10), fd, fs, ft);
1505 }
1506
SelD(FRegister fd,FRegister fs,FRegister ft)1507 void MipsAssembler::SelD(FRegister fd, FRegister fs, FRegister ft) {
1508 CHECK(IsR6());
1509 DsFsmInstrFfff(EmitFR(0x11, 0x11, ft, fs, fd, 0x10), fd, fs, ft);
1510 }
1511
SeleqzS(FRegister fd,FRegister fs,FRegister ft)1512 void MipsAssembler::SeleqzS(FRegister fd, FRegister fs, FRegister ft) {
1513 CHECK(IsR6());
1514 DsFsmInstrFff(EmitFR(0x11, 0x10, ft, fs, fd, 0x14), fd, fs, ft);
1515 }
1516
SeleqzD(FRegister fd,FRegister fs,FRegister ft)1517 void MipsAssembler::SeleqzD(FRegister fd, FRegister fs, FRegister ft) {
1518 CHECK(IsR6());
1519 DsFsmInstrFff(EmitFR(0x11, 0x11, ft, fs, fd, 0x14), fd, fs, ft);
1520 }
1521
SelnezS(FRegister fd,FRegister fs,FRegister ft)1522 void MipsAssembler::SelnezS(FRegister fd, FRegister fs, FRegister ft) {
1523 CHECK(IsR6());
1524 DsFsmInstrFff(EmitFR(0x11, 0x10, ft, fs, fd, 0x17), fd, fs, ft);
1525 }
1526
SelnezD(FRegister fd,FRegister fs,FRegister ft)1527 void MipsAssembler::SelnezD(FRegister fd, FRegister fs, FRegister ft) {
1528 CHECK(IsR6());
1529 DsFsmInstrFff(EmitFR(0x11, 0x11, ft, fs, fd, 0x17), fd, fs, ft);
1530 }
1531
ClassS(FRegister fd,FRegister fs)1532 void MipsAssembler::ClassS(FRegister fd, FRegister fs) {
1533 CHECK(IsR6());
1534 DsFsmInstrFff(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x1b), fd, fs, fs);
1535 }
1536
ClassD(FRegister fd,FRegister fs)1537 void MipsAssembler::ClassD(FRegister fd, FRegister fs) {
1538 CHECK(IsR6());
1539 DsFsmInstrFff(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x1b), fd, fs, fs);
1540 }
1541
MinS(FRegister fd,FRegister fs,FRegister ft)1542 void MipsAssembler::MinS(FRegister fd, FRegister fs, FRegister ft) {
1543 CHECK(IsR6());
1544 DsFsmInstrFff(EmitFR(0x11, 0x10, ft, fs, fd, 0x1c), fd, fs, ft);
1545 }
1546
MinD(FRegister fd,FRegister fs,FRegister ft)1547 void MipsAssembler::MinD(FRegister fd, FRegister fs, FRegister ft) {
1548 CHECK(IsR6());
1549 DsFsmInstrFff(EmitFR(0x11, 0x11, ft, fs, fd, 0x1c), fd, fs, ft);
1550 }
1551
MaxS(FRegister fd,FRegister fs,FRegister ft)1552 void MipsAssembler::MaxS(FRegister fd, FRegister fs, FRegister ft) {
1553 CHECK(IsR6());
1554 DsFsmInstrFff(EmitFR(0x11, 0x10, ft, fs, fd, 0x1e), fd, fs, ft);
1555 }
1556
MaxD(FRegister fd,FRegister fs,FRegister ft)1557 void MipsAssembler::MaxD(FRegister fd, FRegister fs, FRegister ft) {
1558 CHECK(IsR6());
1559 DsFsmInstrFff(EmitFR(0x11, 0x11, ft, fs, fd, 0x1e), fd, fs, ft);
1560 }
1561
TruncLS(FRegister fd,FRegister fs)1562 void MipsAssembler::TruncLS(FRegister fd, FRegister fs) {
1563 DsFsmInstrFff(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x09), fd, fs, fs);
1564 }
1565
TruncLD(FRegister fd,FRegister fs)1566 void MipsAssembler::TruncLD(FRegister fd, FRegister fs) {
1567 DsFsmInstrFff(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x09), fd, fs, fs);
1568 }
1569
TruncWS(FRegister fd,FRegister fs)1570 void MipsAssembler::TruncWS(FRegister fd, FRegister fs) {
1571 DsFsmInstrFff(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x0D), fd, fs, fs);
1572 }
1573
TruncWD(FRegister fd,FRegister fs)1574 void MipsAssembler::TruncWD(FRegister fd, FRegister fs) {
1575 DsFsmInstrFff(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x0D), fd, fs, fs);
1576 }
1577
Cvtsw(FRegister fd,FRegister fs)1578 void MipsAssembler::Cvtsw(FRegister fd, FRegister fs) {
1579 DsFsmInstrFff(EmitFR(0x11, 0x14, static_cast<FRegister>(0), fs, fd, 0x20), fd, fs, fs);
1580 }
1581
Cvtdw(FRegister fd,FRegister fs)1582 void MipsAssembler::Cvtdw(FRegister fd, FRegister fs) {
1583 DsFsmInstrFff(EmitFR(0x11, 0x14, static_cast<FRegister>(0), fs, fd, 0x21), fd, fs, fs);
1584 }
1585
Cvtsd(FRegister fd,FRegister fs)1586 void MipsAssembler::Cvtsd(FRegister fd, FRegister fs) {
1587 DsFsmInstrFff(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x20), fd, fs, fs);
1588 }
1589
Cvtds(FRegister fd,FRegister fs)1590 void MipsAssembler::Cvtds(FRegister fd, FRegister fs) {
1591 DsFsmInstrFff(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x21), fd, fs, fs);
1592 }
1593
Cvtsl(FRegister fd,FRegister fs)1594 void MipsAssembler::Cvtsl(FRegister fd, FRegister fs) {
1595 DsFsmInstrFff(EmitFR(0x11, 0x15, static_cast<FRegister>(0), fs, fd, 0x20), fd, fs, fs);
1596 }
1597
Cvtdl(FRegister fd,FRegister fs)1598 void MipsAssembler::Cvtdl(FRegister fd, FRegister fs) {
1599 DsFsmInstrFff(EmitFR(0x11, 0x15, static_cast<FRegister>(0), fs, fd, 0x21), fd, fs, fs);
1600 }
1601
FloorWS(FRegister fd,FRegister fs)1602 void MipsAssembler::FloorWS(FRegister fd, FRegister fs) {
1603 DsFsmInstrFff(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0xf), fd, fs, fs);
1604 }
1605
FloorWD(FRegister fd,FRegister fs)1606 void MipsAssembler::FloorWD(FRegister fd, FRegister fs) {
1607 DsFsmInstrFff(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0xf), fd, fs, fs);
1608 }
1609
Mfc1(Register rt,FRegister fs)1610 void MipsAssembler::Mfc1(Register rt, FRegister fs) {
1611 DsFsmInstrRf(EmitFR(0x11, 0x00, static_cast<FRegister>(rt), fs, static_cast<FRegister>(0), 0x0),
1612 rt,
1613 fs);
1614 }
1615
Mtc1(Register rt,FRegister fs)1616 void MipsAssembler::Mtc1(Register rt, FRegister fs) {
1617 DsFsmInstrFr(EmitFR(0x11, 0x04, static_cast<FRegister>(rt), fs, static_cast<FRegister>(0), 0x0),
1618 fs,
1619 rt);
1620 }
1621
Mfhc1(Register rt,FRegister fs)1622 void MipsAssembler::Mfhc1(Register rt, FRegister fs) {
1623 DsFsmInstrRf(EmitFR(0x11, 0x03, static_cast<FRegister>(rt), fs, static_cast<FRegister>(0), 0x0),
1624 rt,
1625 fs);
1626 }
1627
Mthc1(Register rt,FRegister fs)1628 void MipsAssembler::Mthc1(Register rt, FRegister fs) {
1629 DsFsmInstrFr(EmitFR(0x11, 0x07, static_cast<FRegister>(rt), fs, static_cast<FRegister>(0), 0x0),
1630 fs,
1631 rt);
1632 }
1633
MoveFromFpuHigh(Register rt,FRegister fs)1634 void MipsAssembler::MoveFromFpuHigh(Register rt, FRegister fs) {
1635 if (Is32BitFPU()) {
1636 CHECK_EQ(fs % 2, 0) << fs;
1637 Mfc1(rt, static_cast<FRegister>(fs + 1));
1638 } else {
1639 Mfhc1(rt, fs);
1640 }
1641 }
1642
MoveToFpuHigh(Register rt,FRegister fs)1643 void MipsAssembler::MoveToFpuHigh(Register rt, FRegister fs) {
1644 if (Is32BitFPU()) {
1645 CHECK_EQ(fs % 2, 0) << fs;
1646 Mtc1(rt, static_cast<FRegister>(fs + 1));
1647 } else {
1648 Mthc1(rt, fs);
1649 }
1650 }
1651
Lwc1(FRegister ft,Register rs,uint16_t imm16)1652 void MipsAssembler::Lwc1(FRegister ft, Register rs, uint16_t imm16) {
1653 DsFsmInstrFr(EmitI(0x31, rs, static_cast<Register>(ft), imm16), ft, rs);
1654 }
1655
Ldc1(FRegister ft,Register rs,uint16_t imm16)1656 void MipsAssembler::Ldc1(FRegister ft, Register rs, uint16_t imm16) {
1657 DsFsmInstrFr(EmitI(0x35, rs, static_cast<Register>(ft), imm16), ft, rs);
1658 }
1659
Swc1(FRegister ft,Register rs,uint16_t imm16)1660 void MipsAssembler::Swc1(FRegister ft, Register rs, uint16_t imm16) {
1661 DsFsmInstrFR(EmitI(0x39, rs, static_cast<Register>(ft), imm16), ft, rs);
1662 }
1663
Sdc1(FRegister ft,Register rs,uint16_t imm16)1664 void MipsAssembler::Sdc1(FRegister ft, Register rs, uint16_t imm16) {
1665 DsFsmInstrFR(EmitI(0x3d, rs, static_cast<Register>(ft), imm16), ft, rs);
1666 }
1667
Break()1668 void MipsAssembler::Break() {
1669 DsFsmInstrNop(EmitR(0, ZERO, ZERO, ZERO, 0, 0xD));
1670 }
1671
Nop()1672 void MipsAssembler::Nop() {
1673 DsFsmInstrNop(EmitR(0x0, ZERO, ZERO, ZERO, 0, 0x0));
1674 }
1675
NopIfNoReordering()1676 void MipsAssembler::NopIfNoReordering() {
1677 if (!reordering_) {
1678 Nop();
1679 }
1680 }
1681
Move(Register rd,Register rs)1682 void MipsAssembler::Move(Register rd, Register rs) {
1683 Or(rd, rs, ZERO);
1684 }
1685
Clear(Register rd)1686 void MipsAssembler::Clear(Register rd) {
1687 Move(rd, ZERO);
1688 }
1689
Not(Register rd,Register rs)1690 void MipsAssembler::Not(Register rd, Register rs) {
1691 Nor(rd, rs, ZERO);
1692 }
1693
Push(Register rs)1694 void MipsAssembler::Push(Register rs) {
1695 IncreaseFrameSize(kMipsWordSize);
1696 Sw(rs, SP, 0);
1697 }
1698
Pop(Register rd)1699 void MipsAssembler::Pop(Register rd) {
1700 Lw(rd, SP, 0);
1701 DecreaseFrameSize(kMipsWordSize);
1702 }
1703
PopAndReturn(Register rd,Register rt)1704 void MipsAssembler::PopAndReturn(Register rd, Register rt) {
1705 bool reordering = SetReorder(false);
1706 Lw(rd, SP, 0);
1707 Jr(rt);
1708 DecreaseFrameSize(kMipsWordSize); // Single instruction in delay slot.
1709 SetReorder(reordering);
1710 }
1711
LoadConst32(Register rd,int32_t value)1712 void MipsAssembler::LoadConst32(Register rd, int32_t value) {
1713 if (IsUint<16>(value)) {
1714 // Use OR with (unsigned) immediate to encode 16b unsigned int.
1715 Ori(rd, ZERO, value);
1716 } else if (IsInt<16>(value)) {
1717 // Use ADD with (signed) immediate to encode 16b signed int.
1718 Addiu(rd, ZERO, value);
1719 } else {
1720 Lui(rd, High16Bits(value));
1721 if (value & 0xFFFF)
1722 Ori(rd, rd, Low16Bits(value));
1723 }
1724 }
1725
LoadConst64(Register reg_hi,Register reg_lo,int64_t value)1726 void MipsAssembler::LoadConst64(Register reg_hi, Register reg_lo, int64_t value) {
1727 uint32_t low = Low32Bits(value);
1728 uint32_t high = High32Bits(value);
1729 LoadConst32(reg_lo, low);
1730 if (high != low) {
1731 LoadConst32(reg_hi, high);
1732 } else {
1733 Move(reg_hi, reg_lo);
1734 }
1735 }
1736
LoadSConst32(FRegister r,int32_t value,Register temp)1737 void MipsAssembler::LoadSConst32(FRegister r, int32_t value, Register temp) {
1738 if (value == 0) {
1739 temp = ZERO;
1740 } else {
1741 LoadConst32(temp, value);
1742 }
1743 Mtc1(temp, r);
1744 }
1745
LoadDConst64(FRegister rd,int64_t value,Register temp)1746 void MipsAssembler::LoadDConst64(FRegister rd, int64_t value, Register temp) {
1747 uint32_t low = Low32Bits(value);
1748 uint32_t high = High32Bits(value);
1749 if (low == 0) {
1750 Mtc1(ZERO, rd);
1751 } else {
1752 LoadConst32(temp, low);
1753 Mtc1(temp, rd);
1754 }
1755 if (high == 0) {
1756 MoveToFpuHigh(ZERO, rd);
1757 } else {
1758 LoadConst32(temp, high);
1759 MoveToFpuHigh(temp, rd);
1760 }
1761 }
1762
Addiu32(Register rt,Register rs,int32_t value,Register temp)1763 void MipsAssembler::Addiu32(Register rt, Register rs, int32_t value, Register temp) {
1764 CHECK_NE(rs, temp); // Must not overwrite the register `rs` while loading `value`.
1765 if (IsInt<16>(value)) {
1766 Addiu(rt, rs, value);
1767 } else if (IsR6()) {
1768 int16_t high = High16Bits(value);
1769 int16_t low = Low16Bits(value);
1770 high += (low < 0) ? 1 : 0; // Account for sign extension in addiu.
1771 if (low != 0) {
1772 Aui(temp, rs, high);
1773 Addiu(rt, temp, low);
1774 } else {
1775 Aui(rt, rs, high);
1776 }
1777 } else {
1778 // Do not load the whole 32-bit `value` if it can be represented as
1779 // a sum of two 16-bit signed values. This can save an instruction.
1780 constexpr int32_t kMinValueForSimpleAdjustment = std::numeric_limits<int16_t>::min() * 2;
1781 constexpr int32_t kMaxValueForSimpleAdjustment = std::numeric_limits<int16_t>::max() * 2;
1782 if (0 <= value && value <= kMaxValueForSimpleAdjustment) {
1783 Addiu(temp, rs, kMaxValueForSimpleAdjustment / 2);
1784 Addiu(rt, temp, value - kMaxValueForSimpleAdjustment / 2);
1785 } else if (kMinValueForSimpleAdjustment <= value && value < 0) {
1786 Addiu(temp, rs, kMinValueForSimpleAdjustment / 2);
1787 Addiu(rt, temp, value - kMinValueForSimpleAdjustment / 2);
1788 } else {
1789 // Now that all shorter options have been exhausted, load the full 32-bit value.
1790 LoadConst32(temp, value);
1791 Addu(rt, rs, temp);
1792 }
1793 }
1794 }
1795
InitShortOrLong(MipsAssembler::Branch::OffsetBits offset_size,MipsAssembler::Branch::Type short_type,MipsAssembler::Branch::Type long_type)1796 void MipsAssembler::Branch::InitShortOrLong(MipsAssembler::Branch::OffsetBits offset_size,
1797 MipsAssembler::Branch::Type short_type,
1798 MipsAssembler::Branch::Type long_type) {
1799 type_ = (offset_size <= branch_info_[short_type].offset_size) ? short_type : long_type;
1800 }
1801
InitializeType(Type initial_type,bool is_r6)1802 void MipsAssembler::Branch::InitializeType(Type initial_type, bool is_r6) {
1803 OffsetBits offset_size = GetOffsetSizeNeeded(location_, target_);
1804 if (is_r6) {
1805 // R6
1806 switch (initial_type) {
1807 case kLabel:
1808 CHECK(!IsResolved());
1809 type_ = kR6Label;
1810 break;
1811 case kLiteral:
1812 CHECK(!IsResolved());
1813 type_ = kR6Literal;
1814 break;
1815 case kCall:
1816 InitShortOrLong(offset_size, kR6Call, kR6LongCall);
1817 break;
1818 case kCondBranch:
1819 switch (condition_) {
1820 case kUncond:
1821 InitShortOrLong(offset_size, kR6UncondBranch, kR6LongUncondBranch);
1822 break;
1823 case kCondEQZ:
1824 case kCondNEZ:
1825 // Special case for beqzc/bnezc with longer offset than in other b<cond>c instructions.
1826 type_ = (offset_size <= kOffset23) ? kR6CondBranch : kR6LongCondBranch;
1827 break;
1828 default:
1829 InitShortOrLong(offset_size, kR6CondBranch, kR6LongCondBranch);
1830 break;
1831 }
1832 break;
1833 default:
1834 LOG(FATAL) << "Unexpected branch type " << initial_type;
1835 UNREACHABLE();
1836 }
1837 } else {
1838 // R2
1839 switch (initial_type) {
1840 case kLabel:
1841 CHECK(!IsResolved());
1842 type_ = kLabel;
1843 break;
1844 case kLiteral:
1845 CHECK(!IsResolved());
1846 type_ = kLiteral;
1847 break;
1848 case kCall:
1849 InitShortOrLong(offset_size, kCall, kLongCall);
1850 break;
1851 case kCondBranch:
1852 switch (condition_) {
1853 case kUncond:
1854 InitShortOrLong(offset_size, kUncondBranch, kLongUncondBranch);
1855 break;
1856 default:
1857 InitShortOrLong(offset_size, kCondBranch, kLongCondBranch);
1858 break;
1859 }
1860 break;
1861 default:
1862 LOG(FATAL) << "Unexpected branch type " << initial_type;
1863 UNREACHABLE();
1864 }
1865 }
1866 old_type_ = type_;
1867 }
1868
IsNop(BranchCondition condition,Register lhs,Register rhs)1869 bool MipsAssembler::Branch::IsNop(BranchCondition condition, Register lhs, Register rhs) {
1870 switch (condition) {
1871 case kCondLT:
1872 case kCondGT:
1873 case kCondNE:
1874 case kCondLTU:
1875 return lhs == rhs;
1876 default:
1877 return false;
1878 }
1879 }
1880
IsUncond(BranchCondition condition,Register lhs,Register rhs)1881 bool MipsAssembler::Branch::IsUncond(BranchCondition condition, Register lhs, Register rhs) {
1882 switch (condition) {
1883 case kUncond:
1884 return true;
1885 case kCondGE:
1886 case kCondLE:
1887 case kCondEQ:
1888 case kCondGEU:
1889 return lhs == rhs;
1890 default:
1891 return false;
1892 }
1893 }
1894
Branch(bool is_r6,uint32_t location,uint32_t target,bool is_call)1895 MipsAssembler::Branch::Branch(bool is_r6, uint32_t location, uint32_t target, bool is_call)
1896 : old_location_(location),
1897 location_(location),
1898 target_(target),
1899 lhs_reg_(0),
1900 rhs_reg_(0),
1901 condition_(kUncond),
1902 delayed_instruction_(kUnfilledDelaySlot) {
1903 InitializeType((is_call ? kCall : kCondBranch), is_r6);
1904 }
1905
Branch(bool is_r6,uint32_t location,uint32_t target,MipsAssembler::BranchCondition condition,Register lhs_reg,Register rhs_reg)1906 MipsAssembler::Branch::Branch(bool is_r6,
1907 uint32_t location,
1908 uint32_t target,
1909 MipsAssembler::BranchCondition condition,
1910 Register lhs_reg,
1911 Register rhs_reg)
1912 : old_location_(location),
1913 location_(location),
1914 target_(target),
1915 lhs_reg_(lhs_reg),
1916 rhs_reg_(rhs_reg),
1917 condition_(condition),
1918 delayed_instruction_(kUnfilledDelaySlot) {
1919 CHECK_NE(condition, kUncond);
1920 switch (condition) {
1921 case kCondLT:
1922 case kCondGE:
1923 case kCondLE:
1924 case kCondGT:
1925 case kCondLTU:
1926 case kCondGEU:
1927 // We don't support synthetic R2 branches (preceded with slt[u]) at this level
1928 // (R2 doesn't have branches to compare 2 registers using <, <=, >=, >).
1929 // We leave this up to the caller.
1930 CHECK(is_r6);
1931 FALLTHROUGH_INTENDED;
1932 case kCondEQ:
1933 case kCondNE:
1934 // Require registers other than 0 not only for R6, but also for R2 to catch errors.
1935 // To compare with 0, use dedicated kCond*Z conditions.
1936 CHECK_NE(lhs_reg, ZERO);
1937 CHECK_NE(rhs_reg, ZERO);
1938 break;
1939 case kCondLTZ:
1940 case kCondGEZ:
1941 case kCondLEZ:
1942 case kCondGTZ:
1943 case kCondEQZ:
1944 case kCondNEZ:
1945 // Require registers other than 0 not only for R6, but also for R2 to catch errors.
1946 CHECK_NE(lhs_reg, ZERO);
1947 CHECK_EQ(rhs_reg, ZERO);
1948 break;
1949 case kCondF:
1950 case kCondT:
1951 CHECK_EQ(rhs_reg, ZERO);
1952 break;
1953 case kUncond:
1954 UNREACHABLE();
1955 }
1956 CHECK(!IsNop(condition, lhs_reg, rhs_reg));
1957 if (IsUncond(condition, lhs_reg, rhs_reg)) {
1958 // Branch condition is always true, make the branch unconditional.
1959 condition_ = kUncond;
1960 }
1961 InitializeType(kCondBranch, is_r6);
1962 }
1963
Branch(bool is_r6,uint32_t location,Register dest_reg,Register base_reg,Type label_or_literal_type)1964 MipsAssembler::Branch::Branch(bool is_r6,
1965 uint32_t location,
1966 Register dest_reg,
1967 Register base_reg,
1968 Type label_or_literal_type)
1969 : old_location_(location),
1970 location_(location),
1971 target_(kUnresolved),
1972 lhs_reg_(dest_reg),
1973 rhs_reg_(base_reg),
1974 condition_(kUncond),
1975 delayed_instruction_(kUnfilledDelaySlot) {
1976 CHECK_NE(dest_reg, ZERO);
1977 if (is_r6) {
1978 CHECK_EQ(base_reg, ZERO);
1979 } else {
1980 CHECK_NE(base_reg, ZERO);
1981 }
1982 InitializeType(label_or_literal_type, is_r6);
1983 }
1984
OppositeCondition(MipsAssembler::BranchCondition cond)1985 MipsAssembler::BranchCondition MipsAssembler::Branch::OppositeCondition(
1986 MipsAssembler::BranchCondition cond) {
1987 switch (cond) {
1988 case kCondLT:
1989 return kCondGE;
1990 case kCondGE:
1991 return kCondLT;
1992 case kCondLE:
1993 return kCondGT;
1994 case kCondGT:
1995 return kCondLE;
1996 case kCondLTZ:
1997 return kCondGEZ;
1998 case kCondGEZ:
1999 return kCondLTZ;
2000 case kCondLEZ:
2001 return kCondGTZ;
2002 case kCondGTZ:
2003 return kCondLEZ;
2004 case kCondEQ:
2005 return kCondNE;
2006 case kCondNE:
2007 return kCondEQ;
2008 case kCondEQZ:
2009 return kCondNEZ;
2010 case kCondNEZ:
2011 return kCondEQZ;
2012 case kCondLTU:
2013 return kCondGEU;
2014 case kCondGEU:
2015 return kCondLTU;
2016 case kCondF:
2017 return kCondT;
2018 case kCondT:
2019 return kCondF;
2020 case kUncond:
2021 LOG(FATAL) << "Unexpected branch condition " << cond;
2022 }
2023 UNREACHABLE();
2024 }
2025
GetType() const2026 MipsAssembler::Branch::Type MipsAssembler::Branch::GetType() const {
2027 return type_;
2028 }
2029
GetCondition() const2030 MipsAssembler::BranchCondition MipsAssembler::Branch::GetCondition() const {
2031 return condition_;
2032 }
2033
GetLeftRegister() const2034 Register MipsAssembler::Branch::GetLeftRegister() const {
2035 return static_cast<Register>(lhs_reg_);
2036 }
2037
GetRightRegister() const2038 Register MipsAssembler::Branch::GetRightRegister() const {
2039 return static_cast<Register>(rhs_reg_);
2040 }
2041
GetTarget() const2042 uint32_t MipsAssembler::Branch::GetTarget() const {
2043 return target_;
2044 }
2045
GetLocation() const2046 uint32_t MipsAssembler::Branch::GetLocation() const {
2047 return location_;
2048 }
2049
GetOldLocation() const2050 uint32_t MipsAssembler::Branch::GetOldLocation() const {
2051 return old_location_;
2052 }
2053
GetPrecedingInstructionLength(Type type) const2054 uint32_t MipsAssembler::Branch::GetPrecedingInstructionLength(Type type) const {
2055 // Short branches with delay slots always consist of two instructions, the branch
2056 // and the delay slot, irrespective of whether the delay slot is filled with a
2057 // useful instruction or not.
2058 // Long composite branches may have a length longer by one instruction than
2059 // specified in branch_info_[].length. This happens when an instruction is taken
2060 // to fill the short branch delay slot, but the branch eventually becomes long
2061 // and formally has no delay slot to fill. This instruction is placed at the
2062 // beginning of the long composite branch and this needs to be accounted for in
2063 // the branch length and the location of the offset encoded in the branch.
2064 switch (type) {
2065 case kLongUncondBranch:
2066 case kLongCondBranch:
2067 case kLongCall:
2068 case kR6LongCondBranch:
2069 return (delayed_instruction_ != kUnfilledDelaySlot &&
2070 delayed_instruction_ != kUnfillableDelaySlot) ? 1 : 0;
2071 default:
2072 return 0;
2073 }
2074 }
2075
GetPrecedingInstructionSize(Type type) const2076 uint32_t MipsAssembler::Branch::GetPrecedingInstructionSize(Type type) const {
2077 return GetPrecedingInstructionLength(type) * sizeof(uint32_t);
2078 }
2079
GetLength() const2080 uint32_t MipsAssembler::Branch::GetLength() const {
2081 return GetPrecedingInstructionLength(type_) + branch_info_[type_].length;
2082 }
2083
GetOldLength() const2084 uint32_t MipsAssembler::Branch::GetOldLength() const {
2085 return GetPrecedingInstructionLength(old_type_) + branch_info_[old_type_].length;
2086 }
2087
GetSize() const2088 uint32_t MipsAssembler::Branch::GetSize() const {
2089 return GetLength() * sizeof(uint32_t);
2090 }
2091
GetOldSize() const2092 uint32_t MipsAssembler::Branch::GetOldSize() const {
2093 return GetOldLength() * sizeof(uint32_t);
2094 }
2095
GetEndLocation() const2096 uint32_t MipsAssembler::Branch::GetEndLocation() const {
2097 return GetLocation() + GetSize();
2098 }
2099
GetOldEndLocation() const2100 uint32_t MipsAssembler::Branch::GetOldEndLocation() const {
2101 return GetOldLocation() + GetOldSize();
2102 }
2103
IsLong() const2104 bool MipsAssembler::Branch::IsLong() const {
2105 switch (type_) {
2106 // R2 short branches.
2107 case kUncondBranch:
2108 case kCondBranch:
2109 case kCall:
2110 // R2 near label.
2111 case kLabel:
2112 // R2 near literal.
2113 case kLiteral:
2114 // R6 short branches.
2115 case kR6UncondBranch:
2116 case kR6CondBranch:
2117 case kR6Call:
2118 // R6 near label.
2119 case kR6Label:
2120 // R6 near literal.
2121 case kR6Literal:
2122 return false;
2123 // R2 long branches.
2124 case kLongUncondBranch:
2125 case kLongCondBranch:
2126 case kLongCall:
2127 // R2 far label.
2128 case kFarLabel:
2129 // R2 far literal.
2130 case kFarLiteral:
2131 // R6 long branches.
2132 case kR6LongUncondBranch:
2133 case kR6LongCondBranch:
2134 case kR6LongCall:
2135 // R6 far label.
2136 case kR6FarLabel:
2137 // R6 far literal.
2138 case kR6FarLiteral:
2139 return true;
2140 }
2141 UNREACHABLE();
2142 }
2143
IsResolved() const2144 bool MipsAssembler::Branch::IsResolved() const {
2145 return target_ != kUnresolved;
2146 }
2147
GetOffsetSize() const2148 MipsAssembler::Branch::OffsetBits MipsAssembler::Branch::GetOffsetSize() const {
2149 OffsetBits offset_size =
2150 (type_ == kR6CondBranch && (condition_ == kCondEQZ || condition_ == kCondNEZ))
2151 ? kOffset23
2152 : branch_info_[type_].offset_size;
2153 return offset_size;
2154 }
2155
GetOffsetSizeNeeded(uint32_t location,uint32_t target)2156 MipsAssembler::Branch::OffsetBits MipsAssembler::Branch::GetOffsetSizeNeeded(uint32_t location,
2157 uint32_t target) {
2158 // For unresolved targets assume the shortest encoding
2159 // (later it will be made longer if needed).
2160 if (target == kUnresolved)
2161 return kOffset16;
2162 int64_t distance = static_cast<int64_t>(target) - location;
2163 // To simplify calculations in composite branches consisting of multiple instructions
2164 // bump up the distance by a value larger than the max byte size of a composite branch.
2165 distance += (distance >= 0) ? kMaxBranchSize : -kMaxBranchSize;
2166 if (IsInt<kOffset16>(distance))
2167 return kOffset16;
2168 else if (IsInt<kOffset18>(distance))
2169 return kOffset18;
2170 else if (IsInt<kOffset21>(distance))
2171 return kOffset21;
2172 else if (IsInt<kOffset23>(distance))
2173 return kOffset23;
2174 else if (IsInt<kOffset28>(distance))
2175 return kOffset28;
2176 return kOffset32;
2177 }
2178
Resolve(uint32_t target)2179 void MipsAssembler::Branch::Resolve(uint32_t target) {
2180 target_ = target;
2181 }
2182
Relocate(uint32_t expand_location,uint32_t delta)2183 void MipsAssembler::Branch::Relocate(uint32_t expand_location, uint32_t delta) {
2184 if (location_ > expand_location) {
2185 location_ += delta;
2186 }
2187 if (!IsResolved()) {
2188 return; // Don't know the target yet.
2189 }
2190 if (target_ > expand_location) {
2191 target_ += delta;
2192 }
2193 }
2194
PromoteToLong()2195 void MipsAssembler::Branch::PromoteToLong() {
2196 switch (type_) {
2197 // R2 short branches.
2198 case kUncondBranch:
2199 type_ = kLongUncondBranch;
2200 break;
2201 case kCondBranch:
2202 type_ = kLongCondBranch;
2203 break;
2204 case kCall:
2205 type_ = kLongCall;
2206 break;
2207 // R2 near label.
2208 case kLabel:
2209 type_ = kFarLabel;
2210 break;
2211 // R2 near literal.
2212 case kLiteral:
2213 type_ = kFarLiteral;
2214 break;
2215 // R6 short branches.
2216 case kR6UncondBranch:
2217 type_ = kR6LongUncondBranch;
2218 break;
2219 case kR6CondBranch:
2220 type_ = kR6LongCondBranch;
2221 break;
2222 case kR6Call:
2223 type_ = kR6LongCall;
2224 break;
2225 // R6 near label.
2226 case kR6Label:
2227 type_ = kR6FarLabel;
2228 break;
2229 // R6 near literal.
2230 case kR6Literal:
2231 type_ = kR6FarLiteral;
2232 break;
2233 default:
2234 // Note: 'type_' is already long.
2235 break;
2236 }
2237 CHECK(IsLong());
2238 }
2239
GetBranchLocationOrPcRelBase(const MipsAssembler::Branch * branch) const2240 uint32_t MipsAssembler::GetBranchLocationOrPcRelBase(const MipsAssembler::Branch* branch) const {
2241 switch (branch->GetType()) {
2242 case Branch::kLabel:
2243 case Branch::kFarLabel:
2244 case Branch::kLiteral:
2245 case Branch::kFarLiteral:
2246 return GetLabelLocation(&pc_rel_base_label_);
2247 default:
2248 return branch->GetLocation();
2249 }
2250 }
2251
PromoteIfNeeded(uint32_t location,uint32_t max_short_distance)2252 uint32_t MipsAssembler::Branch::PromoteIfNeeded(uint32_t location, uint32_t max_short_distance) {
2253 // `location` is either `GetLabelLocation(&pc_rel_base_label_)` for R2 labels/literals or
2254 // `this->GetLocation()` for everything else.
2255 // If the branch is still unresolved or already long, nothing to do.
2256 if (IsLong() || !IsResolved()) {
2257 return 0;
2258 }
2259 // Promote the short branch to long if the offset size is too small
2260 // to hold the distance between location and target_.
2261 if (GetOffsetSizeNeeded(location, target_) > GetOffsetSize()) {
2262 PromoteToLong();
2263 uint32_t old_size = GetOldSize();
2264 uint32_t new_size = GetSize();
2265 CHECK_GT(new_size, old_size);
2266 return new_size - old_size;
2267 }
2268 // The following logic is for debugging/testing purposes.
2269 // Promote some short branches to long when it's not really required.
2270 if (UNLIKELY(max_short_distance != std::numeric_limits<uint32_t>::max())) {
2271 int64_t distance = static_cast<int64_t>(target_) - location;
2272 distance = (distance >= 0) ? distance : -distance;
2273 if (distance >= max_short_distance) {
2274 PromoteToLong();
2275 uint32_t old_size = GetOldSize();
2276 uint32_t new_size = GetSize();
2277 CHECK_GT(new_size, old_size);
2278 return new_size - old_size;
2279 }
2280 }
2281 return 0;
2282 }
2283
GetOffsetLocation() const2284 uint32_t MipsAssembler::Branch::GetOffsetLocation() const {
2285 return location_ + GetPrecedingInstructionSize(type_) +
2286 branch_info_[type_].instr_offset * sizeof(uint32_t);
2287 }
2288
GetBranchOrPcRelBaseForEncoding(const MipsAssembler::Branch * branch) const2289 uint32_t MipsAssembler::GetBranchOrPcRelBaseForEncoding(const MipsAssembler::Branch* branch) const {
2290 switch (branch->GetType()) {
2291 case Branch::kLabel:
2292 case Branch::kFarLabel:
2293 case Branch::kLiteral:
2294 case Branch::kFarLiteral:
2295 return GetLabelLocation(&pc_rel_base_label_);
2296 default:
2297 return branch->GetOffsetLocation() +
2298 Branch::branch_info_[branch->GetType()].pc_org * sizeof(uint32_t);
2299 }
2300 }
2301
GetOffset(uint32_t location) const2302 uint32_t MipsAssembler::Branch::GetOffset(uint32_t location) const {
2303 // `location` is either `GetLabelLocation(&pc_rel_base_label_)` for R2 labels/literals or
2304 // `this->GetOffsetLocation() + branch_info_[this->GetType()].pc_org * sizeof(uint32_t)`
2305 // for everything else.
2306 CHECK(IsResolved());
2307 uint32_t ofs_mask = 0xFFFFFFFF >> (32 - GetOffsetSize());
2308 // Calculate the byte distance between instructions and also account for
2309 // different PC-relative origins.
2310 uint32_t offset = target_ - location;
2311 // Prepare the offset for encoding into the instruction(s).
2312 offset = (offset & ofs_mask) >> branch_info_[type_].offset_shift;
2313 return offset;
2314 }
2315
GetBranch(uint32_t branch_id)2316 MipsAssembler::Branch* MipsAssembler::GetBranch(uint32_t branch_id) {
2317 CHECK_LT(branch_id, branches_.size());
2318 return &branches_[branch_id];
2319 }
2320
GetBranch(uint32_t branch_id) const2321 const MipsAssembler::Branch* MipsAssembler::GetBranch(uint32_t branch_id) const {
2322 CHECK_LT(branch_id, branches_.size());
2323 return &branches_[branch_id];
2324 }
2325
Bind(MipsLabel * label)2326 void MipsAssembler::Bind(MipsLabel* label) {
2327 CHECK(!label->IsBound());
2328 uint32_t bound_pc = buffer_.Size();
2329
2330 // Make the delay slot FSM aware of the new label.
2331 DsFsmLabel();
2332
2333 // Walk the list of branches referring to and preceding this label.
2334 // Store the previously unknown target addresses in them.
2335 while (label->IsLinked()) {
2336 uint32_t branch_id = label->Position();
2337 Branch* branch = GetBranch(branch_id);
2338 branch->Resolve(bound_pc);
2339
2340 uint32_t branch_location = branch->GetLocation();
2341 // Extract the location of the previous branch in the list (walking the list backwards;
2342 // the previous branch ID was stored in the space reserved for this branch).
2343 uint32_t prev = buffer_.Load<uint32_t>(branch_location);
2344
2345 // On to the previous branch in the list...
2346 label->position_ = prev;
2347 }
2348
2349 // Now make the label object contain its own location (relative to the end of the preceding
2350 // branch, if any; it will be used by the branches referring to and following this label).
2351 label->prev_branch_id_plus_one_ = branches_.size();
2352 if (label->prev_branch_id_plus_one_) {
2353 uint32_t branch_id = label->prev_branch_id_plus_one_ - 1;
2354 const Branch* branch = GetBranch(branch_id);
2355 bound_pc -= branch->GetEndLocation();
2356 }
2357 label->BindTo(bound_pc);
2358 }
2359
GetLabelLocation(const MipsLabel * label) const2360 uint32_t MipsAssembler::GetLabelLocation(const MipsLabel* label) const {
2361 CHECK(label->IsBound());
2362 uint32_t target = label->Position();
2363 if (label->prev_branch_id_plus_one_) {
2364 // Get label location based on the branch preceding it.
2365 uint32_t branch_id = label->prev_branch_id_plus_one_ - 1;
2366 const Branch* branch = GetBranch(branch_id);
2367 target += branch->GetEndLocation();
2368 }
2369 return target;
2370 }
2371
GetAdjustedPosition(uint32_t old_position)2372 uint32_t MipsAssembler::GetAdjustedPosition(uint32_t old_position) {
2373 // We can reconstruct the adjustment by going through all the branches from the beginning
2374 // up to the old_position. Since we expect AdjustedPosition() to be called in a loop
2375 // with increasing old_position, we can use the data from last AdjustedPosition() to
2376 // continue where we left off and the whole loop should be O(m+n) where m is the number
2377 // of positions to adjust and n is the number of branches.
2378 if (old_position < last_old_position_) {
2379 last_position_adjustment_ = 0;
2380 last_old_position_ = 0;
2381 last_branch_id_ = 0;
2382 }
2383 while (last_branch_id_ != branches_.size()) {
2384 const Branch* branch = GetBranch(last_branch_id_);
2385 if (branch->GetLocation() >= old_position + last_position_adjustment_) {
2386 break;
2387 }
2388 last_position_adjustment_ += branch->GetSize() - branch->GetOldSize();
2389 ++last_branch_id_;
2390 }
2391 last_old_position_ = old_position;
2392 return old_position + last_position_adjustment_;
2393 }
2394
BindPcRelBaseLabel()2395 void MipsAssembler::BindPcRelBaseLabel() {
2396 Bind(&pc_rel_base_label_);
2397 }
2398
GetPcRelBaseLabelLocation() const2399 uint32_t MipsAssembler::GetPcRelBaseLabelLocation() const {
2400 return GetLabelLocation(&pc_rel_base_label_);
2401 }
2402
FinalizeLabeledBranch(MipsLabel * label)2403 void MipsAssembler::FinalizeLabeledBranch(MipsLabel* label) {
2404 uint32_t length = branches_.back().GetLength();
2405 // Commit the last branch target label (if any).
2406 DsFsmCommitLabel();
2407 if (!label->IsBound()) {
2408 // Branch forward (to a following label), distance is unknown.
2409 // The first branch forward will contain 0, serving as the terminator of
2410 // the list of forward-reaching branches.
2411 Emit(label->position_);
2412 // Nothing for the delay slot (yet).
2413 DsFsmInstrNop(0);
2414 length--;
2415 // Now make the label object point to this branch
2416 // (this forms a linked list of branches preceding this label).
2417 uint32_t branch_id = branches_.size() - 1;
2418 label->LinkTo(branch_id);
2419 }
2420 // Reserve space for the branch.
2421 while (length--) {
2422 Nop();
2423 }
2424 }
2425
CanHaveDelayedInstruction(const DelaySlot & delay_slot) const2426 bool MipsAssembler::Branch::CanHaveDelayedInstruction(const DelaySlot& delay_slot) const {
2427 if (delay_slot.instruction_ == 0) {
2428 // NOP or no instruction for the delay slot.
2429 return false;
2430 }
2431 switch (type_) {
2432 // R2 unconditional branches.
2433 case kUncondBranch:
2434 case kLongUncondBranch:
2435 // There are no register interdependencies.
2436 return true;
2437
2438 // R2 calls.
2439 case kCall:
2440 case kLongCall:
2441 // Instructions depending on or modifying RA should not be moved into delay slots
2442 // of branches modifying RA.
2443 return ((delay_slot.gpr_ins_mask_ | delay_slot.gpr_outs_mask_) & (1u << RA)) == 0;
2444
2445 // R2 conditional branches.
2446 case kCondBranch:
2447 case kLongCondBranch:
2448 switch (condition_) {
2449 // Branches with one GPR source.
2450 case kCondLTZ:
2451 case kCondGEZ:
2452 case kCondLEZ:
2453 case kCondGTZ:
2454 case kCondEQZ:
2455 case kCondNEZ:
2456 return (delay_slot.gpr_outs_mask_ & (1u << lhs_reg_)) == 0;
2457
2458 // Branches with two GPR sources.
2459 case kCondEQ:
2460 case kCondNE:
2461 return (delay_slot.gpr_outs_mask_ & ((1u << lhs_reg_) | (1u << rhs_reg_))) == 0;
2462
2463 // Branches with one FPU condition code source.
2464 case kCondF:
2465 case kCondT:
2466 return (delay_slot.cc_outs_mask_ & (1u << lhs_reg_)) == 0;
2467
2468 default:
2469 // We don't support synthetic R2 branches (preceded with slt[u]) at this level
2470 // (R2 doesn't have branches to compare 2 registers using <, <=, >=, >).
2471 LOG(FATAL) << "Unexpected branch condition " << condition_;
2472 UNREACHABLE();
2473 }
2474
2475 // R6 unconditional branches.
2476 case kR6UncondBranch:
2477 case kR6LongUncondBranch:
2478 // R6 calls.
2479 case kR6Call:
2480 case kR6LongCall:
2481 // There are no delay slots.
2482 return false;
2483
2484 // R6 conditional branches.
2485 case kR6CondBranch:
2486 case kR6LongCondBranch:
2487 switch (condition_) {
2488 // Branches with one FPU register source.
2489 case kCondF:
2490 case kCondT:
2491 return (delay_slot.fpr_outs_mask_ & (1u << lhs_reg_)) == 0;
2492 // Others have a forbidden slot instead of a delay slot.
2493 default:
2494 return false;
2495 }
2496
2497 // Literals.
2498 default:
2499 LOG(FATAL) << "Unexpected branch type " << type_;
2500 UNREACHABLE();
2501 }
2502 }
2503
GetDelayedInstruction() const2504 uint32_t MipsAssembler::Branch::GetDelayedInstruction() const {
2505 return delayed_instruction_;
2506 }
2507
SetDelayedInstruction(uint32_t instruction)2508 void MipsAssembler::Branch::SetDelayedInstruction(uint32_t instruction) {
2509 CHECK_NE(instruction, kUnfilledDelaySlot);
2510 CHECK_EQ(delayed_instruction_, kUnfilledDelaySlot);
2511 delayed_instruction_ = instruction;
2512 }
2513
DecrementLocations()2514 void MipsAssembler::Branch::DecrementLocations() {
2515 // We first create a branch object, which gets its type and locations initialized,
2516 // and then we check if the branch can actually have the preceding instruction moved
2517 // into its delay slot. If it can, the branch locations need to be decremented.
2518 //
2519 // We could make the check before creating the branch object and avoid the location
2520 // adjustment, but the check is cleaner when performed on an initialized branch
2521 // object.
2522 //
2523 // If the branch is backwards (to a previously bound label), reducing the locations
2524 // cannot cause a short branch to exceed its offset range because the offset reduces.
2525 // And this is not at all a problem for a long branch backwards.
2526 //
2527 // If the branch is forward (not linked to any label yet), reducing the locations
2528 // is harmless. The branch will be promoted to long if needed when the target is known.
2529 CHECK_EQ(location_, old_location_);
2530 CHECK_GE(old_location_, sizeof(uint32_t));
2531 old_location_ -= sizeof(uint32_t);
2532 location_ = old_location_;
2533 }
2534
MoveInstructionToDelaySlot(Branch & branch)2535 void MipsAssembler::MoveInstructionToDelaySlot(Branch& branch) {
2536 if (branch.CanHaveDelayedInstruction(delay_slot_)) {
2537 // The last instruction cannot be used in a different delay slot,
2538 // do not commit the label before it (if any).
2539 DsFsmDropLabel();
2540 // Remove the last emitted instruction.
2541 size_t size = buffer_.Size();
2542 CHECK_GE(size, sizeof(uint32_t));
2543 size -= sizeof(uint32_t);
2544 CHECK_EQ(buffer_.Load<uint32_t>(size), delay_slot_.instruction_);
2545 buffer_.Resize(size);
2546 // Attach it to the branch and adjust the branch locations.
2547 branch.DecrementLocations();
2548 branch.SetDelayedInstruction(delay_slot_.instruction_);
2549 } else if (!reordering_ && branch.GetType() == Branch::kUncondBranch) {
2550 // If reordefing is disabled, prevent absorption of the target instruction.
2551 branch.SetDelayedInstruction(Branch::kUnfillableDelaySlot);
2552 }
2553 }
2554
Buncond(MipsLabel * label)2555 void MipsAssembler::Buncond(MipsLabel* label) {
2556 uint32_t target = label->IsBound() ? GetLabelLocation(label) : Branch::kUnresolved;
2557 branches_.emplace_back(IsR6(), buffer_.Size(), target, /* is_call */ false);
2558 MoveInstructionToDelaySlot(branches_.back());
2559 FinalizeLabeledBranch(label);
2560 }
2561
Bcond(MipsLabel * label,BranchCondition condition,Register lhs,Register rhs)2562 void MipsAssembler::Bcond(MipsLabel* label, BranchCondition condition, Register lhs, Register rhs) {
2563 // If lhs = rhs, this can be a NOP.
2564 if (Branch::IsNop(condition, lhs, rhs)) {
2565 return;
2566 }
2567 uint32_t target = label->IsBound() ? GetLabelLocation(label) : Branch::kUnresolved;
2568 branches_.emplace_back(IsR6(), buffer_.Size(), target, condition, lhs, rhs);
2569 MoveInstructionToDelaySlot(branches_.back());
2570 FinalizeLabeledBranch(label);
2571 }
2572
Call(MipsLabel * label)2573 void MipsAssembler::Call(MipsLabel* label) {
2574 uint32_t target = label->IsBound() ? GetLabelLocation(label) : Branch::kUnresolved;
2575 branches_.emplace_back(IsR6(), buffer_.Size(), target, /* is_call */ true);
2576 MoveInstructionToDelaySlot(branches_.back());
2577 FinalizeLabeledBranch(label);
2578 }
2579
LoadLabelAddress(Register dest_reg,Register base_reg,MipsLabel * label)2580 void MipsAssembler::LoadLabelAddress(Register dest_reg, Register base_reg, MipsLabel* label) {
2581 // Label address loads are treated as pseudo branches since they require very similar handling.
2582 DCHECK(!label->IsBound());
2583 branches_.emplace_back(IsR6(), buffer_.Size(), dest_reg, base_reg, Branch::kLabel);
2584 FinalizeLabeledBranch(label);
2585 }
2586
NewLiteral(size_t size,const uint8_t * data)2587 Literal* MipsAssembler::NewLiteral(size_t size, const uint8_t* data) {
2588 DCHECK(size == 4u || size == 8u) << size;
2589 literals_.emplace_back(size, data);
2590 return &literals_.back();
2591 }
2592
LoadLiteral(Register dest_reg,Register base_reg,Literal * literal)2593 void MipsAssembler::LoadLiteral(Register dest_reg, Register base_reg, Literal* literal) {
2594 // Literal loads are treated as pseudo branches since they require very similar handling.
2595 DCHECK_EQ(literal->GetSize(), 4u);
2596 MipsLabel* label = literal->GetLabel();
2597 DCHECK(!label->IsBound());
2598 branches_.emplace_back(IsR6(), buffer_.Size(), dest_reg, base_reg, Branch::kLiteral);
2599 FinalizeLabeledBranch(label);
2600 }
2601
CreateJumpTable(std::vector<MipsLabel * > && labels)2602 JumpTable* MipsAssembler::CreateJumpTable(std::vector<MipsLabel*>&& labels) {
2603 jump_tables_.emplace_back(std::move(labels));
2604 JumpTable* table = &jump_tables_.back();
2605 DCHECK(!table->GetLabel()->IsBound());
2606 return table;
2607 }
2608
EmitLiterals()2609 void MipsAssembler::EmitLiterals() {
2610 if (!literals_.empty()) {
2611 // We don't support byte and half-word literals.
2612 // TODO: proper alignment for 64-bit literals when they're implemented.
2613 for (Literal& literal : literals_) {
2614 MipsLabel* label = literal.GetLabel();
2615 Bind(label);
2616 AssemblerBuffer::EnsureCapacity ensured(&buffer_);
2617 DCHECK(literal.GetSize() == 4u || literal.GetSize() == 8u);
2618 for (size_t i = 0, size = literal.GetSize(); i != size; ++i) {
2619 buffer_.Emit<uint8_t>(literal.GetData()[i]);
2620 }
2621 }
2622 }
2623 }
2624
ReserveJumpTableSpace()2625 void MipsAssembler::ReserveJumpTableSpace() {
2626 if (!jump_tables_.empty()) {
2627 for (JumpTable& table : jump_tables_) {
2628 MipsLabel* label = table.GetLabel();
2629 Bind(label);
2630
2631 // Bulk ensure capacity, as this may be large.
2632 size_t orig_size = buffer_.Size();
2633 size_t required_capacity = orig_size + table.GetSize();
2634 if (required_capacity > buffer_.Capacity()) {
2635 buffer_.ExtendCapacity(required_capacity);
2636 }
2637 #ifndef NDEBUG
2638 buffer_.has_ensured_capacity_ = true;
2639 #endif
2640
2641 // Fill the space with dummy data as the data is not final
2642 // until the branches have been promoted. And we shouldn't
2643 // be moving uninitialized data during branch promotion.
2644 for (size_t cnt = table.GetData().size(), i = 0; i < cnt; i++) {
2645 buffer_.Emit<uint32_t>(0x1abe1234u);
2646 }
2647
2648 #ifndef NDEBUG
2649 buffer_.has_ensured_capacity_ = false;
2650 #endif
2651 }
2652 }
2653 }
2654
EmitJumpTables()2655 void MipsAssembler::EmitJumpTables() {
2656 if (!jump_tables_.empty()) {
2657 CHECK(!overwriting_);
2658 // Switch from appending instructions at the end of the buffer to overwriting
2659 // existing instructions (here, jump tables) in the buffer.
2660 overwriting_ = true;
2661
2662 for (JumpTable& table : jump_tables_) {
2663 MipsLabel* table_label = table.GetLabel();
2664 uint32_t start = GetLabelLocation(table_label);
2665 overwrite_location_ = start;
2666
2667 for (MipsLabel* target : table.GetData()) {
2668 CHECK_EQ(buffer_.Load<uint32_t>(overwrite_location_), 0x1abe1234u);
2669 // The table will contain target addresses relative to the table start.
2670 uint32_t offset = GetLabelLocation(target) - start;
2671 Emit(offset);
2672 }
2673 }
2674
2675 overwriting_ = false;
2676 }
2677 }
2678
PromoteBranches()2679 void MipsAssembler::PromoteBranches() {
2680 // Promote short branches to long as necessary.
2681 bool changed;
2682 do {
2683 changed = false;
2684 for (auto& branch : branches_) {
2685 CHECK(branch.IsResolved());
2686 uint32_t base = GetBranchLocationOrPcRelBase(&branch);
2687 uint32_t delta = branch.PromoteIfNeeded(base);
2688 // If this branch has been promoted and needs to expand in size,
2689 // relocate all branches by the expansion size.
2690 if (delta) {
2691 changed = true;
2692 uint32_t expand_location = branch.GetLocation();
2693 for (auto& branch2 : branches_) {
2694 branch2.Relocate(expand_location, delta);
2695 }
2696 }
2697 }
2698 } while (changed);
2699
2700 // Account for branch expansion by resizing the code buffer
2701 // and moving the code in it to its final location.
2702 size_t branch_count = branches_.size();
2703 if (branch_count > 0) {
2704 // Resize.
2705 Branch& last_branch = branches_[branch_count - 1];
2706 uint32_t size_delta = last_branch.GetEndLocation() - last_branch.GetOldEndLocation();
2707 uint32_t old_size = buffer_.Size();
2708 buffer_.Resize(old_size + size_delta);
2709 // Move the code residing between branch placeholders.
2710 uint32_t end = old_size;
2711 for (size_t i = branch_count; i > 0; ) {
2712 Branch& branch = branches_[--i];
2713 CHECK_GE(end, branch.GetOldEndLocation());
2714 uint32_t size = end - branch.GetOldEndLocation();
2715 buffer_.Move(branch.GetEndLocation(), branch.GetOldEndLocation(), size);
2716 end = branch.GetOldLocation();
2717 }
2718 }
2719 }
2720
2721 // Note: make sure branch_info_[] and EmitBranch() are kept synchronized.
2722 const MipsAssembler::Branch::BranchInfo MipsAssembler::Branch::branch_info_[] = {
2723 // R2 short branches.
2724 { 2, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kUncondBranch
2725 { 2, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kCondBranch
2726 { 2, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kCall
2727 // R2 near label.
2728 { 1, 0, 0, MipsAssembler::Branch::kOffset16, 0 }, // kLabel
2729 // R2 near literal.
2730 { 1, 0, 0, MipsAssembler::Branch::kOffset16, 0 }, // kLiteral
2731 // R2 long branches.
2732 { 9, 3, 1, MipsAssembler::Branch::kOffset32, 0 }, // kLongUncondBranch
2733 { 10, 4, 1, MipsAssembler::Branch::kOffset32, 0 }, // kLongCondBranch
2734 { 6, 1, 1, MipsAssembler::Branch::kOffset32, 0 }, // kLongCall
2735 // R2 far label.
2736 { 3, 0, 0, MipsAssembler::Branch::kOffset32, 0 }, // kFarLabel
2737 // R2 far literal.
2738 { 3, 0, 0, MipsAssembler::Branch::kOffset32, 0 }, // kFarLiteral
2739 // R6 short branches.
2740 { 1, 0, 1, MipsAssembler::Branch::kOffset28, 2 }, // kR6UncondBranch
2741 { 2, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kR6CondBranch
2742 // Exception: kOffset23 for beqzc/bnezc.
2743 { 1, 0, 1, MipsAssembler::Branch::kOffset28, 2 }, // kR6Call
2744 // R6 near label.
2745 { 1, 0, 0, MipsAssembler::Branch::kOffset21, 2 }, // kR6Label
2746 // R6 near literal.
2747 { 1, 0, 0, MipsAssembler::Branch::kOffset21, 2 }, // kR6Literal
2748 // R6 long branches.
2749 { 2, 0, 0, MipsAssembler::Branch::kOffset32, 0 }, // kR6LongUncondBranch
2750 { 3, 1, 0, MipsAssembler::Branch::kOffset32, 0 }, // kR6LongCondBranch
2751 { 2, 0, 0, MipsAssembler::Branch::kOffset32, 0 }, // kR6LongCall
2752 // R6 far label.
2753 { 2, 0, 0, MipsAssembler::Branch::kOffset32, 0 }, // kR6FarLabel
2754 // R6 far literal.
2755 { 2, 0, 0, MipsAssembler::Branch::kOffset32, 0 }, // kR6FarLiteral
2756 };
2757
2758 // Note: make sure branch_info_[] and EmitBranch() are kept synchronized.
EmitBranch(MipsAssembler::Branch * branch)2759 void MipsAssembler::EmitBranch(MipsAssembler::Branch* branch) {
2760 CHECK_EQ(overwriting_, true);
2761 overwrite_location_ = branch->GetLocation();
2762 uint32_t offset = branch->GetOffset(GetBranchOrPcRelBaseForEncoding(branch));
2763 BranchCondition condition = branch->GetCondition();
2764 Register lhs = branch->GetLeftRegister();
2765 Register rhs = branch->GetRightRegister();
2766 uint32_t delayed_instruction = branch->GetDelayedInstruction();
2767 switch (branch->GetType()) {
2768 // R2 short branches.
2769 case Branch::kUncondBranch:
2770 if (delayed_instruction == Branch::kUnfillableDelaySlot) {
2771 // The branch was created when reordering was disabled, do not absorb the target
2772 // instruction.
2773 delayed_instruction = 0; // NOP.
2774 } else if (delayed_instruction == Branch::kUnfilledDelaySlot) {
2775 // Try to absorb the target instruction into the delay slot.
2776 delayed_instruction = 0; // NOP.
2777 // Incrementing the signed 16-bit offset past the target instruction must not
2778 // cause overflow into the negative subrange, check for the max offset.
2779 if (offset != 0x7FFF) {
2780 uint32_t target = branch->GetTarget();
2781 if (std::binary_search(ds_fsm_target_pcs_.begin(), ds_fsm_target_pcs_.end(), target)) {
2782 delayed_instruction = buffer_.Load<uint32_t>(target);
2783 offset++;
2784 }
2785 }
2786 }
2787 CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
2788 B(offset);
2789 Emit(delayed_instruction);
2790 break;
2791 case Branch::kCondBranch:
2792 DCHECK_NE(delayed_instruction, Branch::kUnfillableDelaySlot);
2793 if (delayed_instruction == Branch::kUnfilledDelaySlot) {
2794 delayed_instruction = 0; // NOP.
2795 }
2796 CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
2797 EmitBcondR2(condition, lhs, rhs, offset);
2798 Emit(delayed_instruction);
2799 break;
2800 case Branch::kCall:
2801 DCHECK_NE(delayed_instruction, Branch::kUnfillableDelaySlot);
2802 if (delayed_instruction == Branch::kUnfilledDelaySlot) {
2803 delayed_instruction = 0; // NOP.
2804 }
2805 CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
2806 Bal(offset);
2807 Emit(delayed_instruction);
2808 break;
2809
2810 // R2 near label.
2811 case Branch::kLabel:
2812 DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
2813 CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
2814 Addiu(lhs, rhs, offset);
2815 break;
2816 // R2 near literal.
2817 case Branch::kLiteral:
2818 DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
2819 CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
2820 Lw(lhs, rhs, offset);
2821 break;
2822
2823 // R2 long branches.
2824 case Branch::kLongUncondBranch:
2825 // To get the value of the PC register we need to use the NAL instruction.
2826 // NAL clobbers the RA register. However, RA must be preserved if the
2827 // method is compiled without the entry/exit sequences that would take care
2828 // of preserving RA (typically, leaf methods don't preserve RA explicitly).
2829 // So, we need to preserve RA in some temporary storage ourselves. The AT
2830 // register can't be used for this because we need it to load a constant
2831 // which will be added to the value that NAL stores in RA. And we can't
2832 // use T9 for this in the context of the JNI compiler, which uses it
2833 // as a scratch register (see InterproceduralScratchRegister()).
2834 // If we were to add a 32-bit constant to RA using two ADDIU instructions,
2835 // we'd also need to use the ROTR instruction, which requires no less than
2836 // MIPSR2.
2837 // Perhaps, we could use T8 or one of R2's multiplier/divider registers
2838 // (LO or HI) or even a floating-point register, but that doesn't seem
2839 // like a nice solution. We may want this to work on both R6 and pre-R6.
2840 // For now simply use the stack for RA. This should be OK since for the
2841 // vast majority of code a short PC-relative branch is sufficient.
2842 // TODO: can this be improved?
2843 // TODO: consider generation of a shorter sequence when we know that RA
2844 // is explicitly preserved by the method entry/exit code.
2845 if (delayed_instruction != Branch::kUnfilledDelaySlot &&
2846 delayed_instruction != Branch::kUnfillableDelaySlot) {
2847 Emit(delayed_instruction);
2848 }
2849 Push(RA);
2850 Nal();
2851 CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
2852 Lui(AT, High16Bits(offset));
2853 Ori(AT, AT, Low16Bits(offset));
2854 Addu(AT, AT, RA);
2855 Lw(RA, SP, 0);
2856 Jr(AT);
2857 DecreaseFrameSize(kMipsWordSize);
2858 break;
2859 case Branch::kLongCondBranch:
2860 // The comment on case 'Branch::kLongUncondBranch' applies here as well.
2861 DCHECK_NE(delayed_instruction, Branch::kUnfillableDelaySlot);
2862 if (delayed_instruction != Branch::kUnfilledDelaySlot) {
2863 Emit(delayed_instruction);
2864 }
2865 // Note: the opposite condition branch encodes 8 as the distance, which is equal to the
2866 // number of instructions skipped:
2867 // (PUSH(IncreaseFrameSize(ADDIU) + SW) + NAL + LUI + ORI + ADDU + LW + JR).
2868 EmitBcondR2(Branch::OppositeCondition(condition), lhs, rhs, 8);
2869 Push(RA);
2870 Nal();
2871 CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
2872 Lui(AT, High16Bits(offset));
2873 Ori(AT, AT, Low16Bits(offset));
2874 Addu(AT, AT, RA);
2875 Lw(RA, SP, 0);
2876 Jr(AT);
2877 DecreaseFrameSize(kMipsWordSize);
2878 break;
2879 case Branch::kLongCall:
2880 DCHECK_NE(delayed_instruction, Branch::kUnfillableDelaySlot);
2881 if (delayed_instruction != Branch::kUnfilledDelaySlot) {
2882 Emit(delayed_instruction);
2883 }
2884 Nal();
2885 CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
2886 Lui(AT, High16Bits(offset));
2887 Ori(AT, AT, Low16Bits(offset));
2888 Addu(AT, AT, RA);
2889 Jalr(AT);
2890 Nop();
2891 break;
2892
2893 // R2 far label.
2894 case Branch::kFarLabel:
2895 DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
2896 CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
2897 Lui(AT, High16Bits(offset));
2898 Ori(AT, AT, Low16Bits(offset));
2899 Addu(lhs, AT, rhs);
2900 break;
2901 // R2 far literal.
2902 case Branch::kFarLiteral:
2903 DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
2904 offset += (offset & 0x8000) << 1; // Account for sign extension in lw.
2905 CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
2906 Lui(AT, High16Bits(offset));
2907 Addu(AT, AT, rhs);
2908 Lw(lhs, AT, Low16Bits(offset));
2909 break;
2910
2911 // R6 short branches.
2912 case Branch::kR6UncondBranch:
2913 DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
2914 CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
2915 Bc(offset);
2916 break;
2917 case Branch::kR6CondBranch:
2918 CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
2919 EmitBcondR6(condition, lhs, rhs, offset);
2920 DCHECK_NE(delayed_instruction, Branch::kUnfillableDelaySlot);
2921 if (delayed_instruction != Branch::kUnfilledDelaySlot) {
2922 Emit(delayed_instruction);
2923 } else {
2924 // TODO: improve by filling the forbidden slot (IFF this is
2925 // a forbidden and not a delay slot).
2926 Nop();
2927 }
2928 break;
2929 case Branch::kR6Call:
2930 DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
2931 CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
2932 Balc(offset);
2933 break;
2934
2935 // R6 near label.
2936 case Branch::kR6Label:
2937 DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
2938 CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
2939 Addiupc(lhs, offset);
2940 break;
2941 // R6 near literal.
2942 case Branch::kR6Literal:
2943 DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
2944 CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
2945 Lwpc(lhs, offset);
2946 break;
2947
2948 // R6 long branches.
2949 case Branch::kR6LongUncondBranch:
2950 DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
2951 offset += (offset & 0x8000) << 1; // Account for sign extension in jic.
2952 CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
2953 Auipc(AT, High16Bits(offset));
2954 Jic(AT, Low16Bits(offset));
2955 break;
2956 case Branch::kR6LongCondBranch:
2957 DCHECK_NE(delayed_instruction, Branch::kUnfillableDelaySlot);
2958 if (delayed_instruction != Branch::kUnfilledDelaySlot) {
2959 Emit(delayed_instruction);
2960 }
2961 EmitBcondR6(Branch::OppositeCondition(condition), lhs, rhs, 2);
2962 offset += (offset & 0x8000) << 1; // Account for sign extension in jic.
2963 CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
2964 Auipc(AT, High16Bits(offset));
2965 Jic(AT, Low16Bits(offset));
2966 break;
2967 case Branch::kR6LongCall:
2968 DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
2969 offset += (offset & 0x8000) << 1; // Account for sign extension in jialc.
2970 CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
2971 Auipc(AT, High16Bits(offset));
2972 Jialc(AT, Low16Bits(offset));
2973 break;
2974
2975 // R6 far label.
2976 case Branch::kR6FarLabel:
2977 DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
2978 offset += (offset & 0x8000) << 1; // Account for sign extension in addiu.
2979 CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
2980 Auipc(AT, High16Bits(offset));
2981 Addiu(lhs, AT, Low16Bits(offset));
2982 break;
2983 // R6 far literal.
2984 case Branch::kR6FarLiteral:
2985 DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot);
2986 offset += (offset & 0x8000) << 1; // Account for sign extension in lw.
2987 CHECK_EQ(overwrite_location_, branch->GetOffsetLocation());
2988 Auipc(AT, High16Bits(offset));
2989 Lw(lhs, AT, Low16Bits(offset));
2990 break;
2991 }
2992 CHECK_EQ(overwrite_location_, branch->GetEndLocation());
2993 CHECK_LT(branch->GetSize(), static_cast<uint32_t>(Branch::kMaxBranchSize));
2994 }
2995
B(MipsLabel * label)2996 void MipsAssembler::B(MipsLabel* label) {
2997 Buncond(label);
2998 }
2999
Bal(MipsLabel * label)3000 void MipsAssembler::Bal(MipsLabel* label) {
3001 Call(label);
3002 }
3003
Beq(Register rs,Register rt,MipsLabel * label)3004 void MipsAssembler::Beq(Register rs, Register rt, MipsLabel* label) {
3005 Bcond(label, kCondEQ, rs, rt);
3006 }
3007
Bne(Register rs,Register rt,MipsLabel * label)3008 void MipsAssembler::Bne(Register rs, Register rt, MipsLabel* label) {
3009 Bcond(label, kCondNE, rs, rt);
3010 }
3011
Beqz(Register rt,MipsLabel * label)3012 void MipsAssembler::Beqz(Register rt, MipsLabel* label) {
3013 Bcond(label, kCondEQZ, rt);
3014 }
3015
Bnez(Register rt,MipsLabel * label)3016 void MipsAssembler::Bnez(Register rt, MipsLabel* label) {
3017 Bcond(label, kCondNEZ, rt);
3018 }
3019
Bltz(Register rt,MipsLabel * label)3020 void MipsAssembler::Bltz(Register rt, MipsLabel* label) {
3021 Bcond(label, kCondLTZ, rt);
3022 }
3023
Bgez(Register rt,MipsLabel * label)3024 void MipsAssembler::Bgez(Register rt, MipsLabel* label) {
3025 Bcond(label, kCondGEZ, rt);
3026 }
3027
Blez(Register rt,MipsLabel * label)3028 void MipsAssembler::Blez(Register rt, MipsLabel* label) {
3029 Bcond(label, kCondLEZ, rt);
3030 }
3031
Bgtz(Register rt,MipsLabel * label)3032 void MipsAssembler::Bgtz(Register rt, MipsLabel* label) {
3033 Bcond(label, kCondGTZ, rt);
3034 }
3035
CanExchangeWithSlt(Register rs,Register rt) const3036 bool MipsAssembler::CanExchangeWithSlt(Register rs, Register rt) const {
3037 // If the instruction modifies AT, `rs` or `rt`, it can't be exchanged with the slt[u]
3038 // instruction because either slt[u] depends on `rs` or `rt` or the following
3039 // conditional branch depends on AT set by slt[u].
3040 // Likewise, if the instruction depends on AT, it can't be exchanged with slt[u]
3041 // because slt[u] changes AT.
3042 return (delay_slot_.instruction_ != 0 &&
3043 (delay_slot_.gpr_outs_mask_ & ((1u << AT) | (1u << rs) | (1u << rt))) == 0 &&
3044 (delay_slot_.gpr_ins_mask_ & (1u << AT)) == 0);
3045 }
3046
ExchangeWithSlt(const DelaySlot & forwarded_slot)3047 void MipsAssembler::ExchangeWithSlt(const DelaySlot& forwarded_slot) {
3048 // Exchange the last two instructions in the assembler buffer.
3049 size_t size = buffer_.Size();
3050 CHECK_GE(size, 2 * sizeof(uint32_t));
3051 size_t pos1 = size - 2 * sizeof(uint32_t);
3052 size_t pos2 = size - sizeof(uint32_t);
3053 uint32_t instr1 = buffer_.Load<uint32_t>(pos1);
3054 uint32_t instr2 = buffer_.Load<uint32_t>(pos2);
3055 CHECK_EQ(instr1, forwarded_slot.instruction_);
3056 CHECK_EQ(instr2, delay_slot_.instruction_);
3057 buffer_.Store<uint32_t>(pos1, instr2);
3058 buffer_.Store<uint32_t>(pos2, instr1);
3059 // Set the current delay slot information to that of the last instruction
3060 // in the buffer.
3061 delay_slot_ = forwarded_slot;
3062 }
3063
GenerateSltForCondBranch(bool unsigned_slt,Register rs,Register rt)3064 void MipsAssembler::GenerateSltForCondBranch(bool unsigned_slt, Register rs, Register rt) {
3065 // If possible, exchange the slt[u] instruction with the preceding instruction,
3066 // so it can fill the delay slot.
3067 DelaySlot forwarded_slot = delay_slot_;
3068 bool exchange = CanExchangeWithSlt(rs, rt);
3069 if (exchange) {
3070 // The last instruction cannot be used in a different delay slot,
3071 // do not commit the label before it (if any).
3072 DsFsmDropLabel();
3073 }
3074 if (unsigned_slt) {
3075 Sltu(AT, rs, rt);
3076 } else {
3077 Slt(AT, rs, rt);
3078 }
3079 if (exchange) {
3080 ExchangeWithSlt(forwarded_slot);
3081 }
3082 }
3083
Blt(Register rs,Register rt,MipsLabel * label)3084 void MipsAssembler::Blt(Register rs, Register rt, MipsLabel* label) {
3085 if (IsR6()) {
3086 Bcond(label, kCondLT, rs, rt);
3087 } else if (!Branch::IsNop(kCondLT, rs, rt)) {
3088 // Synthesize the instruction (not available on R2).
3089 GenerateSltForCondBranch(/* unsigned_slt */ false, rs, rt);
3090 Bnez(AT, label);
3091 }
3092 }
3093
Bge(Register rs,Register rt,MipsLabel * label)3094 void MipsAssembler::Bge(Register rs, Register rt, MipsLabel* label) {
3095 if (IsR6()) {
3096 Bcond(label, kCondGE, rs, rt);
3097 } else if (Branch::IsUncond(kCondGE, rs, rt)) {
3098 B(label);
3099 } else {
3100 // Synthesize the instruction (not available on R2).
3101 GenerateSltForCondBranch(/* unsigned_slt */ false, rs, rt);
3102 Beqz(AT, label);
3103 }
3104 }
3105
Bltu(Register rs,Register rt,MipsLabel * label)3106 void MipsAssembler::Bltu(Register rs, Register rt, MipsLabel* label) {
3107 if (IsR6()) {
3108 Bcond(label, kCondLTU, rs, rt);
3109 } else if (!Branch::IsNop(kCondLTU, rs, rt)) {
3110 // Synthesize the instruction (not available on R2).
3111 GenerateSltForCondBranch(/* unsigned_slt */ true, rs, rt);
3112 Bnez(AT, label);
3113 }
3114 }
3115
Bgeu(Register rs,Register rt,MipsLabel * label)3116 void MipsAssembler::Bgeu(Register rs, Register rt, MipsLabel* label) {
3117 if (IsR6()) {
3118 Bcond(label, kCondGEU, rs, rt);
3119 } else if (Branch::IsUncond(kCondGEU, rs, rt)) {
3120 B(label);
3121 } else {
3122 // Synthesize the instruction (not available on R2).
3123 GenerateSltForCondBranch(/* unsigned_slt */ true, rs, rt);
3124 Beqz(AT, label);
3125 }
3126 }
3127
Bc1f(MipsLabel * label)3128 void MipsAssembler::Bc1f(MipsLabel* label) {
3129 Bc1f(0, label);
3130 }
3131
Bc1f(int cc,MipsLabel * label)3132 void MipsAssembler::Bc1f(int cc, MipsLabel* label) {
3133 CHECK(IsUint<3>(cc)) << cc;
3134 Bcond(label, kCondF, static_cast<Register>(cc), ZERO);
3135 }
3136
Bc1t(MipsLabel * label)3137 void MipsAssembler::Bc1t(MipsLabel* label) {
3138 Bc1t(0, label);
3139 }
3140
Bc1t(int cc,MipsLabel * label)3141 void MipsAssembler::Bc1t(int cc, MipsLabel* label) {
3142 CHECK(IsUint<3>(cc)) << cc;
3143 Bcond(label, kCondT, static_cast<Register>(cc), ZERO);
3144 }
3145
Bc1eqz(FRegister ft,MipsLabel * label)3146 void MipsAssembler::Bc1eqz(FRegister ft, MipsLabel* label) {
3147 Bcond(label, kCondF, static_cast<Register>(ft), ZERO);
3148 }
3149
Bc1nez(FRegister ft,MipsLabel * label)3150 void MipsAssembler::Bc1nez(FRegister ft, MipsLabel* label) {
3151 Bcond(label, kCondT, static_cast<Register>(ft), ZERO);
3152 }
3153
AdjustBaseAndOffset(Register & base,int32_t & offset,bool is_doubleword,bool is_float)3154 void MipsAssembler::AdjustBaseAndOffset(Register& base,
3155 int32_t& offset,
3156 bool is_doubleword,
3157 bool is_float) {
3158 // This method is used to adjust the base register and offset pair
3159 // for a load/store when the offset doesn't fit into int16_t.
3160 // It is assumed that `base + offset` is sufficiently aligned for memory
3161 // operands that are machine word in size or smaller. For doubleword-sized
3162 // operands it's assumed that `base` is a multiple of 8, while `offset`
3163 // may be a multiple of 4 (e.g. 4-byte-aligned long and double arguments
3164 // and spilled variables on the stack accessed relative to the stack
3165 // pointer register).
3166 // We preserve the "alignment" of `offset` by adjusting it by a multiple of 8.
3167 CHECK_NE(base, AT); // Must not overwrite the register `base` while loading `offset`.
3168
3169 bool doubleword_aligned = IsAligned<kMipsDoublewordSize>(offset);
3170 bool two_accesses = is_doubleword && (!is_float || !doubleword_aligned);
3171
3172 // IsInt<16> must be passed a signed value, hence the static cast below.
3173 if (IsInt<16>(offset) &&
3174 (!two_accesses || IsInt<16>(static_cast<int32_t>(offset + kMipsWordSize)))) {
3175 // Nothing to do: `offset` (and, if needed, `offset + 4`) fits into int16_t.
3176 return;
3177 }
3178
3179 // Remember the "(mis)alignment" of `offset`, it will be checked at the end.
3180 uint32_t misalignment = offset & (kMipsDoublewordSize - 1);
3181
3182 // Do not load the whole 32-bit `offset` if it can be represented as
3183 // a sum of two 16-bit signed offsets. This can save an instruction or two.
3184 // To simplify matters, only do this for a symmetric range of offsets from
3185 // about -64KB to about +64KB, allowing further addition of 4 when accessing
3186 // 64-bit variables with two 32-bit accesses.
3187 constexpr int32_t kMinOffsetForSimpleAdjustment = 0x7ff8; // Max int16_t that's a multiple of 8.
3188 constexpr int32_t kMaxOffsetForSimpleAdjustment = 2 * kMinOffsetForSimpleAdjustment;
3189 if (0 <= offset && offset <= kMaxOffsetForSimpleAdjustment) {
3190 Addiu(AT, base, kMinOffsetForSimpleAdjustment);
3191 offset -= kMinOffsetForSimpleAdjustment;
3192 } else if (-kMaxOffsetForSimpleAdjustment <= offset && offset < 0) {
3193 Addiu(AT, base, -kMinOffsetForSimpleAdjustment);
3194 offset += kMinOffsetForSimpleAdjustment;
3195 } else if (IsR6()) {
3196 // On R6 take advantage of the aui instruction, e.g.:
3197 // aui AT, base, offset_high
3198 // lw reg_lo, offset_low(AT)
3199 // lw reg_hi, (offset_low+4)(AT)
3200 // or when offset_low+4 overflows int16_t:
3201 // aui AT, base, offset_high
3202 // addiu AT, AT, 8
3203 // lw reg_lo, (offset_low-8)(AT)
3204 // lw reg_hi, (offset_low-4)(AT)
3205 int16_t offset_high = High16Bits(offset);
3206 int16_t offset_low = Low16Bits(offset);
3207 offset_high += (offset_low < 0) ? 1 : 0; // Account for offset sign extension in load/store.
3208 Aui(AT, base, offset_high);
3209 if (two_accesses && !IsInt<16>(static_cast<int32_t>(offset_low + kMipsWordSize))) {
3210 // Avoid overflow in the 16-bit offset of the load/store instruction when adding 4.
3211 Addiu(AT, AT, kMipsDoublewordSize);
3212 offset_low -= kMipsDoublewordSize;
3213 }
3214 offset = offset_low;
3215 } else {
3216 // Do not load the whole 32-bit `offset` if it can be represented as
3217 // a sum of three 16-bit signed offsets. This can save an instruction.
3218 // To simplify matters, only do this for a symmetric range of offsets from
3219 // about -96KB to about +96KB, allowing further addition of 4 when accessing
3220 // 64-bit variables with two 32-bit accesses.
3221 constexpr int32_t kMinOffsetForMediumAdjustment = 2 * kMinOffsetForSimpleAdjustment;
3222 constexpr int32_t kMaxOffsetForMediumAdjustment = 3 * kMinOffsetForSimpleAdjustment;
3223 if (0 <= offset && offset <= kMaxOffsetForMediumAdjustment) {
3224 Addiu(AT, base, kMinOffsetForMediumAdjustment / 2);
3225 Addiu(AT, AT, kMinOffsetForMediumAdjustment / 2);
3226 offset -= kMinOffsetForMediumAdjustment;
3227 } else if (-kMaxOffsetForMediumAdjustment <= offset && offset < 0) {
3228 Addiu(AT, base, -kMinOffsetForMediumAdjustment / 2);
3229 Addiu(AT, AT, -kMinOffsetForMediumAdjustment / 2);
3230 offset += kMinOffsetForMediumAdjustment;
3231 } else {
3232 // Now that all shorter options have been exhausted, load the full 32-bit offset.
3233 int32_t loaded_offset = RoundDown(offset, kMipsDoublewordSize);
3234 LoadConst32(AT, loaded_offset);
3235 Addu(AT, AT, base);
3236 offset -= loaded_offset;
3237 }
3238 }
3239 base = AT;
3240
3241 CHECK(IsInt<16>(offset));
3242 if (two_accesses) {
3243 CHECK(IsInt<16>(static_cast<int32_t>(offset + kMipsWordSize)));
3244 }
3245 CHECK_EQ(misalignment, offset & (kMipsDoublewordSize - 1));
3246 }
3247
LoadFromOffset(LoadOperandType type,Register reg,Register base,int32_t offset)3248 void MipsAssembler::LoadFromOffset(LoadOperandType type,
3249 Register reg,
3250 Register base,
3251 int32_t offset) {
3252 LoadFromOffset<>(type, reg, base, offset);
3253 }
3254
LoadSFromOffset(FRegister reg,Register base,int32_t offset)3255 void MipsAssembler::LoadSFromOffset(FRegister reg, Register base, int32_t offset) {
3256 LoadSFromOffset<>(reg, base, offset);
3257 }
3258
LoadDFromOffset(FRegister reg,Register base,int32_t offset)3259 void MipsAssembler::LoadDFromOffset(FRegister reg, Register base, int32_t offset) {
3260 LoadDFromOffset<>(reg, base, offset);
3261 }
3262
EmitLoad(ManagedRegister m_dst,Register src_register,int32_t src_offset,size_t size)3263 void MipsAssembler::EmitLoad(ManagedRegister m_dst, Register src_register, int32_t src_offset,
3264 size_t size) {
3265 MipsManagedRegister dst = m_dst.AsMips();
3266 if (dst.IsNoRegister()) {
3267 CHECK_EQ(0u, size) << dst;
3268 } else if (dst.IsCoreRegister()) {
3269 CHECK_EQ(kMipsWordSize, size) << dst;
3270 LoadFromOffset(kLoadWord, dst.AsCoreRegister(), src_register, src_offset);
3271 } else if (dst.IsRegisterPair()) {
3272 CHECK_EQ(kMipsDoublewordSize, size) << dst;
3273 LoadFromOffset(kLoadDoubleword, dst.AsRegisterPairLow(), src_register, src_offset);
3274 } else if (dst.IsFRegister()) {
3275 if (size == kMipsWordSize) {
3276 LoadSFromOffset(dst.AsFRegister(), src_register, src_offset);
3277 } else {
3278 CHECK_EQ(kMipsDoublewordSize, size) << dst;
3279 LoadDFromOffset(dst.AsFRegister(), src_register, src_offset);
3280 }
3281 } else if (dst.IsDRegister()) {
3282 CHECK_EQ(kMipsDoublewordSize, size) << dst;
3283 LoadDFromOffset(dst.AsOverlappingDRegisterLow(), src_register, src_offset);
3284 }
3285 }
3286
StoreToOffset(StoreOperandType type,Register reg,Register base,int32_t offset)3287 void MipsAssembler::StoreToOffset(StoreOperandType type,
3288 Register reg,
3289 Register base,
3290 int32_t offset) {
3291 StoreToOffset<>(type, reg, base, offset);
3292 }
3293
StoreSToOffset(FRegister reg,Register base,int32_t offset)3294 void MipsAssembler::StoreSToOffset(FRegister reg, Register base, int32_t offset) {
3295 StoreSToOffset<>(reg, base, offset);
3296 }
3297
StoreDToOffset(FRegister reg,Register base,int32_t offset)3298 void MipsAssembler::StoreDToOffset(FRegister reg, Register base, int32_t offset) {
3299 StoreDToOffset<>(reg, base, offset);
3300 }
3301
DWARFReg(Register reg)3302 static dwarf::Reg DWARFReg(Register reg) {
3303 return dwarf::Reg::MipsCore(static_cast<int>(reg));
3304 }
3305
3306 constexpr size_t kFramePointerSize = 4;
3307
BuildFrame(size_t frame_size,ManagedRegister method_reg,ArrayRef<const ManagedRegister> callee_save_regs,const ManagedRegisterEntrySpills & entry_spills)3308 void MipsAssembler::BuildFrame(size_t frame_size,
3309 ManagedRegister method_reg,
3310 ArrayRef<const ManagedRegister> callee_save_regs,
3311 const ManagedRegisterEntrySpills& entry_spills) {
3312 CHECK_ALIGNED(frame_size, kStackAlignment);
3313 DCHECK(!overwriting_);
3314
3315 // Increase frame to required size.
3316 IncreaseFrameSize(frame_size);
3317
3318 // Push callee saves and return address.
3319 int stack_offset = frame_size - kFramePointerSize;
3320 StoreToOffset(kStoreWord, RA, SP, stack_offset);
3321 cfi_.RelOffset(DWARFReg(RA), stack_offset);
3322 for (int i = callee_save_regs.size() - 1; i >= 0; --i) {
3323 stack_offset -= kFramePointerSize;
3324 Register reg = callee_save_regs[i].AsMips().AsCoreRegister();
3325 StoreToOffset(kStoreWord, reg, SP, stack_offset);
3326 cfi_.RelOffset(DWARFReg(reg), stack_offset);
3327 }
3328
3329 // Write out Method*.
3330 StoreToOffset(kStoreWord, method_reg.AsMips().AsCoreRegister(), SP, 0);
3331
3332 // Write out entry spills.
3333 int32_t offset = frame_size + kFramePointerSize;
3334 for (size_t i = 0; i < entry_spills.size(); ++i) {
3335 MipsManagedRegister reg = entry_spills.at(i).AsMips();
3336 if (reg.IsNoRegister()) {
3337 ManagedRegisterSpill spill = entry_spills.at(i);
3338 offset += spill.getSize();
3339 } else if (reg.IsCoreRegister()) {
3340 StoreToOffset(kStoreWord, reg.AsCoreRegister(), SP, offset);
3341 offset += kMipsWordSize;
3342 } else if (reg.IsFRegister()) {
3343 StoreSToOffset(reg.AsFRegister(), SP, offset);
3344 offset += kMipsWordSize;
3345 } else if (reg.IsDRegister()) {
3346 StoreDToOffset(reg.AsOverlappingDRegisterLow(), SP, offset);
3347 offset += kMipsDoublewordSize;
3348 }
3349 }
3350 }
3351
RemoveFrame(size_t frame_size,ArrayRef<const ManagedRegister> callee_save_regs)3352 void MipsAssembler::RemoveFrame(size_t frame_size,
3353 ArrayRef<const ManagedRegister> callee_save_regs) {
3354 CHECK_ALIGNED(frame_size, kStackAlignment);
3355 DCHECK(!overwriting_);
3356 cfi_.RememberState();
3357
3358 // Pop callee saves and return address.
3359 int stack_offset = frame_size - (callee_save_regs.size() * kFramePointerSize) - kFramePointerSize;
3360 for (size_t i = 0; i < callee_save_regs.size(); ++i) {
3361 Register reg = callee_save_regs[i].AsMips().AsCoreRegister();
3362 LoadFromOffset(kLoadWord, reg, SP, stack_offset);
3363 cfi_.Restore(DWARFReg(reg));
3364 stack_offset += kFramePointerSize;
3365 }
3366 LoadFromOffset(kLoadWord, RA, SP, stack_offset);
3367 cfi_.Restore(DWARFReg(RA));
3368
3369 // Adjust the stack pointer in the delay slot if doing so doesn't break CFI.
3370 bool exchange = IsInt<16>(static_cast<int32_t>(frame_size));
3371 bool reordering = SetReorder(false);
3372 if (exchange) {
3373 // Jump to the return address.
3374 Jr(RA);
3375 // Decrease frame to required size.
3376 DecreaseFrameSize(frame_size); // Single instruction in delay slot.
3377 } else {
3378 // Decrease frame to required size.
3379 DecreaseFrameSize(frame_size);
3380 // Jump to the return address.
3381 Jr(RA);
3382 Nop(); // In delay slot.
3383 }
3384 SetReorder(reordering);
3385
3386 // The CFI should be restored for any code that follows the exit block.
3387 cfi_.RestoreState();
3388 cfi_.DefCFAOffset(frame_size);
3389 }
3390
IncreaseFrameSize(size_t adjust)3391 void MipsAssembler::IncreaseFrameSize(size_t adjust) {
3392 CHECK_ALIGNED(adjust, kFramePointerSize);
3393 Addiu32(SP, SP, -adjust);
3394 cfi_.AdjustCFAOffset(adjust);
3395 if (overwriting_) {
3396 cfi_.OverrideDelayedPC(overwrite_location_);
3397 }
3398 }
3399
DecreaseFrameSize(size_t adjust)3400 void MipsAssembler::DecreaseFrameSize(size_t adjust) {
3401 CHECK_ALIGNED(adjust, kFramePointerSize);
3402 Addiu32(SP, SP, adjust);
3403 cfi_.AdjustCFAOffset(-adjust);
3404 if (overwriting_) {
3405 cfi_.OverrideDelayedPC(overwrite_location_);
3406 }
3407 }
3408
Store(FrameOffset dest,ManagedRegister msrc,size_t size)3409 void MipsAssembler::Store(FrameOffset dest, ManagedRegister msrc, size_t size) {
3410 MipsManagedRegister src = msrc.AsMips();
3411 if (src.IsNoRegister()) {
3412 CHECK_EQ(0u, size);
3413 } else if (src.IsCoreRegister()) {
3414 CHECK_EQ(kMipsWordSize, size);
3415 StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value());
3416 } else if (src.IsRegisterPair()) {
3417 CHECK_EQ(kMipsDoublewordSize, size);
3418 StoreToOffset(kStoreWord, src.AsRegisterPairLow(), SP, dest.Int32Value());
3419 StoreToOffset(kStoreWord, src.AsRegisterPairHigh(),
3420 SP, dest.Int32Value() + kMipsWordSize);
3421 } else if (src.IsFRegister()) {
3422 if (size == kMipsWordSize) {
3423 StoreSToOffset(src.AsFRegister(), SP, dest.Int32Value());
3424 } else {
3425 CHECK_EQ(kMipsDoublewordSize, size);
3426 StoreDToOffset(src.AsFRegister(), SP, dest.Int32Value());
3427 }
3428 } else if (src.IsDRegister()) {
3429 CHECK_EQ(kMipsDoublewordSize, size);
3430 StoreDToOffset(src.AsOverlappingDRegisterLow(), SP, dest.Int32Value());
3431 }
3432 }
3433
StoreRef(FrameOffset dest,ManagedRegister msrc)3434 void MipsAssembler::StoreRef(FrameOffset dest, ManagedRegister msrc) {
3435 MipsManagedRegister src = msrc.AsMips();
3436 CHECK(src.IsCoreRegister());
3437 StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value());
3438 }
3439
StoreRawPtr(FrameOffset dest,ManagedRegister msrc)3440 void MipsAssembler::StoreRawPtr(FrameOffset dest, ManagedRegister msrc) {
3441 MipsManagedRegister src = msrc.AsMips();
3442 CHECK(src.IsCoreRegister());
3443 StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value());
3444 }
3445
StoreImmediateToFrame(FrameOffset dest,uint32_t imm,ManagedRegister mscratch)3446 void MipsAssembler::StoreImmediateToFrame(FrameOffset dest, uint32_t imm,
3447 ManagedRegister mscratch) {
3448 MipsManagedRegister scratch = mscratch.AsMips();
3449 CHECK(scratch.IsCoreRegister()) << scratch;
3450 LoadConst32(scratch.AsCoreRegister(), imm);
3451 StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value());
3452 }
3453
StoreStackOffsetToThread(ThreadOffset32 thr_offs,FrameOffset fr_offs,ManagedRegister mscratch)3454 void MipsAssembler::StoreStackOffsetToThread(ThreadOffset32 thr_offs,
3455 FrameOffset fr_offs,
3456 ManagedRegister mscratch) {
3457 MipsManagedRegister scratch = mscratch.AsMips();
3458 CHECK(scratch.IsCoreRegister()) << scratch;
3459 Addiu32(scratch.AsCoreRegister(), SP, fr_offs.Int32Value());
3460 StoreToOffset(kStoreWord, scratch.AsCoreRegister(),
3461 S1, thr_offs.Int32Value());
3462 }
3463
StoreStackPointerToThread(ThreadOffset32 thr_offs)3464 void MipsAssembler::StoreStackPointerToThread(ThreadOffset32 thr_offs) {
3465 StoreToOffset(kStoreWord, SP, S1, thr_offs.Int32Value());
3466 }
3467
StoreSpanning(FrameOffset dest,ManagedRegister msrc,FrameOffset in_off,ManagedRegister mscratch)3468 void MipsAssembler::StoreSpanning(FrameOffset dest, ManagedRegister msrc,
3469 FrameOffset in_off, ManagedRegister mscratch) {
3470 MipsManagedRegister src = msrc.AsMips();
3471 MipsManagedRegister scratch = mscratch.AsMips();
3472 StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value());
3473 LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, in_off.Int32Value());
3474 StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value() + kMipsWordSize);
3475 }
3476
Load(ManagedRegister mdest,FrameOffset src,size_t size)3477 void MipsAssembler::Load(ManagedRegister mdest, FrameOffset src, size_t size) {
3478 return EmitLoad(mdest, SP, src.Int32Value(), size);
3479 }
3480
LoadFromThread(ManagedRegister mdest,ThreadOffset32 src,size_t size)3481 void MipsAssembler::LoadFromThread(ManagedRegister mdest, ThreadOffset32 src, size_t size) {
3482 return EmitLoad(mdest, S1, src.Int32Value(), size);
3483 }
3484
LoadRef(ManagedRegister mdest,FrameOffset src)3485 void MipsAssembler::LoadRef(ManagedRegister mdest, FrameOffset src) {
3486 MipsManagedRegister dest = mdest.AsMips();
3487 CHECK(dest.IsCoreRegister());
3488 LoadFromOffset(kLoadWord, dest.AsCoreRegister(), SP, src.Int32Value());
3489 }
3490
LoadRef(ManagedRegister mdest,ManagedRegister base,MemberOffset offs,bool unpoison_reference)3491 void MipsAssembler::LoadRef(ManagedRegister mdest, ManagedRegister base, MemberOffset offs,
3492 bool unpoison_reference) {
3493 MipsManagedRegister dest = mdest.AsMips();
3494 CHECK(dest.IsCoreRegister() && base.AsMips().IsCoreRegister());
3495 LoadFromOffset(kLoadWord, dest.AsCoreRegister(),
3496 base.AsMips().AsCoreRegister(), offs.Int32Value());
3497 if (unpoison_reference) {
3498 MaybeUnpoisonHeapReference(dest.AsCoreRegister());
3499 }
3500 }
3501
LoadRawPtr(ManagedRegister mdest,ManagedRegister base,Offset offs)3502 void MipsAssembler::LoadRawPtr(ManagedRegister mdest, ManagedRegister base, Offset offs) {
3503 MipsManagedRegister dest = mdest.AsMips();
3504 CHECK(dest.IsCoreRegister() && base.AsMips().IsCoreRegister());
3505 LoadFromOffset(kLoadWord, dest.AsCoreRegister(),
3506 base.AsMips().AsCoreRegister(), offs.Int32Value());
3507 }
3508
LoadRawPtrFromThread(ManagedRegister mdest,ThreadOffset32 offs)3509 void MipsAssembler::LoadRawPtrFromThread(ManagedRegister mdest, ThreadOffset32 offs) {
3510 MipsManagedRegister dest = mdest.AsMips();
3511 CHECK(dest.IsCoreRegister());
3512 LoadFromOffset(kLoadWord, dest.AsCoreRegister(), S1, offs.Int32Value());
3513 }
3514
SignExtend(ManagedRegister,size_t)3515 void MipsAssembler::SignExtend(ManagedRegister /*mreg*/, size_t /*size*/) {
3516 UNIMPLEMENTED(FATAL) << "no sign extension necessary for mips";
3517 }
3518
ZeroExtend(ManagedRegister,size_t)3519 void MipsAssembler::ZeroExtend(ManagedRegister /*mreg*/, size_t /*size*/) {
3520 UNIMPLEMENTED(FATAL) << "no zero extension necessary for mips";
3521 }
3522
Move(ManagedRegister mdest,ManagedRegister msrc,size_t size)3523 void MipsAssembler::Move(ManagedRegister mdest, ManagedRegister msrc, size_t size) {
3524 MipsManagedRegister dest = mdest.AsMips();
3525 MipsManagedRegister src = msrc.AsMips();
3526 if (!dest.Equals(src)) {
3527 if (dest.IsCoreRegister()) {
3528 CHECK(src.IsCoreRegister()) << src;
3529 Move(dest.AsCoreRegister(), src.AsCoreRegister());
3530 } else if (dest.IsFRegister()) {
3531 CHECK(src.IsFRegister()) << src;
3532 if (size == kMipsWordSize) {
3533 MovS(dest.AsFRegister(), src.AsFRegister());
3534 } else {
3535 CHECK_EQ(kMipsDoublewordSize, size);
3536 MovD(dest.AsFRegister(), src.AsFRegister());
3537 }
3538 } else if (dest.IsDRegister()) {
3539 CHECK(src.IsDRegister()) << src;
3540 MovD(dest.AsOverlappingDRegisterLow(), src.AsOverlappingDRegisterLow());
3541 } else {
3542 CHECK(dest.IsRegisterPair()) << dest;
3543 CHECK(src.IsRegisterPair()) << src;
3544 // Ensure that the first move doesn't clobber the input of the second.
3545 if (src.AsRegisterPairHigh() != dest.AsRegisterPairLow()) {
3546 Move(dest.AsRegisterPairLow(), src.AsRegisterPairLow());
3547 Move(dest.AsRegisterPairHigh(), src.AsRegisterPairHigh());
3548 } else {
3549 Move(dest.AsRegisterPairHigh(), src.AsRegisterPairHigh());
3550 Move(dest.AsRegisterPairLow(), src.AsRegisterPairLow());
3551 }
3552 }
3553 }
3554 }
3555
CopyRef(FrameOffset dest,FrameOffset src,ManagedRegister mscratch)3556 void MipsAssembler::CopyRef(FrameOffset dest, FrameOffset src, ManagedRegister mscratch) {
3557 MipsManagedRegister scratch = mscratch.AsMips();
3558 CHECK(scratch.IsCoreRegister()) << scratch;
3559 LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value());
3560 StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value());
3561 }
3562
CopyRawPtrFromThread(FrameOffset fr_offs,ThreadOffset32 thr_offs,ManagedRegister mscratch)3563 void MipsAssembler::CopyRawPtrFromThread(FrameOffset fr_offs,
3564 ThreadOffset32 thr_offs,
3565 ManagedRegister mscratch) {
3566 MipsManagedRegister scratch = mscratch.AsMips();
3567 CHECK(scratch.IsCoreRegister()) << scratch;
3568 LoadFromOffset(kLoadWord, scratch.AsCoreRegister(),
3569 S1, thr_offs.Int32Value());
3570 StoreToOffset(kStoreWord, scratch.AsCoreRegister(),
3571 SP, fr_offs.Int32Value());
3572 }
3573
CopyRawPtrToThread(ThreadOffset32 thr_offs,FrameOffset fr_offs,ManagedRegister mscratch)3574 void MipsAssembler::CopyRawPtrToThread(ThreadOffset32 thr_offs,
3575 FrameOffset fr_offs,
3576 ManagedRegister mscratch) {
3577 MipsManagedRegister scratch = mscratch.AsMips();
3578 CHECK(scratch.IsCoreRegister()) << scratch;
3579 LoadFromOffset(kLoadWord, scratch.AsCoreRegister(),
3580 SP, fr_offs.Int32Value());
3581 StoreToOffset(kStoreWord, scratch.AsCoreRegister(),
3582 S1, thr_offs.Int32Value());
3583 }
3584
Copy(FrameOffset dest,FrameOffset src,ManagedRegister mscratch,size_t size)3585 void MipsAssembler::Copy(FrameOffset dest, FrameOffset src, ManagedRegister mscratch, size_t size) {
3586 MipsManagedRegister scratch = mscratch.AsMips();
3587 CHECK(scratch.IsCoreRegister()) << scratch;
3588 CHECK(size == kMipsWordSize || size == kMipsDoublewordSize) << size;
3589 if (size == kMipsWordSize) {
3590 LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value());
3591 StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value());
3592 } else if (size == kMipsDoublewordSize) {
3593 LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value());
3594 StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value());
3595 LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value() + kMipsWordSize);
3596 StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value() + kMipsWordSize);
3597 }
3598 }
3599
Copy(FrameOffset dest,ManagedRegister src_base,Offset src_offset,ManagedRegister mscratch,size_t size)3600 void MipsAssembler::Copy(FrameOffset dest, ManagedRegister src_base, Offset src_offset,
3601 ManagedRegister mscratch, size_t size) {
3602 Register scratch = mscratch.AsMips().AsCoreRegister();
3603 CHECK_EQ(size, kMipsWordSize);
3604 LoadFromOffset(kLoadWord, scratch, src_base.AsMips().AsCoreRegister(), src_offset.Int32Value());
3605 StoreToOffset(kStoreWord, scratch, SP, dest.Int32Value());
3606 }
3607
Copy(ManagedRegister dest_base,Offset dest_offset,FrameOffset src,ManagedRegister mscratch,size_t size)3608 void MipsAssembler::Copy(ManagedRegister dest_base, Offset dest_offset, FrameOffset src,
3609 ManagedRegister mscratch, size_t size) {
3610 Register scratch = mscratch.AsMips().AsCoreRegister();
3611 CHECK_EQ(size, kMipsWordSize);
3612 LoadFromOffset(kLoadWord, scratch, SP, src.Int32Value());
3613 StoreToOffset(kStoreWord, scratch, dest_base.AsMips().AsCoreRegister(), dest_offset.Int32Value());
3614 }
3615
Copy(FrameOffset dest ATTRIBUTE_UNUSED,FrameOffset src_base ATTRIBUTE_UNUSED,Offset src_offset ATTRIBUTE_UNUSED,ManagedRegister mscratch ATTRIBUTE_UNUSED,size_t size ATTRIBUTE_UNUSED)3616 void MipsAssembler::Copy(FrameOffset dest ATTRIBUTE_UNUSED,
3617 FrameOffset src_base ATTRIBUTE_UNUSED,
3618 Offset src_offset ATTRIBUTE_UNUSED,
3619 ManagedRegister mscratch ATTRIBUTE_UNUSED,
3620 size_t size ATTRIBUTE_UNUSED) {
3621 UNIMPLEMENTED(FATAL) << "no MIPS implementation";
3622 }
3623
Copy(ManagedRegister dest,Offset dest_offset,ManagedRegister src,Offset src_offset,ManagedRegister mscratch,size_t size)3624 void MipsAssembler::Copy(ManagedRegister dest, Offset dest_offset,
3625 ManagedRegister src, Offset src_offset,
3626 ManagedRegister mscratch, size_t size) {
3627 CHECK_EQ(size, kMipsWordSize);
3628 Register scratch = mscratch.AsMips().AsCoreRegister();
3629 LoadFromOffset(kLoadWord, scratch, src.AsMips().AsCoreRegister(), src_offset.Int32Value());
3630 StoreToOffset(kStoreWord, scratch, dest.AsMips().AsCoreRegister(), dest_offset.Int32Value());
3631 }
3632
Copy(FrameOffset dest ATTRIBUTE_UNUSED,Offset dest_offset ATTRIBUTE_UNUSED,FrameOffset src ATTRIBUTE_UNUSED,Offset src_offset ATTRIBUTE_UNUSED,ManagedRegister mscratch ATTRIBUTE_UNUSED,size_t size ATTRIBUTE_UNUSED)3633 void MipsAssembler::Copy(FrameOffset dest ATTRIBUTE_UNUSED,
3634 Offset dest_offset ATTRIBUTE_UNUSED,
3635 FrameOffset src ATTRIBUTE_UNUSED,
3636 Offset src_offset ATTRIBUTE_UNUSED,
3637 ManagedRegister mscratch ATTRIBUTE_UNUSED,
3638 size_t size ATTRIBUTE_UNUSED) {
3639 UNIMPLEMENTED(FATAL) << "no MIPS implementation";
3640 }
3641
MemoryBarrier(ManagedRegister)3642 void MipsAssembler::MemoryBarrier(ManagedRegister) {
3643 // TODO: sync?
3644 UNIMPLEMENTED(FATAL) << "no MIPS implementation";
3645 }
3646
CreateHandleScopeEntry(ManagedRegister mout_reg,FrameOffset handle_scope_offset,ManagedRegister min_reg,bool null_allowed)3647 void MipsAssembler::CreateHandleScopeEntry(ManagedRegister mout_reg,
3648 FrameOffset handle_scope_offset,
3649 ManagedRegister min_reg,
3650 bool null_allowed) {
3651 MipsManagedRegister out_reg = mout_reg.AsMips();
3652 MipsManagedRegister in_reg = min_reg.AsMips();
3653 CHECK(in_reg.IsNoRegister() || in_reg.IsCoreRegister()) << in_reg;
3654 CHECK(out_reg.IsCoreRegister()) << out_reg;
3655 if (null_allowed) {
3656 MipsLabel null_arg;
3657 // Null values get a handle scope entry value of 0. Otherwise, the handle scope entry is
3658 // the address in the handle scope holding the reference.
3659 // E.g. out_reg = (handle == 0) ? 0 : (SP+handle_offset).
3660 if (in_reg.IsNoRegister()) {
3661 LoadFromOffset(kLoadWord, out_reg.AsCoreRegister(),
3662 SP, handle_scope_offset.Int32Value());
3663 in_reg = out_reg;
3664 }
3665 if (!out_reg.Equals(in_reg)) {
3666 LoadConst32(out_reg.AsCoreRegister(), 0);
3667 }
3668 Beqz(in_reg.AsCoreRegister(), &null_arg);
3669 Addiu32(out_reg.AsCoreRegister(), SP, handle_scope_offset.Int32Value());
3670 Bind(&null_arg);
3671 } else {
3672 Addiu32(out_reg.AsCoreRegister(), SP, handle_scope_offset.Int32Value());
3673 }
3674 }
3675
CreateHandleScopeEntry(FrameOffset out_off,FrameOffset handle_scope_offset,ManagedRegister mscratch,bool null_allowed)3676 void MipsAssembler::CreateHandleScopeEntry(FrameOffset out_off,
3677 FrameOffset handle_scope_offset,
3678 ManagedRegister mscratch,
3679 bool null_allowed) {
3680 MipsManagedRegister scratch = mscratch.AsMips();
3681 CHECK(scratch.IsCoreRegister()) << scratch;
3682 if (null_allowed) {
3683 MipsLabel null_arg;
3684 LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, handle_scope_offset.Int32Value());
3685 // Null values get a handle scope entry value of 0. Otherwise, the handle scope entry is
3686 // the address in the handle scope holding the reference.
3687 // E.g. scratch = (scratch == 0) ? 0 : (SP+handle_scope_offset).
3688 Beqz(scratch.AsCoreRegister(), &null_arg);
3689 Addiu32(scratch.AsCoreRegister(), SP, handle_scope_offset.Int32Value());
3690 Bind(&null_arg);
3691 } else {
3692 Addiu32(scratch.AsCoreRegister(), SP, handle_scope_offset.Int32Value());
3693 }
3694 StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, out_off.Int32Value());
3695 }
3696
3697 // Given a handle scope entry, load the associated reference.
LoadReferenceFromHandleScope(ManagedRegister mout_reg,ManagedRegister min_reg)3698 void MipsAssembler::LoadReferenceFromHandleScope(ManagedRegister mout_reg,
3699 ManagedRegister min_reg) {
3700 MipsManagedRegister out_reg = mout_reg.AsMips();
3701 MipsManagedRegister in_reg = min_reg.AsMips();
3702 CHECK(out_reg.IsCoreRegister()) << out_reg;
3703 CHECK(in_reg.IsCoreRegister()) << in_reg;
3704 MipsLabel null_arg;
3705 if (!out_reg.Equals(in_reg)) {
3706 LoadConst32(out_reg.AsCoreRegister(), 0);
3707 }
3708 Beqz(in_reg.AsCoreRegister(), &null_arg);
3709 LoadFromOffset(kLoadWord, out_reg.AsCoreRegister(),
3710 in_reg.AsCoreRegister(), 0);
3711 Bind(&null_arg);
3712 }
3713
VerifyObject(ManagedRegister src ATTRIBUTE_UNUSED,bool could_be_null ATTRIBUTE_UNUSED)3714 void MipsAssembler::VerifyObject(ManagedRegister src ATTRIBUTE_UNUSED,
3715 bool could_be_null ATTRIBUTE_UNUSED) {
3716 // TODO: not validating references.
3717 }
3718
VerifyObject(FrameOffset src ATTRIBUTE_UNUSED,bool could_be_null ATTRIBUTE_UNUSED)3719 void MipsAssembler::VerifyObject(FrameOffset src ATTRIBUTE_UNUSED,
3720 bool could_be_null ATTRIBUTE_UNUSED) {
3721 // TODO: not validating references.
3722 }
3723
Call(ManagedRegister mbase,Offset offset,ManagedRegister mscratch)3724 void MipsAssembler::Call(ManagedRegister mbase, Offset offset, ManagedRegister mscratch) {
3725 MipsManagedRegister base = mbase.AsMips();
3726 MipsManagedRegister scratch = mscratch.AsMips();
3727 CHECK(base.IsCoreRegister()) << base;
3728 CHECK(scratch.IsCoreRegister()) << scratch;
3729 LoadFromOffset(kLoadWord, scratch.AsCoreRegister(),
3730 base.AsCoreRegister(), offset.Int32Value());
3731 Jalr(scratch.AsCoreRegister());
3732 NopIfNoReordering();
3733 // TODO: place reference map on call.
3734 }
3735
Call(FrameOffset base,Offset offset,ManagedRegister mscratch)3736 void MipsAssembler::Call(FrameOffset base, Offset offset, ManagedRegister mscratch) {
3737 MipsManagedRegister scratch = mscratch.AsMips();
3738 CHECK(scratch.IsCoreRegister()) << scratch;
3739 // Call *(*(SP + base) + offset)
3740 LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, base.Int32Value());
3741 LoadFromOffset(kLoadWord, scratch.AsCoreRegister(),
3742 scratch.AsCoreRegister(), offset.Int32Value());
3743 Jalr(scratch.AsCoreRegister());
3744 NopIfNoReordering();
3745 // TODO: place reference map on call.
3746 }
3747
CallFromThread(ThreadOffset32 offset ATTRIBUTE_UNUSED,ManagedRegister mscratch ATTRIBUTE_UNUSED)3748 void MipsAssembler::CallFromThread(ThreadOffset32 offset ATTRIBUTE_UNUSED,
3749 ManagedRegister mscratch ATTRIBUTE_UNUSED) {
3750 UNIMPLEMENTED(FATAL) << "no mips implementation";
3751 }
3752
GetCurrentThread(ManagedRegister tr)3753 void MipsAssembler::GetCurrentThread(ManagedRegister tr) {
3754 Move(tr.AsMips().AsCoreRegister(), S1);
3755 }
3756
GetCurrentThread(FrameOffset offset,ManagedRegister mscratch ATTRIBUTE_UNUSED)3757 void MipsAssembler::GetCurrentThread(FrameOffset offset,
3758 ManagedRegister mscratch ATTRIBUTE_UNUSED) {
3759 StoreToOffset(kStoreWord, S1, SP, offset.Int32Value());
3760 }
3761
ExceptionPoll(ManagedRegister mscratch,size_t stack_adjust)3762 void MipsAssembler::ExceptionPoll(ManagedRegister mscratch, size_t stack_adjust) {
3763 MipsManagedRegister scratch = mscratch.AsMips();
3764 exception_blocks_.emplace_back(scratch, stack_adjust);
3765 LoadFromOffset(kLoadWord, scratch.AsCoreRegister(),
3766 S1, Thread::ExceptionOffset<kMipsPointerSize>().Int32Value());
3767 Bnez(scratch.AsCoreRegister(), exception_blocks_.back().Entry());
3768 }
3769
EmitExceptionPoll(MipsExceptionSlowPath * exception)3770 void MipsAssembler::EmitExceptionPoll(MipsExceptionSlowPath* exception) {
3771 Bind(exception->Entry());
3772 if (exception->stack_adjust_ != 0) { // Fix up the frame.
3773 DecreaseFrameSize(exception->stack_adjust_);
3774 }
3775 // Pass exception object as argument.
3776 // Don't care about preserving A0 as this call won't return.
3777 CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
3778 Move(A0, exception->scratch_.AsCoreRegister());
3779 // Set up call to Thread::Current()->pDeliverException.
3780 LoadFromOffset(kLoadWord, T9, S1,
3781 QUICK_ENTRYPOINT_OFFSET(kMipsPointerSize, pDeliverException).Int32Value());
3782 Jr(T9);
3783 NopIfNoReordering();
3784
3785 // Call never returns.
3786 Break();
3787 }
3788
3789 } // namespace mips
3790 } // namespace art
3791