1 // Copyright 2013 the V8 project authors. All rights reserved.
2 //
3 // Redistribution and use in source and binary forms, with or without
4 // modification, are permitted provided that the following conditions are
5 // met:
6 //
7 // * Redistributions of source code must retain the above copyright
8 // notice, this list of conditions and the following disclaimer.
9 // * Redistributions in binary form must reproduce the above
10 // copyright notice, this list of conditions and the following
11 // disclaimer in the documentation and/or other materials provided
12 // with the distribution.
13 // * Neither the name of Google Inc. nor the names of its
14 // contributors may be used to endorse or promote products derived
15 // from this software without specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
29 #if V8_TARGET_ARCH_ARM64
30
31 #define ARM64_DEFINE_REG_STATICS
32 #include "src/arm64/assembler-arm64.h"
33
34 #include "src/arm64/assembler-arm64-inl.h"
35 #include "src/arm64/frames-arm64.h"
36 #include "src/base/bits.h"
37 #include "src/base/cpu.h"
38 #include "src/register-configuration.h"
39
40 namespace v8 {
41 namespace internal {
42
43
44 // -----------------------------------------------------------------------------
45 // CpuFeatures implementation.
46
ProbeImpl(bool cross_compile)47 void CpuFeatures::ProbeImpl(bool cross_compile) {
48 // AArch64 has no configuration options, no further probing is required.
49 supported_ = 0;
50
51 // Only use statically determined features for cross compile (snapshot).
52 if (cross_compile) return;
53
54 // We used to probe for coherent cache support, but on older CPUs it
55 // causes crashes (crbug.com/524337), and newer CPUs don't even have
56 // the feature any more.
57 }
58
PrintTarget()59 void CpuFeatures::PrintTarget() { }
PrintFeatures()60 void CpuFeatures::PrintFeatures() {}
61
62 // -----------------------------------------------------------------------------
63 // CPURegList utilities.
64
PopLowestIndex()65 CPURegister CPURegList::PopLowestIndex() {
66 DCHECK(IsValid());
67 if (IsEmpty()) {
68 return NoCPUReg;
69 }
70 int index = CountTrailingZeros(list_, kRegListSizeInBits);
71 DCHECK((1 << index) & list_);
72 Remove(index);
73 return CPURegister::Create(index, size_, type_);
74 }
75
76
PopHighestIndex()77 CPURegister CPURegList::PopHighestIndex() {
78 DCHECK(IsValid());
79 if (IsEmpty()) {
80 return NoCPUReg;
81 }
82 int index = CountLeadingZeros(list_, kRegListSizeInBits);
83 index = kRegListSizeInBits - 1 - index;
84 DCHECK((1 << index) & list_);
85 Remove(index);
86 return CPURegister::Create(index, size_, type_);
87 }
88
89
RemoveCalleeSaved()90 void CPURegList::RemoveCalleeSaved() {
91 if (type() == CPURegister::kRegister) {
92 Remove(GetCalleeSaved(RegisterSizeInBits()));
93 } else if (type() == CPURegister::kFPRegister) {
94 Remove(GetCalleeSavedFP(RegisterSizeInBits()));
95 } else {
96 DCHECK(type() == CPURegister::kNoRegister);
97 DCHECK(IsEmpty());
98 // The list must already be empty, so do nothing.
99 }
100 }
101
102
GetCalleeSaved(int size)103 CPURegList CPURegList::GetCalleeSaved(int size) {
104 return CPURegList(CPURegister::kRegister, size, 19, 29);
105 }
106
107
GetCalleeSavedFP(int size)108 CPURegList CPURegList::GetCalleeSavedFP(int size) {
109 return CPURegList(CPURegister::kFPRegister, size, 8, 15);
110 }
111
112
GetCallerSaved(int size)113 CPURegList CPURegList::GetCallerSaved(int size) {
114 // Registers x0-x18 and lr (x30) are caller-saved.
115 CPURegList list = CPURegList(CPURegister::kRegister, size, 0, 18);
116 list.Combine(lr);
117 return list;
118 }
119
120
GetCallerSavedFP(int size)121 CPURegList CPURegList::GetCallerSavedFP(int size) {
122 // Registers d0-d7 and d16-d31 are caller-saved.
123 CPURegList list = CPURegList(CPURegister::kFPRegister, size, 0, 7);
124 list.Combine(CPURegList(CPURegister::kFPRegister, size, 16, 31));
125 return list;
126 }
127
128
129 // This function defines the list of registers which are associated with a
130 // safepoint slot. Safepoint register slots are saved contiguously on the stack.
131 // MacroAssembler::SafepointRegisterStackIndex handles mapping from register
132 // code to index in the safepoint register slots. Any change here can affect
133 // this mapping.
GetSafepointSavedRegisters()134 CPURegList CPURegList::GetSafepointSavedRegisters() {
135 CPURegList list = CPURegList::GetCalleeSaved();
136 list.Combine(
137 CPURegList(CPURegister::kRegister, kXRegSizeInBits, kJSCallerSaved));
138
139 // Note that unfortunately we can't use symbolic names for registers and have
140 // to directly use register codes. This is because this function is used to
141 // initialize some static variables and we can't rely on register variables
142 // to be initialized due to static initialization order issues in C++.
143
144 // Drop ip0 and ip1 (i.e. x16 and x17), as they should not be expected to be
145 // preserved outside of the macro assembler.
146 list.Remove(16);
147 list.Remove(17);
148
149 // Add x18 to the safepoint list, as although it's not in kJSCallerSaved, it
150 // is a caller-saved register according to the procedure call standard.
151 list.Combine(18);
152
153 // Drop jssp as the stack pointer doesn't need to be included.
154 list.Remove(28);
155
156 // Add the link register (x30) to the safepoint list.
157 list.Combine(30);
158
159 return list;
160 }
161
162
163 // -----------------------------------------------------------------------------
164 // Implementation of RelocInfo
165
166 const int RelocInfo::kApplyMask = 1 << RelocInfo::INTERNAL_REFERENCE;
167
168
IsCodedSpecially()169 bool RelocInfo::IsCodedSpecially() {
170 // The deserializer needs to know whether a pointer is specially coded. Being
171 // specially coded on ARM64 means that it is a movz/movk sequence. We don't
172 // generate those for relocatable pointers.
173 return false;
174 }
175
176
IsInConstantPool()177 bool RelocInfo::IsInConstantPool() {
178 Instruction* instr = reinterpret_cast<Instruction*>(pc_);
179 return instr->IsLdrLiteralX();
180 }
181
wasm_memory_reference()182 Address RelocInfo::wasm_memory_reference() {
183 DCHECK(IsWasmMemoryReference(rmode_));
184 return Memory::Address_at(Assembler::target_pointer_address_at(pc_));
185 }
186
wasm_memory_size_reference()187 uint32_t RelocInfo::wasm_memory_size_reference() {
188 DCHECK(IsWasmMemorySizeReference(rmode_));
189 return Memory::uint32_at(Assembler::target_pointer_address_at(pc_));
190 }
191
wasm_global_reference()192 Address RelocInfo::wasm_global_reference() {
193 DCHECK(IsWasmGlobalReference(rmode_));
194 return Memory::Address_at(Assembler::target_pointer_address_at(pc_));
195 }
196
unchecked_update_wasm_memory_reference(Address address,ICacheFlushMode flush_mode)197 void RelocInfo::unchecked_update_wasm_memory_reference(
198 Address address, ICacheFlushMode flush_mode) {
199 Assembler::set_target_address_at(isolate_, pc_, host_, address, flush_mode);
200 }
201
unchecked_update_wasm_memory_size(uint32_t size,ICacheFlushMode flush_mode)202 void RelocInfo::unchecked_update_wasm_memory_size(uint32_t size,
203 ICacheFlushMode flush_mode) {
204 Memory::uint32_at(Assembler::target_pointer_address_at(pc_)) = size;
205 }
206
GetAllocatableRegisterThatIsNotOneOf(Register reg1,Register reg2,Register reg3,Register reg4)207 Register GetAllocatableRegisterThatIsNotOneOf(Register reg1, Register reg2,
208 Register reg3, Register reg4) {
209 CPURegList regs(reg1, reg2, reg3, reg4);
210 const RegisterConfiguration* config = RegisterConfiguration::Crankshaft();
211 for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
212 int code = config->GetAllocatableDoubleCode(i);
213 Register candidate = Register::from_code(code);
214 if (regs.IncludesAliasOf(candidate)) continue;
215 return candidate;
216 }
217 UNREACHABLE();
218 return NoReg;
219 }
220
221
AreAliased(const CPURegister & reg1,const CPURegister & reg2,const CPURegister & reg3,const CPURegister & reg4,const CPURegister & reg5,const CPURegister & reg6,const CPURegister & reg7,const CPURegister & reg8)222 bool AreAliased(const CPURegister& reg1, const CPURegister& reg2,
223 const CPURegister& reg3, const CPURegister& reg4,
224 const CPURegister& reg5, const CPURegister& reg6,
225 const CPURegister& reg7, const CPURegister& reg8) {
226 int number_of_valid_regs = 0;
227 int number_of_valid_fpregs = 0;
228
229 RegList unique_regs = 0;
230 RegList unique_fpregs = 0;
231
232 const CPURegister regs[] = {reg1, reg2, reg3, reg4, reg5, reg6, reg7, reg8};
233
234 for (unsigned i = 0; i < arraysize(regs); i++) {
235 if (regs[i].IsRegister()) {
236 number_of_valid_regs++;
237 unique_regs |= regs[i].Bit();
238 } else if (regs[i].IsFPRegister()) {
239 number_of_valid_fpregs++;
240 unique_fpregs |= regs[i].Bit();
241 } else {
242 DCHECK(!regs[i].IsValid());
243 }
244 }
245
246 int number_of_unique_regs =
247 CountSetBits(unique_regs, sizeof(unique_regs) * kBitsPerByte);
248 int number_of_unique_fpregs =
249 CountSetBits(unique_fpregs, sizeof(unique_fpregs) * kBitsPerByte);
250
251 DCHECK(number_of_valid_regs >= number_of_unique_regs);
252 DCHECK(number_of_valid_fpregs >= number_of_unique_fpregs);
253
254 return (number_of_valid_regs != number_of_unique_regs) ||
255 (number_of_valid_fpregs != number_of_unique_fpregs);
256 }
257
258
AreSameSizeAndType(const CPURegister & reg1,const CPURegister & reg2,const CPURegister & reg3,const CPURegister & reg4,const CPURegister & reg5,const CPURegister & reg6,const CPURegister & reg7,const CPURegister & reg8)259 bool AreSameSizeAndType(const CPURegister& reg1, const CPURegister& reg2,
260 const CPURegister& reg3, const CPURegister& reg4,
261 const CPURegister& reg5, const CPURegister& reg6,
262 const CPURegister& reg7, const CPURegister& reg8) {
263 DCHECK(reg1.IsValid());
264 bool match = true;
265 match &= !reg2.IsValid() || reg2.IsSameSizeAndType(reg1);
266 match &= !reg3.IsValid() || reg3.IsSameSizeAndType(reg1);
267 match &= !reg4.IsValid() || reg4.IsSameSizeAndType(reg1);
268 match &= !reg5.IsValid() || reg5.IsSameSizeAndType(reg1);
269 match &= !reg6.IsValid() || reg6.IsSameSizeAndType(reg1);
270 match &= !reg7.IsValid() || reg7.IsSameSizeAndType(reg1);
271 match &= !reg8.IsValid() || reg8.IsSameSizeAndType(reg1);
272 return match;
273 }
274
275
InitializeHandle(Handle<Object> handle)276 void Immediate::InitializeHandle(Handle<Object> handle) {
277 AllowDeferredHandleDereference using_raw_address;
278
279 // Verify all Objects referred by code are NOT in new space.
280 Object* obj = *handle;
281 if (obj->IsHeapObject()) {
282 value_ = reinterpret_cast<intptr_t>(handle.location());
283 rmode_ = RelocInfo::EMBEDDED_OBJECT;
284 } else {
285 STATIC_ASSERT(sizeof(intptr_t) == sizeof(int64_t));
286 value_ = reinterpret_cast<intptr_t>(obj);
287 rmode_ = RelocInfo::NONE64;
288 }
289 }
290
291
NeedsRelocation(const Assembler * assembler) const292 bool Operand::NeedsRelocation(const Assembler* assembler) const {
293 RelocInfo::Mode rmode = immediate_.rmode();
294
295 if (rmode == RelocInfo::EXTERNAL_REFERENCE) {
296 return assembler->serializer_enabled();
297 }
298
299 return !RelocInfo::IsNone(rmode);
300 }
301
302
303 // Constant Pool.
RecordEntry(intptr_t data,RelocInfo::Mode mode)304 void ConstPool::RecordEntry(intptr_t data,
305 RelocInfo::Mode mode) {
306 DCHECK(mode != RelocInfo::COMMENT && mode != RelocInfo::CONST_POOL &&
307 mode != RelocInfo::VENEER_POOL &&
308 mode != RelocInfo::CODE_AGE_SEQUENCE &&
309 mode != RelocInfo::DEOPT_SCRIPT_OFFSET &&
310 mode != RelocInfo::DEOPT_INLINING_ID &&
311 mode != RelocInfo::DEOPT_REASON && mode != RelocInfo::DEOPT_ID);
312 uint64_t raw_data = static_cast<uint64_t>(data);
313 int offset = assm_->pc_offset();
314 if (IsEmpty()) {
315 first_use_ = offset;
316 }
317
318 std::pair<uint64_t, int> entry = std::make_pair(raw_data, offset);
319 if (CanBeShared(mode)) {
320 shared_entries_.insert(entry);
321 if (shared_entries_.count(entry.first) == 1) {
322 shared_entries_count++;
323 }
324 } else {
325 unique_entries_.push_back(entry);
326 }
327
328 if (EntryCount() > Assembler::kApproxMaxPoolEntryCount) {
329 // Request constant pool emission after the next instruction.
330 assm_->SetNextConstPoolCheckIn(1);
331 }
332 }
333
334
DistanceToFirstUse()335 int ConstPool::DistanceToFirstUse() {
336 DCHECK(first_use_ >= 0);
337 return assm_->pc_offset() - first_use_;
338 }
339
340
MaxPcOffset()341 int ConstPool::MaxPcOffset() {
342 // There are no pending entries in the pool so we can never get out of
343 // range.
344 if (IsEmpty()) return kMaxInt;
345
346 // Entries are not necessarily emitted in the order they are added so in the
347 // worst case the first constant pool use will be accessing the last entry.
348 return first_use_ + kMaxLoadLiteralRange - WorstCaseSize();
349 }
350
351
WorstCaseSize()352 int ConstPool::WorstCaseSize() {
353 if (IsEmpty()) return 0;
354
355 // Max size prologue:
356 // b over
357 // ldr xzr, #pool_size
358 // blr xzr
359 // nop
360 // All entries are 64-bit for now.
361 return 4 * kInstructionSize + EntryCount() * kPointerSize;
362 }
363
364
SizeIfEmittedAtCurrentPc(bool require_jump)365 int ConstPool::SizeIfEmittedAtCurrentPc(bool require_jump) {
366 if (IsEmpty()) return 0;
367
368 // Prologue is:
369 // b over ;; if require_jump
370 // ldr xzr, #pool_size
371 // blr xzr
372 // nop ;; if not 64-bit aligned
373 int prologue_size = require_jump ? kInstructionSize : 0;
374 prologue_size += 2 * kInstructionSize;
375 prologue_size += IsAligned(assm_->pc_offset() + prologue_size, 8) ?
376 0 : kInstructionSize;
377
378 // All entries are 64-bit for now.
379 return prologue_size + EntryCount() * kPointerSize;
380 }
381
382
Emit(bool require_jump)383 void ConstPool::Emit(bool require_jump) {
384 DCHECK(!assm_->is_const_pool_blocked());
385 // Prevent recursive pool emission and protect from veneer pools.
386 Assembler::BlockPoolsScope block_pools(assm_);
387
388 int size = SizeIfEmittedAtCurrentPc(require_jump);
389 Label size_check;
390 assm_->bind(&size_check);
391
392 assm_->RecordConstPool(size);
393 // Emit the constant pool. It is preceded by an optional branch if
394 // require_jump and a header which will:
395 // 1) Encode the size of the constant pool, for use by the disassembler.
396 // 2) Terminate the program, to try to prevent execution from accidentally
397 // flowing into the constant pool.
398 // 3) align the pool entries to 64-bit.
399 // The header is therefore made of up to three arm64 instructions:
400 // ldr xzr, #<size of the constant pool in 32-bit words>
401 // blr xzr
402 // nop
403 //
404 // If executed, the header will likely segfault and lr will point to the
405 // instruction following the offending blr.
406 // TODO(all): Make the alignment part less fragile. Currently code is
407 // allocated as a byte array so there are no guarantees the alignment will
408 // be preserved on compaction. Currently it works as allocation seems to be
409 // 64-bit aligned.
410
411 // Emit branch if required
412 Label after_pool;
413 if (require_jump) {
414 assm_->b(&after_pool);
415 }
416
417 // Emit the header.
418 assm_->RecordComment("[ Constant Pool");
419 EmitMarker();
420 EmitGuard();
421 assm_->Align(8);
422
423 // Emit constant pool entries.
424 // TODO(all): currently each relocated constant is 64 bits, consider adding
425 // support for 32-bit entries.
426 EmitEntries();
427 assm_->RecordComment("]");
428
429 if (after_pool.is_linked()) {
430 assm_->bind(&after_pool);
431 }
432
433 DCHECK(assm_->SizeOfCodeGeneratedSince(&size_check) ==
434 static_cast<unsigned>(size));
435 }
436
437
Clear()438 void ConstPool::Clear() {
439 shared_entries_.clear();
440 shared_entries_count = 0;
441 unique_entries_.clear();
442 first_use_ = -1;
443 }
444
445
CanBeShared(RelocInfo::Mode mode)446 bool ConstPool::CanBeShared(RelocInfo::Mode mode) {
447 // Constant pool currently does not support 32-bit entries.
448 DCHECK(mode != RelocInfo::NONE32);
449
450 return RelocInfo::IsNone(mode) ||
451 (!assm_->serializer_enabled() &&
452 (mode >= RelocInfo::FIRST_SHAREABLE_RELOC_MODE));
453 }
454
455
EmitMarker()456 void ConstPool::EmitMarker() {
457 // A constant pool size is expressed in number of 32-bits words.
458 // Currently all entries are 64-bit.
459 // + 1 is for the crash guard.
460 // + 0/1 for alignment.
461 int word_count = EntryCount() * 2 + 1 +
462 (IsAligned(assm_->pc_offset(), 8) ? 0 : 1);
463 assm_->Emit(LDR_x_lit |
464 Assembler::ImmLLiteral(word_count) |
465 Assembler::Rt(xzr));
466 }
467
468
AreConsistentForPair(const MemOperand & operandA,const MemOperand & operandB,int access_size_log2)469 MemOperand::PairResult MemOperand::AreConsistentForPair(
470 const MemOperand& operandA,
471 const MemOperand& operandB,
472 int access_size_log2) {
473 DCHECK(access_size_log2 >= 0);
474 DCHECK(access_size_log2 <= 3);
475 // Step one: check that they share the same base, that the mode is Offset
476 // and that the offset is a multiple of access size.
477 if (!operandA.base().Is(operandB.base()) ||
478 (operandA.addrmode() != Offset) ||
479 (operandB.addrmode() != Offset) ||
480 ((operandA.offset() & ((1 << access_size_log2) - 1)) != 0)) {
481 return kNotPair;
482 }
483 // Step two: check that the offsets are contiguous and that the range
484 // is OK for ldp/stp.
485 if ((operandB.offset() == operandA.offset() + (1 << access_size_log2)) &&
486 is_int7(operandA.offset() >> access_size_log2)) {
487 return kPairAB;
488 }
489 if ((operandA.offset() == operandB.offset() + (1 << access_size_log2)) &&
490 is_int7(operandB.offset() >> access_size_log2)) {
491 return kPairBA;
492 }
493 return kNotPair;
494 }
495
496
EmitGuard()497 void ConstPool::EmitGuard() {
498 #ifdef DEBUG
499 Instruction* instr = reinterpret_cast<Instruction*>(assm_->pc());
500 DCHECK(instr->preceding()->IsLdrLiteralX() &&
501 instr->preceding()->Rt() == xzr.code());
502 #endif
503 assm_->EmitPoolGuard();
504 }
505
506
EmitEntries()507 void ConstPool::EmitEntries() {
508 DCHECK(IsAligned(assm_->pc_offset(), 8));
509
510 typedef std::multimap<uint64_t, int>::const_iterator SharedEntriesIterator;
511 SharedEntriesIterator value_it;
512 // Iterate through the keys (constant pool values).
513 for (value_it = shared_entries_.begin();
514 value_it != shared_entries_.end();
515 value_it = shared_entries_.upper_bound(value_it->first)) {
516 std::pair<SharedEntriesIterator, SharedEntriesIterator> range;
517 uint64_t data = value_it->first;
518 range = shared_entries_.equal_range(data);
519 SharedEntriesIterator offset_it;
520 // Iterate through the offsets of a given key.
521 for (offset_it = range.first; offset_it != range.second; offset_it++) {
522 Instruction* instr = assm_->InstructionAt(offset_it->second);
523
524 // Instruction to patch must be 'ldr rd, [pc, #offset]' with offset == 0.
525 DCHECK(instr->IsLdrLiteral() && instr->ImmLLiteral() == 0);
526 instr->SetImmPCOffsetTarget(assm_->isolate(), assm_->pc());
527 }
528 assm_->dc64(data);
529 }
530 shared_entries_.clear();
531 shared_entries_count = 0;
532
533 // Emit unique entries.
534 std::vector<std::pair<uint64_t, int> >::const_iterator unique_it;
535 for (unique_it = unique_entries_.begin();
536 unique_it != unique_entries_.end();
537 unique_it++) {
538 Instruction* instr = assm_->InstructionAt(unique_it->second);
539
540 // Instruction to patch must be 'ldr rd, [pc, #offset]' with offset == 0.
541 DCHECK(instr->IsLdrLiteral() && instr->ImmLLiteral() == 0);
542 instr->SetImmPCOffsetTarget(assm_->isolate(), assm_->pc());
543 assm_->dc64(unique_it->first);
544 }
545 unique_entries_.clear();
546 first_use_ = -1;
547 }
548
549
550 // Assembler
Assembler(Isolate * isolate,void * buffer,int buffer_size)551 Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
552 : AssemblerBase(isolate, buffer, buffer_size),
553 constpool_(this),
554 recorded_ast_id_(TypeFeedbackId::None()),
555 unresolved_branches_() {
556 const_pool_blocked_nesting_ = 0;
557 veneer_pool_blocked_nesting_ = 0;
558 Reset();
559 }
560
561
~Assembler()562 Assembler::~Assembler() {
563 DCHECK(constpool_.IsEmpty());
564 DCHECK(const_pool_blocked_nesting_ == 0);
565 DCHECK(veneer_pool_blocked_nesting_ == 0);
566 }
567
568
Reset()569 void Assembler::Reset() {
570 #ifdef DEBUG
571 DCHECK((pc_ >= buffer_) && (pc_ < buffer_ + buffer_size_));
572 DCHECK(const_pool_blocked_nesting_ == 0);
573 DCHECK(veneer_pool_blocked_nesting_ == 0);
574 DCHECK(unresolved_branches_.empty());
575 memset(buffer_, 0, pc_ - buffer_);
576 #endif
577 pc_ = buffer_;
578 reloc_info_writer.Reposition(reinterpret_cast<byte*>(buffer_ + buffer_size_),
579 reinterpret_cast<byte*>(pc_));
580 constpool_.Clear();
581 next_constant_pool_check_ = 0;
582 next_veneer_pool_check_ = kMaxInt;
583 no_const_pool_before_ = 0;
584 ClearRecordedAstId();
585 }
586
587
GetCode(CodeDesc * desc)588 void Assembler::GetCode(CodeDesc* desc) {
589 // Emit constant pool if necessary.
590 CheckConstPool(true, false);
591 DCHECK(constpool_.IsEmpty());
592
593 // Set up code descriptor.
594 if (desc) {
595 desc->buffer = reinterpret_cast<byte*>(buffer_);
596 desc->buffer_size = buffer_size_;
597 desc->instr_size = pc_offset();
598 desc->reloc_size =
599 static_cast<int>((reinterpret_cast<byte*>(buffer_) + buffer_size_) -
600 reloc_info_writer.pos());
601 desc->origin = this;
602 desc->constant_pool_size = 0;
603 desc->unwinding_info_size = 0;
604 desc->unwinding_info = nullptr;
605 }
606 }
607
608
Align(int m)609 void Assembler::Align(int m) {
610 DCHECK(m >= 4 && base::bits::IsPowerOfTwo32(m));
611 while ((pc_offset() & (m - 1)) != 0) {
612 nop();
613 }
614 }
615
616
CheckLabelLinkChain(Label const * label)617 void Assembler::CheckLabelLinkChain(Label const * label) {
618 #ifdef DEBUG
619 if (label->is_linked()) {
620 static const int kMaxLinksToCheck = 64; // Avoid O(n2) behaviour.
621 int links_checked = 0;
622 int64_t linkoffset = label->pos();
623 bool end_of_chain = false;
624 while (!end_of_chain) {
625 if (++links_checked > kMaxLinksToCheck) break;
626 Instruction * link = InstructionAt(linkoffset);
627 int64_t linkpcoffset = link->ImmPCOffset();
628 int64_t prevlinkoffset = linkoffset + linkpcoffset;
629
630 end_of_chain = (linkoffset == prevlinkoffset);
631 linkoffset = linkoffset + linkpcoffset;
632 }
633 }
634 #endif
635 }
636
637
RemoveBranchFromLabelLinkChain(Instruction * branch,Label * label,Instruction * label_veneer)638 void Assembler::RemoveBranchFromLabelLinkChain(Instruction* branch,
639 Label* label,
640 Instruction* label_veneer) {
641 DCHECK(label->is_linked());
642
643 CheckLabelLinkChain(label);
644
645 Instruction* link = InstructionAt(label->pos());
646 Instruction* prev_link = link;
647 Instruction* next_link;
648 bool end_of_chain = false;
649
650 while (link != branch && !end_of_chain) {
651 next_link = link->ImmPCOffsetTarget();
652 end_of_chain = (link == next_link);
653 prev_link = link;
654 link = next_link;
655 }
656
657 DCHECK(branch == link);
658 next_link = branch->ImmPCOffsetTarget();
659
660 if (branch == prev_link) {
661 // The branch is the first instruction in the chain.
662 if (branch == next_link) {
663 // It is also the last instruction in the chain, so it is the only branch
664 // currently referring to this label.
665 label->Unuse();
666 } else {
667 label->link_to(
668 static_cast<int>(reinterpret_cast<byte*>(next_link) - buffer_));
669 }
670
671 } else if (branch == next_link) {
672 // The branch is the last (but not also the first) instruction in the chain.
673 prev_link->SetImmPCOffsetTarget(isolate(), prev_link);
674
675 } else {
676 // The branch is in the middle of the chain.
677 if (prev_link->IsTargetInImmPCOffsetRange(next_link)) {
678 prev_link->SetImmPCOffsetTarget(isolate(), next_link);
679 } else if (label_veneer != NULL) {
680 // Use the veneer for all previous links in the chain.
681 prev_link->SetImmPCOffsetTarget(isolate(), prev_link);
682
683 end_of_chain = false;
684 link = next_link;
685 while (!end_of_chain) {
686 next_link = link->ImmPCOffsetTarget();
687 end_of_chain = (link == next_link);
688 link->SetImmPCOffsetTarget(isolate(), label_veneer);
689 link = next_link;
690 }
691 } else {
692 // The assert below will fire.
693 // Some other work could be attempted to fix up the chain, but it would be
694 // rather complicated. If we crash here, we may want to consider using an
695 // other mechanism than a chain of branches.
696 //
697 // Note that this situation currently should not happen, as we always call
698 // this function with a veneer to the target label.
699 // However this could happen with a MacroAssembler in the following state:
700 // [previous code]
701 // B(label);
702 // [20KB code]
703 // Tbz(label); // First tbz. Pointing to unconditional branch.
704 // [20KB code]
705 // Tbz(label); // Second tbz. Pointing to the first tbz.
706 // [more code]
707 // and this function is called to remove the first tbz from the label link
708 // chain. Since tbz has a range of +-32KB, the second tbz cannot point to
709 // the unconditional branch.
710 CHECK(prev_link->IsTargetInImmPCOffsetRange(next_link));
711 UNREACHABLE();
712 }
713 }
714
715 CheckLabelLinkChain(label);
716 }
717
718
bind(Label * label)719 void Assembler::bind(Label* label) {
720 // Bind label to the address at pc_. All instructions (most likely branches)
721 // that are linked to this label will be updated to point to the newly-bound
722 // label.
723
724 DCHECK(!label->is_near_linked());
725 DCHECK(!label->is_bound());
726
727 DeleteUnresolvedBranchInfoForLabel(label);
728
729 // If the label is linked, the link chain looks something like this:
730 //
731 // |--I----I-------I-------L
732 // |---------------------->| pc_offset
733 // |-------------->| linkoffset = label->pos()
734 // |<------| link->ImmPCOffset()
735 // |------>| prevlinkoffset = linkoffset + link->ImmPCOffset()
736 //
737 // On each iteration, the last link is updated and then removed from the
738 // chain until only one remains. At that point, the label is bound.
739 //
740 // If the label is not linked, no preparation is required before binding.
741 while (label->is_linked()) {
742 int linkoffset = label->pos();
743 Instruction* link = InstructionAt(linkoffset);
744 int prevlinkoffset = linkoffset + static_cast<int>(link->ImmPCOffset());
745
746 CheckLabelLinkChain(label);
747
748 DCHECK(linkoffset >= 0);
749 DCHECK(linkoffset < pc_offset());
750 DCHECK((linkoffset > prevlinkoffset) ||
751 (linkoffset - prevlinkoffset == kStartOfLabelLinkChain));
752 DCHECK(prevlinkoffset >= 0);
753
754 // Update the link to point to the label.
755 if (link->IsUnresolvedInternalReference()) {
756 // Internal references do not get patched to an instruction but directly
757 // to an address.
758 internal_reference_positions_.push_back(linkoffset);
759 PatchingAssembler patcher(isolate(), link, 2);
760 patcher.dc64(reinterpret_cast<uintptr_t>(pc_));
761 } else {
762 link->SetImmPCOffsetTarget(isolate(),
763 reinterpret_cast<Instruction*>(pc_));
764 }
765
766 // Link the label to the previous link in the chain.
767 if (linkoffset - prevlinkoffset == kStartOfLabelLinkChain) {
768 // We hit kStartOfLabelLinkChain, so the chain is fully processed.
769 label->Unuse();
770 } else {
771 // Update the label for the next iteration.
772 label->link_to(prevlinkoffset);
773 }
774 }
775 label->bind_to(pc_offset());
776
777 DCHECK(label->is_bound());
778 DCHECK(!label->is_linked());
779 }
780
781
LinkAndGetByteOffsetTo(Label * label)782 int Assembler::LinkAndGetByteOffsetTo(Label* label) {
783 DCHECK(sizeof(*pc_) == 1);
784 CheckLabelLinkChain(label);
785
786 int offset;
787 if (label->is_bound()) {
788 // The label is bound, so it does not need to be updated. Referring
789 // instructions must link directly to the label as they will not be
790 // updated.
791 //
792 // In this case, label->pos() returns the offset of the label from the
793 // start of the buffer.
794 //
795 // Note that offset can be zero for self-referential instructions. (This
796 // could be useful for ADR, for example.)
797 offset = label->pos() - pc_offset();
798 DCHECK(offset <= 0);
799 } else {
800 if (label->is_linked()) {
801 // The label is linked, so the referring instruction should be added onto
802 // the end of the label's link chain.
803 //
804 // In this case, label->pos() returns the offset of the last linked
805 // instruction from the start of the buffer.
806 offset = label->pos() - pc_offset();
807 DCHECK(offset != kStartOfLabelLinkChain);
808 // Note that the offset here needs to be PC-relative only so that the
809 // first instruction in a buffer can link to an unbound label. Otherwise,
810 // the offset would be 0 for this case, and 0 is reserved for
811 // kStartOfLabelLinkChain.
812 } else {
813 // The label is unused, so it now becomes linked and the referring
814 // instruction is at the start of the new link chain.
815 offset = kStartOfLabelLinkChain;
816 }
817 // The instruction at pc is now the last link in the label's chain.
818 label->link_to(pc_offset());
819 }
820
821 return offset;
822 }
823
824
DeleteUnresolvedBranchInfoForLabelTraverse(Label * label)825 void Assembler::DeleteUnresolvedBranchInfoForLabelTraverse(Label* label) {
826 DCHECK(label->is_linked());
827 CheckLabelLinkChain(label);
828
829 int link_offset = label->pos();
830 int link_pcoffset;
831 bool end_of_chain = false;
832
833 while (!end_of_chain) {
834 Instruction * link = InstructionAt(link_offset);
835 link_pcoffset = static_cast<int>(link->ImmPCOffset());
836
837 // ADR instructions are not handled by veneers.
838 if (link->IsImmBranch()) {
839 int max_reachable_pc =
840 static_cast<int>(InstructionOffset(link) +
841 Instruction::ImmBranchRange(link->BranchType()));
842 typedef std::multimap<int, FarBranchInfo>::iterator unresolved_info_it;
843 std::pair<unresolved_info_it, unresolved_info_it> range;
844 range = unresolved_branches_.equal_range(max_reachable_pc);
845 unresolved_info_it it;
846 for (it = range.first; it != range.second; ++it) {
847 if (it->second.pc_offset_ == link_offset) {
848 unresolved_branches_.erase(it);
849 break;
850 }
851 }
852 }
853
854 end_of_chain = (link_pcoffset == 0);
855 link_offset = link_offset + link_pcoffset;
856 }
857 }
858
859
DeleteUnresolvedBranchInfoForLabel(Label * label)860 void Assembler::DeleteUnresolvedBranchInfoForLabel(Label* label) {
861 if (unresolved_branches_.empty()) {
862 DCHECK(next_veneer_pool_check_ == kMaxInt);
863 return;
864 }
865
866 if (label->is_linked()) {
867 // Branches to this label will be resolved when the label is bound, normally
868 // just after all the associated info has been deleted.
869 DeleteUnresolvedBranchInfoForLabelTraverse(label);
870 }
871 if (unresolved_branches_.empty()) {
872 next_veneer_pool_check_ = kMaxInt;
873 } else {
874 next_veneer_pool_check_ =
875 unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
876 }
877 }
878
879
StartBlockConstPool()880 void Assembler::StartBlockConstPool() {
881 if (const_pool_blocked_nesting_++ == 0) {
882 // Prevent constant pool checks happening by setting the next check to
883 // the biggest possible offset.
884 next_constant_pool_check_ = kMaxInt;
885 }
886 }
887
888
EndBlockConstPool()889 void Assembler::EndBlockConstPool() {
890 if (--const_pool_blocked_nesting_ == 0) {
891 // Check the constant pool hasn't been blocked for too long.
892 DCHECK(pc_offset() < constpool_.MaxPcOffset());
893 // Two cases:
894 // * no_const_pool_before_ >= next_constant_pool_check_ and the emission is
895 // still blocked
896 // * no_const_pool_before_ < next_constant_pool_check_ and the next emit
897 // will trigger a check.
898 next_constant_pool_check_ = no_const_pool_before_;
899 }
900 }
901
902
is_const_pool_blocked() const903 bool Assembler::is_const_pool_blocked() const {
904 return (const_pool_blocked_nesting_ > 0) ||
905 (pc_offset() < no_const_pool_before_);
906 }
907
908
IsConstantPoolAt(Instruction * instr)909 bool Assembler::IsConstantPoolAt(Instruction* instr) {
910 // The constant pool marker is made of two instructions. These instructions
911 // will never be emitted by the JIT, so checking for the first one is enough:
912 // 0: ldr xzr, #<size of pool>
913 bool result = instr->IsLdrLiteralX() && (instr->Rt() == kZeroRegCode);
914
915 // It is still worth asserting the marker is complete.
916 // 4: blr xzr
917 DCHECK(!result || (instr->following()->IsBranchAndLinkToRegister() &&
918 instr->following()->Rn() == kZeroRegCode));
919
920 return result;
921 }
922
923
ConstantPoolSizeAt(Instruction * instr)924 int Assembler::ConstantPoolSizeAt(Instruction* instr) {
925 #ifdef USE_SIMULATOR
926 // Assembler::debug() embeds constants directly into the instruction stream.
927 // Although this is not a genuine constant pool, treat it like one to avoid
928 // disassembling the constants.
929 if ((instr->Mask(ExceptionMask) == HLT) &&
930 (instr->ImmException() == kImmExceptionIsDebug)) {
931 const char* message =
932 reinterpret_cast<const char*>(
933 instr->InstructionAtOffset(kDebugMessageOffset));
934 int size = static_cast<int>(kDebugMessageOffset + strlen(message) + 1);
935 return RoundUp(size, kInstructionSize) / kInstructionSize;
936 }
937 // Same for printf support, see MacroAssembler::CallPrintf().
938 if ((instr->Mask(ExceptionMask) == HLT) &&
939 (instr->ImmException() == kImmExceptionIsPrintf)) {
940 return kPrintfLength / kInstructionSize;
941 }
942 #endif
943 if (IsConstantPoolAt(instr)) {
944 return instr->ImmLLiteral();
945 } else {
946 return -1;
947 }
948 }
949
950
EmitPoolGuard()951 void Assembler::EmitPoolGuard() {
952 // We must generate only one instruction as this is used in scopes that
953 // control the size of the code generated.
954 Emit(BLR | Rn(xzr));
955 }
956
957
StartBlockVeneerPool()958 void Assembler::StartBlockVeneerPool() {
959 ++veneer_pool_blocked_nesting_;
960 }
961
962
EndBlockVeneerPool()963 void Assembler::EndBlockVeneerPool() {
964 if (--veneer_pool_blocked_nesting_ == 0) {
965 // Check the veneer pool hasn't been blocked for too long.
966 DCHECK(unresolved_branches_.empty() ||
967 (pc_offset() < unresolved_branches_first_limit()));
968 }
969 }
970
971
br(const Register & xn)972 void Assembler::br(const Register& xn) {
973 DCHECK(xn.Is64Bits());
974 Emit(BR | Rn(xn));
975 }
976
977
blr(const Register & xn)978 void Assembler::blr(const Register& xn) {
979 DCHECK(xn.Is64Bits());
980 // The pattern 'blr xzr' is used as a guard to detect when execution falls
981 // through the constant pool. It should not be emitted.
982 DCHECK(!xn.Is(xzr));
983 Emit(BLR | Rn(xn));
984 }
985
986
ret(const Register & xn)987 void Assembler::ret(const Register& xn) {
988 DCHECK(xn.Is64Bits());
989 Emit(RET | Rn(xn));
990 }
991
992
b(int imm26)993 void Assembler::b(int imm26) {
994 Emit(B | ImmUncondBranch(imm26));
995 }
996
997
b(Label * label)998 void Assembler::b(Label* label) {
999 b(LinkAndGetInstructionOffsetTo(label));
1000 }
1001
1002
b(int imm19,Condition cond)1003 void Assembler::b(int imm19, Condition cond) {
1004 Emit(B_cond | ImmCondBranch(imm19) | cond);
1005 }
1006
1007
b(Label * label,Condition cond)1008 void Assembler::b(Label* label, Condition cond) {
1009 b(LinkAndGetInstructionOffsetTo(label), cond);
1010 }
1011
1012
bl(int imm26)1013 void Assembler::bl(int imm26) {
1014 Emit(BL | ImmUncondBranch(imm26));
1015 }
1016
1017
bl(Label * label)1018 void Assembler::bl(Label* label) {
1019 bl(LinkAndGetInstructionOffsetTo(label));
1020 }
1021
1022
cbz(const Register & rt,int imm19)1023 void Assembler::cbz(const Register& rt,
1024 int imm19) {
1025 Emit(SF(rt) | CBZ | ImmCmpBranch(imm19) | Rt(rt));
1026 }
1027
1028
cbz(const Register & rt,Label * label)1029 void Assembler::cbz(const Register& rt,
1030 Label* label) {
1031 cbz(rt, LinkAndGetInstructionOffsetTo(label));
1032 }
1033
1034
cbnz(const Register & rt,int imm19)1035 void Assembler::cbnz(const Register& rt,
1036 int imm19) {
1037 Emit(SF(rt) | CBNZ | ImmCmpBranch(imm19) | Rt(rt));
1038 }
1039
1040
cbnz(const Register & rt,Label * label)1041 void Assembler::cbnz(const Register& rt,
1042 Label* label) {
1043 cbnz(rt, LinkAndGetInstructionOffsetTo(label));
1044 }
1045
1046
tbz(const Register & rt,unsigned bit_pos,int imm14)1047 void Assembler::tbz(const Register& rt,
1048 unsigned bit_pos,
1049 int imm14) {
1050 DCHECK(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSizeInBits)));
1051 Emit(TBZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
1052 }
1053
1054
tbz(const Register & rt,unsigned bit_pos,Label * label)1055 void Assembler::tbz(const Register& rt,
1056 unsigned bit_pos,
1057 Label* label) {
1058 tbz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label));
1059 }
1060
1061
tbnz(const Register & rt,unsigned bit_pos,int imm14)1062 void Assembler::tbnz(const Register& rt,
1063 unsigned bit_pos,
1064 int imm14) {
1065 DCHECK(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSizeInBits)));
1066 Emit(TBNZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
1067 }
1068
1069
tbnz(const Register & rt,unsigned bit_pos,Label * label)1070 void Assembler::tbnz(const Register& rt,
1071 unsigned bit_pos,
1072 Label* label) {
1073 tbnz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label));
1074 }
1075
1076
adr(const Register & rd,int imm21)1077 void Assembler::adr(const Register& rd, int imm21) {
1078 DCHECK(rd.Is64Bits());
1079 Emit(ADR | ImmPCRelAddress(imm21) | Rd(rd));
1080 }
1081
1082
adr(const Register & rd,Label * label)1083 void Assembler::adr(const Register& rd, Label* label) {
1084 adr(rd, LinkAndGetByteOffsetTo(label));
1085 }
1086
1087
add(const Register & rd,const Register & rn,const Operand & operand)1088 void Assembler::add(const Register& rd,
1089 const Register& rn,
1090 const Operand& operand) {
1091 AddSub(rd, rn, operand, LeaveFlags, ADD);
1092 }
1093
1094
adds(const Register & rd,const Register & rn,const Operand & operand)1095 void Assembler::adds(const Register& rd,
1096 const Register& rn,
1097 const Operand& operand) {
1098 AddSub(rd, rn, operand, SetFlags, ADD);
1099 }
1100
1101
cmn(const Register & rn,const Operand & operand)1102 void Assembler::cmn(const Register& rn,
1103 const Operand& operand) {
1104 Register zr = AppropriateZeroRegFor(rn);
1105 adds(zr, rn, operand);
1106 }
1107
1108
sub(const Register & rd,const Register & rn,const Operand & operand)1109 void Assembler::sub(const Register& rd,
1110 const Register& rn,
1111 const Operand& operand) {
1112 AddSub(rd, rn, operand, LeaveFlags, SUB);
1113 }
1114
1115
subs(const Register & rd,const Register & rn,const Operand & operand)1116 void Assembler::subs(const Register& rd,
1117 const Register& rn,
1118 const Operand& operand) {
1119 AddSub(rd, rn, operand, SetFlags, SUB);
1120 }
1121
1122
cmp(const Register & rn,const Operand & operand)1123 void Assembler::cmp(const Register& rn, const Operand& operand) {
1124 Register zr = AppropriateZeroRegFor(rn);
1125 subs(zr, rn, operand);
1126 }
1127
1128
neg(const Register & rd,const Operand & operand)1129 void Assembler::neg(const Register& rd, const Operand& operand) {
1130 Register zr = AppropriateZeroRegFor(rd);
1131 sub(rd, zr, operand);
1132 }
1133
1134
negs(const Register & rd,const Operand & operand)1135 void Assembler::negs(const Register& rd, const Operand& operand) {
1136 Register zr = AppropriateZeroRegFor(rd);
1137 subs(rd, zr, operand);
1138 }
1139
1140
adc(const Register & rd,const Register & rn,const Operand & operand)1141 void Assembler::adc(const Register& rd,
1142 const Register& rn,
1143 const Operand& operand) {
1144 AddSubWithCarry(rd, rn, operand, LeaveFlags, ADC);
1145 }
1146
1147
adcs(const Register & rd,const Register & rn,const Operand & operand)1148 void Assembler::adcs(const Register& rd,
1149 const Register& rn,
1150 const Operand& operand) {
1151 AddSubWithCarry(rd, rn, operand, SetFlags, ADC);
1152 }
1153
1154
sbc(const Register & rd,const Register & rn,const Operand & operand)1155 void Assembler::sbc(const Register& rd,
1156 const Register& rn,
1157 const Operand& operand) {
1158 AddSubWithCarry(rd, rn, operand, LeaveFlags, SBC);
1159 }
1160
1161
sbcs(const Register & rd,const Register & rn,const Operand & operand)1162 void Assembler::sbcs(const Register& rd,
1163 const Register& rn,
1164 const Operand& operand) {
1165 AddSubWithCarry(rd, rn, operand, SetFlags, SBC);
1166 }
1167
1168
ngc(const Register & rd,const Operand & operand)1169 void Assembler::ngc(const Register& rd, const Operand& operand) {
1170 Register zr = AppropriateZeroRegFor(rd);
1171 sbc(rd, zr, operand);
1172 }
1173
1174
ngcs(const Register & rd,const Operand & operand)1175 void Assembler::ngcs(const Register& rd, const Operand& operand) {
1176 Register zr = AppropriateZeroRegFor(rd);
1177 sbcs(rd, zr, operand);
1178 }
1179
1180
1181 // Logical instructions.
and_(const Register & rd,const Register & rn,const Operand & operand)1182 void Assembler::and_(const Register& rd,
1183 const Register& rn,
1184 const Operand& operand) {
1185 Logical(rd, rn, operand, AND);
1186 }
1187
1188
ands(const Register & rd,const Register & rn,const Operand & operand)1189 void Assembler::ands(const Register& rd,
1190 const Register& rn,
1191 const Operand& operand) {
1192 Logical(rd, rn, operand, ANDS);
1193 }
1194
1195
tst(const Register & rn,const Operand & operand)1196 void Assembler::tst(const Register& rn,
1197 const Operand& operand) {
1198 ands(AppropriateZeroRegFor(rn), rn, operand);
1199 }
1200
1201
bic(const Register & rd,const Register & rn,const Operand & operand)1202 void Assembler::bic(const Register& rd,
1203 const Register& rn,
1204 const Operand& operand) {
1205 Logical(rd, rn, operand, BIC);
1206 }
1207
1208
bics(const Register & rd,const Register & rn,const Operand & operand)1209 void Assembler::bics(const Register& rd,
1210 const Register& rn,
1211 const Operand& operand) {
1212 Logical(rd, rn, operand, BICS);
1213 }
1214
1215
orr(const Register & rd,const Register & rn,const Operand & operand)1216 void Assembler::orr(const Register& rd,
1217 const Register& rn,
1218 const Operand& operand) {
1219 Logical(rd, rn, operand, ORR);
1220 }
1221
1222
orn(const Register & rd,const Register & rn,const Operand & operand)1223 void Assembler::orn(const Register& rd,
1224 const Register& rn,
1225 const Operand& operand) {
1226 Logical(rd, rn, operand, ORN);
1227 }
1228
1229
eor(const Register & rd,const Register & rn,const Operand & operand)1230 void Assembler::eor(const Register& rd,
1231 const Register& rn,
1232 const Operand& operand) {
1233 Logical(rd, rn, operand, EOR);
1234 }
1235
1236
eon(const Register & rd,const Register & rn,const Operand & operand)1237 void Assembler::eon(const Register& rd,
1238 const Register& rn,
1239 const Operand& operand) {
1240 Logical(rd, rn, operand, EON);
1241 }
1242
1243
lslv(const Register & rd,const Register & rn,const Register & rm)1244 void Assembler::lslv(const Register& rd,
1245 const Register& rn,
1246 const Register& rm) {
1247 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1248 DCHECK(rd.SizeInBits() == rm.SizeInBits());
1249 Emit(SF(rd) | LSLV | Rm(rm) | Rn(rn) | Rd(rd));
1250 }
1251
1252
lsrv(const Register & rd,const Register & rn,const Register & rm)1253 void Assembler::lsrv(const Register& rd,
1254 const Register& rn,
1255 const Register& rm) {
1256 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1257 DCHECK(rd.SizeInBits() == rm.SizeInBits());
1258 Emit(SF(rd) | LSRV | Rm(rm) | Rn(rn) | Rd(rd));
1259 }
1260
1261
asrv(const Register & rd,const Register & rn,const Register & rm)1262 void Assembler::asrv(const Register& rd,
1263 const Register& rn,
1264 const Register& rm) {
1265 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1266 DCHECK(rd.SizeInBits() == rm.SizeInBits());
1267 Emit(SF(rd) | ASRV | Rm(rm) | Rn(rn) | Rd(rd));
1268 }
1269
1270
rorv(const Register & rd,const Register & rn,const Register & rm)1271 void Assembler::rorv(const Register& rd,
1272 const Register& rn,
1273 const Register& rm) {
1274 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1275 DCHECK(rd.SizeInBits() == rm.SizeInBits());
1276 Emit(SF(rd) | RORV | Rm(rm) | Rn(rn) | Rd(rd));
1277 }
1278
1279
1280 // Bitfield operations.
bfm(const Register & rd,const Register & rn,int immr,int imms)1281 void Assembler::bfm(const Register& rd, const Register& rn, int immr,
1282 int imms) {
1283 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1284 Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
1285 Emit(SF(rd) | BFM | N |
1286 ImmR(immr, rd.SizeInBits()) |
1287 ImmS(imms, rn.SizeInBits()) |
1288 Rn(rn) | Rd(rd));
1289 }
1290
1291
sbfm(const Register & rd,const Register & rn,int immr,int imms)1292 void Assembler::sbfm(const Register& rd, const Register& rn, int immr,
1293 int imms) {
1294 DCHECK(rd.Is64Bits() || rn.Is32Bits());
1295 Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
1296 Emit(SF(rd) | SBFM | N |
1297 ImmR(immr, rd.SizeInBits()) |
1298 ImmS(imms, rn.SizeInBits()) |
1299 Rn(rn) | Rd(rd));
1300 }
1301
1302
ubfm(const Register & rd,const Register & rn,int immr,int imms)1303 void Assembler::ubfm(const Register& rd, const Register& rn, int immr,
1304 int imms) {
1305 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1306 Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
1307 Emit(SF(rd) | UBFM | N |
1308 ImmR(immr, rd.SizeInBits()) |
1309 ImmS(imms, rn.SizeInBits()) |
1310 Rn(rn) | Rd(rd));
1311 }
1312
1313
extr(const Register & rd,const Register & rn,const Register & rm,int lsb)1314 void Assembler::extr(const Register& rd, const Register& rn, const Register& rm,
1315 int lsb) {
1316 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1317 DCHECK(rd.SizeInBits() == rm.SizeInBits());
1318 Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
1319 Emit(SF(rd) | EXTR | N | Rm(rm) |
1320 ImmS(lsb, rn.SizeInBits()) | Rn(rn) | Rd(rd));
1321 }
1322
1323
csel(const Register & rd,const Register & rn,const Register & rm,Condition cond)1324 void Assembler::csel(const Register& rd,
1325 const Register& rn,
1326 const Register& rm,
1327 Condition cond) {
1328 ConditionalSelect(rd, rn, rm, cond, CSEL);
1329 }
1330
1331
csinc(const Register & rd,const Register & rn,const Register & rm,Condition cond)1332 void Assembler::csinc(const Register& rd,
1333 const Register& rn,
1334 const Register& rm,
1335 Condition cond) {
1336 ConditionalSelect(rd, rn, rm, cond, CSINC);
1337 }
1338
1339
csinv(const Register & rd,const Register & rn,const Register & rm,Condition cond)1340 void Assembler::csinv(const Register& rd,
1341 const Register& rn,
1342 const Register& rm,
1343 Condition cond) {
1344 ConditionalSelect(rd, rn, rm, cond, CSINV);
1345 }
1346
1347
csneg(const Register & rd,const Register & rn,const Register & rm,Condition cond)1348 void Assembler::csneg(const Register& rd,
1349 const Register& rn,
1350 const Register& rm,
1351 Condition cond) {
1352 ConditionalSelect(rd, rn, rm, cond, CSNEG);
1353 }
1354
1355
cset(const Register & rd,Condition cond)1356 void Assembler::cset(const Register &rd, Condition cond) {
1357 DCHECK((cond != al) && (cond != nv));
1358 Register zr = AppropriateZeroRegFor(rd);
1359 csinc(rd, zr, zr, NegateCondition(cond));
1360 }
1361
1362
csetm(const Register & rd,Condition cond)1363 void Assembler::csetm(const Register &rd, Condition cond) {
1364 DCHECK((cond != al) && (cond != nv));
1365 Register zr = AppropriateZeroRegFor(rd);
1366 csinv(rd, zr, zr, NegateCondition(cond));
1367 }
1368
1369
cinc(const Register & rd,const Register & rn,Condition cond)1370 void Assembler::cinc(const Register &rd, const Register &rn, Condition cond) {
1371 DCHECK((cond != al) && (cond != nv));
1372 csinc(rd, rn, rn, NegateCondition(cond));
1373 }
1374
1375
cinv(const Register & rd,const Register & rn,Condition cond)1376 void Assembler::cinv(const Register &rd, const Register &rn, Condition cond) {
1377 DCHECK((cond != al) && (cond != nv));
1378 csinv(rd, rn, rn, NegateCondition(cond));
1379 }
1380
1381
cneg(const Register & rd,const Register & rn,Condition cond)1382 void Assembler::cneg(const Register &rd, const Register &rn, Condition cond) {
1383 DCHECK((cond != al) && (cond != nv));
1384 csneg(rd, rn, rn, NegateCondition(cond));
1385 }
1386
1387
ConditionalSelect(const Register & rd,const Register & rn,const Register & rm,Condition cond,ConditionalSelectOp op)1388 void Assembler::ConditionalSelect(const Register& rd,
1389 const Register& rn,
1390 const Register& rm,
1391 Condition cond,
1392 ConditionalSelectOp op) {
1393 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1394 DCHECK(rd.SizeInBits() == rm.SizeInBits());
1395 Emit(SF(rd) | op | Rm(rm) | Cond(cond) | Rn(rn) | Rd(rd));
1396 }
1397
1398
ccmn(const Register & rn,const Operand & operand,StatusFlags nzcv,Condition cond)1399 void Assembler::ccmn(const Register& rn,
1400 const Operand& operand,
1401 StatusFlags nzcv,
1402 Condition cond) {
1403 ConditionalCompare(rn, operand, nzcv, cond, CCMN);
1404 }
1405
1406
ccmp(const Register & rn,const Operand & operand,StatusFlags nzcv,Condition cond)1407 void Assembler::ccmp(const Register& rn,
1408 const Operand& operand,
1409 StatusFlags nzcv,
1410 Condition cond) {
1411 ConditionalCompare(rn, operand, nzcv, cond, CCMP);
1412 }
1413
1414
DataProcessing3Source(const Register & rd,const Register & rn,const Register & rm,const Register & ra,DataProcessing3SourceOp op)1415 void Assembler::DataProcessing3Source(const Register& rd,
1416 const Register& rn,
1417 const Register& rm,
1418 const Register& ra,
1419 DataProcessing3SourceOp op) {
1420 Emit(SF(rd) | op | Rm(rm) | Ra(ra) | Rn(rn) | Rd(rd));
1421 }
1422
1423
mul(const Register & rd,const Register & rn,const Register & rm)1424 void Assembler::mul(const Register& rd,
1425 const Register& rn,
1426 const Register& rm) {
1427 DCHECK(AreSameSizeAndType(rd, rn, rm));
1428 Register zr = AppropriateZeroRegFor(rn);
1429 DataProcessing3Source(rd, rn, rm, zr, MADD);
1430 }
1431
1432
madd(const Register & rd,const Register & rn,const Register & rm,const Register & ra)1433 void Assembler::madd(const Register& rd,
1434 const Register& rn,
1435 const Register& rm,
1436 const Register& ra) {
1437 DCHECK(AreSameSizeAndType(rd, rn, rm, ra));
1438 DataProcessing3Source(rd, rn, rm, ra, MADD);
1439 }
1440
1441
mneg(const Register & rd,const Register & rn,const Register & rm)1442 void Assembler::mneg(const Register& rd,
1443 const Register& rn,
1444 const Register& rm) {
1445 DCHECK(AreSameSizeAndType(rd, rn, rm));
1446 Register zr = AppropriateZeroRegFor(rn);
1447 DataProcessing3Source(rd, rn, rm, zr, MSUB);
1448 }
1449
1450
msub(const Register & rd,const Register & rn,const Register & rm,const Register & ra)1451 void Assembler::msub(const Register& rd,
1452 const Register& rn,
1453 const Register& rm,
1454 const Register& ra) {
1455 DCHECK(AreSameSizeAndType(rd, rn, rm, ra));
1456 DataProcessing3Source(rd, rn, rm, ra, MSUB);
1457 }
1458
1459
smaddl(const Register & rd,const Register & rn,const Register & rm,const Register & ra)1460 void Assembler::smaddl(const Register& rd,
1461 const Register& rn,
1462 const Register& rm,
1463 const Register& ra) {
1464 DCHECK(rd.Is64Bits() && ra.Is64Bits());
1465 DCHECK(rn.Is32Bits() && rm.Is32Bits());
1466 DataProcessing3Source(rd, rn, rm, ra, SMADDL_x);
1467 }
1468
1469
smsubl(const Register & rd,const Register & rn,const Register & rm,const Register & ra)1470 void Assembler::smsubl(const Register& rd,
1471 const Register& rn,
1472 const Register& rm,
1473 const Register& ra) {
1474 DCHECK(rd.Is64Bits() && ra.Is64Bits());
1475 DCHECK(rn.Is32Bits() && rm.Is32Bits());
1476 DataProcessing3Source(rd, rn, rm, ra, SMSUBL_x);
1477 }
1478
1479
umaddl(const Register & rd,const Register & rn,const Register & rm,const Register & ra)1480 void Assembler::umaddl(const Register& rd,
1481 const Register& rn,
1482 const Register& rm,
1483 const Register& ra) {
1484 DCHECK(rd.Is64Bits() && ra.Is64Bits());
1485 DCHECK(rn.Is32Bits() && rm.Is32Bits());
1486 DataProcessing3Source(rd, rn, rm, ra, UMADDL_x);
1487 }
1488
1489
umsubl(const Register & rd,const Register & rn,const Register & rm,const Register & ra)1490 void Assembler::umsubl(const Register& rd,
1491 const Register& rn,
1492 const Register& rm,
1493 const Register& ra) {
1494 DCHECK(rd.Is64Bits() && ra.Is64Bits());
1495 DCHECK(rn.Is32Bits() && rm.Is32Bits());
1496 DataProcessing3Source(rd, rn, rm, ra, UMSUBL_x);
1497 }
1498
1499
smull(const Register & rd,const Register & rn,const Register & rm)1500 void Assembler::smull(const Register& rd,
1501 const Register& rn,
1502 const Register& rm) {
1503 DCHECK(rd.Is64Bits());
1504 DCHECK(rn.Is32Bits() && rm.Is32Bits());
1505 DataProcessing3Source(rd, rn, rm, xzr, SMADDL_x);
1506 }
1507
1508
smulh(const Register & rd,const Register & rn,const Register & rm)1509 void Assembler::smulh(const Register& rd,
1510 const Register& rn,
1511 const Register& rm) {
1512 DCHECK(AreSameSizeAndType(rd, rn, rm));
1513 DataProcessing3Source(rd, rn, rm, xzr, SMULH_x);
1514 }
1515
1516
sdiv(const Register & rd,const Register & rn,const Register & rm)1517 void Assembler::sdiv(const Register& rd,
1518 const Register& rn,
1519 const Register& rm) {
1520 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1521 DCHECK(rd.SizeInBits() == rm.SizeInBits());
1522 Emit(SF(rd) | SDIV | Rm(rm) | Rn(rn) | Rd(rd));
1523 }
1524
1525
udiv(const Register & rd,const Register & rn,const Register & rm)1526 void Assembler::udiv(const Register& rd,
1527 const Register& rn,
1528 const Register& rm) {
1529 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1530 DCHECK(rd.SizeInBits() == rm.SizeInBits());
1531 Emit(SF(rd) | UDIV | Rm(rm) | Rn(rn) | Rd(rd));
1532 }
1533
1534
rbit(const Register & rd,const Register & rn)1535 void Assembler::rbit(const Register& rd,
1536 const Register& rn) {
1537 DataProcessing1Source(rd, rn, RBIT);
1538 }
1539
1540
rev16(const Register & rd,const Register & rn)1541 void Assembler::rev16(const Register& rd,
1542 const Register& rn) {
1543 DataProcessing1Source(rd, rn, REV16);
1544 }
1545
1546
rev32(const Register & rd,const Register & rn)1547 void Assembler::rev32(const Register& rd,
1548 const Register& rn) {
1549 DCHECK(rd.Is64Bits());
1550 DataProcessing1Source(rd, rn, REV);
1551 }
1552
1553
rev(const Register & rd,const Register & rn)1554 void Assembler::rev(const Register& rd,
1555 const Register& rn) {
1556 DataProcessing1Source(rd, rn, rd.Is64Bits() ? REV_x : REV_w);
1557 }
1558
1559
clz(const Register & rd,const Register & rn)1560 void Assembler::clz(const Register& rd,
1561 const Register& rn) {
1562 DataProcessing1Source(rd, rn, CLZ);
1563 }
1564
1565
cls(const Register & rd,const Register & rn)1566 void Assembler::cls(const Register& rd,
1567 const Register& rn) {
1568 DataProcessing1Source(rd, rn, CLS);
1569 }
1570
1571
ldp(const CPURegister & rt,const CPURegister & rt2,const MemOperand & src)1572 void Assembler::ldp(const CPURegister& rt,
1573 const CPURegister& rt2,
1574 const MemOperand& src) {
1575 LoadStorePair(rt, rt2, src, LoadPairOpFor(rt, rt2));
1576 }
1577
1578
stp(const CPURegister & rt,const CPURegister & rt2,const MemOperand & dst)1579 void Assembler::stp(const CPURegister& rt,
1580 const CPURegister& rt2,
1581 const MemOperand& dst) {
1582 LoadStorePair(rt, rt2, dst, StorePairOpFor(rt, rt2));
1583 }
1584
1585
ldpsw(const Register & rt,const Register & rt2,const MemOperand & src)1586 void Assembler::ldpsw(const Register& rt,
1587 const Register& rt2,
1588 const MemOperand& src) {
1589 DCHECK(rt.Is64Bits());
1590 LoadStorePair(rt, rt2, src, LDPSW_x);
1591 }
1592
1593
LoadStorePair(const CPURegister & rt,const CPURegister & rt2,const MemOperand & addr,LoadStorePairOp op)1594 void Assembler::LoadStorePair(const CPURegister& rt,
1595 const CPURegister& rt2,
1596 const MemOperand& addr,
1597 LoadStorePairOp op) {
1598 // 'rt' and 'rt2' can only be aliased for stores.
1599 DCHECK(((op & LoadStorePairLBit) == 0) || !rt.Is(rt2));
1600 DCHECK(AreSameSizeAndType(rt, rt2));
1601 DCHECK(IsImmLSPair(addr.offset(), CalcLSPairDataSize(op)));
1602 int offset = static_cast<int>(addr.offset());
1603
1604 Instr memop = op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) |
1605 ImmLSPair(offset, CalcLSPairDataSize(op));
1606
1607 Instr addrmodeop;
1608 if (addr.IsImmediateOffset()) {
1609 addrmodeop = LoadStorePairOffsetFixed;
1610 } else {
1611 // Pre-index and post-index modes.
1612 DCHECK(!rt.Is(addr.base()));
1613 DCHECK(!rt2.Is(addr.base()));
1614 DCHECK(addr.offset() != 0);
1615 if (addr.IsPreIndex()) {
1616 addrmodeop = LoadStorePairPreIndexFixed;
1617 } else {
1618 DCHECK(addr.IsPostIndex());
1619 addrmodeop = LoadStorePairPostIndexFixed;
1620 }
1621 }
1622 Emit(addrmodeop | memop);
1623 }
1624
1625
1626 // Memory instructions.
ldrb(const Register & rt,const MemOperand & src)1627 void Assembler::ldrb(const Register& rt, const MemOperand& src) {
1628 LoadStore(rt, src, LDRB_w);
1629 }
1630
1631
strb(const Register & rt,const MemOperand & dst)1632 void Assembler::strb(const Register& rt, const MemOperand& dst) {
1633 LoadStore(rt, dst, STRB_w);
1634 }
1635
1636
ldrsb(const Register & rt,const MemOperand & src)1637 void Assembler::ldrsb(const Register& rt, const MemOperand& src) {
1638 LoadStore(rt, src, rt.Is64Bits() ? LDRSB_x : LDRSB_w);
1639 }
1640
1641
ldrh(const Register & rt,const MemOperand & src)1642 void Assembler::ldrh(const Register& rt, const MemOperand& src) {
1643 LoadStore(rt, src, LDRH_w);
1644 }
1645
1646
strh(const Register & rt,const MemOperand & dst)1647 void Assembler::strh(const Register& rt, const MemOperand& dst) {
1648 LoadStore(rt, dst, STRH_w);
1649 }
1650
1651
ldrsh(const Register & rt,const MemOperand & src)1652 void Assembler::ldrsh(const Register& rt, const MemOperand& src) {
1653 LoadStore(rt, src, rt.Is64Bits() ? LDRSH_x : LDRSH_w);
1654 }
1655
1656
ldr(const CPURegister & rt,const MemOperand & src)1657 void Assembler::ldr(const CPURegister& rt, const MemOperand& src) {
1658 LoadStore(rt, src, LoadOpFor(rt));
1659 }
1660
1661
str(const CPURegister & rt,const MemOperand & src)1662 void Assembler::str(const CPURegister& rt, const MemOperand& src) {
1663 LoadStore(rt, src, StoreOpFor(rt));
1664 }
1665
1666
ldrsw(const Register & rt,const MemOperand & src)1667 void Assembler::ldrsw(const Register& rt, const MemOperand& src) {
1668 DCHECK(rt.Is64Bits());
1669 LoadStore(rt, src, LDRSW_x);
1670 }
1671
1672
ldr_pcrel(const CPURegister & rt,int imm19)1673 void Assembler::ldr_pcrel(const CPURegister& rt, int imm19) {
1674 // The pattern 'ldr xzr, #offset' is used to indicate the beginning of a
1675 // constant pool. It should not be emitted.
1676 DCHECK(!rt.IsZero());
1677 Emit(LoadLiteralOpFor(rt) | ImmLLiteral(imm19) | Rt(rt));
1678 }
1679
1680
ldr(const CPURegister & rt,const Immediate & imm)1681 void Assembler::ldr(const CPURegister& rt, const Immediate& imm) {
1682 // Currently we only support 64-bit literals.
1683 DCHECK(rt.Is64Bits());
1684
1685 RecordRelocInfo(imm.rmode(), imm.value());
1686 BlockConstPoolFor(1);
1687 // The load will be patched when the constpool is emitted, patching code
1688 // expect a load literal with offset 0.
1689 ldr_pcrel(rt, 0);
1690 }
1691
ldar(const Register & rt,const Register & rn)1692 void Assembler::ldar(const Register& rt, const Register& rn) {
1693 DCHECK(rn.Is64Bits());
1694 LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? LDAR_w : LDAR_x;
1695 Emit(op | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
1696 }
1697
ldaxr(const Register & rt,const Register & rn)1698 void Assembler::ldaxr(const Register& rt, const Register& rn) {
1699 DCHECK(rn.Is64Bits());
1700 LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? LDAXR_w : LDAXR_x;
1701 Emit(op | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
1702 }
1703
stlr(const Register & rt,const Register & rn)1704 void Assembler::stlr(const Register& rt, const Register& rn) {
1705 DCHECK(rn.Is64Bits());
1706 LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? STLR_w : STLR_x;
1707 Emit(op | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
1708 }
1709
stlxr(const Register & rs,const Register & rt,const Register & rn)1710 void Assembler::stlxr(const Register& rs, const Register& rt,
1711 const Register& rn) {
1712 DCHECK(rs.Is32Bits());
1713 DCHECK(rn.Is64Bits());
1714 LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? STLXR_w : STLXR_x;
1715 Emit(op | Rs(rs) | Rt2(x31) | Rn(rn) | Rt(rt));
1716 }
1717
ldarb(const Register & rt,const Register & rn)1718 void Assembler::ldarb(const Register& rt, const Register& rn) {
1719 DCHECK(rt.Is32Bits());
1720 DCHECK(rn.Is64Bits());
1721 Emit(LDAR_b | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
1722 }
1723
ldaxrb(const Register & rt,const Register & rn)1724 void Assembler::ldaxrb(const Register& rt, const Register& rn) {
1725 DCHECK(rt.Is32Bits());
1726 DCHECK(rn.Is64Bits());
1727 Emit(LDAXR_b | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
1728 }
1729
stlrb(const Register & rt,const Register & rn)1730 void Assembler::stlrb(const Register& rt, const Register& rn) {
1731 DCHECK(rt.Is32Bits());
1732 DCHECK(rn.Is64Bits());
1733 Emit(STLR_b | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
1734 }
1735
stlxrb(const Register & rs,const Register & rt,const Register & rn)1736 void Assembler::stlxrb(const Register& rs, const Register& rt,
1737 const Register& rn) {
1738 DCHECK(rs.Is32Bits());
1739 DCHECK(rt.Is32Bits());
1740 DCHECK(rn.Is64Bits());
1741 Emit(STLXR_b | Rs(rs) | Rt2(x31) | Rn(rn) | Rt(rt));
1742 }
1743
ldarh(const Register & rt,const Register & rn)1744 void Assembler::ldarh(const Register& rt, const Register& rn) {
1745 DCHECK(rt.Is32Bits());
1746 DCHECK(rn.Is64Bits());
1747 Emit(LDAR_h | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
1748 }
1749
ldaxrh(const Register & rt,const Register & rn)1750 void Assembler::ldaxrh(const Register& rt, const Register& rn) {
1751 DCHECK(rt.Is32Bits());
1752 DCHECK(rn.Is64Bits());
1753 Emit(LDAXR_h | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
1754 }
1755
stlrh(const Register & rt,const Register & rn)1756 void Assembler::stlrh(const Register& rt, const Register& rn) {
1757 DCHECK(rt.Is32Bits());
1758 DCHECK(rn.Is64Bits());
1759 Emit(STLR_h | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
1760 }
1761
stlxrh(const Register & rs,const Register & rt,const Register & rn)1762 void Assembler::stlxrh(const Register& rs, const Register& rt,
1763 const Register& rn) {
1764 DCHECK(rs.Is32Bits());
1765 DCHECK(rt.Is32Bits());
1766 DCHECK(rn.Is64Bits());
1767 Emit(STLXR_h | Rs(rs) | Rt2(x31) | Rn(rn) | Rt(rt));
1768 }
1769
mov(const Register & rd,const Register & rm)1770 void Assembler::mov(const Register& rd, const Register& rm) {
1771 // Moves involving the stack pointer are encoded as add immediate with
1772 // second operand of zero. Otherwise, orr with first operand zr is
1773 // used.
1774 if (rd.IsSP() || rm.IsSP()) {
1775 add(rd, rm, 0);
1776 } else {
1777 orr(rd, AppropriateZeroRegFor(rd), rm);
1778 }
1779 }
1780
1781
mvn(const Register & rd,const Operand & operand)1782 void Assembler::mvn(const Register& rd, const Operand& operand) {
1783 orn(rd, AppropriateZeroRegFor(rd), operand);
1784 }
1785
1786
mrs(const Register & rt,SystemRegister sysreg)1787 void Assembler::mrs(const Register& rt, SystemRegister sysreg) {
1788 DCHECK(rt.Is64Bits());
1789 Emit(MRS | ImmSystemRegister(sysreg) | Rt(rt));
1790 }
1791
1792
msr(SystemRegister sysreg,const Register & rt)1793 void Assembler::msr(SystemRegister sysreg, const Register& rt) {
1794 DCHECK(rt.Is64Bits());
1795 Emit(MSR | Rt(rt) | ImmSystemRegister(sysreg));
1796 }
1797
1798
hint(SystemHint code)1799 void Assembler::hint(SystemHint code) {
1800 Emit(HINT | ImmHint(code) | Rt(xzr));
1801 }
1802
1803
dmb(BarrierDomain domain,BarrierType type)1804 void Assembler::dmb(BarrierDomain domain, BarrierType type) {
1805 Emit(DMB | ImmBarrierDomain(domain) | ImmBarrierType(type));
1806 }
1807
1808
dsb(BarrierDomain domain,BarrierType type)1809 void Assembler::dsb(BarrierDomain domain, BarrierType type) {
1810 Emit(DSB | ImmBarrierDomain(domain) | ImmBarrierType(type));
1811 }
1812
1813
isb()1814 void Assembler::isb() {
1815 Emit(ISB | ImmBarrierDomain(FullSystem) | ImmBarrierType(BarrierAll));
1816 }
1817
1818
fmov(FPRegister fd,double imm)1819 void Assembler::fmov(FPRegister fd, double imm) {
1820 DCHECK(fd.Is64Bits());
1821 DCHECK(IsImmFP64(imm));
1822 Emit(FMOV_d_imm | Rd(fd) | ImmFP64(imm));
1823 }
1824
1825
fmov(FPRegister fd,float imm)1826 void Assembler::fmov(FPRegister fd, float imm) {
1827 DCHECK(fd.Is32Bits());
1828 DCHECK(IsImmFP32(imm));
1829 Emit(FMOV_s_imm | Rd(fd) | ImmFP32(imm));
1830 }
1831
1832
fmov(Register rd,FPRegister fn)1833 void Assembler::fmov(Register rd, FPRegister fn) {
1834 DCHECK(rd.SizeInBits() == fn.SizeInBits());
1835 FPIntegerConvertOp op = rd.Is32Bits() ? FMOV_ws : FMOV_xd;
1836 Emit(op | Rd(rd) | Rn(fn));
1837 }
1838
1839
fmov(FPRegister fd,Register rn)1840 void Assembler::fmov(FPRegister fd, Register rn) {
1841 DCHECK(fd.SizeInBits() == rn.SizeInBits());
1842 FPIntegerConvertOp op = fd.Is32Bits() ? FMOV_sw : FMOV_dx;
1843 Emit(op | Rd(fd) | Rn(rn));
1844 }
1845
1846
fmov(FPRegister fd,FPRegister fn)1847 void Assembler::fmov(FPRegister fd, FPRegister fn) {
1848 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1849 Emit(FPType(fd) | FMOV | Rd(fd) | Rn(fn));
1850 }
1851
1852
fadd(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm)1853 void Assembler::fadd(const FPRegister& fd,
1854 const FPRegister& fn,
1855 const FPRegister& fm) {
1856 FPDataProcessing2Source(fd, fn, fm, FADD);
1857 }
1858
1859
fsub(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm)1860 void Assembler::fsub(const FPRegister& fd,
1861 const FPRegister& fn,
1862 const FPRegister& fm) {
1863 FPDataProcessing2Source(fd, fn, fm, FSUB);
1864 }
1865
1866
fmul(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm)1867 void Assembler::fmul(const FPRegister& fd,
1868 const FPRegister& fn,
1869 const FPRegister& fm) {
1870 FPDataProcessing2Source(fd, fn, fm, FMUL);
1871 }
1872
1873
fmadd(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm,const FPRegister & fa)1874 void Assembler::fmadd(const FPRegister& fd,
1875 const FPRegister& fn,
1876 const FPRegister& fm,
1877 const FPRegister& fa) {
1878 FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMADD_s : FMADD_d);
1879 }
1880
1881
fmsub(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm,const FPRegister & fa)1882 void Assembler::fmsub(const FPRegister& fd,
1883 const FPRegister& fn,
1884 const FPRegister& fm,
1885 const FPRegister& fa) {
1886 FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMSUB_s : FMSUB_d);
1887 }
1888
1889
fnmadd(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm,const FPRegister & fa)1890 void Assembler::fnmadd(const FPRegister& fd,
1891 const FPRegister& fn,
1892 const FPRegister& fm,
1893 const FPRegister& fa) {
1894 FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMADD_s : FNMADD_d);
1895 }
1896
1897
fnmsub(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm,const FPRegister & fa)1898 void Assembler::fnmsub(const FPRegister& fd,
1899 const FPRegister& fn,
1900 const FPRegister& fm,
1901 const FPRegister& fa) {
1902 FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMSUB_s : FNMSUB_d);
1903 }
1904
1905
fdiv(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm)1906 void Assembler::fdiv(const FPRegister& fd,
1907 const FPRegister& fn,
1908 const FPRegister& fm) {
1909 FPDataProcessing2Source(fd, fn, fm, FDIV);
1910 }
1911
1912
fmax(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm)1913 void Assembler::fmax(const FPRegister& fd,
1914 const FPRegister& fn,
1915 const FPRegister& fm) {
1916 FPDataProcessing2Source(fd, fn, fm, FMAX);
1917 }
1918
1919
fmaxnm(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm)1920 void Assembler::fmaxnm(const FPRegister& fd,
1921 const FPRegister& fn,
1922 const FPRegister& fm) {
1923 FPDataProcessing2Source(fd, fn, fm, FMAXNM);
1924 }
1925
1926
fmin(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm)1927 void Assembler::fmin(const FPRegister& fd,
1928 const FPRegister& fn,
1929 const FPRegister& fm) {
1930 FPDataProcessing2Source(fd, fn, fm, FMIN);
1931 }
1932
1933
fminnm(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm)1934 void Assembler::fminnm(const FPRegister& fd,
1935 const FPRegister& fn,
1936 const FPRegister& fm) {
1937 FPDataProcessing2Source(fd, fn, fm, FMINNM);
1938 }
1939
1940
fabs(const FPRegister & fd,const FPRegister & fn)1941 void Assembler::fabs(const FPRegister& fd,
1942 const FPRegister& fn) {
1943 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1944 FPDataProcessing1Source(fd, fn, FABS);
1945 }
1946
1947
fneg(const FPRegister & fd,const FPRegister & fn)1948 void Assembler::fneg(const FPRegister& fd,
1949 const FPRegister& fn) {
1950 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1951 FPDataProcessing1Source(fd, fn, FNEG);
1952 }
1953
1954
fsqrt(const FPRegister & fd,const FPRegister & fn)1955 void Assembler::fsqrt(const FPRegister& fd,
1956 const FPRegister& fn) {
1957 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1958 FPDataProcessing1Source(fd, fn, FSQRT);
1959 }
1960
1961
frinta(const FPRegister & fd,const FPRegister & fn)1962 void Assembler::frinta(const FPRegister& fd,
1963 const FPRegister& fn) {
1964 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1965 FPDataProcessing1Source(fd, fn, FRINTA);
1966 }
1967
1968
frintm(const FPRegister & fd,const FPRegister & fn)1969 void Assembler::frintm(const FPRegister& fd,
1970 const FPRegister& fn) {
1971 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1972 FPDataProcessing1Source(fd, fn, FRINTM);
1973 }
1974
1975
frintn(const FPRegister & fd,const FPRegister & fn)1976 void Assembler::frintn(const FPRegister& fd,
1977 const FPRegister& fn) {
1978 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1979 FPDataProcessing1Source(fd, fn, FRINTN);
1980 }
1981
1982
frintp(const FPRegister & fd,const FPRegister & fn)1983 void Assembler::frintp(const FPRegister& fd, const FPRegister& fn) {
1984 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1985 FPDataProcessing1Source(fd, fn, FRINTP);
1986 }
1987
1988
frintz(const FPRegister & fd,const FPRegister & fn)1989 void Assembler::frintz(const FPRegister& fd,
1990 const FPRegister& fn) {
1991 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1992 FPDataProcessing1Source(fd, fn, FRINTZ);
1993 }
1994
1995
fcmp(const FPRegister & fn,const FPRegister & fm)1996 void Assembler::fcmp(const FPRegister& fn,
1997 const FPRegister& fm) {
1998 DCHECK(fn.SizeInBits() == fm.SizeInBits());
1999 Emit(FPType(fn) | FCMP | Rm(fm) | Rn(fn));
2000 }
2001
2002
fcmp(const FPRegister & fn,double value)2003 void Assembler::fcmp(const FPRegister& fn,
2004 double value) {
2005 USE(value);
2006 // Although the fcmp instruction can strictly only take an immediate value of
2007 // +0.0, we don't need to check for -0.0 because the sign of 0.0 doesn't
2008 // affect the result of the comparison.
2009 DCHECK(value == 0.0);
2010 Emit(FPType(fn) | FCMP_zero | Rn(fn));
2011 }
2012
2013
fccmp(const FPRegister & fn,const FPRegister & fm,StatusFlags nzcv,Condition cond)2014 void Assembler::fccmp(const FPRegister& fn,
2015 const FPRegister& fm,
2016 StatusFlags nzcv,
2017 Condition cond) {
2018 DCHECK(fn.SizeInBits() == fm.SizeInBits());
2019 Emit(FPType(fn) | FCCMP | Rm(fm) | Cond(cond) | Rn(fn) | Nzcv(nzcv));
2020 }
2021
2022
fcsel(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm,Condition cond)2023 void Assembler::fcsel(const FPRegister& fd,
2024 const FPRegister& fn,
2025 const FPRegister& fm,
2026 Condition cond) {
2027 DCHECK(fd.SizeInBits() == fn.SizeInBits());
2028 DCHECK(fd.SizeInBits() == fm.SizeInBits());
2029 Emit(FPType(fd) | FCSEL | Rm(fm) | Cond(cond) | Rn(fn) | Rd(fd));
2030 }
2031
2032
FPConvertToInt(const Register & rd,const FPRegister & fn,FPIntegerConvertOp op)2033 void Assembler::FPConvertToInt(const Register& rd,
2034 const FPRegister& fn,
2035 FPIntegerConvertOp op) {
2036 Emit(SF(rd) | FPType(fn) | op | Rn(fn) | Rd(rd));
2037 }
2038
2039
fcvt(const FPRegister & fd,const FPRegister & fn)2040 void Assembler::fcvt(const FPRegister& fd,
2041 const FPRegister& fn) {
2042 if (fd.Is64Bits()) {
2043 // Convert float to double.
2044 DCHECK(fn.Is32Bits());
2045 FPDataProcessing1Source(fd, fn, FCVT_ds);
2046 } else {
2047 // Convert double to float.
2048 DCHECK(fn.Is64Bits());
2049 FPDataProcessing1Source(fd, fn, FCVT_sd);
2050 }
2051 }
2052
2053
fcvtau(const Register & rd,const FPRegister & fn)2054 void Assembler::fcvtau(const Register& rd, const FPRegister& fn) {
2055 FPConvertToInt(rd, fn, FCVTAU);
2056 }
2057
2058
fcvtas(const Register & rd,const FPRegister & fn)2059 void Assembler::fcvtas(const Register& rd, const FPRegister& fn) {
2060 FPConvertToInt(rd, fn, FCVTAS);
2061 }
2062
2063
fcvtmu(const Register & rd,const FPRegister & fn)2064 void Assembler::fcvtmu(const Register& rd, const FPRegister& fn) {
2065 FPConvertToInt(rd, fn, FCVTMU);
2066 }
2067
2068
fcvtms(const Register & rd,const FPRegister & fn)2069 void Assembler::fcvtms(const Register& rd, const FPRegister& fn) {
2070 FPConvertToInt(rd, fn, FCVTMS);
2071 }
2072
2073
fcvtnu(const Register & rd,const FPRegister & fn)2074 void Assembler::fcvtnu(const Register& rd, const FPRegister& fn) {
2075 FPConvertToInt(rd, fn, FCVTNU);
2076 }
2077
2078
fcvtns(const Register & rd,const FPRegister & fn)2079 void Assembler::fcvtns(const Register& rd, const FPRegister& fn) {
2080 FPConvertToInt(rd, fn, FCVTNS);
2081 }
2082
2083
fcvtzu(const Register & rd,const FPRegister & fn)2084 void Assembler::fcvtzu(const Register& rd, const FPRegister& fn) {
2085 FPConvertToInt(rd, fn, FCVTZU);
2086 }
2087
2088
fcvtzs(const Register & rd,const FPRegister & fn)2089 void Assembler::fcvtzs(const Register& rd, const FPRegister& fn) {
2090 FPConvertToInt(rd, fn, FCVTZS);
2091 }
2092
2093
scvtf(const FPRegister & fd,const Register & rn,unsigned fbits)2094 void Assembler::scvtf(const FPRegister& fd,
2095 const Register& rn,
2096 unsigned fbits) {
2097 if (fbits == 0) {
2098 Emit(SF(rn) | FPType(fd) | SCVTF | Rn(rn) | Rd(fd));
2099 } else {
2100 Emit(SF(rn) | FPType(fd) | SCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
2101 Rd(fd));
2102 }
2103 }
2104
2105
ucvtf(const FPRegister & fd,const Register & rn,unsigned fbits)2106 void Assembler::ucvtf(const FPRegister& fd,
2107 const Register& rn,
2108 unsigned fbits) {
2109 if (fbits == 0) {
2110 Emit(SF(rn) | FPType(fd) | UCVTF | Rn(rn) | Rd(fd));
2111 } else {
2112 Emit(SF(rn) | FPType(fd) | UCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
2113 Rd(fd));
2114 }
2115 }
2116
2117
dcptr(Label * label)2118 void Assembler::dcptr(Label* label) {
2119 RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
2120 if (label->is_bound()) {
2121 // The label is bound, so it does not need to be updated and the internal
2122 // reference should be emitted.
2123 //
2124 // In this case, label->pos() returns the offset of the label from the
2125 // start of the buffer.
2126 internal_reference_positions_.push_back(pc_offset());
2127 dc64(reinterpret_cast<uintptr_t>(buffer_ + label->pos()));
2128 } else {
2129 int32_t offset;
2130 if (label->is_linked()) {
2131 // The label is linked, so the internal reference should be added
2132 // onto the end of the label's link chain.
2133 //
2134 // In this case, label->pos() returns the offset of the last linked
2135 // instruction from the start of the buffer.
2136 offset = label->pos() - pc_offset();
2137 DCHECK(offset != kStartOfLabelLinkChain);
2138 } else {
2139 // The label is unused, so it now becomes linked and the internal
2140 // reference is at the start of the new link chain.
2141 offset = kStartOfLabelLinkChain;
2142 }
2143 // The instruction at pc is now the last link in the label's chain.
2144 label->link_to(pc_offset());
2145
2146 // Traditionally the offset to the previous instruction in the chain is
2147 // encoded in the instruction payload (e.g. branch range) but internal
2148 // references are not instructions so while unbound they are encoded as
2149 // two consecutive brk instructions. The two 16-bit immediates are used
2150 // to encode the offset.
2151 offset >>= kInstructionSizeLog2;
2152 DCHECK(is_int32(offset));
2153 uint32_t high16 = unsigned_bitextract_32(31, 16, offset);
2154 uint32_t low16 = unsigned_bitextract_32(15, 0, offset);
2155
2156 brk(high16);
2157 brk(low16);
2158 }
2159 }
2160
2161
2162 // Note:
2163 // Below, a difference in case for the same letter indicates a
2164 // negated bit.
2165 // If b is 1, then B is 0.
ImmFP32(float imm)2166 Instr Assembler::ImmFP32(float imm) {
2167 DCHECK(IsImmFP32(imm));
2168 // bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000
2169 uint32_t bits = float_to_rawbits(imm);
2170 // bit7: a000.0000
2171 uint32_t bit7 = ((bits >> 31) & 0x1) << 7;
2172 // bit6: 0b00.0000
2173 uint32_t bit6 = ((bits >> 29) & 0x1) << 6;
2174 // bit5_to_0: 00cd.efgh
2175 uint32_t bit5_to_0 = (bits >> 19) & 0x3f;
2176
2177 return (bit7 | bit6 | bit5_to_0) << ImmFP_offset;
2178 }
2179
2180
ImmFP64(double imm)2181 Instr Assembler::ImmFP64(double imm) {
2182 DCHECK(IsImmFP64(imm));
2183 // bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
2184 // 0000.0000.0000.0000.0000.0000.0000.0000
2185 uint64_t bits = double_to_rawbits(imm);
2186 // bit7: a000.0000
2187 uint64_t bit7 = ((bits >> 63) & 0x1) << 7;
2188 // bit6: 0b00.0000
2189 uint64_t bit6 = ((bits >> 61) & 0x1) << 6;
2190 // bit5_to_0: 00cd.efgh
2191 uint64_t bit5_to_0 = (bits >> 48) & 0x3f;
2192
2193 return static_cast<Instr>((bit7 | bit6 | bit5_to_0) << ImmFP_offset);
2194 }
2195
2196
2197 // Code generation helpers.
MoveWide(const Register & rd,uint64_t imm,int shift,MoveWideImmediateOp mov_op)2198 void Assembler::MoveWide(const Register& rd,
2199 uint64_t imm,
2200 int shift,
2201 MoveWideImmediateOp mov_op) {
2202 // Ignore the top 32 bits of an immediate if we're moving to a W register.
2203 if (rd.Is32Bits()) {
2204 // Check that the top 32 bits are zero (a positive 32-bit number) or top
2205 // 33 bits are one (a negative 32-bit number, sign extended to 64 bits).
2206 DCHECK(((imm >> kWRegSizeInBits) == 0) ||
2207 ((imm >> (kWRegSizeInBits - 1)) == 0x1ffffffff));
2208 imm &= kWRegMask;
2209 }
2210
2211 if (shift >= 0) {
2212 // Explicit shift specified.
2213 DCHECK((shift == 0) || (shift == 16) || (shift == 32) || (shift == 48));
2214 DCHECK(rd.Is64Bits() || (shift == 0) || (shift == 16));
2215 shift /= 16;
2216 } else {
2217 // Calculate a new immediate and shift combination to encode the immediate
2218 // argument.
2219 shift = 0;
2220 if ((imm & ~0xffffUL) == 0) {
2221 // Nothing to do.
2222 } else if ((imm & ~(0xffffUL << 16)) == 0) {
2223 imm >>= 16;
2224 shift = 1;
2225 } else if ((imm & ~(0xffffUL << 32)) == 0) {
2226 DCHECK(rd.Is64Bits());
2227 imm >>= 32;
2228 shift = 2;
2229 } else if ((imm & ~(0xffffUL << 48)) == 0) {
2230 DCHECK(rd.Is64Bits());
2231 imm >>= 48;
2232 shift = 3;
2233 }
2234 }
2235
2236 DCHECK(is_uint16(imm));
2237
2238 Emit(SF(rd) | MoveWideImmediateFixed | mov_op | Rd(rd) |
2239 ImmMoveWide(static_cast<int>(imm)) | ShiftMoveWide(shift));
2240 }
2241
2242
AddSub(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,AddSubOp op)2243 void Assembler::AddSub(const Register& rd,
2244 const Register& rn,
2245 const Operand& operand,
2246 FlagsUpdate S,
2247 AddSubOp op) {
2248 DCHECK(rd.SizeInBits() == rn.SizeInBits());
2249 DCHECK(!operand.NeedsRelocation(this));
2250 if (operand.IsImmediate()) {
2251 int64_t immediate = operand.ImmediateValue();
2252 DCHECK(IsImmAddSub(immediate));
2253 Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
2254 Emit(SF(rd) | AddSubImmediateFixed | op | Flags(S) |
2255 ImmAddSub(static_cast<int>(immediate)) | dest_reg | RnSP(rn));
2256 } else if (operand.IsShiftedRegister()) {
2257 DCHECK(operand.reg().SizeInBits() == rd.SizeInBits());
2258 DCHECK(operand.shift() != ROR);
2259
2260 // For instructions of the form:
2261 // add/sub wsp, <Wn>, <Wm> [, LSL #0-3 ]
2262 // add/sub <Wd>, wsp, <Wm> [, LSL #0-3 ]
2263 // add/sub wsp, wsp, <Wm> [, LSL #0-3 ]
2264 // adds/subs <Wd>, wsp, <Wm> [, LSL #0-3 ]
2265 // or their 64-bit register equivalents, convert the operand from shifted to
2266 // extended register mode, and emit an add/sub extended instruction.
2267 if (rn.IsSP() || rd.IsSP()) {
2268 DCHECK(!(rd.IsSP() && (S == SetFlags)));
2269 DataProcExtendedRegister(rd, rn, operand.ToExtendedRegister(), S,
2270 AddSubExtendedFixed | op);
2271 } else {
2272 DataProcShiftedRegister(rd, rn, operand, S, AddSubShiftedFixed | op);
2273 }
2274 } else {
2275 DCHECK(operand.IsExtendedRegister());
2276 DataProcExtendedRegister(rd, rn, operand, S, AddSubExtendedFixed | op);
2277 }
2278 }
2279
2280
AddSubWithCarry(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,AddSubWithCarryOp op)2281 void Assembler::AddSubWithCarry(const Register& rd,
2282 const Register& rn,
2283 const Operand& operand,
2284 FlagsUpdate S,
2285 AddSubWithCarryOp op) {
2286 DCHECK(rd.SizeInBits() == rn.SizeInBits());
2287 DCHECK(rd.SizeInBits() == operand.reg().SizeInBits());
2288 DCHECK(operand.IsShiftedRegister() && (operand.shift_amount() == 0));
2289 DCHECK(!operand.NeedsRelocation(this));
2290 Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) | Rn(rn) | Rd(rd));
2291 }
2292
2293
hlt(int code)2294 void Assembler::hlt(int code) {
2295 DCHECK(is_uint16(code));
2296 Emit(HLT | ImmException(code));
2297 }
2298
2299
brk(int code)2300 void Assembler::brk(int code) {
2301 DCHECK(is_uint16(code));
2302 Emit(BRK | ImmException(code));
2303 }
2304
2305
EmitStringData(const char * string)2306 void Assembler::EmitStringData(const char* string) {
2307 size_t len = strlen(string) + 1;
2308 DCHECK(RoundUp(len, kInstructionSize) <= static_cast<size_t>(kGap));
2309 EmitData(string, static_cast<int>(len));
2310 // Pad with NULL characters until pc_ is aligned.
2311 const char pad[] = {'\0', '\0', '\0', '\0'};
2312 STATIC_ASSERT(sizeof(pad) == kInstructionSize);
2313 EmitData(pad, RoundUp(pc_offset(), kInstructionSize) - pc_offset());
2314 }
2315
2316
debug(const char * message,uint32_t code,Instr params)2317 void Assembler::debug(const char* message, uint32_t code, Instr params) {
2318 #ifdef USE_SIMULATOR
2319 // Don't generate simulator specific code if we are building a snapshot, which
2320 // might be run on real hardware.
2321 if (!serializer_enabled()) {
2322 // The arguments to the debug marker need to be contiguous in memory, so
2323 // make sure we don't try to emit pools.
2324 BlockPoolsScope scope(this);
2325
2326 Label start;
2327 bind(&start);
2328
2329 // Refer to instructions-arm64.h for a description of the marker and its
2330 // arguments.
2331 hlt(kImmExceptionIsDebug);
2332 DCHECK(SizeOfCodeGeneratedSince(&start) == kDebugCodeOffset);
2333 dc32(code);
2334 DCHECK(SizeOfCodeGeneratedSince(&start) == kDebugParamsOffset);
2335 dc32(params);
2336 DCHECK(SizeOfCodeGeneratedSince(&start) == kDebugMessageOffset);
2337 EmitStringData(message);
2338 hlt(kImmExceptionIsUnreachable);
2339
2340 return;
2341 }
2342 // Fall through if Serializer is enabled.
2343 #endif
2344
2345 if (params & BREAK) {
2346 hlt(kImmExceptionIsDebug);
2347 }
2348 }
2349
2350
Logical(const Register & rd,const Register & rn,const Operand & operand,LogicalOp op)2351 void Assembler::Logical(const Register& rd,
2352 const Register& rn,
2353 const Operand& operand,
2354 LogicalOp op) {
2355 DCHECK(rd.SizeInBits() == rn.SizeInBits());
2356 DCHECK(!operand.NeedsRelocation(this));
2357 if (operand.IsImmediate()) {
2358 int64_t immediate = operand.ImmediateValue();
2359 unsigned reg_size = rd.SizeInBits();
2360
2361 DCHECK(immediate != 0);
2362 DCHECK(immediate != -1);
2363 DCHECK(rd.Is64Bits() || is_uint32(immediate));
2364
2365 // If the operation is NOT, invert the operation and immediate.
2366 if ((op & NOT) == NOT) {
2367 op = static_cast<LogicalOp>(op & ~NOT);
2368 immediate = rd.Is64Bits() ? ~immediate : (~immediate & kWRegMask);
2369 }
2370
2371 unsigned n, imm_s, imm_r;
2372 if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) {
2373 // Immediate can be encoded in the instruction.
2374 LogicalImmediate(rd, rn, n, imm_s, imm_r, op);
2375 } else {
2376 // This case is handled in the macro assembler.
2377 UNREACHABLE();
2378 }
2379 } else {
2380 DCHECK(operand.IsShiftedRegister());
2381 DCHECK(operand.reg().SizeInBits() == rd.SizeInBits());
2382 Instr dp_op = static_cast<Instr>(op | LogicalShiftedFixed);
2383 DataProcShiftedRegister(rd, rn, operand, LeaveFlags, dp_op);
2384 }
2385 }
2386
2387
LogicalImmediate(const Register & rd,const Register & rn,unsigned n,unsigned imm_s,unsigned imm_r,LogicalOp op)2388 void Assembler::LogicalImmediate(const Register& rd,
2389 const Register& rn,
2390 unsigned n,
2391 unsigned imm_s,
2392 unsigned imm_r,
2393 LogicalOp op) {
2394 unsigned reg_size = rd.SizeInBits();
2395 Instr dest_reg = (op == ANDS) ? Rd(rd) : RdSP(rd);
2396 Emit(SF(rd) | LogicalImmediateFixed | op | BitN(n, reg_size) |
2397 ImmSetBits(imm_s, reg_size) | ImmRotate(imm_r, reg_size) | dest_reg |
2398 Rn(rn));
2399 }
2400
2401
ConditionalCompare(const Register & rn,const Operand & operand,StatusFlags nzcv,Condition cond,ConditionalCompareOp op)2402 void Assembler::ConditionalCompare(const Register& rn,
2403 const Operand& operand,
2404 StatusFlags nzcv,
2405 Condition cond,
2406 ConditionalCompareOp op) {
2407 Instr ccmpop;
2408 DCHECK(!operand.NeedsRelocation(this));
2409 if (operand.IsImmediate()) {
2410 int64_t immediate = operand.ImmediateValue();
2411 DCHECK(IsImmConditionalCompare(immediate));
2412 ccmpop = ConditionalCompareImmediateFixed | op |
2413 ImmCondCmp(static_cast<unsigned>(immediate));
2414 } else {
2415 DCHECK(operand.IsShiftedRegister() && (operand.shift_amount() == 0));
2416 ccmpop = ConditionalCompareRegisterFixed | op | Rm(operand.reg());
2417 }
2418 Emit(SF(rn) | ccmpop | Cond(cond) | Rn(rn) | Nzcv(nzcv));
2419 }
2420
2421
DataProcessing1Source(const Register & rd,const Register & rn,DataProcessing1SourceOp op)2422 void Assembler::DataProcessing1Source(const Register& rd,
2423 const Register& rn,
2424 DataProcessing1SourceOp op) {
2425 DCHECK(rd.SizeInBits() == rn.SizeInBits());
2426 Emit(SF(rn) | op | Rn(rn) | Rd(rd));
2427 }
2428
2429
FPDataProcessing1Source(const FPRegister & fd,const FPRegister & fn,FPDataProcessing1SourceOp op)2430 void Assembler::FPDataProcessing1Source(const FPRegister& fd,
2431 const FPRegister& fn,
2432 FPDataProcessing1SourceOp op) {
2433 Emit(FPType(fn) | op | Rn(fn) | Rd(fd));
2434 }
2435
2436
FPDataProcessing2Source(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm,FPDataProcessing2SourceOp op)2437 void Assembler::FPDataProcessing2Source(const FPRegister& fd,
2438 const FPRegister& fn,
2439 const FPRegister& fm,
2440 FPDataProcessing2SourceOp op) {
2441 DCHECK(fd.SizeInBits() == fn.SizeInBits());
2442 DCHECK(fd.SizeInBits() == fm.SizeInBits());
2443 Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd));
2444 }
2445
2446
FPDataProcessing3Source(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm,const FPRegister & fa,FPDataProcessing3SourceOp op)2447 void Assembler::FPDataProcessing3Source(const FPRegister& fd,
2448 const FPRegister& fn,
2449 const FPRegister& fm,
2450 const FPRegister& fa,
2451 FPDataProcessing3SourceOp op) {
2452 DCHECK(AreSameSizeAndType(fd, fn, fm, fa));
2453 Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd) | Ra(fa));
2454 }
2455
2456
EmitShift(const Register & rd,const Register & rn,Shift shift,unsigned shift_amount)2457 void Assembler::EmitShift(const Register& rd,
2458 const Register& rn,
2459 Shift shift,
2460 unsigned shift_amount) {
2461 switch (shift) {
2462 case LSL:
2463 lsl(rd, rn, shift_amount);
2464 break;
2465 case LSR:
2466 lsr(rd, rn, shift_amount);
2467 break;
2468 case ASR:
2469 asr(rd, rn, shift_amount);
2470 break;
2471 case ROR:
2472 ror(rd, rn, shift_amount);
2473 break;
2474 default:
2475 UNREACHABLE();
2476 }
2477 }
2478
2479
EmitExtendShift(const Register & rd,const Register & rn,Extend extend,unsigned left_shift)2480 void Assembler::EmitExtendShift(const Register& rd,
2481 const Register& rn,
2482 Extend extend,
2483 unsigned left_shift) {
2484 DCHECK(rd.SizeInBits() >= rn.SizeInBits());
2485 unsigned reg_size = rd.SizeInBits();
2486 // Use the correct size of register.
2487 Register rn_ = Register::Create(rn.code(), rd.SizeInBits());
2488 // Bits extracted are high_bit:0.
2489 unsigned high_bit = (8 << (extend & 0x3)) - 1;
2490 // Number of bits left in the result that are not introduced by the shift.
2491 unsigned non_shift_bits = (reg_size - left_shift) & (reg_size - 1);
2492
2493 if ((non_shift_bits > high_bit) || (non_shift_bits == 0)) {
2494 switch (extend) {
2495 case UXTB:
2496 case UXTH:
2497 case UXTW: ubfm(rd, rn_, non_shift_bits, high_bit); break;
2498 case SXTB:
2499 case SXTH:
2500 case SXTW: sbfm(rd, rn_, non_shift_bits, high_bit); break;
2501 case UXTX:
2502 case SXTX: {
2503 DCHECK(rn.SizeInBits() == kXRegSizeInBits);
2504 // Nothing to extend. Just shift.
2505 lsl(rd, rn_, left_shift);
2506 break;
2507 }
2508 default: UNREACHABLE();
2509 }
2510 } else {
2511 // No need to extend as the extended bits would be shifted away.
2512 lsl(rd, rn_, left_shift);
2513 }
2514 }
2515
2516
DataProcShiftedRegister(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,Instr op)2517 void Assembler::DataProcShiftedRegister(const Register& rd,
2518 const Register& rn,
2519 const Operand& operand,
2520 FlagsUpdate S,
2521 Instr op) {
2522 DCHECK(operand.IsShiftedRegister());
2523 DCHECK(rn.Is64Bits() || (rn.Is32Bits() && is_uint5(operand.shift_amount())));
2524 DCHECK(!operand.NeedsRelocation(this));
2525 Emit(SF(rd) | op | Flags(S) |
2526 ShiftDP(operand.shift()) | ImmDPShift(operand.shift_amount()) |
2527 Rm(operand.reg()) | Rn(rn) | Rd(rd));
2528 }
2529
2530
DataProcExtendedRegister(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,Instr op)2531 void Assembler::DataProcExtendedRegister(const Register& rd,
2532 const Register& rn,
2533 const Operand& operand,
2534 FlagsUpdate S,
2535 Instr op) {
2536 DCHECK(!operand.NeedsRelocation(this));
2537 Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
2538 Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) |
2539 ExtendMode(operand.extend()) | ImmExtendShift(operand.shift_amount()) |
2540 dest_reg | RnSP(rn));
2541 }
2542
2543
IsImmAddSub(int64_t immediate)2544 bool Assembler::IsImmAddSub(int64_t immediate) {
2545 return is_uint12(immediate) ||
2546 (is_uint12(immediate >> 12) && ((immediate & 0xfff) == 0));
2547 }
2548
LoadStore(const CPURegister & rt,const MemOperand & addr,LoadStoreOp op)2549 void Assembler::LoadStore(const CPURegister& rt,
2550 const MemOperand& addr,
2551 LoadStoreOp op) {
2552 Instr memop = op | Rt(rt) | RnSP(addr.base());
2553
2554 if (addr.IsImmediateOffset()) {
2555 LSDataSize size = CalcLSDataSize(op);
2556 if (IsImmLSScaled(addr.offset(), size)) {
2557 int offset = static_cast<int>(addr.offset());
2558 // Use the scaled addressing mode.
2559 Emit(LoadStoreUnsignedOffsetFixed | memop |
2560 ImmLSUnsigned(offset >> size));
2561 } else if (IsImmLSUnscaled(addr.offset())) {
2562 int offset = static_cast<int>(addr.offset());
2563 // Use the unscaled addressing mode.
2564 Emit(LoadStoreUnscaledOffsetFixed | memop | ImmLS(offset));
2565 } else {
2566 // This case is handled in the macro assembler.
2567 UNREACHABLE();
2568 }
2569 } else if (addr.IsRegisterOffset()) {
2570 Extend ext = addr.extend();
2571 Shift shift = addr.shift();
2572 unsigned shift_amount = addr.shift_amount();
2573
2574 // LSL is encoded in the option field as UXTX.
2575 if (shift == LSL) {
2576 ext = UXTX;
2577 }
2578
2579 // Shifts are encoded in one bit, indicating a left shift by the memory
2580 // access size.
2581 DCHECK((shift_amount == 0) ||
2582 (shift_amount == static_cast<unsigned>(CalcLSDataSize(op))));
2583 Emit(LoadStoreRegisterOffsetFixed | memop | Rm(addr.regoffset()) |
2584 ExtendMode(ext) | ImmShiftLS((shift_amount > 0) ? 1 : 0));
2585 } else {
2586 // Pre-index and post-index modes.
2587 DCHECK(!rt.Is(addr.base()));
2588 if (IsImmLSUnscaled(addr.offset())) {
2589 int offset = static_cast<int>(addr.offset());
2590 if (addr.IsPreIndex()) {
2591 Emit(LoadStorePreIndexFixed | memop | ImmLS(offset));
2592 } else {
2593 DCHECK(addr.IsPostIndex());
2594 Emit(LoadStorePostIndexFixed | memop | ImmLS(offset));
2595 }
2596 } else {
2597 // This case is handled in the macro assembler.
2598 UNREACHABLE();
2599 }
2600 }
2601 }
2602
2603
IsImmLSUnscaled(int64_t offset)2604 bool Assembler::IsImmLSUnscaled(int64_t offset) {
2605 return is_int9(offset);
2606 }
2607
2608
IsImmLSScaled(int64_t offset,LSDataSize size)2609 bool Assembler::IsImmLSScaled(int64_t offset, LSDataSize size) {
2610 bool offset_is_size_multiple = (((offset >> size) << size) == offset);
2611 return offset_is_size_multiple && is_uint12(offset >> size);
2612 }
2613
2614
IsImmLSPair(int64_t offset,LSDataSize size)2615 bool Assembler::IsImmLSPair(int64_t offset, LSDataSize size) {
2616 bool offset_is_size_multiple = (((offset >> size) << size) == offset);
2617 return offset_is_size_multiple && is_int7(offset >> size);
2618 }
2619
2620
IsImmLLiteral(int64_t offset)2621 bool Assembler::IsImmLLiteral(int64_t offset) {
2622 int inst_size = static_cast<int>(kInstructionSizeLog2);
2623 bool offset_is_inst_multiple =
2624 (((offset >> inst_size) << inst_size) == offset);
2625 return offset_is_inst_multiple && is_intn(offset, ImmLLiteral_width);
2626 }
2627
2628
2629 // Test if a given value can be encoded in the immediate field of a logical
2630 // instruction.
2631 // If it can be encoded, the function returns true, and values pointed to by n,
2632 // imm_s and imm_r are updated with immediates encoded in the format required
2633 // by the corresponding fields in the logical instruction.
2634 // If it can not be encoded, the function returns false, and the values pointed
2635 // to by n, imm_s and imm_r are undefined.
IsImmLogical(uint64_t value,unsigned width,unsigned * n,unsigned * imm_s,unsigned * imm_r)2636 bool Assembler::IsImmLogical(uint64_t value,
2637 unsigned width,
2638 unsigned* n,
2639 unsigned* imm_s,
2640 unsigned* imm_r) {
2641 DCHECK((n != NULL) && (imm_s != NULL) && (imm_r != NULL));
2642 DCHECK((width == kWRegSizeInBits) || (width == kXRegSizeInBits));
2643
2644 bool negate = false;
2645
2646 // Logical immediates are encoded using parameters n, imm_s and imm_r using
2647 // the following table:
2648 //
2649 // N imms immr size S R
2650 // 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
2651 // 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
2652 // 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
2653 // 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
2654 // 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
2655 // 0 11110s xxxxxr 2 UInt(s) UInt(r)
2656 // (s bits must not be all set)
2657 //
2658 // A pattern is constructed of size bits, where the least significant S+1 bits
2659 // are set. The pattern is rotated right by R, and repeated across a 32 or
2660 // 64-bit value, depending on destination register width.
2661 //
2662 // Put another way: the basic format of a logical immediate is a single
2663 // contiguous stretch of 1 bits, repeated across the whole word at intervals
2664 // given by a power of 2. To identify them quickly, we first locate the
2665 // lowest stretch of 1 bits, then the next 1 bit above that; that combination
2666 // is different for every logical immediate, so it gives us all the
2667 // information we need to identify the only logical immediate that our input
2668 // could be, and then we simply check if that's the value we actually have.
2669 //
2670 // (The rotation parameter does give the possibility of the stretch of 1 bits
2671 // going 'round the end' of the word. To deal with that, we observe that in
2672 // any situation where that happens the bitwise NOT of the value is also a
2673 // valid logical immediate. So we simply invert the input whenever its low bit
2674 // is set, and then we know that the rotated case can't arise.)
2675
2676 if (value & 1) {
2677 // If the low bit is 1, negate the value, and set a flag to remember that we
2678 // did (so that we can adjust the return values appropriately).
2679 negate = true;
2680 value = ~value;
2681 }
2682
2683 if (width == kWRegSizeInBits) {
2684 // To handle 32-bit logical immediates, the very easiest thing is to repeat
2685 // the input value twice to make a 64-bit word. The correct encoding of that
2686 // as a logical immediate will also be the correct encoding of the 32-bit
2687 // value.
2688
2689 // The most-significant 32 bits may not be zero (ie. negate is true) so
2690 // shift the value left before duplicating it.
2691 value <<= kWRegSizeInBits;
2692 value |= value >> kWRegSizeInBits;
2693 }
2694
2695 // The basic analysis idea: imagine our input word looks like this.
2696 //
2697 // 0011111000111110001111100011111000111110001111100011111000111110
2698 // c b a
2699 // |<--d-->|
2700 //
2701 // We find the lowest set bit (as an actual power-of-2 value, not its index)
2702 // and call it a. Then we add a to our original number, which wipes out the
2703 // bottommost stretch of set bits and replaces it with a 1 carried into the
2704 // next zero bit. Then we look for the new lowest set bit, which is in
2705 // position b, and subtract it, so now our number is just like the original
2706 // but with the lowest stretch of set bits completely gone. Now we find the
2707 // lowest set bit again, which is position c in the diagram above. Then we'll
2708 // measure the distance d between bit positions a and c (using CLZ), and that
2709 // tells us that the only valid logical immediate that could possibly be equal
2710 // to this number is the one in which a stretch of bits running from a to just
2711 // below b is replicated every d bits.
2712 uint64_t a = LargestPowerOf2Divisor(value);
2713 uint64_t value_plus_a = value + a;
2714 uint64_t b = LargestPowerOf2Divisor(value_plus_a);
2715 uint64_t value_plus_a_minus_b = value_plus_a - b;
2716 uint64_t c = LargestPowerOf2Divisor(value_plus_a_minus_b);
2717
2718 int d, clz_a, out_n;
2719 uint64_t mask;
2720
2721 if (c != 0) {
2722 // The general case, in which there is more than one stretch of set bits.
2723 // Compute the repeat distance d, and set up a bitmask covering the basic
2724 // unit of repetition (i.e. a word with the bottom d bits set). Also, in all
2725 // of these cases the N bit of the output will be zero.
2726 clz_a = CountLeadingZeros(a, kXRegSizeInBits);
2727 int clz_c = CountLeadingZeros(c, kXRegSizeInBits);
2728 d = clz_a - clz_c;
2729 mask = ((V8_UINT64_C(1) << d) - 1);
2730 out_n = 0;
2731 } else {
2732 // Handle degenerate cases.
2733 //
2734 // If any of those 'find lowest set bit' operations didn't find a set bit at
2735 // all, then the word will have been zero thereafter, so in particular the
2736 // last lowest_set_bit operation will have returned zero. So we can test for
2737 // all the special case conditions in one go by seeing if c is zero.
2738 if (a == 0) {
2739 // The input was zero (or all 1 bits, which will come to here too after we
2740 // inverted it at the start of the function), for which we just return
2741 // false.
2742 return false;
2743 } else {
2744 // Otherwise, if c was zero but a was not, then there's just one stretch
2745 // of set bits in our word, meaning that we have the trivial case of
2746 // d == 64 and only one 'repetition'. Set up all the same variables as in
2747 // the general case above, and set the N bit in the output.
2748 clz_a = CountLeadingZeros(a, kXRegSizeInBits);
2749 d = 64;
2750 mask = ~V8_UINT64_C(0);
2751 out_n = 1;
2752 }
2753 }
2754
2755 // If the repeat period d is not a power of two, it can't be encoded.
2756 if (!IS_POWER_OF_TWO(d)) {
2757 return false;
2758 }
2759
2760 if (((b - a) & ~mask) != 0) {
2761 // If the bit stretch (b - a) does not fit within the mask derived from the
2762 // repeat period, then fail.
2763 return false;
2764 }
2765
2766 // The only possible option is b - a repeated every d bits. Now we're going to
2767 // actually construct the valid logical immediate derived from that
2768 // specification, and see if it equals our original input.
2769 //
2770 // To repeat a value every d bits, we multiply it by a number of the form
2771 // (1 + 2^d + 2^(2d) + ...), i.e. 0x0001000100010001 or similar. These can
2772 // be derived using a table lookup on CLZ(d).
2773 static const uint64_t multipliers[] = {
2774 0x0000000000000001UL,
2775 0x0000000100000001UL,
2776 0x0001000100010001UL,
2777 0x0101010101010101UL,
2778 0x1111111111111111UL,
2779 0x5555555555555555UL,
2780 };
2781 int multiplier_idx = CountLeadingZeros(d, kXRegSizeInBits) - 57;
2782 // Ensure that the index to the multipliers array is within bounds.
2783 DCHECK((multiplier_idx >= 0) &&
2784 (static_cast<size_t>(multiplier_idx) < arraysize(multipliers)));
2785 uint64_t multiplier = multipliers[multiplier_idx];
2786 uint64_t candidate = (b - a) * multiplier;
2787
2788 if (value != candidate) {
2789 // The candidate pattern doesn't match our input value, so fail.
2790 return false;
2791 }
2792
2793 // We have a match! This is a valid logical immediate, so now we have to
2794 // construct the bits and pieces of the instruction encoding that generates
2795 // it.
2796
2797 // Count the set bits in our basic stretch. The special case of clz(0) == -1
2798 // makes the answer come out right for stretches that reach the very top of
2799 // the word (e.g. numbers like 0xffffc00000000000).
2800 int clz_b = (b == 0) ? -1 : CountLeadingZeros(b, kXRegSizeInBits);
2801 int s = clz_a - clz_b;
2802
2803 // Decide how many bits to rotate right by, to put the low bit of that basic
2804 // stretch in position a.
2805 int r;
2806 if (negate) {
2807 // If we inverted the input right at the start of this function, here's
2808 // where we compensate: the number of set bits becomes the number of clear
2809 // bits, and the rotation count is based on position b rather than position
2810 // a (since b is the location of the 'lowest' 1 bit after inversion).
2811 s = d - s;
2812 r = (clz_b + 1) & (d - 1);
2813 } else {
2814 r = (clz_a + 1) & (d - 1);
2815 }
2816
2817 // Now we're done, except for having to encode the S output in such a way that
2818 // it gives both the number of set bits and the length of the repeated
2819 // segment. The s field is encoded like this:
2820 //
2821 // imms size S
2822 // ssssss 64 UInt(ssssss)
2823 // 0sssss 32 UInt(sssss)
2824 // 10ssss 16 UInt(ssss)
2825 // 110sss 8 UInt(sss)
2826 // 1110ss 4 UInt(ss)
2827 // 11110s 2 UInt(s)
2828 //
2829 // So we 'or' (-d << 1) with our computed s to form imms.
2830 *n = out_n;
2831 *imm_s = ((-d << 1) | (s - 1)) & 0x3f;
2832 *imm_r = r;
2833
2834 return true;
2835 }
2836
2837
IsImmConditionalCompare(int64_t immediate)2838 bool Assembler::IsImmConditionalCompare(int64_t immediate) {
2839 return is_uint5(immediate);
2840 }
2841
2842
IsImmFP32(float imm)2843 bool Assembler::IsImmFP32(float imm) {
2844 // Valid values will have the form:
2845 // aBbb.bbbc.defg.h000.0000.0000.0000.0000
2846 uint32_t bits = float_to_rawbits(imm);
2847 // bits[19..0] are cleared.
2848 if ((bits & 0x7ffff) != 0) {
2849 return false;
2850 }
2851
2852 // bits[29..25] are all set or all cleared.
2853 uint32_t b_pattern = (bits >> 16) & 0x3e00;
2854 if (b_pattern != 0 && b_pattern != 0x3e00) {
2855 return false;
2856 }
2857
2858 // bit[30] and bit[29] are opposite.
2859 if (((bits ^ (bits << 1)) & 0x40000000) == 0) {
2860 return false;
2861 }
2862
2863 return true;
2864 }
2865
2866
IsImmFP64(double imm)2867 bool Assembler::IsImmFP64(double imm) {
2868 // Valid values will have the form:
2869 // aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
2870 // 0000.0000.0000.0000.0000.0000.0000.0000
2871 uint64_t bits = double_to_rawbits(imm);
2872 // bits[47..0] are cleared.
2873 if ((bits & 0xffffffffffffL) != 0) {
2874 return false;
2875 }
2876
2877 // bits[61..54] are all set or all cleared.
2878 uint32_t b_pattern = (bits >> 48) & 0x3fc0;
2879 if (b_pattern != 0 && b_pattern != 0x3fc0) {
2880 return false;
2881 }
2882
2883 // bit[62] and bit[61] are opposite.
2884 if (((bits ^ (bits << 1)) & 0x4000000000000000L) == 0) {
2885 return false;
2886 }
2887
2888 return true;
2889 }
2890
2891
GrowBuffer()2892 void Assembler::GrowBuffer() {
2893 if (!own_buffer_) FATAL("external code buffer is too small");
2894
2895 // Compute new buffer size.
2896 CodeDesc desc; // the new buffer
2897 if (buffer_size_ < 1 * MB) {
2898 desc.buffer_size = 2 * buffer_size_;
2899 } else {
2900 desc.buffer_size = buffer_size_ + 1 * MB;
2901 }
2902 CHECK_GT(desc.buffer_size, 0); // No overflow.
2903
2904 byte* buffer = reinterpret_cast<byte*>(buffer_);
2905
2906 // Set up new buffer.
2907 desc.buffer = NewArray<byte>(desc.buffer_size);
2908 desc.origin = this;
2909
2910 desc.instr_size = pc_offset();
2911 desc.reloc_size =
2912 static_cast<int>((buffer + buffer_size_) - reloc_info_writer.pos());
2913
2914 // Copy the data.
2915 intptr_t pc_delta = desc.buffer - buffer;
2916 intptr_t rc_delta = (desc.buffer + desc.buffer_size) -
2917 (buffer + buffer_size_);
2918 memmove(desc.buffer, buffer, desc.instr_size);
2919 memmove(reloc_info_writer.pos() + rc_delta,
2920 reloc_info_writer.pos(), desc.reloc_size);
2921
2922 // Switch buffers.
2923 DeleteArray(buffer_);
2924 buffer_ = desc.buffer;
2925 buffer_size_ = desc.buffer_size;
2926 pc_ = reinterpret_cast<byte*>(pc_) + pc_delta;
2927 reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
2928 reloc_info_writer.last_pc() + pc_delta);
2929
2930 // None of our relocation types are pc relative pointing outside the code
2931 // buffer nor pc absolute pointing inside the code buffer, so there is no need
2932 // to relocate any emitted relocation entries.
2933
2934 // Relocate internal references.
2935 for (auto pos : internal_reference_positions_) {
2936 intptr_t* p = reinterpret_cast<intptr_t*>(buffer_ + pos);
2937 *p += pc_delta;
2938 }
2939
2940 // Pending relocation entries are also relative, no need to relocate.
2941 }
2942
2943
RecordRelocInfo(RelocInfo::Mode rmode,intptr_t data)2944 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
2945 // We do not try to reuse pool constants.
2946 RelocInfo rinfo(isolate(), reinterpret_cast<byte*>(pc_), rmode, data, NULL);
2947 if (((rmode >= RelocInfo::COMMENT) &&
2948 (rmode <= RelocInfo::DEBUG_BREAK_SLOT_AT_TAIL_CALL)) ||
2949 (rmode == RelocInfo::INTERNAL_REFERENCE) ||
2950 (rmode == RelocInfo::CONST_POOL) || (rmode == RelocInfo::VENEER_POOL) ||
2951 (rmode == RelocInfo::DEOPT_SCRIPT_OFFSET) ||
2952 (rmode == RelocInfo::DEOPT_INLINING_ID) ||
2953 (rmode == RelocInfo::DEOPT_REASON) || (rmode == RelocInfo::DEOPT_ID) ||
2954 (rmode == RelocInfo::GENERATOR_CONTINUATION)) {
2955 // Adjust code for new modes.
2956 DCHECK(RelocInfo::IsDebugBreakSlot(rmode) || RelocInfo::IsComment(rmode) ||
2957 RelocInfo::IsDeoptReason(rmode) || RelocInfo::IsDeoptId(rmode) ||
2958 RelocInfo::IsDeoptPosition(rmode) ||
2959 RelocInfo::IsInternalReference(rmode) ||
2960 RelocInfo::IsConstPool(rmode) || RelocInfo::IsVeneerPool(rmode) ||
2961 RelocInfo::IsGeneratorContinuation(rmode));
2962 // These modes do not need an entry in the constant pool.
2963 } else {
2964 constpool_.RecordEntry(data, rmode);
2965 // Make sure the constant pool is not emitted in place of the next
2966 // instruction for which we just recorded relocation info.
2967 BlockConstPoolFor(1);
2968 }
2969
2970 if (!RelocInfo::IsNone(rmode)) {
2971 // Don't record external references unless the heap will be serialized.
2972 if (rmode == RelocInfo::EXTERNAL_REFERENCE &&
2973 !serializer_enabled() && !emit_debug_code()) {
2974 return;
2975 }
2976 DCHECK(buffer_space() >= kMaxRelocSize); // too late to grow buffer here
2977 if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
2978 RelocInfo reloc_info_with_ast_id(isolate(), reinterpret_cast<byte*>(pc_),
2979 rmode, RecordedAstId().ToInt(), NULL);
2980 ClearRecordedAstId();
2981 reloc_info_writer.Write(&reloc_info_with_ast_id);
2982 } else {
2983 reloc_info_writer.Write(&rinfo);
2984 }
2985 }
2986 }
2987
2988
BlockConstPoolFor(int instructions)2989 void Assembler::BlockConstPoolFor(int instructions) {
2990 int pc_limit = pc_offset() + instructions * kInstructionSize;
2991 if (no_const_pool_before_ < pc_limit) {
2992 no_const_pool_before_ = pc_limit;
2993 // Make sure the pool won't be blocked for too long.
2994 DCHECK(pc_limit < constpool_.MaxPcOffset());
2995 }
2996
2997 if (next_constant_pool_check_ < no_const_pool_before_) {
2998 next_constant_pool_check_ = no_const_pool_before_;
2999 }
3000 }
3001
3002
CheckConstPool(bool force_emit,bool require_jump)3003 void Assembler::CheckConstPool(bool force_emit, bool require_jump) {
3004 // Some short sequence of instruction mustn't be broken up by constant pool
3005 // emission, such sequences are protected by calls to BlockConstPoolFor and
3006 // BlockConstPoolScope.
3007 if (is_const_pool_blocked()) {
3008 // Something is wrong if emission is forced and blocked at the same time.
3009 DCHECK(!force_emit);
3010 return;
3011 }
3012
3013 // There is nothing to do if there are no pending constant pool entries.
3014 if (constpool_.IsEmpty()) {
3015 // Calculate the offset of the next check.
3016 SetNextConstPoolCheckIn(kCheckConstPoolInterval);
3017 return;
3018 }
3019
3020 // We emit a constant pool when:
3021 // * requested to do so by parameter force_emit (e.g. after each function).
3022 // * the distance to the first instruction accessing the constant pool is
3023 // kApproxMaxDistToConstPool or more.
3024 // * the number of entries in the pool is kApproxMaxPoolEntryCount or more.
3025 int dist = constpool_.DistanceToFirstUse();
3026 int count = constpool_.EntryCount();
3027 if (!force_emit &&
3028 (dist < kApproxMaxDistToConstPool) &&
3029 (count < kApproxMaxPoolEntryCount)) {
3030 return;
3031 }
3032
3033
3034 // Emit veneers for branches that would go out of range during emission of the
3035 // constant pool.
3036 int worst_case_size = constpool_.WorstCaseSize();
3037 CheckVeneerPool(false, require_jump,
3038 kVeneerDistanceMargin + worst_case_size);
3039
3040 // Check that the code buffer is large enough before emitting the constant
3041 // pool (this includes the gap to the relocation information).
3042 int needed_space = worst_case_size + kGap + 1 * kInstructionSize;
3043 while (buffer_space() <= needed_space) {
3044 GrowBuffer();
3045 }
3046
3047 Label size_check;
3048 bind(&size_check);
3049 constpool_.Emit(require_jump);
3050 DCHECK(SizeOfCodeGeneratedSince(&size_check) <=
3051 static_cast<unsigned>(worst_case_size));
3052
3053 // Since a constant pool was just emitted, move the check offset forward by
3054 // the standard interval.
3055 SetNextConstPoolCheckIn(kCheckConstPoolInterval);
3056 }
3057
3058
ShouldEmitVeneer(int max_reachable_pc,int margin)3059 bool Assembler::ShouldEmitVeneer(int max_reachable_pc, int margin) {
3060 // Account for the branch around the veneers and the guard.
3061 int protection_offset = 2 * kInstructionSize;
3062 return pc_offset() > max_reachable_pc - margin - protection_offset -
3063 static_cast<int>(unresolved_branches_.size() * kMaxVeneerCodeSize);
3064 }
3065
3066
RecordVeneerPool(int location_offset,int size)3067 void Assembler::RecordVeneerPool(int location_offset, int size) {
3068 RelocInfo rinfo(isolate(), buffer_ + location_offset, RelocInfo::VENEER_POOL,
3069 static_cast<intptr_t>(size), NULL);
3070 reloc_info_writer.Write(&rinfo);
3071 }
3072
3073
EmitVeneers(bool force_emit,bool need_protection,int margin)3074 void Assembler::EmitVeneers(bool force_emit, bool need_protection, int margin) {
3075 BlockPoolsScope scope(this);
3076 RecordComment("[ Veneers");
3077
3078 // The exact size of the veneer pool must be recorded (see the comment at the
3079 // declaration site of RecordConstPool()), but computing the number of
3080 // veneers that will be generated is not obvious. So instead we remember the
3081 // current position and will record the size after the pool has been
3082 // generated.
3083 Label size_check;
3084 bind(&size_check);
3085 int veneer_pool_relocinfo_loc = pc_offset();
3086
3087 Label end;
3088 if (need_protection) {
3089 b(&end);
3090 }
3091
3092 EmitVeneersGuard();
3093
3094 Label veneer_size_check;
3095
3096 std::multimap<int, FarBranchInfo>::iterator it, it_to_delete;
3097
3098 it = unresolved_branches_.begin();
3099 while (it != unresolved_branches_.end()) {
3100 if (force_emit || ShouldEmitVeneer(it->first, margin)) {
3101 Instruction* branch = InstructionAt(it->second.pc_offset_);
3102 Label* label = it->second.label_;
3103
3104 #ifdef DEBUG
3105 bind(&veneer_size_check);
3106 #endif
3107 // Patch the branch to point to the current position, and emit a branch
3108 // to the label.
3109 Instruction* veneer = reinterpret_cast<Instruction*>(pc_);
3110 RemoveBranchFromLabelLinkChain(branch, label, veneer);
3111 branch->SetImmPCOffsetTarget(isolate(), veneer);
3112 b(label);
3113 #ifdef DEBUG
3114 DCHECK(SizeOfCodeGeneratedSince(&veneer_size_check) <=
3115 static_cast<uint64_t>(kMaxVeneerCodeSize));
3116 veneer_size_check.Unuse();
3117 #endif
3118
3119 it_to_delete = it++;
3120 unresolved_branches_.erase(it_to_delete);
3121 } else {
3122 ++it;
3123 }
3124 }
3125
3126 // Record the veneer pool size.
3127 int pool_size = static_cast<int>(SizeOfCodeGeneratedSince(&size_check));
3128 RecordVeneerPool(veneer_pool_relocinfo_loc, pool_size);
3129
3130 if (unresolved_branches_.empty()) {
3131 next_veneer_pool_check_ = kMaxInt;
3132 } else {
3133 next_veneer_pool_check_ =
3134 unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
3135 }
3136
3137 bind(&end);
3138
3139 RecordComment("]");
3140 }
3141
3142
CheckVeneerPool(bool force_emit,bool require_jump,int margin)3143 void Assembler::CheckVeneerPool(bool force_emit, bool require_jump,
3144 int margin) {
3145 // There is nothing to do if there are no pending veneer pool entries.
3146 if (unresolved_branches_.empty()) {
3147 DCHECK(next_veneer_pool_check_ == kMaxInt);
3148 return;
3149 }
3150
3151 DCHECK(pc_offset() < unresolved_branches_first_limit());
3152
3153 // Some short sequence of instruction mustn't be broken up by veneer pool
3154 // emission, such sequences are protected by calls to BlockVeneerPoolFor and
3155 // BlockVeneerPoolScope.
3156 if (is_veneer_pool_blocked()) {
3157 DCHECK(!force_emit);
3158 return;
3159 }
3160
3161 if (!require_jump) {
3162 // Prefer emitting veneers protected by an existing instruction.
3163 margin *= kVeneerNoProtectionFactor;
3164 }
3165 if (force_emit || ShouldEmitVeneers(margin)) {
3166 EmitVeneers(force_emit, require_jump, margin);
3167 } else {
3168 next_veneer_pool_check_ =
3169 unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
3170 }
3171 }
3172
3173
buffer_space() const3174 int Assembler::buffer_space() const {
3175 return static_cast<int>(reloc_info_writer.pos() -
3176 reinterpret_cast<byte*>(pc_));
3177 }
3178
3179
RecordConstPool(int size)3180 void Assembler::RecordConstPool(int size) {
3181 // We only need this for debugger support, to correctly compute offsets in the
3182 // code.
3183 RecordRelocInfo(RelocInfo::CONST_POOL, static_cast<intptr_t>(size));
3184 }
3185
3186
PatchAdrFar(int64_t target_offset)3187 void PatchingAssembler::PatchAdrFar(int64_t target_offset) {
3188 // The code at the current instruction should be:
3189 // adr rd, 0
3190 // nop (adr_far)
3191 // nop (adr_far)
3192 // movz scratch, 0
3193
3194 // Verify the expected code.
3195 Instruction* expected_adr = InstructionAt(0);
3196 CHECK(expected_adr->IsAdr() && (expected_adr->ImmPCRel() == 0));
3197 int rd_code = expected_adr->Rd();
3198 for (int i = 0; i < kAdrFarPatchableNNops; ++i) {
3199 CHECK(InstructionAt((i + 1) * kInstructionSize)->IsNop(ADR_FAR_NOP));
3200 }
3201 Instruction* expected_movz =
3202 InstructionAt((kAdrFarPatchableNInstrs - 1) * kInstructionSize);
3203 CHECK(expected_movz->IsMovz() &&
3204 (expected_movz->ImmMoveWide() == 0) &&
3205 (expected_movz->ShiftMoveWide() == 0));
3206 int scratch_code = expected_movz->Rd();
3207
3208 // Patch to load the correct address.
3209 Register rd = Register::XRegFromCode(rd_code);
3210 Register scratch = Register::XRegFromCode(scratch_code);
3211 // Addresses are only 48 bits.
3212 adr(rd, target_offset & 0xFFFF);
3213 movz(scratch, (target_offset >> 16) & 0xFFFF, 16);
3214 movk(scratch, (target_offset >> 32) & 0xFFFF, 32);
3215 DCHECK((target_offset >> 48) == 0);
3216 add(rd, rd, scratch);
3217 }
3218
3219
3220 } // namespace internal
3221 } // namespace v8
3222
3223 #endif // V8_TARGET_ARCH_ARM64
3224