1 /*
2  * Copyright 2014 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "SkDashPathPriv.h"
9 #include "SkPathMeasure.h"
10 #include "SkStrokeRec.h"
11 
is_even(int x)12 static inline int is_even(int x) {
13     return !(x & 1);
14 }
15 
find_first_interval(const SkScalar intervals[],SkScalar phase,int32_t * index,int count)16 static SkScalar find_first_interval(const SkScalar intervals[], SkScalar phase,
17                                     int32_t* index, int count) {
18     for (int i = 0; i < count; ++i) {
19         SkScalar gap = intervals[i];
20         if (phase > gap || (phase == gap && gap)) {
21             phase -= gap;
22         } else {
23             *index = i;
24             return gap - phase;
25         }
26     }
27     // If we get here, phase "appears" to be larger than our length. This
28     // shouldn't happen with perfect precision, but we can accumulate errors
29     // during the initial length computation (rounding can make our sum be too
30     // big or too small. In that event, we just have to eat the error here.
31     *index = 0;
32     return intervals[0];
33 }
34 
CalcDashParameters(SkScalar phase,const SkScalar intervals[],int32_t count,SkScalar * initialDashLength,int32_t * initialDashIndex,SkScalar * intervalLength,SkScalar * adjustedPhase)35 void SkDashPath::CalcDashParameters(SkScalar phase, const SkScalar intervals[], int32_t count,
36                                     SkScalar* initialDashLength, int32_t* initialDashIndex,
37                                     SkScalar* intervalLength, SkScalar* adjustedPhase) {
38     SkScalar len = 0;
39     for (int i = 0; i < count; i++) {
40         len += intervals[i];
41     }
42     *intervalLength = len;
43     // Adjust phase to be between 0 and len, "flipping" phase if negative.
44     // e.g., if len is 100, then phase of -20 (or -120) is equivalent to 80
45     if (adjustedPhase) {
46         if (phase < 0) {
47             phase = -phase;
48             if (phase > len) {
49                 phase = SkScalarMod(phase, len);
50             }
51             phase = len - phase;
52 
53             // Due to finite precision, it's possible that phase == len,
54             // even after the subtract (if len >>> phase), so fix that here.
55             // This fixes http://crbug.com/124652 .
56             SkASSERT(phase <= len);
57             if (phase == len) {
58                 phase = 0;
59             }
60         } else if (phase >= len) {
61             phase = SkScalarMod(phase, len);
62         }
63         *adjustedPhase = phase;
64     }
65     SkASSERT(phase >= 0 && phase < len);
66 
67     *initialDashLength = find_first_interval(intervals, phase,
68                                             initialDashIndex, count);
69 
70     SkASSERT(*initialDashLength >= 0);
71     SkASSERT(*initialDashIndex >= 0 && *initialDashIndex < count);
72 }
73 
outset_for_stroke(SkRect * rect,const SkStrokeRec & rec)74 static void outset_for_stroke(SkRect* rect, const SkStrokeRec& rec) {
75     SkScalar radius = SkScalarHalf(rec.getWidth());
76     if (0 == radius) {
77         radius = SK_Scalar1;    // hairlines
78     }
79     if (SkPaint::kMiter_Join == rec.getJoin()) {
80         radius *= rec.getMiter();
81     }
82     rect->outset(radius, radius);
83 }
84 
85 // Only handles lines for now. If returns true, dstPath is the new (smaller)
86 // path. If returns false, then dstPath parameter is ignored.
cull_path(const SkPath & srcPath,const SkStrokeRec & rec,const SkRect * cullRect,SkScalar intervalLength,SkPath * dstPath)87 static bool cull_path(const SkPath& srcPath, const SkStrokeRec& rec,
88                       const SkRect* cullRect, SkScalar intervalLength,
89                       SkPath* dstPath) {
90     if (nullptr == cullRect) {
91         return false;
92     }
93 
94     SkPoint pts[2];
95     if (!srcPath.isLine(pts)) {
96         return false;
97     }
98 
99     SkRect bounds = *cullRect;
100     outset_for_stroke(&bounds, rec);
101 
102     SkScalar dx = pts[1].x() - pts[0].x();
103     SkScalar dy = pts[1].y() - pts[0].y();
104 
105     // just do horizontal lines for now (lazy)
106     if (dy) {
107         return false;
108     }
109 
110     SkScalar minX = pts[0].fX;
111     SkScalar maxX = pts[1].fX;
112 
113     if (dx < 0) {
114         SkTSwap(minX, maxX);
115     }
116 
117     SkASSERT(minX <= maxX);
118     if (maxX < bounds.fLeft || minX > bounds.fRight) {
119         return false;
120     }
121 
122     // Now we actually perform the chop, removing the excess to the left and
123     // right of the bounds (keeping our new line "in phase" with the dash,
124     // hence the (mod intervalLength).
125 
126     if (minX < bounds.fLeft) {
127         minX = bounds.fLeft - SkScalarMod(bounds.fLeft - minX,
128                                           intervalLength);
129     }
130     if (maxX > bounds.fRight) {
131         maxX = bounds.fRight + SkScalarMod(maxX - bounds.fRight,
132                                            intervalLength);
133     }
134 
135     SkASSERT(maxX >= minX);
136     if (dx < 0) {
137         SkTSwap(minX, maxX);
138     }
139     pts[0].fX = minX;
140     pts[1].fX = maxX;
141 
142     dstPath->moveTo(pts[0]);
143     dstPath->lineTo(pts[1]);
144     return true;
145 }
146 
147 class SpecialLineRec {
148 public:
init(const SkPath & src,SkPath * dst,SkStrokeRec * rec,int intervalCount,SkScalar intervalLength)149     bool init(const SkPath& src, SkPath* dst, SkStrokeRec* rec,
150               int intervalCount, SkScalar intervalLength) {
151         if (rec->isHairlineStyle() || !src.isLine(fPts)) {
152             return false;
153         }
154 
155         // can relax this in the future, if we handle square and round caps
156         if (SkPaint::kButt_Cap != rec->getCap()) {
157             return false;
158         }
159 
160         SkScalar pathLength = SkPoint::Distance(fPts[0], fPts[1]);
161 
162         fTangent = fPts[1] - fPts[0];
163         if (fTangent.isZero()) {
164             return false;
165         }
166 
167         fPathLength = pathLength;
168         fTangent.scale(SkScalarInvert(pathLength));
169         fTangent.rotateCCW(&fNormal);
170         fNormal.scale(SkScalarHalf(rec->getWidth()));
171 
172         // now estimate how many quads will be added to the path
173         //     resulting segments = pathLen * intervalCount / intervalLen
174         //     resulting points = 4 * segments
175 
176         SkScalar ptCount = pathLength * intervalCount / (float)intervalLength;
177         ptCount = SkTMin(ptCount, SkDashPath::kMaxDashCount);
178         int n = SkScalarCeilToInt(ptCount) << 2;
179         dst->incReserve(n);
180 
181         // we will take care of the stroking
182         rec->setFillStyle();
183         return true;
184     }
185 
addSegment(SkScalar d0,SkScalar d1,SkPath * path) const186     void addSegment(SkScalar d0, SkScalar d1, SkPath* path) const {
187         SkASSERT(d0 <= fPathLength);
188         // clamp the segment to our length
189         if (d1 > fPathLength) {
190             d1 = fPathLength;
191         }
192 
193         SkScalar x0 = fPts[0].fX + fTangent.fX * d0;
194         SkScalar x1 = fPts[0].fX + fTangent.fX * d1;
195         SkScalar y0 = fPts[0].fY + fTangent.fY * d0;
196         SkScalar y1 = fPts[0].fY + fTangent.fY * d1;
197 
198         SkPoint pts[4];
199         pts[0].set(x0 + fNormal.fX, y0 + fNormal.fY);   // moveTo
200         pts[1].set(x1 + fNormal.fX, y1 + fNormal.fY);   // lineTo
201         pts[2].set(x1 - fNormal.fX, y1 - fNormal.fY);   // lineTo
202         pts[3].set(x0 - fNormal.fX, y0 - fNormal.fY);   // lineTo
203 
204         path->addPoly(pts, SK_ARRAY_COUNT(pts), false);
205     }
206 
207 private:
208     SkPoint fPts[2];
209     SkVector fTangent;
210     SkVector fNormal;
211     SkScalar fPathLength;
212 };
213 
214 
InternalFilter(SkPath * dst,const SkPath & src,SkStrokeRec * rec,const SkRect * cullRect,const SkScalar aIntervals[],int32_t count,SkScalar initialDashLength,int32_t initialDashIndex,SkScalar intervalLength,StrokeRecApplication strokeRecApplication)215 bool SkDashPath::InternalFilter(SkPath* dst, const SkPath& src, SkStrokeRec* rec,
216                                 const SkRect* cullRect, const SkScalar aIntervals[],
217                                 int32_t count, SkScalar initialDashLength, int32_t initialDashIndex,
218                                 SkScalar intervalLength,
219                                 StrokeRecApplication strokeRecApplication) {
220 
221     // we do nothing if the src wants to be filled
222     SkStrokeRec::Style style = rec->getStyle();
223     if (SkStrokeRec::kFill_Style == style || SkStrokeRec::kStrokeAndFill_Style == style) {
224         return false;
225     }
226 
227     const SkScalar* intervals = aIntervals;
228     SkScalar        dashCount = 0;
229     int             segCount = 0;
230 
231     SkPath cullPathStorage;
232     const SkPath* srcPtr = &src;
233     if (cull_path(src, *rec, cullRect, intervalLength, &cullPathStorage)) {
234         srcPtr = &cullPathStorage;
235     }
236 
237     SpecialLineRec lineRec;
238     bool specialLine = (StrokeRecApplication::kAllow == strokeRecApplication) &&
239                        lineRec.init(*srcPtr, dst, rec, count >> 1, intervalLength);
240 
241     SkPathMeasure   meas(*srcPtr, false, rec->getResScale());
242 
243     do {
244         bool        skipFirstSegment = meas.isClosed();
245         bool        addedSegment = false;
246         SkScalar    length = meas.getLength();
247         int         index = initialDashIndex;
248 
249         // Since the path length / dash length ratio may be arbitrarily large, we can exert
250         // significant memory pressure while attempting to build the filtered path. To avoid this,
251         // we simply give up dashing beyond a certain threshold.
252         //
253         // The original bug report (http://crbug.com/165432) is based on a path yielding more than
254         // 90 million dash segments and crashing the memory allocator. A limit of 1 million
255         // segments seems reasonable: at 2 verbs per segment * 9 bytes per verb, this caps the
256         // maximum dash memory overhead at roughly 17MB per path.
257         dashCount += length * (count >> 1) / intervalLength;
258         if (dashCount > kMaxDashCount) {
259             dst->reset();
260             return false;
261         }
262 
263         // Using double precision to avoid looping indefinitely due to single precision rounding
264         // (for extreme path_length/dash_length ratios). See test_infinite_dash() unittest.
265         double  distance = 0;
266         double  dlen = initialDashLength;
267 
268         while (distance < length) {
269             SkASSERT(dlen >= 0);
270             addedSegment = false;
271             if (is_even(index) && !skipFirstSegment) {
272                 addedSegment = true;
273                 ++segCount;
274 
275                 if (specialLine) {
276                     lineRec.addSegment(SkDoubleToScalar(distance),
277                                        SkDoubleToScalar(distance + dlen),
278                                        dst);
279                 } else {
280                     meas.getSegment(SkDoubleToScalar(distance),
281                                     SkDoubleToScalar(distance + dlen),
282                                     dst, true);
283                 }
284             }
285             distance += dlen;
286 
287             // clear this so we only respect it the first time around
288             skipFirstSegment = false;
289 
290             // wrap around our intervals array if necessary
291             index += 1;
292             SkASSERT(index <= count);
293             if (index == count) {
294                 index = 0;
295             }
296 
297             // fetch our next dlen
298             dlen = intervals[index];
299         }
300 
301         // extend if we ended on a segment and we need to join up with the (skipped) initial segment
302         if (meas.isClosed() && is_even(initialDashIndex) &&
303             initialDashLength >= 0) {
304             meas.getSegment(0, initialDashLength, dst, !addedSegment);
305             ++segCount;
306         }
307     } while (meas.nextContour());
308 
309     if (segCount > 1) {
310         dst->setConvexity(SkPath::kConcave_Convexity);
311     }
312 
313     return true;
314 }
315 
FilterDashPath(SkPath * dst,const SkPath & src,SkStrokeRec * rec,const SkRect * cullRect,const SkPathEffect::DashInfo & info)316 bool SkDashPath::FilterDashPath(SkPath* dst, const SkPath& src, SkStrokeRec* rec,
317                                 const SkRect* cullRect, const SkPathEffect::DashInfo& info) {
318     if (!ValidDashPath(info.fPhase, info.fIntervals, info.fCount)) {
319         return false;
320     }
321     SkScalar initialDashLength = 0;
322     int32_t initialDashIndex = 0;
323     SkScalar intervalLength = 0;
324     CalcDashParameters(info.fPhase, info.fIntervals, info.fCount,
325                        &initialDashLength, &initialDashIndex, &intervalLength);
326     return InternalFilter(dst, src, rec, cullRect, info.fIntervals, info.fCount, initialDashLength,
327                           initialDashIndex, intervalLength);
328 }
329 
ValidDashPath(SkScalar phase,const SkScalar intervals[],int32_t count)330 bool SkDashPath::ValidDashPath(SkScalar phase, const SkScalar intervals[], int32_t count) {
331     if (count < 2 || !SkIsAlign2(count)) {
332         return false;
333     }
334     SkScalar length = 0;
335     for (int i = 0; i < count; i++) {
336         if (intervals[i] < 0) {
337             return false;
338         }
339         length += intervals[i];
340     }
341     // watch out for values that might make us go out of bounds
342     return length > 0 && SkScalarIsFinite(phase) && SkScalarIsFinite(length);
343 }
344