1 //=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file describes an abstract interface used to get information about a
11 // target machines register file.  This information is used for a variety of
12 // purposed, especially register allocation.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_TARGET_TARGETREGISTERINFO_H
17 #define LLVM_TARGET_TARGETREGISTERINFO_H
18 
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineValueType.h"
22 #include "llvm/IR/CallingConv.h"
23 #include "llvm/MC/MCRegisterInfo.h"
24 #include "llvm/Support/Printable.h"
25 #include <cassert>
26 #include <functional>
27 
28 namespace llvm {
29 
30 class BitVector;
31 class MachineFunction;
32 class RegScavenger;
33 template<class T> class SmallVectorImpl;
34 class VirtRegMap;
35 class raw_ostream;
36 class LiveRegMatrix;
37 
38 /// A bitmask representing the covering of a register with sub-registers.
39 ///
40 /// This is typically used to track liveness at sub-register granularity.
41 /// Lane masks for sub-register indices are similar to register units for
42 /// physical registers. The individual bits in a lane mask can't be assigned
43 /// any specific meaning. They can be used to check if two sub-register
44 /// indices overlap.
45 ///
46 /// Iff the target has a register such that:
47 ///
48 ///   getSubReg(Reg, A) overlaps getSubReg(Reg, B)
49 ///
50 /// then:
51 ///
52 ///   (getSubRegIndexLaneMask(A) & getSubRegIndexLaneMask(B)) != 0
53 typedef unsigned LaneBitmask;
54 
55 class TargetRegisterClass {
56 public:
57   typedef const MCPhysReg* iterator;
58   typedef const MCPhysReg* const_iterator;
59   typedef const MVT::SimpleValueType* vt_iterator;
60   typedef const TargetRegisterClass* const * sc_iterator;
61 
62   // Instance variables filled by tablegen, do not use!
63   const MCRegisterClass *MC;
64   const vt_iterator VTs;
65   const uint32_t *SubClassMask;
66   const uint16_t *SuperRegIndices;
67   const LaneBitmask LaneMask;
68   /// Classes with a higher priority value are assigned first by register
69   /// allocators using a greedy heuristic. The value is in the range [0,63].
70   const uint8_t AllocationPriority;
71   /// Whether the class supports two (or more) disjunct subregister indices.
72   const bool HasDisjunctSubRegs;
73   /// Whether a combination of subregisters can cover every register in the
74   /// class. See also the CoveredBySubRegs description in Target.td.
75   const bool CoveredBySubRegs;
76   const sc_iterator SuperClasses;
77   ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&);
78 
79   /// Return the register class ID number.
getID()80   unsigned getID() const { return MC->getID(); }
81 
82   /// begin/end - Return all of the registers in this class.
83   ///
begin()84   iterator       begin() const { return MC->begin(); }
end()85   iterator         end() const { return MC->end(); }
86 
87   /// Return the number of registers in this class.
getNumRegs()88   unsigned getNumRegs() const { return MC->getNumRegs(); }
89 
90   /// Return the specified register in the class.
getRegister(unsigned i)91   unsigned getRegister(unsigned i) const {
92     return MC->getRegister(i);
93   }
94 
95   /// Return true if the specified register is included in this register class.
96   /// This does not include virtual registers.
contains(unsigned Reg)97   bool contains(unsigned Reg) const {
98     return MC->contains(Reg);
99   }
100 
101   /// Return true if both registers are in this class.
contains(unsigned Reg1,unsigned Reg2)102   bool contains(unsigned Reg1, unsigned Reg2) const {
103     return MC->contains(Reg1, Reg2);
104   }
105 
106   /// Return the size of the register in bytes, which is also the size
107   /// of a stack slot allocated to hold a spilled copy of this register.
getSize()108   unsigned getSize() const { return MC->getSize(); }
109 
110   /// Return the minimum required alignment for a register of this class.
getAlignment()111   unsigned getAlignment() const { return MC->getAlignment(); }
112 
113   /// Return the cost of copying a value between two registers in this class.
114   /// A negative number means the register class is very expensive
115   /// to copy e.g. status flag register classes.
getCopyCost()116   int getCopyCost() const { return MC->getCopyCost(); }
117 
118   /// Return true if this register class may be used to create virtual
119   /// registers.
isAllocatable()120   bool isAllocatable() const { return MC->isAllocatable(); }
121 
122   /// Return true if this TargetRegisterClass has the ValueType vt.
hasType(MVT vt)123   bool hasType(MVT vt) const {
124     for(int i = 0; VTs[i] != MVT::Other; ++i)
125       if (MVT(VTs[i]) == vt)
126         return true;
127     return false;
128   }
129 
130   /// vt_begin / vt_end - Loop over all of the value types that can be
131   /// represented by values in this register class.
vt_begin()132   vt_iterator vt_begin() const {
133     return VTs;
134   }
135 
vt_end()136   vt_iterator vt_end() const {
137     vt_iterator I = VTs;
138     while (*I != MVT::Other) ++I;
139     return I;
140   }
141 
142   /// Return true if the specified TargetRegisterClass
143   /// is a proper sub-class of this TargetRegisterClass.
hasSubClass(const TargetRegisterClass * RC)144   bool hasSubClass(const TargetRegisterClass *RC) const {
145     return RC != this && hasSubClassEq(RC);
146   }
147 
148   /// Returns true if RC is a sub-class of or equal to this class.
hasSubClassEq(const TargetRegisterClass * RC)149   bool hasSubClassEq(const TargetRegisterClass *RC) const {
150     unsigned ID = RC->getID();
151     return (SubClassMask[ID / 32] >> (ID % 32)) & 1;
152   }
153 
154   /// Return true if the specified TargetRegisterClass is a
155   /// proper super-class of this TargetRegisterClass.
hasSuperClass(const TargetRegisterClass * RC)156   bool hasSuperClass(const TargetRegisterClass *RC) const {
157     return RC->hasSubClass(this);
158   }
159 
160   /// Returns true if RC is a super-class of or equal to this class.
hasSuperClassEq(const TargetRegisterClass * RC)161   bool hasSuperClassEq(const TargetRegisterClass *RC) const {
162     return RC->hasSubClassEq(this);
163   }
164 
165   /// Returns a bit vector of subclasses, including this one.
166   /// The vector is indexed by class IDs.
167   ///
168   /// To use it, consider the returned array as a chunk of memory that
169   /// contains an array of bits of size NumRegClasses. Each 32-bit chunk
170   /// contains a bitset of the ID of the subclasses in big-endian style.
171 
172   /// I.e., the representation of the memory from left to right at the
173   /// bit level looks like:
174   /// [31 30 ... 1 0] [ 63 62 ... 33 32] ...
175   ///                     [ XXX NumRegClasses NumRegClasses - 1 ... ]
176   /// Where the number represents the class ID and XXX bits that
177   /// should be ignored.
178   ///
179   /// See the implementation of hasSubClassEq for an example of how it
180   /// can be used.
getSubClassMask()181   const uint32_t *getSubClassMask() const {
182     return SubClassMask;
183   }
184 
185   /// Returns a 0-terminated list of sub-register indices that project some
186   /// super-register class into this register class. The list has an entry for
187   /// each Idx such that:
188   ///
189   ///   There exists SuperRC where:
190   ///     For all Reg in SuperRC:
191   ///       this->contains(Reg:Idx)
192   ///
getSuperRegIndices()193   const uint16_t *getSuperRegIndices() const {
194     return SuperRegIndices;
195   }
196 
197   /// Returns a NULL-terminated list of super-classes.  The
198   /// classes are ordered by ID which is also a topological ordering from large
199   /// to small classes.  The list does NOT include the current class.
getSuperClasses()200   sc_iterator getSuperClasses() const {
201     return SuperClasses;
202   }
203 
204   /// Return true if this TargetRegisterClass is a subset
205   /// class of at least one other TargetRegisterClass.
isASubClass()206   bool isASubClass() const {
207     return SuperClasses[0] != nullptr;
208   }
209 
210   /// Returns the preferred order for allocating registers from this register
211   /// class in MF. The raw order comes directly from the .td file and may
212   /// include reserved registers that are not allocatable.
213   /// Register allocators should also make sure to allocate
214   /// callee-saved registers only after all the volatiles are used. The
215   /// RegisterClassInfo class provides filtered allocation orders with
216   /// callee-saved registers moved to the end.
217   ///
218   /// The MachineFunction argument can be used to tune the allocatable
219   /// registers based on the characteristics of the function, subtarget, or
220   /// other criteria.
221   ///
222   /// By default, this method returns all registers in the class.
223   ///
getRawAllocationOrder(const MachineFunction & MF)224   ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const {
225     return OrderFunc ? OrderFunc(MF) : makeArrayRef(begin(), getNumRegs());
226   }
227 
228   /// Returns the combination of all lane masks of register in this class.
229   /// The lane masks of the registers are the combination of all lane masks
230   /// of their subregisters. Returns 1 if there are no subregisters.
getLaneMask()231   LaneBitmask getLaneMask() const {
232     return LaneMask;
233   }
234 };
235 
236 /// Extra information, not in MCRegisterDesc, about registers.
237 /// These are used by codegen, not by MC.
238 struct TargetRegisterInfoDesc {
239   unsigned CostPerUse;          // Extra cost of instructions using register.
240   bool inAllocatableClass;      // Register belongs to an allocatable regclass.
241 };
242 
243 /// Each TargetRegisterClass has a per register weight, and weight
244 /// limit which must be less than the limits of its pressure sets.
245 struct RegClassWeight {
246   unsigned RegWeight;
247   unsigned WeightLimit;
248 };
249 
250 /// TargetRegisterInfo base class - We assume that the target defines a static
251 /// array of TargetRegisterDesc objects that represent all of the machine
252 /// registers that the target has.  As such, we simply have to track a pointer
253 /// to this array so that we can turn register number into a register
254 /// descriptor.
255 ///
256 class TargetRegisterInfo : public MCRegisterInfo {
257 public:
258   typedef const TargetRegisterClass * const * regclass_iterator;
259 private:
260   const TargetRegisterInfoDesc *InfoDesc;     // Extra desc array for codegen
261   const char *const *SubRegIndexNames;        // Names of subreg indexes.
262   // Pointer to array of lane masks, one per sub-reg index.
263   const LaneBitmask *SubRegIndexLaneMasks;
264 
265   regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
266   unsigned CoveringLanes;
267 
268 protected:
269   TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
270                      regclass_iterator RegClassBegin,
271                      regclass_iterator RegClassEnd,
272                      const char *const *SRINames,
273                      const LaneBitmask *SRILaneMasks,
274                      unsigned CoveringLanes);
275   virtual ~TargetRegisterInfo();
276 public:
277 
278   // Register numbers can represent physical registers, virtual registers, and
279   // sometimes stack slots. The unsigned values are divided into these ranges:
280   //
281   //   0           Not a register, can be used as a sentinel.
282   //   [1;2^30)    Physical registers assigned by TableGen.
283   //   [2^30;2^31) Stack slots. (Rarely used.)
284   //   [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
285   //
286   // Further sentinels can be allocated from the small negative integers.
287   // DenseMapInfo<unsigned> uses -1u and -2u.
288 
289   /// isStackSlot - Sometimes it is useful the be able to store a non-negative
290   /// frame index in a variable that normally holds a register. isStackSlot()
291   /// returns true if Reg is in the range used for stack slots.
292   ///
293   /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack
294   /// slots, so if a variable may contains a stack slot, always check
295   /// isStackSlot() first.
296   ///
isStackSlot(unsigned Reg)297   static bool isStackSlot(unsigned Reg) {
298     return int(Reg) >= (1 << 30);
299   }
300 
301   /// Compute the frame index from a register value representing a stack slot.
stackSlot2Index(unsigned Reg)302   static int stackSlot2Index(unsigned Reg) {
303     assert(isStackSlot(Reg) && "Not a stack slot");
304     return int(Reg - (1u << 30));
305   }
306 
307   /// Convert a non-negative frame index to a stack slot register value.
index2StackSlot(int FI)308   static unsigned index2StackSlot(int FI) {
309     assert(FI >= 0 && "Cannot hold a negative frame index.");
310     return FI + (1u << 30);
311   }
312 
313   /// Return true if the specified register number is in
314   /// the physical register namespace.
isPhysicalRegister(unsigned Reg)315   static bool isPhysicalRegister(unsigned Reg) {
316     assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
317     return int(Reg) > 0;
318   }
319 
320   /// Return true if the specified register number is in
321   /// the virtual register namespace.
isVirtualRegister(unsigned Reg)322   static bool isVirtualRegister(unsigned Reg) {
323     assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
324     return int(Reg) < 0;
325   }
326 
327   /// Convert a virtual register number to a 0-based index.
328   /// The first virtual register in a function will get the index 0.
virtReg2Index(unsigned Reg)329   static unsigned virtReg2Index(unsigned Reg) {
330     assert(isVirtualRegister(Reg) && "Not a virtual register");
331     return Reg & ~(1u << 31);
332   }
333 
334   /// Convert a 0-based index to a virtual register number.
335   /// This is the inverse operation of VirtReg2IndexFunctor below.
index2VirtReg(unsigned Index)336   static unsigned index2VirtReg(unsigned Index) {
337     return Index | (1u << 31);
338   }
339 
340   /// Returns the Register Class of a physical register of the given type,
341   /// picking the most sub register class of the right type that contains this
342   /// physreg.
343   const TargetRegisterClass *
344     getMinimalPhysRegClass(unsigned Reg, MVT VT = MVT::Other) const;
345 
346   /// Return the maximal subclass of the given register class that is
347   /// allocatable or NULL.
348   const TargetRegisterClass *
349     getAllocatableClass(const TargetRegisterClass *RC) const;
350 
351   /// Returns a bitset indexed by register number indicating if a register is
352   /// allocatable or not. If a register class is specified, returns the subset
353   /// for the class.
354   BitVector getAllocatableSet(const MachineFunction &MF,
355                               const TargetRegisterClass *RC = nullptr) const;
356 
357   /// Return the additional cost of using this register instead
358   /// of other registers in its class.
getCostPerUse(unsigned RegNo)359   unsigned getCostPerUse(unsigned RegNo) const {
360     return InfoDesc[RegNo].CostPerUse;
361   }
362 
363   /// Return true if the register is in the allocation of any register class.
isInAllocatableClass(unsigned RegNo)364   bool isInAllocatableClass(unsigned RegNo) const {
365     return InfoDesc[RegNo].inAllocatableClass;
366   }
367 
368   /// Return the human-readable symbolic target-specific
369   /// name for the specified SubRegIndex.
getSubRegIndexName(unsigned SubIdx)370   const char *getSubRegIndexName(unsigned SubIdx) const {
371     assert(SubIdx && SubIdx < getNumSubRegIndices() &&
372            "This is not a subregister index");
373     return SubRegIndexNames[SubIdx-1];
374   }
375 
376   /// Return a bitmask representing the parts of a register that are covered by
377   /// SubIdx \see LaneBitmask.
378   ///
379   /// SubIdx == 0 is allowed, it has the lane mask ~0u.
getSubRegIndexLaneMask(unsigned SubIdx)380   LaneBitmask getSubRegIndexLaneMask(unsigned SubIdx) const {
381     assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index");
382     return SubRegIndexLaneMasks[SubIdx];
383   }
384 
385   /// The lane masks returned by getSubRegIndexLaneMask() above can only be
386   /// used to determine if sub-registers overlap - they can't be used to
387   /// determine if a set of sub-registers completely cover another
388   /// sub-register.
389   ///
390   /// The X86 general purpose registers have two lanes corresponding to the
391   /// sub_8bit and sub_8bit_hi sub-registers. Both sub_32bit and sub_16bit have
392   /// lane masks '3', but the sub_16bit sub-register doesn't fully cover the
393   /// sub_32bit sub-register.
394   ///
395   /// On the other hand, the ARM NEON lanes fully cover their registers: The
396   /// dsub_0 sub-register is completely covered by the ssub_0 and ssub_1 lanes.
397   /// This is related to the CoveredBySubRegs property on register definitions.
398   ///
399   /// This function returns a bit mask of lanes that completely cover their
400   /// sub-registers. More precisely, given:
401   ///
402   ///   Covering = getCoveringLanes();
403   ///   MaskA = getSubRegIndexLaneMask(SubA);
404   ///   MaskB = getSubRegIndexLaneMask(SubB);
405   ///
406   /// If (MaskA & ~(MaskB & Covering)) == 0, then SubA is completely covered by
407   /// SubB.
getCoveringLanes()408   LaneBitmask getCoveringLanes() const { return CoveringLanes; }
409 
410   /// Returns true if the two registers are equal or alias each other.
411   /// The registers may be virtual registers.
regsOverlap(unsigned regA,unsigned regB)412   bool regsOverlap(unsigned regA, unsigned regB) const {
413     if (regA == regB) return true;
414     if (isVirtualRegister(regA) || isVirtualRegister(regB))
415       return false;
416 
417     // Regunits are numerically ordered. Find a common unit.
418     MCRegUnitIterator RUA(regA, this);
419     MCRegUnitIterator RUB(regB, this);
420     do {
421       if (*RUA == *RUB) return true;
422       if (*RUA < *RUB) ++RUA;
423       else             ++RUB;
424     } while (RUA.isValid() && RUB.isValid());
425     return false;
426   }
427 
428   /// Returns true if Reg contains RegUnit.
hasRegUnit(unsigned Reg,unsigned RegUnit)429   bool hasRegUnit(unsigned Reg, unsigned RegUnit) const {
430     for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units)
431       if (*Units == RegUnit)
432         return true;
433     return false;
434   }
435 
436   /// Return a null-terminated list of all of the callee-saved registers on
437   /// this target. The register should be in the order of desired callee-save
438   /// stack frame offset. The first register is closest to the incoming stack
439   /// pointer if stack grows down, and vice versa.
440   ///
441   virtual const MCPhysReg*
442   getCalleeSavedRegs(const MachineFunction *MF) const = 0;
443 
444   virtual const MCPhysReg*
getCalleeSavedRegsViaCopy(const MachineFunction * MF)445   getCalleeSavedRegsViaCopy(const MachineFunction *MF) const {
446     return nullptr;
447   }
448 
449   /// Return a mask of call-preserved registers for the given calling convention
450   /// on the current function. The mask should include all call-preserved
451   /// aliases. This is used by the register allocator to determine which
452   /// registers can be live across a call.
453   ///
454   /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries.
455   /// A set bit indicates that all bits of the corresponding register are
456   /// preserved across the function call.  The bit mask is expected to be
457   /// sub-register complete, i.e. if A is preserved, so are all its
458   /// sub-registers.
459   ///
460   /// Bits are numbered from the LSB, so the bit for physical register Reg can
461   /// be found as (Mask[Reg / 32] >> Reg % 32) & 1.
462   ///
463   /// A NULL pointer means that no register mask will be used, and call
464   /// instructions should use implicit-def operands to indicate call clobbered
465   /// registers.
466   ///
getCallPreservedMask(const MachineFunction & MF,CallingConv::ID)467   virtual const uint32_t *getCallPreservedMask(const MachineFunction &MF,
468                                                CallingConv::ID) const {
469     // The default mask clobbers everything.  All targets should override.
470     return nullptr;
471   }
472 
473   /// Return a register mask that clobbers everything.
getNoPreservedMask()474   virtual const uint32_t *getNoPreservedMask() const {
475     llvm_unreachable("target does not provide no preserved mask");
476   }
477 
478   /// Return true if all bits that are set in mask \p mask0 are also set in
479   /// \p mask1.
480   bool regmaskSubsetEqual(const uint32_t *mask0, const uint32_t *mask1) const;
481 
482   /// Return all the call-preserved register masks defined for this target.
483   virtual ArrayRef<const uint32_t *> getRegMasks() const = 0;
484   virtual ArrayRef<const char *> getRegMaskNames() const = 0;
485 
486   /// Returns a bitset indexed by physical register number indicating if a
487   /// register is a special register that has particular uses and should be
488   /// considered unavailable at all times, e.g. SP, RA. This is
489   /// used by register scavenger to determine what registers are free.
490   virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
491 
492   /// Prior to adding the live-out mask to a stackmap or patchpoint
493   /// instruction, provide the target the opportunity to adjust it (mainly to
494   /// remove pseudo-registers that should be ignored).
adjustStackMapLiveOutMask(uint32_t * Mask)495   virtual void adjustStackMapLiveOutMask(uint32_t *Mask) const { }
496 
497   /// Return a super-register of the specified register
498   /// Reg so its sub-register of index SubIdx is Reg.
getMatchingSuperReg(unsigned Reg,unsigned SubIdx,const TargetRegisterClass * RC)499   unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
500                                const TargetRegisterClass *RC) const {
501     return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC);
502   }
503 
504   /// Return a subclass of the specified register
505   /// class A so that each register in it has a sub-register of the
506   /// specified sub-register index which is in the specified register class B.
507   ///
508   /// TableGen will synthesize missing A sub-classes.
509   virtual const TargetRegisterClass *
510   getMatchingSuperRegClass(const TargetRegisterClass *A,
511                            const TargetRegisterClass *B, unsigned Idx) const;
512 
513   // For a copy-like instruction that defines a register of class DefRC with
514   // subreg index DefSubReg, reading from another source with class SrcRC and
515   // subregister SrcSubReg return true if this is a preferrable copy
516   // instruction or an earlier use should be used.
517   virtual bool shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
518                                     unsigned DefSubReg,
519                                     const TargetRegisterClass *SrcRC,
520                                     unsigned SrcSubReg) const;
521 
522   /// Returns the largest legal sub-class of RC that
523   /// supports the sub-register index Idx.
524   /// If no such sub-class exists, return NULL.
525   /// If all registers in RC already have an Idx sub-register, return RC.
526   ///
527   /// TableGen generates a version of this function that is good enough in most
528   /// cases.  Targets can override if they have constraints that TableGen
529   /// doesn't understand.  For example, the x86 sub_8bit sub-register index is
530   /// supported by the full GR32 register class in 64-bit mode, but only by the
531   /// GR32_ABCD regiister class in 32-bit mode.
532   ///
533   /// TableGen will synthesize missing RC sub-classes.
534   virtual const TargetRegisterClass *
getSubClassWithSubReg(const TargetRegisterClass * RC,unsigned Idx)535   getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const {
536     assert(Idx == 0 && "Target has no sub-registers");
537     return RC;
538   }
539 
540   /// Return the subregister index you get from composing
541   /// two subregister indices.
542   ///
543   /// The special null sub-register index composes as the identity.
544   ///
545   /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
546   /// returns c. Note that composeSubRegIndices does not tell you about illegal
547   /// compositions. If R does not have a subreg a, or R:a does not have a subreg
548   /// b, composeSubRegIndices doesn't tell you.
549   ///
550   /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
551   /// ssub_0:S0 - ssub_3:S3 subregs.
552   /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
553   ///
composeSubRegIndices(unsigned a,unsigned b)554   unsigned composeSubRegIndices(unsigned a, unsigned b) const {
555     if (!a) return b;
556     if (!b) return a;
557     return composeSubRegIndicesImpl(a, b);
558   }
559 
560   /// Transforms a LaneMask computed for one subregister to the lanemask that
561   /// would have been computed when composing the subsubregisters with IdxA
562   /// first. @sa composeSubRegIndices()
composeSubRegIndexLaneMask(unsigned IdxA,LaneBitmask Mask)563   LaneBitmask composeSubRegIndexLaneMask(unsigned IdxA,
564                                          LaneBitmask Mask) const {
565     if (!IdxA)
566       return Mask;
567     return composeSubRegIndexLaneMaskImpl(IdxA, Mask);
568   }
569 
570   /// Transform a lanemask given for a virtual register to the corresponding
571   /// lanemask before using subregister with index \p IdxA.
572   /// This is the reverse of composeSubRegIndexLaneMask(), assuming Mask is a
573   /// valie lane mask (no invalid bits set) the following holds:
574   /// X0 = composeSubRegIndexLaneMask(Idx, Mask)
575   /// X1 = reverseComposeSubRegIndexLaneMask(Idx, X0)
576   /// => X1 == Mask
reverseComposeSubRegIndexLaneMask(unsigned IdxA,LaneBitmask LaneMask)577   LaneBitmask reverseComposeSubRegIndexLaneMask(unsigned IdxA,
578                                                 LaneBitmask LaneMask) const {
579     if (!IdxA)
580       return LaneMask;
581     return reverseComposeSubRegIndexLaneMaskImpl(IdxA, LaneMask);
582   }
583 
584   /// Debugging helper: dump register in human readable form to dbgs() stream.
585   static void dumpReg(unsigned Reg, unsigned SubRegIndex = 0,
586                       const TargetRegisterInfo* TRI = nullptr);
587 
588 protected:
589   /// Overridden by TableGen in targets that have sub-registers.
composeSubRegIndicesImpl(unsigned,unsigned)590   virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const {
591     llvm_unreachable("Target has no sub-registers");
592   }
593 
594   /// Overridden by TableGen in targets that have sub-registers.
595   virtual LaneBitmask
composeSubRegIndexLaneMaskImpl(unsigned,LaneBitmask)596   composeSubRegIndexLaneMaskImpl(unsigned, LaneBitmask) const {
597     llvm_unreachable("Target has no sub-registers");
598   }
599 
reverseComposeSubRegIndexLaneMaskImpl(unsigned,LaneBitmask)600   virtual LaneBitmask reverseComposeSubRegIndexLaneMaskImpl(unsigned,
601                                                             LaneBitmask) const {
602     llvm_unreachable("Target has no sub-registers");
603   }
604 
605 public:
606   /// Find a common super-register class if it exists.
607   ///
608   /// Find a register class, SuperRC and two sub-register indices, PreA and
609   /// PreB, such that:
610   ///
611   ///   1. PreA + SubA == PreB + SubB  (using composeSubRegIndices()), and
612   ///
613   ///   2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and
614   ///
615   ///   3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()).
616   ///
617   /// SuperRC will be chosen such that no super-class of SuperRC satisfies the
618   /// requirements, and there is no register class with a smaller spill size
619   /// that satisfies the requirements.
620   ///
621   /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead.
622   ///
623   /// Either of the PreA and PreB sub-register indices may be returned as 0. In
624   /// that case, the returned register class will be a sub-class of the
625   /// corresponding argument register class.
626   ///
627   /// The function returns NULL if no register class can be found.
628   ///
629   const TargetRegisterClass*
630   getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
631                          const TargetRegisterClass *RCB, unsigned SubB,
632                          unsigned &PreA, unsigned &PreB) const;
633 
634   //===--------------------------------------------------------------------===//
635   // Register Class Information
636   //
637 
638   /// Register class iterators
639   ///
regclass_begin()640   regclass_iterator regclass_begin() const { return RegClassBegin; }
regclass_end()641   regclass_iterator regclass_end() const { return RegClassEnd; }
642 
getNumRegClasses()643   unsigned getNumRegClasses() const {
644     return (unsigned)(regclass_end()-regclass_begin());
645   }
646 
647   /// Returns the register class associated with the enumeration value.
648   /// See class MCOperandInfo.
getRegClass(unsigned i)649   const TargetRegisterClass *getRegClass(unsigned i) const {
650     assert(i < getNumRegClasses() && "Register Class ID out of range");
651     return RegClassBegin[i];
652   }
653 
654   /// Returns the name of the register class.
getRegClassName(const TargetRegisterClass * Class)655   const char *getRegClassName(const TargetRegisterClass *Class) const {
656     return MCRegisterInfo::getRegClassName(Class->MC);
657   }
658 
659   /// Find the largest common subclass of A and B.
660   /// Return NULL if there is no common subclass.
661   /// The common subclass should contain
662   /// simple value type SVT if it is not the Any type.
663   const TargetRegisterClass *
664   getCommonSubClass(const TargetRegisterClass *A,
665                     const TargetRegisterClass *B,
666                     const MVT::SimpleValueType SVT =
667                     MVT::SimpleValueType::Any) const;
668 
669   /// Returns a TargetRegisterClass used for pointer values.
670   /// If a target supports multiple different pointer register classes,
671   /// kind specifies which one is indicated.
672   virtual const TargetRegisterClass *
673   getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const {
674     llvm_unreachable("Target didn't implement getPointerRegClass!");
675   }
676 
677   /// Returns a legal register class to copy a register in the specified class
678   /// to or from. If it is possible to copy the register directly without using
679   /// a cross register class copy, return the specified RC. Returns NULL if it
680   /// is not possible to copy between two registers of the specified class.
681   virtual const TargetRegisterClass *
getCrossCopyRegClass(const TargetRegisterClass * RC)682   getCrossCopyRegClass(const TargetRegisterClass *RC) const {
683     return RC;
684   }
685 
686   /// Returns the largest super class of RC that is legal to use in the current
687   /// sub-target and has the same spill size.
688   /// The returned register class can be used to create virtual registers which
689   /// means that all its registers can be copied and spilled.
690   virtual const TargetRegisterClass *
getLargestLegalSuperClass(const TargetRegisterClass * RC,const MachineFunction &)691   getLargestLegalSuperClass(const TargetRegisterClass *RC,
692                             const MachineFunction &) const {
693     /// The default implementation is very conservative and doesn't allow the
694     /// register allocator to inflate register classes.
695     return RC;
696   }
697 
698   /// Return the register pressure "high water mark" for the specific register
699   /// class. The scheduler is in high register pressure mode (for the specific
700   /// register class) if it goes over the limit.
701   ///
702   /// Note: this is the old register pressure model that relies on a manually
703   /// specified representative register class per value type.
getRegPressureLimit(const TargetRegisterClass * RC,MachineFunction & MF)704   virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
705                                        MachineFunction &MF) const {
706     return 0;
707   }
708 
709   /// Return a heuristic for the machine scheduler to compare the profitability
710   /// of increasing one register pressure set versus another.  The scheduler
711   /// will prefer increasing the register pressure of the set which returns
712   /// the largest value for this function.
getRegPressureSetScore(const MachineFunction & MF,unsigned PSetID)713   virtual unsigned getRegPressureSetScore(const MachineFunction &MF,
714                                           unsigned PSetID) const {
715     return PSetID;
716   }
717 
718   /// Get the weight in units of pressure for this register class.
719   virtual const RegClassWeight &getRegClassWeight(
720     const TargetRegisterClass *RC) const = 0;
721 
722   /// Get the weight in units of pressure for this register unit.
723   virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0;
724 
725   /// Get the number of dimensions of register pressure.
726   virtual unsigned getNumRegPressureSets() const = 0;
727 
728   /// Get the name of this register unit pressure set.
729   virtual const char *getRegPressureSetName(unsigned Idx) const = 0;
730 
731   /// Get the register unit pressure limit for this dimension.
732   /// This limit must be adjusted dynamically for reserved registers.
733   virtual unsigned getRegPressureSetLimit(const MachineFunction &MF,
734                                           unsigned Idx) const = 0;
735 
736   /// Get the dimensions of register pressure impacted by this register class.
737   /// Returns a -1 terminated array of pressure set IDs.
738   virtual const int *getRegClassPressureSets(
739     const TargetRegisterClass *RC) const = 0;
740 
741   /// Get the dimensions of register pressure impacted by this register unit.
742   /// Returns a -1 terminated array of pressure set IDs.
743   virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0;
744 
745   /// Get a list of 'hint' registers that the register allocator should try
746   /// first when allocating a physical register for the virtual register
747   /// VirtReg. These registers are effectively moved to the front of the
748   /// allocation order.
749   ///
750   /// The Order argument is the allocation order for VirtReg's register class
751   /// as returned from RegisterClassInfo::getOrder(). The hint registers must
752   /// come from Order, and they must not be reserved.
753   ///
754   /// The default implementation of this function can resolve
755   /// target-independent hints provided to MRI::setRegAllocationHint with
756   /// HintType == 0. Targets that override this function should defer to the
757   /// default implementation if they have no reason to change the allocation
758   /// order for VirtReg. There may be target-independent hints.
759   virtual void getRegAllocationHints(unsigned VirtReg,
760                                      ArrayRef<MCPhysReg> Order,
761                                      SmallVectorImpl<MCPhysReg> &Hints,
762                                      const MachineFunction &MF,
763                                      const VirtRegMap *VRM = nullptr,
764                                      const LiveRegMatrix *Matrix = nullptr)
765     const;
766 
767   /// A callback to allow target a chance to update register allocation hints
768   /// when a register is "changed" (e.g. coalesced) to another register.
769   /// e.g. On ARM, some virtual registers should target register pairs,
770   /// if one of pair is coalesced to another register, the allocation hint of
771   /// the other half of the pair should be changed to point to the new register.
updateRegAllocHint(unsigned Reg,unsigned NewReg,MachineFunction & MF)772   virtual void updateRegAllocHint(unsigned Reg, unsigned NewReg,
773                                   MachineFunction &MF) const {
774     // Do nothing.
775   }
776 
777   /// Allow the target to reverse allocation order of local live ranges. This
778   /// will generally allocate shorter local live ranges first. For targets with
779   /// many registers, this could reduce regalloc compile time by a large
780   /// factor. It is disabled by default for three reasons:
781   /// (1) Top-down allocation is simpler and easier to debug for targets that
782   /// don't benefit from reversing the order.
783   /// (2) Bottom-up allocation could result in poor evicition decisions on some
784   /// targets affecting the performance of compiled code.
785   /// (3) Bottom-up allocation is no longer guaranteed to optimally color.
reverseLocalAssignment()786   virtual bool reverseLocalAssignment() const { return false; }
787 
788   /// Allow the target to override the cost of using a callee-saved register for
789   /// the first time. Default value of 0 means we will use a callee-saved
790   /// register if it is available.
getCSRFirstUseCost()791   virtual unsigned getCSRFirstUseCost() const { return 0; }
792 
793   /// Returns true if the target requires (and can make use of) the register
794   /// scavenger.
requiresRegisterScavenging(const MachineFunction & MF)795   virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
796     return false;
797   }
798 
799   /// Returns true if the target wants to use frame pointer based accesses to
800   /// spill to the scavenger emergency spill slot.
useFPForScavengingIndex(const MachineFunction & MF)801   virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
802     return true;
803   }
804 
805   /// Returns true if the target requires post PEI scavenging of registers for
806   /// materializing frame index constants.
requiresFrameIndexScavenging(const MachineFunction & MF)807   virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
808     return false;
809   }
810 
811   /// Returns true if the target wants the LocalStackAllocation pass to be run
812   /// and virtual base registers used for more efficient stack access.
requiresVirtualBaseRegisters(const MachineFunction & MF)813   virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
814     return false;
815   }
816 
817   /// Return true if target has reserved a spill slot in the stack frame of
818   /// the given function for the specified register. e.g. On x86, if the frame
819   /// register is required, the first fixed stack object is reserved as its
820   /// spill slot. This tells PEI not to create a new stack frame
821   /// object for the given register. It should be called only after
822   /// determineCalleeSaves().
hasReservedSpillSlot(const MachineFunction & MF,unsigned Reg,int & FrameIdx)823   virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
824                                     int &FrameIdx) const {
825     return false;
826   }
827 
828   /// Returns true if the live-ins should be tracked after register allocation.
trackLivenessAfterRegAlloc(const MachineFunction & MF)829   virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
830     return false;
831   }
832 
833   /// True if the stack can be realigned for the target.
834   virtual bool canRealignStack(const MachineFunction &MF) const;
835 
836   /// True if storage within the function requires the stack pointer to be
837   /// aligned more than the normal calling convention calls for.
838   /// This cannot be overriden by the target, but canRealignStack can be
839   /// overridden.
840   bool needsStackRealignment(const MachineFunction &MF) const;
841 
842   /// Get the offset from the referenced frame index in the instruction,
843   /// if there is one.
getFrameIndexInstrOffset(const MachineInstr * MI,int Idx)844   virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
845                                            int Idx) const {
846     return 0;
847   }
848 
849   /// Returns true if the instruction's frame index reference would be better
850   /// served by a base register other than FP or SP.
851   /// Used by LocalStackFrameAllocation to determine which frame index
852   /// references it should create new base registers for.
needsFrameBaseReg(MachineInstr * MI,int64_t Offset)853   virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
854     return false;
855   }
856 
857   /// Insert defining instruction(s) for BaseReg to be a pointer to FrameIdx
858   /// before insertion point I.
materializeFrameBaseRegister(MachineBasicBlock * MBB,unsigned BaseReg,int FrameIdx,int64_t Offset)859   virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB,
860                                             unsigned BaseReg, int FrameIdx,
861                                             int64_t Offset) const {
862     llvm_unreachable("materializeFrameBaseRegister does not exist on this "
863                      "target");
864   }
865 
866   /// Resolve a frame index operand of an instruction
867   /// to reference the indicated base register plus offset instead.
resolveFrameIndex(MachineInstr & MI,unsigned BaseReg,int64_t Offset)868   virtual void resolveFrameIndex(MachineInstr &MI, unsigned BaseReg,
869                                  int64_t Offset) const {
870     llvm_unreachable("resolveFrameIndex does not exist on this target");
871   }
872 
873   /// Determine whether a given base register plus offset immediate is
874   /// encodable to resolve a frame index.
isFrameOffsetLegal(const MachineInstr * MI,unsigned BaseReg,int64_t Offset)875   virtual bool isFrameOffsetLegal(const MachineInstr *MI, unsigned BaseReg,
876                                   int64_t Offset) const {
877     llvm_unreachable("isFrameOffsetLegal does not exist on this target");
878   }
879 
880   /// Spill the register so it can be used by the register scavenger.
881   /// Return true if the register was spilled, false otherwise.
882   /// If this function does not spill the register, the scavenger
883   /// will instead spill it to the emergency spill slot.
884   ///
saveScavengerRegister(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,MachineBasicBlock::iterator & UseMI,const TargetRegisterClass * RC,unsigned Reg)885   virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
886                                      MachineBasicBlock::iterator I,
887                                      MachineBasicBlock::iterator &UseMI,
888                                      const TargetRegisterClass *RC,
889                                      unsigned Reg) const {
890     return false;
891   }
892 
893   /// This method must be overriden to eliminate abstract frame indices from
894   /// instructions which may use them. The instruction referenced by the
895   /// iterator contains an MO_FrameIndex operand which must be eliminated by
896   /// this method. This method may modify or replace the specified instruction,
897   /// as long as it keeps the iterator pointing at the finished product.
898   /// SPAdj is the SP adjustment due to call frame setup instruction.
899   /// FIOperandNum is the FI operand number.
900   virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
901                                    int SPAdj, unsigned FIOperandNum,
902                                    RegScavenger *RS = nullptr) const = 0;
903 
904   /// Return the assembly name for \p Reg.
getRegAsmName(unsigned Reg)905   virtual StringRef getRegAsmName(unsigned Reg) const {
906     // FIXME: We are assuming that the assembly name is equal to the TableGen
907     // name converted to lower case
908     //
909     // The TableGen name is the name of the definition for this register in the
910     // target's tablegen files.  For example, the TableGen name of
911     // def EAX : Register <...>; is "EAX"
912     return StringRef(getName(Reg));
913   }
914 
915   //===--------------------------------------------------------------------===//
916   /// Subtarget Hooks
917 
918   /// \brief SrcRC and DstRC will be morphed into NewRC if this returns true.
shouldCoalesce(MachineInstr * MI,const TargetRegisterClass * SrcRC,unsigned SubReg,const TargetRegisterClass * DstRC,unsigned DstSubReg,const TargetRegisterClass * NewRC)919   virtual bool shouldCoalesce(MachineInstr *MI,
920                               const TargetRegisterClass *SrcRC,
921                               unsigned SubReg,
922                               const TargetRegisterClass *DstRC,
923                               unsigned DstSubReg,
924                               const TargetRegisterClass *NewRC) const
925   { return true; }
926 
927   //===--------------------------------------------------------------------===//
928   /// Debug information queries.
929 
930   /// getFrameRegister - This method should return the register used as a base
931   /// for values allocated in the current stack frame.
932   virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
933 };
934 
935 
936 //===----------------------------------------------------------------------===//
937 //                           SuperRegClassIterator
938 //===----------------------------------------------------------------------===//
939 //
940 // Iterate over the possible super-registers for a given register class. The
941 // iterator will visit a list of pairs (Idx, Mask) corresponding to the
942 // possible classes of super-registers.
943 //
944 // Each bit mask will have at least one set bit, and each set bit in Mask
945 // corresponds to a SuperRC such that:
946 //
947 //   For all Reg in SuperRC: Reg:Idx is in RC.
948 //
949 // The iterator can include (O, RC->getSubClassMask()) as the first entry which
950 // also satisfies the above requirement, assuming Reg:0 == Reg.
951 //
952 class SuperRegClassIterator {
953   const unsigned RCMaskWords;
954   unsigned SubReg;
955   const uint16_t *Idx;
956   const uint32_t *Mask;
957 
958 public:
959   /// Create a SuperRegClassIterator that visits all the super-register classes
960   /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry.
961   SuperRegClassIterator(const TargetRegisterClass *RC,
962                         const TargetRegisterInfo *TRI,
963                         bool IncludeSelf = false)
964     : RCMaskWords((TRI->getNumRegClasses() + 31) / 32),
965       SubReg(0),
966       Idx(RC->getSuperRegIndices()),
967       Mask(RC->getSubClassMask()) {
968     if (!IncludeSelf)
969       ++*this;
970   }
971 
972   /// Returns true if this iterator is still pointing at a valid entry.
isValid()973   bool isValid() const { return Idx; }
974 
975   /// Returns the current sub-register index.
getSubReg()976   unsigned getSubReg() const { return SubReg; }
977 
978   /// Returns the bit mask of register classes that getSubReg() projects into
979   /// RC.
980   /// See TargetRegisterClass::getSubClassMask() for how to use it.
getMask()981   const uint32_t *getMask() const { return Mask; }
982 
983   /// Advance iterator to the next entry.
984   void operator++() {
985     assert(isValid() && "Cannot move iterator past end.");
986     Mask += RCMaskWords;
987     SubReg = *Idx++;
988     if (!SubReg)
989       Idx = nullptr;
990   }
991 };
992 
993 //===----------------------------------------------------------------------===//
994 //                           BitMaskClassIterator
995 //===----------------------------------------------------------------------===//
996 /// This class encapuslates the logic to iterate over bitmask returned by
997 /// the various RegClass related APIs.
998 /// E.g., this class can be used to iterate over the subclasses provided by
999 /// TargetRegisterClass::getSubClassMask or SuperRegClassIterator::getMask.
1000 class BitMaskClassIterator {
1001   /// Total number of register classes.
1002   const unsigned NumRegClasses;
1003   /// Base index of CurrentChunk.
1004   /// In other words, the number of bit we read to get at the
1005   /// beginning of that chunck.
1006   unsigned Base;
1007   /// Adjust base index of CurrentChunk.
1008   /// Base index + how many bit we read within CurrentChunk.
1009   unsigned Idx;
1010   /// Current register class ID.
1011   unsigned ID;
1012   /// Mask we are iterating over.
1013   const uint32_t *Mask;
1014   /// Current chunk of the Mask we are traversing.
1015   uint32_t CurrentChunk;
1016 
1017   /// Move ID to the next set bit.
moveToNextID()1018   void moveToNextID() {
1019     // If the current chunk of memory is empty, move to the next one,
1020     // while making sure we do not go pass the number of register
1021     // classes.
1022     while (!CurrentChunk) {
1023       // Move to the next chunk.
1024       Base += 32;
1025       if (Base >= NumRegClasses) {
1026         ID = NumRegClasses;
1027         return;
1028       }
1029       CurrentChunk = *++Mask;
1030       Idx = Base;
1031     }
1032     // Otherwise look for the first bit set from the right
1033     // (representation of the class ID is big endian).
1034     // See getSubClassMask for more details on the representation.
1035     unsigned Offset = countTrailingZeros(CurrentChunk);
1036     // Add the Offset to the adjusted base number of this chunk: Idx.
1037     // This is the ID of the register class.
1038     ID = Idx + Offset;
1039 
1040     // Consume the zeros, if any, and the bit we just read
1041     // so that we are at the right spot for the next call.
1042     // Do not do Offset + 1 because Offset may be 31 and 32
1043     // will be UB for the shift, though in that case we could
1044     // have make the chunk being equal to 0, but that would
1045     // have introduced a if statement.
1046     moveNBits(Offset);
1047     moveNBits(1);
1048   }
1049 
1050   /// Move \p NumBits Bits forward in CurrentChunk.
moveNBits(unsigned NumBits)1051   void moveNBits(unsigned NumBits) {
1052     assert(NumBits < 32 && "Undefined behavior spotted!");
1053     // Consume the bit we read for the next call.
1054     CurrentChunk >>= NumBits;
1055     // Adjust the base for the chunk.
1056     Idx += NumBits;
1057   }
1058 
1059 public:
1060   /// Create a BitMaskClassIterator that visits all the register classes
1061   /// represented by \p Mask.
1062   ///
1063   /// \pre \p Mask != nullptr
BitMaskClassIterator(const uint32_t * Mask,const TargetRegisterInfo & TRI)1064   BitMaskClassIterator(const uint32_t *Mask, const TargetRegisterInfo &TRI)
1065       : NumRegClasses(TRI.getNumRegClasses()), Base(0), Idx(0), ID(0),
1066         Mask(Mask), CurrentChunk(*Mask) {
1067     // Move to the first ID.
1068     moveToNextID();
1069   }
1070 
1071   /// Returns true if this iterator is still pointing at a valid entry.
isValid()1072   bool isValid() const { return getID() != NumRegClasses; }
1073 
1074   /// Returns the current register class ID.
getID()1075   unsigned getID() const { return ID; }
1076 
1077   /// Advance iterator to the next entry.
1078   void operator++() {
1079     assert(isValid() && "Cannot move iterator past end.");
1080     moveToNextID();
1081   }
1082 };
1083 
1084 // This is useful when building IndexedMaps keyed on virtual registers
1085 struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> {
operatorVirtReg2IndexFunctor1086   unsigned operator()(unsigned Reg) const {
1087     return TargetRegisterInfo::virtReg2Index(Reg);
1088   }
1089 };
1090 
1091 /// Prints virtual and physical registers with or without a TRI instance.
1092 ///
1093 /// The format is:
1094 ///   %noreg          - NoRegister
1095 ///   %vreg5          - a virtual register.
1096 ///   %vreg5:sub_8bit - a virtual register with sub-register index (with TRI).
1097 ///   %EAX            - a physical register
1098 ///   %physreg17      - a physical register when no TRI instance given.
1099 ///
1100 /// Usage: OS << PrintReg(Reg, TRI) << '\n';
1101 Printable PrintReg(unsigned Reg, const TargetRegisterInfo *TRI = nullptr,
1102                    unsigned SubRegIdx = 0);
1103 
1104 /// Create Printable object to print register units on a \ref raw_ostream.
1105 ///
1106 /// Register units are named after their root registers:
1107 ///
1108 ///   AL      - Single root.
1109 ///   FP0~ST7 - Dual roots.
1110 ///
1111 /// Usage: OS << PrintRegUnit(Unit, TRI) << '\n';
1112 Printable PrintRegUnit(unsigned Unit, const TargetRegisterInfo *TRI);
1113 
1114 /// \brief Create Printable object to print virtual registers and physical
1115 /// registers on a \ref raw_ostream.
1116 Printable PrintVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *TRI);
1117 
1118 /// Create Printable object to print LaneBitmasks on a \ref raw_ostream.
1119 Printable PrintLaneMask(LaneBitmask LaneMask);
1120 
1121 } // End llvm namespace
1122 
1123 #endif
1124