1 /*
2  * jchuff.c
3  *
4  * This file was part of the Independent JPEG Group's software:
5  * Copyright (C) 1991-1997, Thomas G. Lane.
6  * libjpeg-turbo Modifications:
7  * Copyright (C) 2009-2011, 2014-2016, D. R. Commander.
8  * Copyright (C) 2015, Matthieu Darbois.
9  * For conditions of distribution and use, see the accompanying README.ijg
10  * file.
11  *
12  * This file contains Huffman entropy encoding routines.
13  *
14  * Much of the complexity here has to do with supporting output suspension.
15  * If the data destination module demands suspension, we want to be able to
16  * back up to the start of the current MCU.  To do this, we copy state
17  * variables into local working storage, and update them back to the
18  * permanent JPEG objects only upon successful completion of an MCU.
19  */
20 
21 #define JPEG_INTERNALS
22 #include "jinclude.h"
23 #include "jpeglib.h"
24 #include "jsimd.h"
25 #include "jconfigint.h"
26 #include <limits.h>
27 
28 /*
29  * NOTE: If USE_CLZ_INTRINSIC is defined, then clz/bsr instructions will be
30  * used for bit counting rather than the lookup table.  This will reduce the
31  * memory footprint by 64k, which is important for some mobile applications
32  * that create many isolated instances of libjpeg-turbo (web browsers, for
33  * instance.)  This may improve performance on some mobile platforms as well.
34  * This feature is enabled by default only on ARM processors, because some x86
35  * chips have a slow implementation of bsr, and the use of clz/bsr cannot be
36  * shown to have a significant performance impact even on the x86 chips that
37  * have a fast implementation of it.  When building for ARMv6, you can
38  * explicitly disable the use of clz/bsr by adding -mthumb to the compiler
39  * flags (this defines __thumb__).
40  */
41 
42 /* NOTE: Both GCC and Clang define __GNUC__ */
43 #if defined __GNUC__ && (defined __arm__ || defined __aarch64__)
44 #if !defined __thumb__ || defined __thumb2__
45 #define USE_CLZ_INTRINSIC
46 #endif
47 #endif
48 
49 #ifdef USE_CLZ_INTRINSIC
50 #define JPEG_NBITS_NONZERO(x) (32 - __builtin_clz(x))
51 #define JPEG_NBITS(x) (x ? JPEG_NBITS_NONZERO(x) : 0)
52 #else
53 #include "jpeg_nbits_table.h"
54 #define JPEG_NBITS(x) (jpeg_nbits_table[x])
55 #define JPEG_NBITS_NONZERO(x) JPEG_NBITS(x)
56 #endif
57 
58 #ifndef min
59  #define min(a,b) ((a)<(b)?(a):(b))
60 #endif
61 
62 
63 /* Expanded entropy encoder object for Huffman encoding.
64  *
65  * The savable_state subrecord contains fields that change within an MCU,
66  * but must not be updated permanently until we complete the MCU.
67  */
68 
69 typedef struct {
70   size_t put_buffer;            /* current bit-accumulation buffer */
71   int put_bits;                 /* # of bits now in it */
72   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
73 } savable_state;
74 
75 /* This macro is to work around compilers with missing or broken
76  * structure assignment.  You'll need to fix this code if you have
77  * such a compiler and you change MAX_COMPS_IN_SCAN.
78  */
79 
80 #ifndef NO_STRUCT_ASSIGN
81 #define ASSIGN_STATE(dest,src)  ((dest) = (src))
82 #else
83 #if MAX_COMPS_IN_SCAN == 4
84 #define ASSIGN_STATE(dest,src)  \
85         ((dest).put_buffer = (src).put_buffer, \
86          (dest).put_bits = (src).put_bits, \
87          (dest).last_dc_val[0] = (src).last_dc_val[0], \
88          (dest).last_dc_val[1] = (src).last_dc_val[1], \
89          (dest).last_dc_val[2] = (src).last_dc_val[2], \
90          (dest).last_dc_val[3] = (src).last_dc_val[3])
91 #endif
92 #endif
93 
94 
95 typedef struct {
96   struct jpeg_entropy_encoder pub; /* public fields */
97 
98   savable_state saved;          /* Bit buffer & DC state at start of MCU */
99 
100   /* These fields are NOT loaded into local working state. */
101   unsigned int restarts_to_go;  /* MCUs left in this restart interval */
102   int next_restart_num;         /* next restart number to write (0-7) */
103 
104   /* Pointers to derived tables (these workspaces have image lifespan) */
105   c_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
106   c_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
107 
108 #ifdef ENTROPY_OPT_SUPPORTED    /* Statistics tables for optimization */
109   long *dc_count_ptrs[NUM_HUFF_TBLS];
110   long *ac_count_ptrs[NUM_HUFF_TBLS];
111 #endif
112 
113   int simd;
114 } huff_entropy_encoder;
115 
116 typedef huff_entropy_encoder *huff_entropy_ptr;
117 
118 /* Working state while writing an MCU.
119  * This struct contains all the fields that are needed by subroutines.
120  */
121 
122 typedef struct {
123   JOCTET *next_output_byte;     /* => next byte to write in buffer */
124   size_t free_in_buffer;        /* # of byte spaces remaining in buffer */
125   savable_state cur;            /* Current bit buffer & DC state */
126   j_compress_ptr cinfo;         /* dump_buffer needs access to this */
127 } working_state;
128 
129 
130 /* Forward declarations */
131 METHODDEF(boolean) encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data);
132 METHODDEF(void) finish_pass_huff (j_compress_ptr cinfo);
133 #ifdef ENTROPY_OPT_SUPPORTED
134 METHODDEF(boolean) encode_mcu_gather (j_compress_ptr cinfo,
135                                       JBLOCKROW *MCU_data);
136 METHODDEF(void) finish_pass_gather (j_compress_ptr cinfo);
137 #endif
138 
139 
140 /*
141  * Initialize for a Huffman-compressed scan.
142  * If gather_statistics is TRUE, we do not output anything during the scan,
143  * just count the Huffman symbols used and generate Huffman code tables.
144  */
145 
146 METHODDEF(void)
start_pass_huff(j_compress_ptr cinfo,boolean gather_statistics)147 start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
148 {
149   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
150   int ci, dctbl, actbl;
151   jpeg_component_info *compptr;
152 
153   if (gather_statistics) {
154 #ifdef ENTROPY_OPT_SUPPORTED
155     entropy->pub.encode_mcu = encode_mcu_gather;
156     entropy->pub.finish_pass = finish_pass_gather;
157 #else
158     ERREXIT(cinfo, JERR_NOT_COMPILED);
159 #endif
160   } else {
161     entropy->pub.encode_mcu = encode_mcu_huff;
162     entropy->pub.finish_pass = finish_pass_huff;
163   }
164 
165   entropy->simd = jsimd_can_huff_encode_one_block();
166 
167   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
168     compptr = cinfo->cur_comp_info[ci];
169     dctbl = compptr->dc_tbl_no;
170     actbl = compptr->ac_tbl_no;
171     if (gather_statistics) {
172 #ifdef ENTROPY_OPT_SUPPORTED
173       /* Check for invalid table indexes */
174       /* (make_c_derived_tbl does this in the other path) */
175       if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
176         ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
177       if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
178         ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
179       /* Allocate and zero the statistics tables */
180       /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
181       if (entropy->dc_count_ptrs[dctbl] == NULL)
182         entropy->dc_count_ptrs[dctbl] = (long *)
183           (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
184                                       257 * sizeof(long));
185       MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * sizeof(long));
186       if (entropy->ac_count_ptrs[actbl] == NULL)
187         entropy->ac_count_ptrs[actbl] = (long *)
188           (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
189                                       257 * sizeof(long));
190       MEMZERO(entropy->ac_count_ptrs[actbl], 257 * sizeof(long));
191 #endif
192     } else {
193       /* Compute derived values for Huffman tables */
194       /* We may do this more than once for a table, but it's not expensive */
195       jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
196                               & entropy->dc_derived_tbls[dctbl]);
197       jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
198                               & entropy->ac_derived_tbls[actbl]);
199     }
200     /* Initialize DC predictions to 0 */
201     entropy->saved.last_dc_val[ci] = 0;
202   }
203 
204   /* Initialize bit buffer to empty */
205   entropy->saved.put_buffer = 0;
206   entropy->saved.put_bits = 0;
207 
208   /* Initialize restart stuff */
209   entropy->restarts_to_go = cinfo->restart_interval;
210   entropy->next_restart_num = 0;
211 }
212 
213 
214 /*
215  * Compute the derived values for a Huffman table.
216  * This routine also performs some validation checks on the table.
217  *
218  * Note this is also used by jcphuff.c.
219  */
220 
221 GLOBAL(void)
jpeg_make_c_derived_tbl(j_compress_ptr cinfo,boolean isDC,int tblno,c_derived_tbl ** pdtbl)222 jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
223                          c_derived_tbl **pdtbl)
224 {
225   JHUFF_TBL *htbl;
226   c_derived_tbl *dtbl;
227   int p, i, l, lastp, si, maxsymbol;
228   char huffsize[257];
229   unsigned int huffcode[257];
230   unsigned int code;
231 
232   /* Note that huffsize[] and huffcode[] are filled in code-length order,
233    * paralleling the order of the symbols themselves in htbl->huffval[].
234    */
235 
236   /* Find the input Huffman table */
237   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
238     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
239   htbl =
240     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
241   if (htbl == NULL)
242     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
243 
244   /* Allocate a workspace if we haven't already done so. */
245   if (*pdtbl == NULL)
246     *pdtbl = (c_derived_tbl *)
247       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
248                                   sizeof(c_derived_tbl));
249   dtbl = *pdtbl;
250 
251   /* Figure C.1: make table of Huffman code length for each symbol */
252 
253   p = 0;
254   for (l = 1; l <= 16; l++) {
255     i = (int) htbl->bits[l];
256     if (i < 0 || p + i > 256)   /* protect against table overrun */
257       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
258     while (i--)
259       huffsize[p++] = (char) l;
260   }
261   huffsize[p] = 0;
262   lastp = p;
263 
264   /* Figure C.2: generate the codes themselves */
265   /* We also validate that the counts represent a legal Huffman code tree. */
266 
267   code = 0;
268   si = huffsize[0];
269   p = 0;
270   while (huffsize[p]) {
271     while (((int) huffsize[p]) == si) {
272       huffcode[p++] = code;
273       code++;
274     }
275     /* code is now 1 more than the last code used for codelength si; but
276      * it must still fit in si bits, since no code is allowed to be all ones.
277      */
278     if (((JLONG) code) >= (((JLONG) 1) << si))
279       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
280     code <<= 1;
281     si++;
282   }
283 
284   /* Figure C.3: generate encoding tables */
285   /* These are code and size indexed by symbol value */
286 
287   /* Set all codeless symbols to have code length 0;
288    * this lets us detect duplicate VAL entries here, and later
289    * allows emit_bits to detect any attempt to emit such symbols.
290    */
291   MEMZERO(dtbl->ehufsi, sizeof(dtbl->ehufsi));
292 
293   /* This is also a convenient place to check for out-of-range
294    * and duplicated VAL entries.  We allow 0..255 for AC symbols
295    * but only 0..15 for DC.  (We could constrain them further
296    * based on data depth and mode, but this seems enough.)
297    */
298   maxsymbol = isDC ? 15 : 255;
299 
300   for (p = 0; p < lastp; p++) {
301     i = htbl->huffval[p];
302     if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
303       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
304     dtbl->ehufco[i] = huffcode[p];
305     dtbl->ehufsi[i] = huffsize[p];
306   }
307 }
308 
309 
310 /* Outputting bytes to the file */
311 
312 /* Emit a byte, taking 'action' if must suspend. */
313 #define emit_byte(state,val,action)  \
314         { *(state)->next_output_byte++ = (JOCTET) (val);  \
315           if (--(state)->free_in_buffer == 0)  \
316             if (! dump_buffer(state))  \
317               { action; } }
318 
319 
320 LOCAL(boolean)
dump_buffer(working_state * state)321 dump_buffer (working_state *state)
322 /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
323 {
324   struct jpeg_destination_mgr *dest = state->cinfo->dest;
325 
326   if (! (*dest->empty_output_buffer) (state->cinfo))
327     return FALSE;
328   /* After a successful buffer dump, must reset buffer pointers */
329   state->next_output_byte = dest->next_output_byte;
330   state->free_in_buffer = dest->free_in_buffer;
331   return TRUE;
332 }
333 
334 
335 /* Outputting bits to the file */
336 
337 /* These macros perform the same task as the emit_bits() function in the
338  * original libjpeg code.  In addition to reducing overhead by explicitly
339  * inlining the code, additional performance is achieved by taking into
340  * account the size of the bit buffer and waiting until it is almost full
341  * before emptying it.  This mostly benefits 64-bit platforms, since 6
342  * bytes can be stored in a 64-bit bit buffer before it has to be emptied.
343  */
344 
345 #define EMIT_BYTE() { \
346   JOCTET c; \
347   put_bits -= 8; \
348   c = (JOCTET)GETJOCTET(put_buffer >> put_bits); \
349   *buffer++ = c; \
350   if (c == 0xFF)  /* need to stuff a zero byte? */ \
351     *buffer++ = 0; \
352  }
353 
354 #define PUT_BITS(code, size) { \
355   put_bits += size; \
356   put_buffer = (put_buffer << size) | code; \
357 }
358 
359 #define CHECKBUF15() { \
360   if (put_bits > 15) { \
361     EMIT_BYTE() \
362     EMIT_BYTE() \
363   } \
364 }
365 
366 #define CHECKBUF31() { \
367   if (put_bits > 31) { \
368     EMIT_BYTE() \
369     EMIT_BYTE() \
370     EMIT_BYTE() \
371     EMIT_BYTE() \
372   } \
373 }
374 
375 #define CHECKBUF47() { \
376   if (put_bits > 47) { \
377     EMIT_BYTE() \
378     EMIT_BYTE() \
379     EMIT_BYTE() \
380     EMIT_BYTE() \
381     EMIT_BYTE() \
382     EMIT_BYTE() \
383   } \
384 }
385 
386 #if !defined(_WIN32) && !defined(SIZEOF_SIZE_T)
387 #error Cannot determine word size
388 #endif
389 
390 #if SIZEOF_SIZE_T==8 || defined(_WIN64)
391 
392 #define EMIT_BITS(code, size) { \
393   CHECKBUF47() \
394   PUT_BITS(code, size) \
395 }
396 
397 #define EMIT_CODE(code, size) { \
398   temp2 &= (((JLONG) 1)<<nbits) - 1; \
399   CHECKBUF31() \
400   PUT_BITS(code, size) \
401   PUT_BITS(temp2, nbits) \
402  }
403 
404 #else
405 
406 #define EMIT_BITS(code, size) { \
407   PUT_BITS(code, size) \
408   CHECKBUF15() \
409 }
410 
411 #define EMIT_CODE(code, size) { \
412   temp2 &= (((JLONG) 1)<<nbits) - 1; \
413   PUT_BITS(code, size) \
414   CHECKBUF15() \
415   PUT_BITS(temp2, nbits) \
416   CHECKBUF15() \
417  }
418 
419 #endif
420 
421 
422 /* Although it is exceedingly rare, it is possible for a Huffman-encoded
423  * coefficient block to be larger than the 128-byte unencoded block.  For each
424  * of the 64 coefficients, PUT_BITS is invoked twice, and each invocation can
425  * theoretically store 16 bits (for a maximum of 2048 bits or 256 bytes per
426  * encoded block.)  If, for instance, one artificially sets the AC
427  * coefficients to alternating values of 32767 and -32768 (using the JPEG
428  * scanning order-- 1, 8, 16, etc.), then this will produce an encoded block
429  * larger than 200 bytes.
430  */
431 #define BUFSIZE (DCTSIZE2 * 4)
432 
433 #define LOAD_BUFFER() { \
434   if (state->free_in_buffer < BUFSIZE) { \
435     localbuf = 1; \
436     buffer = _buffer; \
437   } \
438   else buffer = state->next_output_byte; \
439  }
440 
441 #define STORE_BUFFER() { \
442   if (localbuf) { \
443     bytes = buffer - _buffer; \
444     buffer = _buffer; \
445     while (bytes > 0) { \
446       bytestocopy = min(bytes, state->free_in_buffer); \
447       MEMCOPY(state->next_output_byte, buffer, bytestocopy); \
448       state->next_output_byte += bytestocopy; \
449       buffer += bytestocopy; \
450       state->free_in_buffer -= bytestocopy; \
451       if (state->free_in_buffer == 0) \
452         if (! dump_buffer(state)) return FALSE; \
453       bytes -= bytestocopy; \
454     } \
455   } \
456   else { \
457     state->free_in_buffer -= (buffer - state->next_output_byte); \
458     state->next_output_byte = buffer; \
459   } \
460  }
461 
462 
463 LOCAL(boolean)
flush_bits(working_state * state)464 flush_bits (working_state *state)
465 {
466   JOCTET _buffer[BUFSIZE], *buffer;
467   size_t put_buffer;  int put_bits;
468   size_t bytes, bytestocopy;  int localbuf = 0;
469 
470   put_buffer = state->cur.put_buffer;
471   put_bits = state->cur.put_bits;
472   LOAD_BUFFER()
473 
474   /* fill any partial byte with ones */
475   PUT_BITS(0x7F, 7)
476   while (put_bits >= 8) EMIT_BYTE()
477 
478   state->cur.put_buffer = 0;    /* and reset bit-buffer to empty */
479   state->cur.put_bits = 0;
480   STORE_BUFFER()
481 
482   return TRUE;
483 }
484 
485 
486 /* Encode a single block's worth of coefficients */
487 
488 LOCAL(boolean)
encode_one_block_simd(working_state * state,JCOEFPTR block,int last_dc_val,c_derived_tbl * dctbl,c_derived_tbl * actbl)489 encode_one_block_simd (working_state *state, JCOEFPTR block, int last_dc_val,
490                        c_derived_tbl *dctbl, c_derived_tbl *actbl)
491 {
492   JOCTET _buffer[BUFSIZE], *buffer;
493   size_t bytes, bytestocopy;  int localbuf = 0;
494 
495   LOAD_BUFFER()
496 
497   buffer = jsimd_huff_encode_one_block(state, buffer, block, last_dc_val,
498                                        dctbl, actbl);
499 
500   STORE_BUFFER()
501 
502   return TRUE;
503 }
504 
505 LOCAL(boolean)
encode_one_block(working_state * state,JCOEFPTR block,int last_dc_val,c_derived_tbl * dctbl,c_derived_tbl * actbl)506 encode_one_block (working_state *state, JCOEFPTR block, int last_dc_val,
507                   c_derived_tbl *dctbl, c_derived_tbl *actbl)
508 {
509   int temp, temp2, temp3;
510   int nbits;
511   int r, code, size;
512   JOCTET _buffer[BUFSIZE], *buffer;
513   size_t put_buffer;  int put_bits;
514   int code_0xf0 = actbl->ehufco[0xf0], size_0xf0 = actbl->ehufsi[0xf0];
515   size_t bytes, bytestocopy;  int localbuf = 0;
516 
517   put_buffer = state->cur.put_buffer;
518   put_bits = state->cur.put_bits;
519   LOAD_BUFFER()
520 
521   /* Encode the DC coefficient difference per section F.1.2.1 */
522 
523   temp = temp2 = block[0] - last_dc_val;
524 
525  /* This is a well-known technique for obtaining the absolute value without a
526   * branch.  It is derived from an assembly language technique presented in
527   * "How to Optimize for the Pentium Processors", Copyright (c) 1996, 1997 by
528   * Agner Fog.
529   */
530   temp3 = temp >> (CHAR_BIT * sizeof(int) - 1);
531   temp ^= temp3;
532   temp -= temp3;
533 
534   /* For a negative input, want temp2 = bitwise complement of abs(input) */
535   /* This code assumes we are on a two's complement machine */
536   temp2 += temp3;
537 
538   /* Find the number of bits needed for the magnitude of the coefficient */
539   nbits = JPEG_NBITS(temp);
540 
541   /* Emit the Huffman-coded symbol for the number of bits */
542   code = dctbl->ehufco[nbits];
543   size = dctbl->ehufsi[nbits];
544   EMIT_BITS(code, size)
545 
546   /* Mask off any extra bits in code */
547   temp2 &= (((JLONG) 1)<<nbits) - 1;
548 
549   /* Emit that number of bits of the value, if positive, */
550   /* or the complement of its magnitude, if negative. */
551   EMIT_BITS(temp2, nbits)
552 
553   /* Encode the AC coefficients per section F.1.2.2 */
554 
555   r = 0;                        /* r = run length of zeros */
556 
557 /* Manually unroll the k loop to eliminate the counter variable.  This
558  * improves performance greatly on systems with a limited number of
559  * registers (such as x86.)
560  */
561 #define kloop(jpeg_natural_order_of_k) {  \
562   if ((temp = block[jpeg_natural_order_of_k]) == 0) { \
563     r++; \
564   } else { \
565     temp2 = temp; \
566     /* Branch-less absolute value, bitwise complement, etc., same as above */ \
567     temp3 = temp >> (CHAR_BIT * sizeof(int) - 1); \
568     temp ^= temp3; \
569     temp -= temp3; \
570     temp2 += temp3; \
571     nbits = JPEG_NBITS_NONZERO(temp); \
572     /* if run length > 15, must emit special run-length-16 codes (0xF0) */ \
573     while (r > 15) { \
574       EMIT_BITS(code_0xf0, size_0xf0) \
575       r -= 16; \
576     } \
577     /* Emit Huffman symbol for run length / number of bits */ \
578     temp3 = (r << 4) + nbits;  \
579     code = actbl->ehufco[temp3]; \
580     size = actbl->ehufsi[temp3]; \
581     EMIT_CODE(code, size) \
582     r = 0;  \
583   } \
584 }
585 
586   /* One iteration for each value in jpeg_natural_order[] */
587   kloop(1);   kloop(8);   kloop(16);  kloop(9);   kloop(2);   kloop(3);
588   kloop(10);  kloop(17);  kloop(24);  kloop(32);  kloop(25);  kloop(18);
589   kloop(11);  kloop(4);   kloop(5);   kloop(12);  kloop(19);  kloop(26);
590   kloop(33);  kloop(40);  kloop(48);  kloop(41);  kloop(34);  kloop(27);
591   kloop(20);  kloop(13);  kloop(6);   kloop(7);   kloop(14);  kloop(21);
592   kloop(28);  kloop(35);  kloop(42);  kloop(49);  kloop(56);  kloop(57);
593   kloop(50);  kloop(43);  kloop(36);  kloop(29);  kloop(22);  kloop(15);
594   kloop(23);  kloop(30);  kloop(37);  kloop(44);  kloop(51);  kloop(58);
595   kloop(59);  kloop(52);  kloop(45);  kloop(38);  kloop(31);  kloop(39);
596   kloop(46);  kloop(53);  kloop(60);  kloop(61);  kloop(54);  kloop(47);
597   kloop(55);  kloop(62);  kloop(63);
598 
599   /* If the last coef(s) were zero, emit an end-of-block code */
600   if (r > 0) {
601     code = actbl->ehufco[0];
602     size = actbl->ehufsi[0];
603     EMIT_BITS(code, size)
604   }
605 
606   state->cur.put_buffer = put_buffer;
607   state->cur.put_bits = put_bits;
608   STORE_BUFFER()
609 
610   return TRUE;
611 }
612 
613 
614 /*
615  * Emit a restart marker & resynchronize predictions.
616  */
617 
618 LOCAL(boolean)
emit_restart(working_state * state,int restart_num)619 emit_restart (working_state *state, int restart_num)
620 {
621   int ci;
622 
623   if (! flush_bits(state))
624     return FALSE;
625 
626   emit_byte(state, 0xFF, return FALSE);
627   emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
628 
629   /* Re-initialize DC predictions to 0 */
630   for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
631     state->cur.last_dc_val[ci] = 0;
632 
633   /* The restart counter is not updated until we successfully write the MCU. */
634 
635   return TRUE;
636 }
637 
638 
639 /*
640  * Encode and output one MCU's worth of Huffman-compressed coefficients.
641  */
642 
643 METHODDEF(boolean)
encode_mcu_huff(j_compress_ptr cinfo,JBLOCKROW * MCU_data)644 encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
645 {
646   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
647   working_state state;
648   int blkn, ci;
649   jpeg_component_info *compptr;
650 
651   /* Load up working state */
652   state.next_output_byte = cinfo->dest->next_output_byte;
653   state.free_in_buffer = cinfo->dest->free_in_buffer;
654   ASSIGN_STATE(state.cur, entropy->saved);
655   state.cinfo = cinfo;
656 
657   /* Emit restart marker if needed */
658   if (cinfo->restart_interval) {
659     if (entropy->restarts_to_go == 0)
660       if (! emit_restart(&state, entropy->next_restart_num))
661         return FALSE;
662   }
663 
664   /* Encode the MCU data blocks */
665   if (entropy->simd) {
666     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
667       ci = cinfo->MCU_membership[blkn];
668       compptr = cinfo->cur_comp_info[ci];
669       if (! encode_one_block_simd(&state,
670                                   MCU_data[blkn][0], state.cur.last_dc_val[ci],
671                                   entropy->dc_derived_tbls[compptr->dc_tbl_no],
672                                   entropy->ac_derived_tbls[compptr->ac_tbl_no]))
673         return FALSE;
674       /* Update last_dc_val */
675       state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
676     }
677   } else {
678     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
679       ci = cinfo->MCU_membership[blkn];
680       compptr = cinfo->cur_comp_info[ci];
681       if (! encode_one_block(&state,
682                              MCU_data[blkn][0], state.cur.last_dc_val[ci],
683                              entropy->dc_derived_tbls[compptr->dc_tbl_no],
684                              entropy->ac_derived_tbls[compptr->ac_tbl_no]))
685         return FALSE;
686       /* Update last_dc_val */
687       state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
688     }
689   }
690 
691   /* Completed MCU, so update state */
692   cinfo->dest->next_output_byte = state.next_output_byte;
693   cinfo->dest->free_in_buffer = state.free_in_buffer;
694   ASSIGN_STATE(entropy->saved, state.cur);
695 
696   /* Update restart-interval state too */
697   if (cinfo->restart_interval) {
698     if (entropy->restarts_to_go == 0) {
699       entropy->restarts_to_go = cinfo->restart_interval;
700       entropy->next_restart_num++;
701       entropy->next_restart_num &= 7;
702     }
703     entropy->restarts_to_go--;
704   }
705 
706   return TRUE;
707 }
708 
709 
710 /*
711  * Finish up at the end of a Huffman-compressed scan.
712  */
713 
714 METHODDEF(void)
finish_pass_huff(j_compress_ptr cinfo)715 finish_pass_huff (j_compress_ptr cinfo)
716 {
717   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
718   working_state state;
719 
720   /* Load up working state ... flush_bits needs it */
721   state.next_output_byte = cinfo->dest->next_output_byte;
722   state.free_in_buffer = cinfo->dest->free_in_buffer;
723   ASSIGN_STATE(state.cur, entropy->saved);
724   state.cinfo = cinfo;
725 
726   /* Flush out the last data */
727   if (! flush_bits(&state))
728     ERREXIT(cinfo, JERR_CANT_SUSPEND);
729 
730   /* Update state */
731   cinfo->dest->next_output_byte = state.next_output_byte;
732   cinfo->dest->free_in_buffer = state.free_in_buffer;
733   ASSIGN_STATE(entropy->saved, state.cur);
734 }
735 
736 
737 /*
738  * Huffman coding optimization.
739  *
740  * We first scan the supplied data and count the number of uses of each symbol
741  * that is to be Huffman-coded. (This process MUST agree with the code above.)
742  * Then we build a Huffman coding tree for the observed counts.
743  * Symbols which are not needed at all for the particular image are not
744  * assigned any code, which saves space in the DHT marker as well as in
745  * the compressed data.
746  */
747 
748 #ifdef ENTROPY_OPT_SUPPORTED
749 
750 
751 /* Process a single block's worth of coefficients */
752 
753 LOCAL(void)
htest_one_block(j_compress_ptr cinfo,JCOEFPTR block,int last_dc_val,long dc_counts[],long ac_counts[])754 htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
755                  long dc_counts[], long ac_counts[])
756 {
757   register int temp;
758   register int nbits;
759   register int k, r;
760 
761   /* Encode the DC coefficient difference per section F.1.2.1 */
762 
763   temp = block[0] - last_dc_val;
764   if (temp < 0)
765     temp = -temp;
766 
767   /* Find the number of bits needed for the magnitude of the coefficient */
768   nbits = 0;
769   while (temp) {
770     nbits++;
771     temp >>= 1;
772   }
773   /* Check for out-of-range coefficient values.
774    * Since we're encoding a difference, the range limit is twice as much.
775    */
776   if (nbits > MAX_COEF_BITS+1)
777     ERREXIT(cinfo, JERR_BAD_DCT_COEF);
778 
779   /* Count the Huffman symbol for the number of bits */
780   dc_counts[nbits]++;
781 
782   /* Encode the AC coefficients per section F.1.2.2 */
783 
784   r = 0;                        /* r = run length of zeros */
785 
786   for (k = 1; k < DCTSIZE2; k++) {
787     if ((temp = block[jpeg_natural_order[k]]) == 0) {
788       r++;
789     } else {
790       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
791       while (r > 15) {
792         ac_counts[0xF0]++;
793         r -= 16;
794       }
795 
796       /* Find the number of bits needed for the magnitude of the coefficient */
797       if (temp < 0)
798         temp = -temp;
799 
800       /* Find the number of bits needed for the magnitude of the coefficient */
801       nbits = 1;                /* there must be at least one 1 bit */
802       while ((temp >>= 1))
803         nbits++;
804       /* Check for out-of-range coefficient values */
805       if (nbits > MAX_COEF_BITS)
806         ERREXIT(cinfo, JERR_BAD_DCT_COEF);
807 
808       /* Count Huffman symbol for run length / number of bits */
809       ac_counts[(r << 4) + nbits]++;
810 
811       r = 0;
812     }
813   }
814 
815   /* If the last coef(s) were zero, emit an end-of-block code */
816   if (r > 0)
817     ac_counts[0]++;
818 }
819 
820 
821 /*
822  * Trial-encode one MCU's worth of Huffman-compressed coefficients.
823  * No data is actually output, so no suspension return is possible.
824  */
825 
826 METHODDEF(boolean)
encode_mcu_gather(j_compress_ptr cinfo,JBLOCKROW * MCU_data)827 encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
828 {
829   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
830   int blkn, ci;
831   jpeg_component_info *compptr;
832 
833   /* Take care of restart intervals if needed */
834   if (cinfo->restart_interval) {
835     if (entropy->restarts_to_go == 0) {
836       /* Re-initialize DC predictions to 0 */
837       for (ci = 0; ci < cinfo->comps_in_scan; ci++)
838         entropy->saved.last_dc_val[ci] = 0;
839       /* Update restart state */
840       entropy->restarts_to_go = cinfo->restart_interval;
841     }
842     entropy->restarts_to_go--;
843   }
844 
845   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
846     ci = cinfo->MCU_membership[blkn];
847     compptr = cinfo->cur_comp_info[ci];
848     htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
849                     entropy->dc_count_ptrs[compptr->dc_tbl_no],
850                     entropy->ac_count_ptrs[compptr->ac_tbl_no]);
851     entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
852   }
853 
854   return TRUE;
855 }
856 
857 
858 /*
859  * Generate the best Huffman code table for the given counts, fill htbl.
860  * Note this is also used by jcphuff.c.
861  *
862  * The JPEG standard requires that no symbol be assigned a codeword of all
863  * one bits (so that padding bits added at the end of a compressed segment
864  * can't look like a valid code).  Because of the canonical ordering of
865  * codewords, this just means that there must be an unused slot in the
866  * longest codeword length category.  Section K.2 of the JPEG spec suggests
867  * reserving such a slot by pretending that symbol 256 is a valid symbol
868  * with count 1.  In theory that's not optimal; giving it count zero but
869  * including it in the symbol set anyway should give a better Huffman code.
870  * But the theoretically better code actually seems to come out worse in
871  * practice, because it produces more all-ones bytes (which incur stuffed
872  * zero bytes in the final file).  In any case the difference is tiny.
873  *
874  * The JPEG standard requires Huffman codes to be no more than 16 bits long.
875  * If some symbols have a very small but nonzero probability, the Huffman tree
876  * must be adjusted to meet the code length restriction.  We currently use
877  * the adjustment method suggested in JPEG section K.2.  This method is *not*
878  * optimal; it may not choose the best possible limited-length code.  But
879  * typically only very-low-frequency symbols will be given less-than-optimal
880  * lengths, so the code is almost optimal.  Experimental comparisons against
881  * an optimal limited-length-code algorithm indicate that the difference is
882  * microscopic --- usually less than a hundredth of a percent of total size.
883  * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
884  */
885 
886 GLOBAL(void)
jpeg_gen_optimal_table(j_compress_ptr cinfo,JHUFF_TBL * htbl,long freq[])887 jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL *htbl, long freq[])
888 {
889 #define MAX_CLEN 32             /* assumed maximum initial code length */
890   UINT8 bits[MAX_CLEN+1];       /* bits[k] = # of symbols with code length k */
891   int codesize[257];            /* codesize[k] = code length of symbol k */
892   int others[257];              /* next symbol in current branch of tree */
893   int c1, c2;
894   int p, i, j;
895   long v;
896 
897   /* This algorithm is explained in section K.2 of the JPEG standard */
898 
899   MEMZERO(bits, sizeof(bits));
900   MEMZERO(codesize, sizeof(codesize));
901   for (i = 0; i < 257; i++)
902     others[i] = -1;             /* init links to empty */
903 
904   freq[256] = 1;                /* make sure 256 has a nonzero count */
905   /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
906    * that no real symbol is given code-value of all ones, because 256
907    * will be placed last in the largest codeword category.
908    */
909 
910   /* Huffman's basic algorithm to assign optimal code lengths to symbols */
911 
912   for (;;) {
913     /* Find the smallest nonzero frequency, set c1 = its symbol */
914     /* In case of ties, take the larger symbol number */
915     c1 = -1;
916     v = 1000000000L;
917     for (i = 0; i <= 256; i++) {
918       if (freq[i] && freq[i] <= v) {
919         v = freq[i];
920         c1 = i;
921       }
922     }
923 
924     /* Find the next smallest nonzero frequency, set c2 = its symbol */
925     /* In case of ties, take the larger symbol number */
926     c2 = -1;
927     v = 1000000000L;
928     for (i = 0; i <= 256; i++) {
929       if (freq[i] && freq[i] <= v && i != c1) {
930         v = freq[i];
931         c2 = i;
932       }
933     }
934 
935     /* Done if we've merged everything into one frequency */
936     if (c2 < 0)
937       break;
938 
939     /* Else merge the two counts/trees */
940     freq[c1] += freq[c2];
941     freq[c2] = 0;
942 
943     /* Increment the codesize of everything in c1's tree branch */
944     codesize[c1]++;
945     while (others[c1] >= 0) {
946       c1 = others[c1];
947       codesize[c1]++;
948     }
949 
950     others[c1] = c2;            /* chain c2 onto c1's tree branch */
951 
952     /* Increment the codesize of everything in c2's tree branch */
953     codesize[c2]++;
954     while (others[c2] >= 0) {
955       c2 = others[c2];
956       codesize[c2]++;
957     }
958   }
959 
960   /* Now count the number of symbols of each code length */
961   for (i = 0; i <= 256; i++) {
962     if (codesize[i]) {
963       /* The JPEG standard seems to think that this can't happen, */
964       /* but I'm paranoid... */
965       if (codesize[i] > MAX_CLEN)
966         ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
967 
968       bits[codesize[i]]++;
969     }
970   }
971 
972   /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
973    * Huffman procedure assigned any such lengths, we must adjust the coding.
974    * Here is what the JPEG spec says about how this next bit works:
975    * Since symbols are paired for the longest Huffman code, the symbols are
976    * removed from this length category two at a time.  The prefix for the pair
977    * (which is one bit shorter) is allocated to one of the pair; then,
978    * skipping the BITS entry for that prefix length, a code word from the next
979    * shortest nonzero BITS entry is converted into a prefix for two code words
980    * one bit longer.
981    */
982 
983   for (i = MAX_CLEN; i > 16; i--) {
984     while (bits[i] > 0) {
985       j = i - 2;                /* find length of new prefix to be used */
986       while (bits[j] == 0)
987         j--;
988 
989       bits[i] -= 2;             /* remove two symbols */
990       bits[i-1]++;              /* one goes in this length */
991       bits[j+1] += 2;           /* two new symbols in this length */
992       bits[j]--;                /* symbol of this length is now a prefix */
993     }
994   }
995 
996   /* Remove the count for the pseudo-symbol 256 from the largest codelength */
997   while (bits[i] == 0)          /* find largest codelength still in use */
998     i--;
999   bits[i]--;
1000 
1001   /* Return final symbol counts (only for lengths 0..16) */
1002   MEMCOPY(htbl->bits, bits, sizeof(htbl->bits));
1003 
1004   /* Return a list of the symbols sorted by code length */
1005   /* It's not real clear to me why we don't need to consider the codelength
1006    * changes made above, but the JPEG spec seems to think this works.
1007    */
1008   p = 0;
1009   for (i = 1; i <= MAX_CLEN; i++) {
1010     for (j = 0; j <= 255; j++) {
1011       if (codesize[j] == i) {
1012         htbl->huffval[p] = (UINT8) j;
1013         p++;
1014       }
1015     }
1016   }
1017 
1018   /* Set sent_table FALSE so updated table will be written to JPEG file. */
1019   htbl->sent_table = FALSE;
1020 }
1021 
1022 
1023 /*
1024  * Finish up a statistics-gathering pass and create the new Huffman tables.
1025  */
1026 
1027 METHODDEF(void)
finish_pass_gather(j_compress_ptr cinfo)1028 finish_pass_gather (j_compress_ptr cinfo)
1029 {
1030   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1031   int ci, dctbl, actbl;
1032   jpeg_component_info *compptr;
1033   JHUFF_TBL **htblptr;
1034   boolean did_dc[NUM_HUFF_TBLS];
1035   boolean did_ac[NUM_HUFF_TBLS];
1036 
1037   /* It's important not to apply jpeg_gen_optimal_table more than once
1038    * per table, because it clobbers the input frequency counts!
1039    */
1040   MEMZERO(did_dc, sizeof(did_dc));
1041   MEMZERO(did_ac, sizeof(did_ac));
1042 
1043   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1044     compptr = cinfo->cur_comp_info[ci];
1045     dctbl = compptr->dc_tbl_no;
1046     actbl = compptr->ac_tbl_no;
1047     if (! did_dc[dctbl]) {
1048       htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl];
1049       if (*htblptr == NULL)
1050         *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
1051       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
1052       did_dc[dctbl] = TRUE;
1053     }
1054     if (! did_ac[actbl]) {
1055       htblptr = & cinfo->ac_huff_tbl_ptrs[actbl];
1056       if (*htblptr == NULL)
1057         *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
1058       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
1059       did_ac[actbl] = TRUE;
1060     }
1061   }
1062 }
1063 
1064 
1065 #endif /* ENTROPY_OPT_SUPPORTED */
1066 
1067 
1068 /*
1069  * Module initialization routine for Huffman entropy encoding.
1070  */
1071 
1072 GLOBAL(void)
jinit_huff_encoder(j_compress_ptr cinfo)1073 jinit_huff_encoder (j_compress_ptr cinfo)
1074 {
1075   huff_entropy_ptr entropy;
1076   int i;
1077 
1078   entropy = (huff_entropy_ptr)
1079     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1080                                 sizeof(huff_entropy_encoder));
1081   cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
1082   entropy->pub.start_pass = start_pass_huff;
1083 
1084   /* Mark tables unallocated */
1085   for (i = 0; i < NUM_HUFF_TBLS; i++) {
1086     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
1087 #ifdef ENTROPY_OPT_SUPPORTED
1088     entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
1089 #endif
1090   }
1091 }
1092