1 //===-- llvm/CodeGen/MachineInstr.h - MachineInstr class --------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the declaration of the MachineInstr class, which is the
11 // basic representation for all target dependent machine instructions used by
12 // the back end.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_CODEGEN_MACHINEINSTR_H
17 #define LLVM_CODEGEN_MACHINEINSTR_H
18 
19 #include "llvm/ADT/DenseMapInfo.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/ilist.h"
22 #include "llvm/ADT/ilist_node.h"
23 #include "llvm/ADT/iterator_range.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/IR/DebugLoc.h"
27 #include "llvm/IR/InlineAsm.h"
28 #include "llvm/MC/MCInstrDesc.h"
29 #include "llvm/Support/ArrayRecycler.h"
30 #include "llvm/Target/TargetOpcodes.h"
31 
32 namespace llvm {
33 
34 class StringRef;
35 template <typename T> class ArrayRef;
36 template <typename T> class SmallVectorImpl;
37 class DILocalVariable;
38 class DIExpression;
39 class TargetInstrInfo;
40 class TargetRegisterClass;
41 class TargetRegisterInfo;
42 #ifdef LLVM_BUILD_GLOBAL_ISEL
43 class Type;
44 #endif
45 class MachineFunction;
46 class MachineMemOperand;
47 
48 //===----------------------------------------------------------------------===//
49 /// Representation of each machine instruction.
50 ///
51 /// This class isn't a POD type, but it must have a trivial destructor. When a
52 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated
53 /// without having their destructor called.
54 ///
55 class MachineInstr
56     : public ilist_node_with_parent<MachineInstr, MachineBasicBlock> {
57 public:
58   typedef MachineMemOperand **mmo_iterator;
59 
60   /// Flags to specify different kinds of comments to output in
61   /// assembly code.  These flags carry semantic information not
62   /// otherwise easily derivable from the IR text.
63   ///
64   enum CommentFlag {
65     ReloadReuse = 0x1
66   };
67 
68   enum MIFlag {
69     NoFlags      = 0,
70     FrameSetup   = 1 << 0,              // Instruction is used as a part of
71                                         // function frame setup code.
72     FrameDestroy = 1 << 1,              // Instruction is used as a part of
73                                         // function frame destruction code.
74     BundledPred  = 1 << 2,              // Instruction has bundled predecessors.
75     BundledSucc  = 1 << 3               // Instruction has bundled successors.
76   };
77 private:
78   const MCInstrDesc *MCID;              // Instruction descriptor.
79   MachineBasicBlock *Parent;            // Pointer to the owning basic block.
80 
81   // Operands are allocated by an ArrayRecycler.
82   MachineOperand *Operands;             // Pointer to the first operand.
83   unsigned NumOperands;                 // Number of operands on instruction.
84   typedef ArrayRecycler<MachineOperand>::Capacity OperandCapacity;
85   OperandCapacity CapOperands;          // Capacity of the Operands array.
86 
87   uint8_t Flags;                        // Various bits of additional
88                                         // information about machine
89                                         // instruction.
90 
91   uint8_t AsmPrinterFlags;              // Various bits of information used by
92                                         // the AsmPrinter to emit helpful
93                                         // comments.  This is *not* semantic
94                                         // information.  Do not use this for
95                                         // anything other than to convey comment
96                                         // information to AsmPrinter.
97 
98   uint8_t NumMemRefs;                   // Information on memory references.
99   // Note that MemRefs == nullptr,  means 'don't know', not 'no memory access'.
100   // Calling code must treat missing information conservatively.  If the number
101   // of memory operands required to be precise exceeds the maximum value of
102   // NumMemRefs - currently 256 - we remove the operands entirely. Note also
103   // that this is a non-owning reference to a shared copy on write buffer owned
104   // by the MachineFunction and created via MF.allocateMemRefsArray.
105   mmo_iterator MemRefs;
106 
107   DebugLoc debugLoc;                    // Source line information.
108 
109 #ifdef LLVM_BUILD_GLOBAL_ISEL
110   /// Type of the instruction in case of a generic opcode.
111   /// \invariant This must be nullptr is getOpcode() is not
112   /// in the range of generic opcodes.
113   Type *Ty;
114 #endif
115 
116   MachineInstr(const MachineInstr&) = delete;
117   void operator=(const MachineInstr&) = delete;
118   // Use MachineFunction::DeleteMachineInstr() instead.
119   ~MachineInstr() = delete;
120 
121   // Intrusive list support
122   friend struct ilist_traits<MachineInstr>;
123   friend struct ilist_traits<MachineBasicBlock>;
124   void setParent(MachineBasicBlock *P) { Parent = P; }
125 
126   /// This constructor creates a copy of the given
127   /// MachineInstr in the given MachineFunction.
128   MachineInstr(MachineFunction &, const MachineInstr &);
129 
130   /// This constructor create a MachineInstr and add the implicit operands.
131   /// It reserves space for number of operands specified by
132   /// MCInstrDesc.  An explicit DebugLoc is supplied.
133   MachineInstr(MachineFunction &, const MCInstrDesc &MCID, DebugLoc dl,
134                bool NoImp = false);
135 
136   // MachineInstrs are pool-allocated and owned by MachineFunction.
137   friend class MachineFunction;
138 
139 public:
140   const MachineBasicBlock* getParent() const { return Parent; }
141   MachineBasicBlock* getParent() { return Parent; }
142 
143   /// Return the asm printer flags bitvector.
144   uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
145 
146   /// Clear the AsmPrinter bitvector.
147   void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
148 
149   /// Return whether an AsmPrinter flag is set.
150   bool getAsmPrinterFlag(CommentFlag Flag) const {
151     return AsmPrinterFlags & Flag;
152   }
153 
154   /// Set a flag for the AsmPrinter.
155   void setAsmPrinterFlag(CommentFlag Flag) {
156     AsmPrinterFlags |= (uint8_t)Flag;
157   }
158 
159   /// Clear specific AsmPrinter flags.
160   void clearAsmPrinterFlag(CommentFlag Flag) {
161     AsmPrinterFlags &= ~Flag;
162   }
163 
164   /// Return the MI flags bitvector.
165   uint8_t getFlags() const {
166     return Flags;
167   }
168 
169   /// Return whether an MI flag is set.
170   bool getFlag(MIFlag Flag) const {
171     return Flags & Flag;
172   }
173 
174   /// Set a MI flag.
175   void setFlag(MIFlag Flag) {
176     Flags |= (uint8_t)Flag;
177   }
178 
179   void setFlags(unsigned flags) {
180     // Filter out the automatically maintained flags.
181     unsigned Mask = BundledPred | BundledSucc;
182     Flags = (Flags & Mask) | (flags & ~Mask);
183   }
184 
185   /// clearFlag - Clear a MI flag.
186   void clearFlag(MIFlag Flag) {
187     Flags &= ~((uint8_t)Flag);
188   }
189 
190   /// Set the type of the instruction.
191   /// \pre getOpcode() is in the range of the generic opcodes.
192   void setType(Type *Ty);
193   Type *getType() const;
194 
195   /// Return true if MI is in a bundle (but not the first MI in a bundle).
196   ///
197   /// A bundle looks like this before it's finalized:
198   ///   ----------------
199   ///   |      MI      |
200   ///   ----------------
201   ///          |
202   ///   ----------------
203   ///   |      MI    * |
204   ///   ----------------
205   ///          |
206   ///   ----------------
207   ///   |      MI    * |
208   ///   ----------------
209   /// In this case, the first MI starts a bundle but is not inside a bundle, the
210   /// next 2 MIs are considered "inside" the bundle.
211   ///
212   /// After a bundle is finalized, it looks like this:
213   ///   ----------------
214   ///   |    Bundle    |
215   ///   ----------------
216   ///          |
217   ///   ----------------
218   ///   |      MI    * |
219   ///   ----------------
220   ///          |
221   ///   ----------------
222   ///   |      MI    * |
223   ///   ----------------
224   ///          |
225   ///   ----------------
226   ///   |      MI    * |
227   ///   ----------------
228   /// The first instruction has the special opcode "BUNDLE". It's not "inside"
229   /// a bundle, but the next three MIs are.
230   bool isInsideBundle() const {
231     return getFlag(BundledPred);
232   }
233 
234   /// Return true if this instruction part of a bundle. This is true
235   /// if either itself or its following instruction is marked "InsideBundle".
236   bool isBundled() const {
237     return isBundledWithPred() || isBundledWithSucc();
238   }
239 
240   /// Return true if this instruction is part of a bundle, and it is not the
241   /// first instruction in the bundle.
242   bool isBundledWithPred() const { return getFlag(BundledPred); }
243 
244   /// Return true if this instruction is part of a bundle, and it is not the
245   /// last instruction in the bundle.
246   bool isBundledWithSucc() const { return getFlag(BundledSucc); }
247 
248   /// Bundle this instruction with its predecessor. This can be an unbundled
249   /// instruction, or it can be the first instruction in a bundle.
250   void bundleWithPred();
251 
252   /// Bundle this instruction with its successor. This can be an unbundled
253   /// instruction, or it can be the last instruction in a bundle.
254   void bundleWithSucc();
255 
256   /// Break bundle above this instruction.
257   void unbundleFromPred();
258 
259   /// Break bundle below this instruction.
260   void unbundleFromSucc();
261 
262   /// Returns the debug location id of this MachineInstr.
263   const DebugLoc &getDebugLoc() const { return debugLoc; }
264 
265   /// Return the debug variable referenced by
266   /// this DBG_VALUE instruction.
267   const DILocalVariable *getDebugVariable() const;
268 
269   /// Return the complex address expression referenced by
270   /// this DBG_VALUE instruction.
271   const DIExpression *getDebugExpression() const;
272 
273   /// Emit an error referring to the source location of this instruction.
274   /// This should only be used for inline assembly that is somehow
275   /// impossible to compile. Other errors should have been handled much
276   /// earlier.
277   ///
278   /// If this method returns, the caller should try to recover from the error.
279   ///
280   void emitError(StringRef Msg) const;
281 
282   /// Returns the target instruction descriptor of this MachineInstr.
283   const MCInstrDesc &getDesc() const { return *MCID; }
284 
285   /// Returns the opcode of this MachineInstr.
286   unsigned getOpcode() const { return MCID->Opcode; }
287 
288   /// Access to explicit operands of the instruction.
289   ///
290   unsigned getNumOperands() const { return NumOperands; }
291 
292   const MachineOperand& getOperand(unsigned i) const {
293     assert(i < getNumOperands() && "getOperand() out of range!");
294     return Operands[i];
295   }
296   MachineOperand& getOperand(unsigned i) {
297     assert(i < getNumOperands() && "getOperand() out of range!");
298     return Operands[i];
299   }
300 
301   /// Returns the number of non-implicit operands.
302   unsigned getNumExplicitOperands() const;
303 
304   /// iterator/begin/end - Iterate over all operands of a machine instruction.
305   typedef MachineOperand *mop_iterator;
306   typedef const MachineOperand *const_mop_iterator;
307 
308   mop_iterator operands_begin() { return Operands; }
309   mop_iterator operands_end() { return Operands + NumOperands; }
310 
311   const_mop_iterator operands_begin() const { return Operands; }
312   const_mop_iterator operands_end() const { return Operands + NumOperands; }
313 
314   iterator_range<mop_iterator> operands() {
315     return make_range(operands_begin(), operands_end());
316   }
317   iterator_range<const_mop_iterator> operands() const {
318     return make_range(operands_begin(), operands_end());
319   }
320   iterator_range<mop_iterator> explicit_operands() {
321     return make_range(operands_begin(),
322                       operands_begin() + getNumExplicitOperands());
323   }
324   iterator_range<const_mop_iterator> explicit_operands() const {
325     return make_range(operands_begin(),
326                       operands_begin() + getNumExplicitOperands());
327   }
328   iterator_range<mop_iterator> implicit_operands() {
329     return make_range(explicit_operands().end(), operands_end());
330   }
331   iterator_range<const_mop_iterator> implicit_operands() const {
332     return make_range(explicit_operands().end(), operands_end());
333   }
334   /// Returns a range over all explicit operands that are register definitions.
335   /// Implicit definition are not included!
336   iterator_range<mop_iterator> defs() {
337     return make_range(operands_begin(),
338                       operands_begin() + getDesc().getNumDefs());
339   }
340   /// \copydoc defs()
341   iterator_range<const_mop_iterator> defs() const {
342     return make_range(operands_begin(),
343                       operands_begin() + getDesc().getNumDefs());
344   }
345   /// Returns a range that includes all operands that are register uses.
346   /// This may include unrelated operands which are not register uses.
347   iterator_range<mop_iterator> uses() {
348     return make_range(operands_begin() + getDesc().getNumDefs(),
349                       operands_end());
350   }
351   /// \copydoc uses()
352   iterator_range<const_mop_iterator> uses() const {
353     return make_range(operands_begin() + getDesc().getNumDefs(),
354                       operands_end());
355   }
356   iterator_range<mop_iterator> explicit_uses() {
357     return make_range(operands_begin() + getDesc().getNumDefs(),
358                       operands_begin() + getNumExplicitOperands() );
359   }
360   iterator_range<const_mop_iterator> explicit_uses() const {
361     return make_range(operands_begin() + getDesc().getNumDefs(),
362                       operands_begin() + getNumExplicitOperands() );
363   }
364 
365   /// Returns the number of the operand iterator \p I points to.
366   unsigned getOperandNo(const_mop_iterator I) const {
367     return I - operands_begin();
368   }
369 
370   /// Access to memory operands of the instruction
371   mmo_iterator memoperands_begin() const { return MemRefs; }
372   mmo_iterator memoperands_end() const { return MemRefs + NumMemRefs; }
373   /// Return true if we don't have any memory operands which described the the
374   /// memory access done by this instruction.  If this is true, calling code
375   /// must be conservative.
376   bool memoperands_empty() const { return NumMemRefs == 0; }
377 
378   iterator_range<mmo_iterator>  memoperands() {
379     return make_range(memoperands_begin(), memoperands_end());
380   }
381   iterator_range<mmo_iterator> memoperands() const {
382     return make_range(memoperands_begin(), memoperands_end());
383   }
384 
385   /// Return true if this instruction has exactly one MachineMemOperand.
386   bool hasOneMemOperand() const {
387     return NumMemRefs == 1;
388   }
389 
390   /// API for querying MachineInstr properties. They are the same as MCInstrDesc
391   /// queries but they are bundle aware.
392 
393   enum QueryType {
394     IgnoreBundle,    // Ignore bundles
395     AnyInBundle,     // Return true if any instruction in bundle has property
396     AllInBundle      // Return true if all instructions in bundle have property
397   };
398 
399   /// Return true if the instruction (or in the case of a bundle,
400   /// the instructions inside the bundle) has the specified property.
401   /// The first argument is the property being queried.
402   /// The second argument indicates whether the query should look inside
403   /// instruction bundles.
404   bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
405     // Inline the fast path for unbundled or bundle-internal instructions.
406     if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
407       return getDesc().getFlags() & (1 << MCFlag);
408 
409     // If this is the first instruction in a bundle, take the slow path.
410     return hasPropertyInBundle(1 << MCFlag, Type);
411   }
412 
413   /// Return true if this instruction can have a variable number of operands.
414   /// In this case, the variable operands will be after the normal
415   /// operands but before the implicit definitions and uses (if any are
416   /// present).
417   bool isVariadic(QueryType Type = IgnoreBundle) const {
418     return hasProperty(MCID::Variadic, Type);
419   }
420 
421   /// Set if this instruction has an optional definition, e.g.
422   /// ARM instructions which can set condition code if 's' bit is set.
423   bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
424     return hasProperty(MCID::HasOptionalDef, Type);
425   }
426 
427   /// Return true if this is a pseudo instruction that doesn't
428   /// correspond to a real machine instruction.
429   bool isPseudo(QueryType Type = IgnoreBundle) const {
430     return hasProperty(MCID::Pseudo, Type);
431   }
432 
433   bool isReturn(QueryType Type = AnyInBundle) const {
434     return hasProperty(MCID::Return, Type);
435   }
436 
437   bool isCall(QueryType Type = AnyInBundle) const {
438     return hasProperty(MCID::Call, Type);
439   }
440 
441   /// Returns true if the specified instruction stops control flow
442   /// from executing the instruction immediately following it.  Examples include
443   /// unconditional branches and return instructions.
444   bool isBarrier(QueryType Type = AnyInBundle) const {
445     return hasProperty(MCID::Barrier, Type);
446   }
447 
448   /// Returns true if this instruction part of the terminator for a basic block.
449   /// Typically this is things like return and branch instructions.
450   ///
451   /// Various passes use this to insert code into the bottom of a basic block,
452   /// but before control flow occurs.
453   bool isTerminator(QueryType Type = AnyInBundle) const {
454     return hasProperty(MCID::Terminator, Type);
455   }
456 
457   /// Returns true if this is a conditional, unconditional, or indirect branch.
458   /// Predicates below can be used to discriminate between
459   /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
460   /// get more information.
461   bool isBranch(QueryType Type = AnyInBundle) const {
462     return hasProperty(MCID::Branch, Type);
463   }
464 
465   /// Return true if this is an indirect branch, such as a
466   /// branch through a register.
467   bool isIndirectBranch(QueryType Type = AnyInBundle) const {
468     return hasProperty(MCID::IndirectBranch, Type);
469   }
470 
471   /// Return true if this is a branch which may fall
472   /// through to the next instruction or may transfer control flow to some other
473   /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
474   /// information about this branch.
475   bool isConditionalBranch(QueryType Type = AnyInBundle) const {
476     return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type);
477   }
478 
479   /// Return true if this is a branch which always
480   /// transfers control flow to some other block.  The
481   /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
482   /// about this branch.
483   bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
484     return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type);
485   }
486 
487   /// Return true if this instruction has a predicate operand that
488   /// controls execution.  It may be set to 'always', or may be set to other
489   /// values.   There are various methods in TargetInstrInfo that can be used to
490   /// control and modify the predicate in this instruction.
491   bool isPredicable(QueryType Type = AllInBundle) const {
492     // If it's a bundle than all bundled instructions must be predicable for this
493     // to return true.
494     return hasProperty(MCID::Predicable, Type);
495   }
496 
497   /// Return true if this instruction is a comparison.
498   bool isCompare(QueryType Type = IgnoreBundle) const {
499     return hasProperty(MCID::Compare, Type);
500   }
501 
502   /// Return true if this instruction is a move immediate
503   /// (including conditional moves) instruction.
504   bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
505     return hasProperty(MCID::MoveImm, Type);
506   }
507 
508   /// Return true if this instruction is a bitcast instruction.
509   bool isBitcast(QueryType Type = IgnoreBundle) const {
510     return hasProperty(MCID::Bitcast, Type);
511   }
512 
513   /// Return true if this instruction is a select instruction.
514   bool isSelect(QueryType Type = IgnoreBundle) const {
515     return hasProperty(MCID::Select, Type);
516   }
517 
518   /// Return true if this instruction cannot be safely duplicated.
519   /// For example, if the instruction has a unique labels attached
520   /// to it, duplicating it would cause multiple definition errors.
521   bool isNotDuplicable(QueryType Type = AnyInBundle) const {
522     return hasProperty(MCID::NotDuplicable, Type);
523   }
524 
525   /// Return true if this instruction is convergent.
526   /// Convergent instructions can not be made control-dependent on any
527   /// additional values.
528   bool isConvergent(QueryType Type = AnyInBundle) const {
529     if (isInlineAsm()) {
530       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
531       if (ExtraInfo & InlineAsm::Extra_IsConvergent)
532         return true;
533     }
534     return hasProperty(MCID::Convergent, Type);
535   }
536 
537   /// Returns true if the specified instruction has a delay slot
538   /// which must be filled by the code generator.
539   bool hasDelaySlot(QueryType Type = AnyInBundle) const {
540     return hasProperty(MCID::DelaySlot, Type);
541   }
542 
543   /// Return true for instructions that can be folded as
544   /// memory operands in other instructions. The most common use for this
545   /// is instructions that are simple loads from memory that don't modify
546   /// the loaded value in any way, but it can also be used for instructions
547   /// that can be expressed as constant-pool loads, such as V_SETALLONES
548   /// on x86, to allow them to be folded when it is beneficial.
549   /// This should only be set on instructions that return a value in their
550   /// only virtual register definition.
551   bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
552     return hasProperty(MCID::FoldableAsLoad, Type);
553   }
554 
555   /// \brief Return true if this instruction behaves
556   /// the same way as the generic REG_SEQUENCE instructions.
557   /// E.g., on ARM,
558   /// dX VMOVDRR rY, rZ
559   /// is equivalent to
560   /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
561   ///
562   /// Note that for the optimizers to be able to take advantage of
563   /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
564   /// override accordingly.
565   bool isRegSequenceLike(QueryType Type = IgnoreBundle) const {
566     return hasProperty(MCID::RegSequence, Type);
567   }
568 
569   /// \brief Return true if this instruction behaves
570   /// the same way as the generic EXTRACT_SUBREG instructions.
571   /// E.g., on ARM,
572   /// rX, rY VMOVRRD dZ
573   /// is equivalent to two EXTRACT_SUBREG:
574   /// rX = EXTRACT_SUBREG dZ, ssub_0
575   /// rY = EXTRACT_SUBREG dZ, ssub_1
576   ///
577   /// Note that for the optimizers to be able to take advantage of
578   /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
579   /// override accordingly.
580   bool isExtractSubregLike(QueryType Type = IgnoreBundle) const {
581     return hasProperty(MCID::ExtractSubreg, Type);
582   }
583 
584   /// \brief Return true if this instruction behaves
585   /// the same way as the generic INSERT_SUBREG instructions.
586   /// E.g., on ARM,
587   /// dX = VSETLNi32 dY, rZ, Imm
588   /// is equivalent to a INSERT_SUBREG:
589   /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
590   ///
591   /// Note that for the optimizers to be able to take advantage of
592   /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
593   /// override accordingly.
594   bool isInsertSubregLike(QueryType Type = IgnoreBundle) const {
595     return hasProperty(MCID::InsertSubreg, Type);
596   }
597 
598   //===--------------------------------------------------------------------===//
599   // Side Effect Analysis
600   //===--------------------------------------------------------------------===//
601 
602   /// Return true if this instruction could possibly read memory.
603   /// Instructions with this flag set are not necessarily simple load
604   /// instructions, they may load a value and modify it, for example.
605   bool mayLoad(QueryType Type = AnyInBundle) const {
606     if (isInlineAsm()) {
607       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
608       if (ExtraInfo & InlineAsm::Extra_MayLoad)
609         return true;
610     }
611     return hasProperty(MCID::MayLoad, Type);
612   }
613 
614   /// Return true if this instruction could possibly modify memory.
615   /// Instructions with this flag set are not necessarily simple store
616   /// instructions, they may store a modified value based on their operands, or
617   /// may not actually modify anything, for example.
618   bool mayStore(QueryType Type = AnyInBundle) const {
619     if (isInlineAsm()) {
620       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
621       if (ExtraInfo & InlineAsm::Extra_MayStore)
622         return true;
623     }
624     return hasProperty(MCID::MayStore, Type);
625   }
626 
627   /// Return true if this instruction could possibly read or modify memory.
628   bool mayLoadOrStore(QueryType Type = AnyInBundle) const {
629     return mayLoad(Type) || mayStore(Type);
630   }
631 
632   //===--------------------------------------------------------------------===//
633   // Flags that indicate whether an instruction can be modified by a method.
634   //===--------------------------------------------------------------------===//
635 
636   /// Return true if this may be a 2- or 3-address
637   /// instruction (of the form "X = op Y, Z, ..."), which produces the same
638   /// result if Y and Z are exchanged.  If this flag is set, then the
639   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
640   /// instruction.
641   ///
642   /// Note that this flag may be set on instructions that are only commutable
643   /// sometimes.  In these cases, the call to commuteInstruction will fail.
644   /// Also note that some instructions require non-trivial modification to
645   /// commute them.
646   bool isCommutable(QueryType Type = IgnoreBundle) const {
647     return hasProperty(MCID::Commutable, Type);
648   }
649 
650   /// Return true if this is a 2-address instruction
651   /// which can be changed into a 3-address instruction if needed.  Doing this
652   /// transformation can be profitable in the register allocator, because it
653   /// means that the instruction can use a 2-address form if possible, but
654   /// degrade into a less efficient form if the source and dest register cannot
655   /// be assigned to the same register.  For example, this allows the x86
656   /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
657   /// is the same speed as the shift but has bigger code size.
658   ///
659   /// If this returns true, then the target must implement the
660   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
661   /// is allowed to fail if the transformation isn't valid for this specific
662   /// instruction (e.g. shl reg, 4 on x86).
663   ///
664   bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
665     return hasProperty(MCID::ConvertibleTo3Addr, Type);
666   }
667 
668   /// Return true if this instruction requires
669   /// custom insertion support when the DAG scheduler is inserting it into a
670   /// machine basic block.  If this is true for the instruction, it basically
671   /// means that it is a pseudo instruction used at SelectionDAG time that is
672   /// expanded out into magic code by the target when MachineInstrs are formed.
673   ///
674   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
675   /// is used to insert this into the MachineBasicBlock.
676   bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
677     return hasProperty(MCID::UsesCustomInserter, Type);
678   }
679 
680   /// Return true if this instruction requires *adjustment*
681   /// after instruction selection by calling a target hook. For example, this
682   /// can be used to fill in ARM 's' optional operand depending on whether
683   /// the conditional flag register is used.
684   bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
685     return hasProperty(MCID::HasPostISelHook, Type);
686   }
687 
688   /// Returns true if this instruction is a candidate for remat.
689   /// This flag is deprecated, please don't use it anymore.  If this
690   /// flag is set, the isReallyTriviallyReMaterializable() method is called to
691   /// verify the instruction is really rematable.
692   bool isRematerializable(QueryType Type = AllInBundle) const {
693     // It's only possible to re-mat a bundle if all bundled instructions are
694     // re-materializable.
695     return hasProperty(MCID::Rematerializable, Type);
696   }
697 
698   /// Returns true if this instruction has the same cost (or less) than a move
699   /// instruction. This is useful during certain types of optimizations
700   /// (e.g., remat during two-address conversion or machine licm)
701   /// where we would like to remat or hoist the instruction, but not if it costs
702   /// more than moving the instruction into the appropriate register. Note, we
703   /// are not marking copies from and to the same register class with this flag.
704   bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
705     // Only returns true for a bundle if all bundled instructions are cheap.
706     return hasProperty(MCID::CheapAsAMove, Type);
707   }
708 
709   /// Returns true if this instruction source operands
710   /// have special register allocation requirements that are not captured by the
711   /// operand register classes. e.g. ARM::STRD's two source registers must be an
712   /// even / odd pair, ARM::STM registers have to be in ascending order.
713   /// Post-register allocation passes should not attempt to change allocations
714   /// for sources of instructions with this flag.
715   bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
716     return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
717   }
718 
719   /// Returns true if this instruction def operands
720   /// have special register allocation requirements that are not captured by the
721   /// operand register classes. e.g. ARM::LDRD's two def registers must be an
722   /// even / odd pair, ARM::LDM registers have to be in ascending order.
723   /// Post-register allocation passes should not attempt to change allocations
724   /// for definitions of instructions with this flag.
725   bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
726     return hasProperty(MCID::ExtraDefRegAllocReq, Type);
727   }
728 
729 
730   enum MICheckType {
731     CheckDefs,      // Check all operands for equality
732     CheckKillDead,  // Check all operands including kill / dead markers
733     IgnoreDefs,     // Ignore all definitions
734     IgnoreVRegDefs  // Ignore virtual register definitions
735   };
736 
737   /// Return true if this instruction is identical to (same
738   /// opcode and same operands as) the specified instruction.
739   bool isIdenticalTo(const MachineInstr &Other,
740                      MICheckType Check = CheckDefs) const;
741 
742   /// Unlink 'this' from the containing basic block, and return it without
743   /// deleting it.
744   ///
745   /// This function can not be used on bundled instructions, use
746   /// removeFromBundle() to remove individual instructions from a bundle.
747   MachineInstr *removeFromParent();
748 
749   /// Unlink this instruction from its basic block and return it without
750   /// deleting it.
751   ///
752   /// If the instruction is part of a bundle, the other instructions in the
753   /// bundle remain bundled.
754   MachineInstr *removeFromBundle();
755 
756   /// Unlink 'this' from the containing basic block and delete it.
757   ///
758   /// If this instruction is the header of a bundle, the whole bundle is erased.
759   /// This function can not be used for instructions inside a bundle, use
760   /// eraseFromBundle() to erase individual bundled instructions.
761   void eraseFromParent();
762 
763   /// Unlink 'this' from the containing basic block and delete it.
764   ///
765   /// For all definitions mark their uses in DBG_VALUE nodes
766   /// as undefined. Otherwise like eraseFromParent().
767   void eraseFromParentAndMarkDBGValuesForRemoval();
768 
769   /// Unlink 'this' form its basic block and delete it.
770   ///
771   /// If the instruction is part of a bundle, the other instructions in the
772   /// bundle remain bundled.
773   void eraseFromBundle();
774 
775   bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
776   bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
777 
778   /// Returns true if the MachineInstr represents a label.
779   bool isLabel() const { return isEHLabel() || isGCLabel(); }
780   bool isCFIInstruction() const {
781     return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
782   }
783 
784   // True if the instruction represents a position in the function.
785   bool isPosition() const { return isLabel() || isCFIInstruction(); }
786 
787   bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }
788   /// A DBG_VALUE is indirect iff the first operand is a register and
789   /// the second operand is an immediate.
790   bool isIndirectDebugValue() const {
791     return isDebugValue()
792       && getOperand(0).isReg()
793       && getOperand(1).isImm();
794   }
795 
796   bool isPHI() const { return getOpcode() == TargetOpcode::PHI; }
797   bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
798   bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
799   bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; }
800   bool isMSInlineAsm() const {
801     return getOpcode() == TargetOpcode::INLINEASM && getInlineAsmDialect();
802   }
803   bool isStackAligningInlineAsm() const;
804   InlineAsm::AsmDialect getInlineAsmDialect() const;
805   bool isInsertSubreg() const {
806     return getOpcode() == TargetOpcode::INSERT_SUBREG;
807   }
808   bool isSubregToReg() const {
809     return getOpcode() == TargetOpcode::SUBREG_TO_REG;
810   }
811   bool isRegSequence() const {
812     return getOpcode() == TargetOpcode::REG_SEQUENCE;
813   }
814   bool isBundle() const {
815     return getOpcode() == TargetOpcode::BUNDLE;
816   }
817   bool isCopy() const {
818     return getOpcode() == TargetOpcode::COPY;
819   }
820   bool isFullCopy() const {
821     return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
822   }
823   bool isExtractSubreg() const {
824     return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
825   }
826 
827   /// Return true if the instruction behaves like a copy.
828   /// This does not include native copy instructions.
829   bool isCopyLike() const {
830     return isCopy() || isSubregToReg();
831   }
832 
833   /// Return true is the instruction is an identity copy.
834   bool isIdentityCopy() const {
835     return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
836       getOperand(0).getSubReg() == getOperand(1).getSubReg();
837   }
838 
839   /// Return true if this is a transient instruction that is
840   /// either very likely to be eliminated during register allocation (such as
841   /// copy-like instructions), or if this instruction doesn't have an
842   /// execution-time cost.
843   bool isTransient() const {
844     switch(getOpcode()) {
845     default: return false;
846     // Copy-like instructions are usually eliminated during register allocation.
847     case TargetOpcode::PHI:
848     case TargetOpcode::COPY:
849     case TargetOpcode::INSERT_SUBREG:
850     case TargetOpcode::SUBREG_TO_REG:
851     case TargetOpcode::REG_SEQUENCE:
852     // Pseudo-instructions that don't produce any real output.
853     case TargetOpcode::IMPLICIT_DEF:
854     case TargetOpcode::KILL:
855     case TargetOpcode::CFI_INSTRUCTION:
856     case TargetOpcode::EH_LABEL:
857     case TargetOpcode::GC_LABEL:
858     case TargetOpcode::DBG_VALUE:
859       return true;
860     }
861   }
862 
863   /// Return the number of instructions inside the MI bundle, excluding the
864   /// bundle header.
865   ///
866   /// This is the number of instructions that MachineBasicBlock::iterator
867   /// skips, 0 for unbundled instructions.
868   unsigned getBundleSize() const;
869 
870   /// Return true if the MachineInstr reads the specified register.
871   /// If TargetRegisterInfo is passed, then it also checks if there
872   /// is a read of a super-register.
873   /// This does not count partial redefines of virtual registers as reads:
874   ///   %reg1024:6 = OP.
875   bool readsRegister(unsigned Reg,
876                      const TargetRegisterInfo *TRI = nullptr) const {
877     return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
878   }
879 
880   /// Return true if the MachineInstr reads the specified virtual register.
881   /// Take into account that a partial define is a
882   /// read-modify-write operation.
883   bool readsVirtualRegister(unsigned Reg) const {
884     return readsWritesVirtualRegister(Reg).first;
885   }
886 
887   /// Return a pair of bools (reads, writes) indicating if this instruction
888   /// reads or writes Reg. This also considers partial defines.
889   /// If Ops is not null, all operand indices for Reg are added.
890   std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg,
891                                 SmallVectorImpl<unsigned> *Ops = nullptr) const;
892 
893   /// Return true if the MachineInstr kills the specified register.
894   /// If TargetRegisterInfo is passed, then it also checks if there is
895   /// a kill of a super-register.
896   bool killsRegister(unsigned Reg,
897                      const TargetRegisterInfo *TRI = nullptr) const {
898     return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
899   }
900 
901   /// Return true if the MachineInstr fully defines the specified register.
902   /// If TargetRegisterInfo is passed, then it also checks
903   /// if there is a def of a super-register.
904   /// NOTE: It's ignoring subreg indices on virtual registers.
905   bool definesRegister(unsigned Reg,
906                        const TargetRegisterInfo *TRI = nullptr) const {
907     return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
908   }
909 
910   /// Return true if the MachineInstr modifies (fully define or partially
911   /// define) the specified register.
912   /// NOTE: It's ignoring subreg indices on virtual registers.
913   bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const {
914     return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
915   }
916 
917   /// Returns true if the register is dead in this machine instruction.
918   /// If TargetRegisterInfo is passed, then it also checks
919   /// if there is a dead def of a super-register.
920   bool registerDefIsDead(unsigned Reg,
921                          const TargetRegisterInfo *TRI = nullptr) const {
922     return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
923   }
924 
925   /// Returns true if the MachineInstr has an implicit-use operand of exactly
926   /// the given register (not considering sub/super-registers).
927   bool hasRegisterImplicitUseOperand(unsigned Reg) const;
928 
929   /// Returns the operand index that is a use of the specific register or -1
930   /// if it is not found. It further tightens the search criteria to a use
931   /// that kills the register if isKill is true.
932   int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false,
933                                 const TargetRegisterInfo *TRI = nullptr) const;
934 
935   /// Wrapper for findRegisterUseOperandIdx, it returns
936   /// a pointer to the MachineOperand rather than an index.
937   MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false,
938                                       const TargetRegisterInfo *TRI = nullptr) {
939     int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
940     return (Idx == -1) ? nullptr : &getOperand(Idx);
941   }
942 
943   const MachineOperand *findRegisterUseOperand(
944     unsigned Reg, bool isKill = false,
945     const TargetRegisterInfo *TRI = nullptr) const {
946     return const_cast<MachineInstr *>(this)->
947       findRegisterUseOperand(Reg, isKill, TRI);
948   }
949 
950   /// Returns the operand index that is a def of the specified register or
951   /// -1 if it is not found. If isDead is true, defs that are not dead are
952   /// skipped. If Overlap is true, then it also looks for defs that merely
953   /// overlap the specified register. If TargetRegisterInfo is non-null,
954   /// then it also checks if there is a def of a super-register.
955   /// This may also return a register mask operand when Overlap is true.
956   int findRegisterDefOperandIdx(unsigned Reg,
957                                 bool isDead = false, bool Overlap = false,
958                                 const TargetRegisterInfo *TRI = nullptr) const;
959 
960   /// Wrapper for findRegisterDefOperandIdx, it returns
961   /// a pointer to the MachineOperand rather than an index.
962   MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false,
963                                       const TargetRegisterInfo *TRI = nullptr) {
964     int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI);
965     return (Idx == -1) ? nullptr : &getOperand(Idx);
966   }
967 
968   /// Find the index of the first operand in the
969   /// operand list that is used to represent the predicate. It returns -1 if
970   /// none is found.
971   int findFirstPredOperandIdx() const;
972 
973   /// Find the index of the flag word operand that
974   /// corresponds to operand OpIdx on an inline asm instruction.  Returns -1 if
975   /// getOperand(OpIdx) does not belong to an inline asm operand group.
976   ///
977   /// If GroupNo is not NULL, it will receive the number of the operand group
978   /// containing OpIdx.
979   ///
980   /// The flag operand is an immediate that can be decoded with methods like
981   /// InlineAsm::hasRegClassConstraint().
982   ///
983   int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
984 
985   /// Compute the static register class constraint for operand OpIdx.
986   /// For normal instructions, this is derived from the MCInstrDesc.
987   /// For inline assembly it is derived from the flag words.
988   ///
989   /// Returns NULL if the static register class constraint cannot be
990   /// determined.
991   ///
992   const TargetRegisterClass*
993   getRegClassConstraint(unsigned OpIdx,
994                         const TargetInstrInfo *TII,
995                         const TargetRegisterInfo *TRI) const;
996 
997   /// \brief Applies the constraints (def/use) implied by this MI on \p Reg to
998   /// the given \p CurRC.
999   /// If \p ExploreBundle is set and MI is part of a bundle, all the
1000   /// instructions inside the bundle will be taken into account. In other words,
1001   /// this method accumulates all the constraints of the operand of this MI and
1002   /// the related bundle if MI is a bundle or inside a bundle.
1003   ///
1004   /// Returns the register class that satisfies both \p CurRC and the
1005   /// constraints set by MI. Returns NULL if such a register class does not
1006   /// exist.
1007   ///
1008   /// \pre CurRC must not be NULL.
1009   const TargetRegisterClass *getRegClassConstraintEffectForVReg(
1010       unsigned Reg, const TargetRegisterClass *CurRC,
1011       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1012       bool ExploreBundle = false) const;
1013 
1014   /// \brief Applies the constraints (def/use) implied by the \p OpIdx operand
1015   /// to the given \p CurRC.
1016   ///
1017   /// Returns the register class that satisfies both \p CurRC and the
1018   /// constraints set by \p OpIdx MI. Returns NULL if such a register class
1019   /// does not exist.
1020   ///
1021   /// \pre CurRC must not be NULL.
1022   /// \pre The operand at \p OpIdx must be a register.
1023   const TargetRegisterClass *
1024   getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
1025                               const TargetInstrInfo *TII,
1026                               const TargetRegisterInfo *TRI) const;
1027 
1028   /// Add a tie between the register operands at DefIdx and UseIdx.
1029   /// The tie will cause the register allocator to ensure that the two
1030   /// operands are assigned the same physical register.
1031   ///
1032   /// Tied operands are managed automatically for explicit operands in the
1033   /// MCInstrDesc. This method is for exceptional cases like inline asm.
1034   void tieOperands(unsigned DefIdx, unsigned UseIdx);
1035 
1036   /// Given the index of a tied register operand, find the
1037   /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
1038   /// index of the tied operand which must exist.
1039   unsigned findTiedOperandIdx(unsigned OpIdx) const;
1040 
1041   /// Given the index of a register def operand,
1042   /// check if the register def is tied to a source operand, due to either
1043   /// two-address elimination or inline assembly constraints. Returns the
1044   /// first tied use operand index by reference if UseOpIdx is not null.
1045   bool isRegTiedToUseOperand(unsigned DefOpIdx,
1046                              unsigned *UseOpIdx = nullptr) const {
1047     const MachineOperand &MO = getOperand(DefOpIdx);
1048     if (!MO.isReg() || !MO.isDef() || !MO.isTied())
1049       return false;
1050     if (UseOpIdx)
1051       *UseOpIdx = findTiedOperandIdx(DefOpIdx);
1052     return true;
1053   }
1054 
1055   /// Return true if the use operand of the specified index is tied to a def
1056   /// operand. It also returns the def operand index by reference if DefOpIdx
1057   /// is not null.
1058   bool isRegTiedToDefOperand(unsigned UseOpIdx,
1059                              unsigned *DefOpIdx = nullptr) const {
1060     const MachineOperand &MO = getOperand(UseOpIdx);
1061     if (!MO.isReg() || !MO.isUse() || !MO.isTied())
1062       return false;
1063     if (DefOpIdx)
1064       *DefOpIdx = findTiedOperandIdx(UseOpIdx);
1065     return true;
1066   }
1067 
1068   /// Clears kill flags on all operands.
1069   void clearKillInfo();
1070 
1071   /// Replace all occurrences of FromReg with ToReg:SubIdx,
1072   /// properly composing subreg indices where necessary.
1073   void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx,
1074                           const TargetRegisterInfo &RegInfo);
1075 
1076   /// We have determined MI kills a register. Look for the
1077   /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
1078   /// add a implicit operand if it's not found. Returns true if the operand
1079   /// exists / is added.
1080   bool addRegisterKilled(unsigned IncomingReg,
1081                          const TargetRegisterInfo *RegInfo,
1082                          bool AddIfNotFound = false);
1083 
1084   /// Clear all kill flags affecting Reg.  If RegInfo is provided, this includes
1085   /// all aliasing registers.
1086   void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo);
1087 
1088   /// We have determined MI defined a register without a use.
1089   /// Look for the operand that defines it and mark it as IsDead. If
1090   /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
1091   /// true if the operand exists / is added.
1092   bool addRegisterDead(unsigned Reg, const TargetRegisterInfo *RegInfo,
1093                        bool AddIfNotFound = false);
1094 
1095   /// Clear all dead flags on operands defining register @p Reg.
1096   void clearRegisterDeads(unsigned Reg);
1097 
1098   /// Mark all subregister defs of register @p Reg with the undef flag.
1099   /// This function is used when we determined to have a subregister def in an
1100   /// otherwise undefined super register.
1101   void setRegisterDefReadUndef(unsigned Reg, bool IsUndef = true);
1102 
1103   /// We have determined MI defines a register. Make sure there is an operand
1104   /// defining Reg.
1105   void addRegisterDefined(unsigned Reg,
1106                           const TargetRegisterInfo *RegInfo = nullptr);
1107 
1108   /// Mark every physreg used by this instruction as
1109   /// dead except those in the UsedRegs list.
1110   ///
1111   /// On instructions with register mask operands, also add implicit-def
1112   /// operands for all registers in UsedRegs.
1113   void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1114                              const TargetRegisterInfo &TRI);
1115 
1116   /// Return true if it is safe to move this instruction. If
1117   /// SawStore is set to true, it means that there is a store (or call) between
1118   /// the instruction's location and its intended destination.
1119   bool isSafeToMove(AliasAnalysis *AA, bool &SawStore) const;
1120 
1121   /// Return true if this instruction may have an ordered
1122   /// or volatile memory reference, or if the information describing the memory
1123   /// reference is not available. Return false if it is known to have no
1124   /// ordered or volatile memory references.
1125   bool hasOrderedMemoryRef() const;
1126 
1127   /// Return true if this instruction is loading from a
1128   /// location whose value is invariant across the function.  For example,
1129   /// loading a value from the constant pool or from the argument area of
1130   /// a function if it does not change.  This should only return true of *all*
1131   /// loads the instruction does are invariant (if it does multiple loads).
1132   bool isInvariantLoad(AliasAnalysis *AA) const;
1133 
1134   /// If the specified instruction is a PHI that always merges together the
1135   /// same virtual register, return the register, otherwise return 0.
1136   unsigned isConstantValuePHI() const;
1137 
1138   /// Return true if this instruction has side effects that are not modeled
1139   /// by mayLoad / mayStore, etc.
1140   /// For all instructions, the property is encoded in MCInstrDesc::Flags
1141   /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
1142   /// INLINEASM instruction, in which case the side effect property is encoded
1143   /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
1144   ///
1145   bool hasUnmodeledSideEffects() const;
1146 
1147   /// Returns true if it is illegal to fold a load across this instruction.
1148   bool isLoadFoldBarrier() const;
1149 
1150   /// Return true if all the defs of this instruction are dead.
1151   bool allDefsAreDead() const;
1152 
1153   /// Copy implicit register operands from specified
1154   /// instruction to this instruction.
1155   void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI);
1156 
1157   //
1158   // Debugging support
1159   //
1160   void print(raw_ostream &OS, bool SkipOpers = false) const;
1161   void print(raw_ostream &OS, ModuleSlotTracker &MST,
1162              bool SkipOpers = false) const;
1163   void dump() const;
1164 
1165   //===--------------------------------------------------------------------===//
1166   // Accessors used to build up machine instructions.
1167 
1168   /// Add the specified operand to the instruction.  If it is an implicit
1169   /// operand, it is added to the end of the operand list.  If it is an
1170   /// explicit operand it is added at the end of the explicit operand list
1171   /// (before the first implicit operand).
1172   ///
1173   /// MF must be the machine function that was used to allocate this
1174   /// instruction.
1175   ///
1176   /// MachineInstrBuilder provides a more convenient interface for creating
1177   /// instructions and adding operands.
1178   void addOperand(MachineFunction &MF, const MachineOperand &Op);
1179 
1180   /// Add an operand without providing an MF reference. This only works for
1181   /// instructions that are inserted in a basic block.
1182   ///
1183   /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
1184   /// preferred.
1185   void addOperand(const MachineOperand &Op);
1186 
1187   /// Replace the instruction descriptor (thus opcode) of
1188   /// the current instruction with a new one.
1189   void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
1190 
1191   /// Replace current source information with new such.
1192   /// Avoid using this, the constructor argument is preferable.
1193   void setDebugLoc(DebugLoc dl) {
1194     debugLoc = std::move(dl);
1195     assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
1196   }
1197 
1198   /// Erase an operand from an instruction, leaving it with one
1199   /// fewer operand than it started with.
1200   void RemoveOperand(unsigned i);
1201 
1202   /// Add a MachineMemOperand to the machine instruction.
1203   /// This function should be used only occasionally. The setMemRefs function
1204   /// is the primary method for setting up a MachineInstr's MemRefs list.
1205   void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
1206 
1207   /// Assign this MachineInstr's memory reference descriptor list.
1208   /// This does not transfer ownership.
1209   void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
1210     setMemRefs(std::make_pair(NewMemRefs, NewMemRefsEnd-NewMemRefs));
1211   }
1212 
1213   /// Assign this MachineInstr's memory reference descriptor list.  First
1214   /// element in the pair is the begin iterator/pointer to the array; the
1215   /// second is the number of MemoryOperands.  This does not transfer ownership
1216   /// of the underlying memory.
1217   void setMemRefs(std::pair<mmo_iterator, unsigned> NewMemRefs) {
1218     MemRefs = NewMemRefs.first;
1219     NumMemRefs = uint8_t(NewMemRefs.second);
1220     assert(NumMemRefs == NewMemRefs.second &&
1221            "Too many memrefs - must drop memory operands");
1222   }
1223 
1224   /// Return a set of memrefs (begin iterator, size) which conservatively
1225   /// describe the memory behavior of both MachineInstrs.  This is appropriate
1226   /// for use when merging two MachineInstrs into one. This routine does not
1227   /// modify the memrefs of the this MachineInstr.
1228   std::pair<mmo_iterator, unsigned> mergeMemRefsWith(const MachineInstr& Other);
1229 
1230   /// Clear this MachineInstr's memory reference descriptor list.  This resets
1231   /// the memrefs to their most conservative state.  This should be used only
1232   /// as a last resort since it greatly pessimizes our knowledge of the memory
1233   /// access performed by the instruction.
1234   void dropMemRefs() {
1235     MemRefs = nullptr;
1236     NumMemRefs = 0;
1237   }
1238 
1239   /// Break any tie involving OpIdx.
1240   void untieRegOperand(unsigned OpIdx) {
1241     MachineOperand &MO = getOperand(OpIdx);
1242     if (MO.isReg() && MO.isTied()) {
1243       getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
1244       MO.TiedTo = 0;
1245     }
1246   }
1247 
1248   /// Add all implicit def and use operands to this instruction.
1249   void addImplicitDefUseOperands(MachineFunction &MF);
1250 
1251 private:
1252   /// If this instruction is embedded into a MachineFunction, return the
1253   /// MachineRegisterInfo object for the current function, otherwise
1254   /// return null.
1255   MachineRegisterInfo *getRegInfo();
1256 
1257   /// Unlink all of the register operands in this instruction from their
1258   /// respective use lists.  This requires that the operands already be on their
1259   /// use lists.
1260   void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
1261 
1262   /// Add all of the register operands in this instruction from their
1263   /// respective use lists.  This requires that the operands not be on their
1264   /// use lists yet.
1265   void AddRegOperandsToUseLists(MachineRegisterInfo&);
1266 
1267   /// Slow path for hasProperty when we're dealing with a bundle.
1268   bool hasPropertyInBundle(unsigned Mask, QueryType Type) const;
1269 
1270   /// \brief Implements the logic of getRegClassConstraintEffectForVReg for the
1271   /// this MI and the given operand index \p OpIdx.
1272   /// If the related operand does not constrained Reg, this returns CurRC.
1273   const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
1274       unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
1275       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
1276 };
1277 
1278 /// Special DenseMapInfo traits to compare MachineInstr* by *value* of the
1279 /// instruction rather than by pointer value.
1280 /// The hashing and equality testing functions ignore definitions so this is
1281 /// useful for CSE, etc.
1282 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
1283   static inline MachineInstr *getEmptyKey() {
1284     return nullptr;
1285   }
1286 
1287   static inline MachineInstr *getTombstoneKey() {
1288     return reinterpret_cast<MachineInstr*>(-1);
1289   }
1290 
1291   static unsigned getHashValue(const MachineInstr* const &MI);
1292 
1293   static bool isEqual(const MachineInstr* const &LHS,
1294                       const MachineInstr* const &RHS) {
1295     if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
1296         LHS == getEmptyKey() || LHS == getTombstoneKey())
1297       return LHS == RHS;
1298     return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs);
1299   }
1300 };
1301 
1302 //===----------------------------------------------------------------------===//
1303 // Debugging Support
1304 
1305 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
1306   MI.print(OS);
1307   return OS;
1308 }
1309 
1310 } // End llvm namespace
1311 
1312 #endif
1313