1 // Copyright 2014, VIXL authors
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are met:
6 //
7 //   * Redistributions of source code must retain the above copyright notice,
8 //     this list of conditions and the following disclaimer.
9 //   * Redistributions in binary form must reproduce the above copyright notice,
10 //     this list of conditions and the following disclaimer in the documentation
11 //     and/or other materials provided with the distribution.
12 //   * Neither the name of ARM Limited nor the names of its contributors may be
13 //     used to endorse or promote products derived from this software without
14 //     specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 
27 #include <cmath>
28 
29 #include "test-runner.h"
30 #include "test-utils-aarch64.h"
31 
32 #include "aarch64/cpu-aarch64.h"
33 #include "aarch64/disasm-aarch64.h"
34 #include "aarch64/macro-assembler-aarch64.h"
35 #include "aarch64/simulator-aarch64.h"
36 
37 #define __ masm->
38 
39 namespace vixl {
40 namespace aarch64 {
41 
42 
43 // This value is a signalling NaN as both a double and as a float (taking the
44 // least-significant word).
45 const double kFP64SignallingNaN = RawbitsToDouble(UINT64_C(0x7ff000007f800001));
46 const float kFP32SignallingNaN = RawbitsToFloat(0x7f800001);
47 
48 // A similar value, but as a quiet NaN.
49 const double kFP64QuietNaN = RawbitsToDouble(UINT64_C(0x7ff800007fc00001));
50 const float kFP32QuietNaN = RawbitsToFloat(0x7fc00001);
51 
52 
Equal32(uint32_t expected,const RegisterDump *,uint32_t result)53 bool Equal32(uint32_t expected, const RegisterDump*, uint32_t result) {
54   if (result != expected) {
55     printf("Expected 0x%08" PRIx32 "\t Found 0x%08" PRIx32 "\n",
56            expected,
57            result);
58   }
59 
60   return expected == result;
61 }
62 
63 
Equal64(uint64_t expected,const RegisterDump *,uint64_t result)64 bool Equal64(uint64_t expected, const RegisterDump*, uint64_t result) {
65   if (result != expected) {
66     printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
67            expected,
68            result);
69   }
70 
71   return expected == result;
72 }
73 
74 
Equal128(vec128_t expected,const RegisterDump *,vec128_t result)75 bool Equal128(vec128_t expected, const RegisterDump*, vec128_t result) {
76   if ((result.h != expected.h) || (result.l != expected.l)) {
77     printf("Expected 0x%016" PRIx64 "%016" PRIx64
78            "\t "
79            "Found 0x%016" PRIx64 "%016" PRIx64 "\n",
80            expected.h,
81            expected.l,
82            result.h,
83            result.l);
84   }
85 
86   return ((expected.h == result.h) && (expected.l == result.l));
87 }
88 
89 
EqualFP32(float expected,const RegisterDump *,float result)90 bool EqualFP32(float expected, const RegisterDump*, float result) {
91   if (FloatToRawbits(expected) == FloatToRawbits(result)) {
92     return true;
93   } else {
94     if (std::isnan(expected) || (expected == 0.0)) {
95       printf("Expected 0x%08" PRIx32 "\t Found 0x%08" PRIx32 "\n",
96              FloatToRawbits(expected),
97              FloatToRawbits(result));
98     } else {
99       printf("Expected %.9f (0x%08" PRIx32
100              ")\t "
101              "Found %.9f (0x%08" PRIx32 ")\n",
102              expected,
103              FloatToRawbits(expected),
104              result,
105              FloatToRawbits(result));
106     }
107     return false;
108   }
109 }
110 
111 
EqualFP64(double expected,const RegisterDump *,double result)112 bool EqualFP64(double expected, const RegisterDump*, double result) {
113   if (DoubleToRawbits(expected) == DoubleToRawbits(result)) {
114     return true;
115   }
116 
117   if (std::isnan(expected) || (expected == 0.0)) {
118     printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
119            DoubleToRawbits(expected),
120            DoubleToRawbits(result));
121   } else {
122     printf("Expected %.17f (0x%016" PRIx64
123            ")\t "
124            "Found %.17f (0x%016" PRIx64 ")\n",
125            expected,
126            DoubleToRawbits(expected),
127            result,
128            DoubleToRawbits(result));
129   }
130   return false;
131 }
132 
133 
Equal32(uint32_t expected,const RegisterDump * core,const Register & reg)134 bool Equal32(uint32_t expected, const RegisterDump* core, const Register& reg) {
135   VIXL_ASSERT(reg.Is32Bits());
136   // Retrieve the corresponding X register so we can check that the upper part
137   // was properly cleared.
138   int64_t result_x = core->xreg(reg.GetCode());
139   if ((result_x & 0xffffffff00000000) != 0) {
140     printf("Expected 0x%08" PRIx32 "\t Found 0x%016" PRIx64 "\n",
141            expected,
142            result_x);
143     return false;
144   }
145   uint32_t result_w = core->wreg(reg.GetCode());
146   return Equal32(expected, core, result_w);
147 }
148 
149 
Equal64(uint64_t expected,const RegisterDump * core,const Register & reg)150 bool Equal64(uint64_t expected, const RegisterDump* core, const Register& reg) {
151   VIXL_ASSERT(reg.Is64Bits());
152   uint64_t result = core->xreg(reg.GetCode());
153   return Equal64(expected, core, result);
154 }
155 
156 
Equal128(uint64_t expected_h,uint64_t expected_l,const RegisterDump * core,const VRegister & vreg)157 bool Equal128(uint64_t expected_h,
158               uint64_t expected_l,
159               const RegisterDump* core,
160               const VRegister& vreg) {
161   VIXL_ASSERT(vreg.Is128Bits());
162   vec128_t expected = {expected_l, expected_h};
163   vec128_t result = core->qreg(vreg.GetCode());
164   return Equal128(expected, core, result);
165 }
166 
167 
EqualFP32(float expected,const RegisterDump * core,const FPRegister & fpreg)168 bool EqualFP32(float expected,
169                const RegisterDump* core,
170                const FPRegister& fpreg) {
171   VIXL_ASSERT(fpreg.Is32Bits());
172   // Retrieve the corresponding D register so we can check that the upper part
173   // was properly cleared.
174   uint64_t result_64 = core->dreg_bits(fpreg.GetCode());
175   if ((result_64 & 0xffffffff00000000) != 0) {
176     printf("Expected 0x%08" PRIx32 " (%f)\t Found 0x%016" PRIx64 "\n",
177            FloatToRawbits(expected),
178            expected,
179            result_64);
180     return false;
181   }
182 
183   return EqualFP32(expected, core, core->sreg(fpreg.GetCode()));
184 }
185 
186 
EqualFP64(double expected,const RegisterDump * core,const FPRegister & fpreg)187 bool EqualFP64(double expected,
188                const RegisterDump* core,
189                const FPRegister& fpreg) {
190   VIXL_ASSERT(fpreg.Is64Bits());
191   return EqualFP64(expected, core, core->dreg(fpreg.GetCode()));
192 }
193 
194 
Equal64(const Register & reg0,const RegisterDump * core,const Register & reg1)195 bool Equal64(const Register& reg0,
196              const RegisterDump* core,
197              const Register& reg1) {
198   VIXL_ASSERT(reg0.Is64Bits() && reg1.Is64Bits());
199   int64_t expected = core->xreg(reg0.GetCode());
200   int64_t result = core->xreg(reg1.GetCode());
201   return Equal64(expected, core, result);
202 }
203 
204 
Equal64(uint64_t expected,const RegisterDump * core,const VRegister & vreg)205 bool Equal64(uint64_t expected,
206              const RegisterDump* core,
207              const VRegister& vreg) {
208   VIXL_ASSERT(vreg.Is64Bits());
209   uint64_t result = core->dreg_bits(vreg.GetCode());
210   return Equal64(expected, core, result);
211 }
212 
213 
FlagN(uint32_t flags)214 static char FlagN(uint32_t flags) { return (flags & NFlag) ? 'N' : 'n'; }
215 
216 
FlagZ(uint32_t flags)217 static char FlagZ(uint32_t flags) { return (flags & ZFlag) ? 'Z' : 'z'; }
218 
219 
FlagC(uint32_t flags)220 static char FlagC(uint32_t flags) { return (flags & CFlag) ? 'C' : 'c'; }
221 
222 
FlagV(uint32_t flags)223 static char FlagV(uint32_t flags) { return (flags & VFlag) ? 'V' : 'v'; }
224 
225 
EqualNzcv(uint32_t expected,uint32_t result)226 bool EqualNzcv(uint32_t expected, uint32_t result) {
227   VIXL_ASSERT((expected & ~NZCVFlag) == 0);
228   VIXL_ASSERT((result & ~NZCVFlag) == 0);
229   if (result != expected) {
230     printf("Expected: %c%c%c%c\t Found: %c%c%c%c\n",
231            FlagN(expected),
232            FlagZ(expected),
233            FlagC(expected),
234            FlagV(expected),
235            FlagN(result),
236            FlagZ(result),
237            FlagC(result),
238            FlagV(result));
239     return false;
240   }
241 
242   return true;
243 }
244 
245 
EqualRegisters(const RegisterDump * a,const RegisterDump * b)246 bool EqualRegisters(const RegisterDump* a, const RegisterDump* b) {
247   for (unsigned i = 0; i < kNumberOfRegisters; i++) {
248     if (a->xreg(i) != b->xreg(i)) {
249       printf("x%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
250              i,
251              a->xreg(i),
252              b->xreg(i));
253       return false;
254     }
255   }
256 
257   for (unsigned i = 0; i < kNumberOfFPRegisters; i++) {
258     uint64_t a_bits = a->dreg_bits(i);
259     uint64_t b_bits = b->dreg_bits(i);
260     if (a_bits != b_bits) {
261       printf("d%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
262              i,
263              a_bits,
264              b_bits);
265       return false;
266     }
267   }
268 
269   return true;
270 }
271 
272 
PopulateRegisterArray(Register * w,Register * x,Register * r,int reg_size,int reg_count,RegList allowed)273 RegList PopulateRegisterArray(Register* w,
274                               Register* x,
275                               Register* r,
276                               int reg_size,
277                               int reg_count,
278                               RegList allowed) {
279   RegList list = 0;
280   int i = 0;
281   for (unsigned n = 0; (n < kNumberOfRegisters) && (i < reg_count); n++) {
282     if (((UINT64_C(1) << n) & allowed) != 0) {
283       // Only assign allowed registers.
284       if (r) {
285         r[i] = Register(n, reg_size);
286       }
287       if (x) {
288         x[i] = Register(n, kXRegSize);
289       }
290       if (w) {
291         w[i] = Register(n, kWRegSize);
292       }
293       list |= (UINT64_C(1) << n);
294       i++;
295     }
296   }
297   // Check that we got enough registers.
298   VIXL_ASSERT(CountSetBits(list, kNumberOfRegisters) == reg_count);
299 
300   return list;
301 }
302 
303 
PopulateFPRegisterArray(FPRegister * s,FPRegister * d,FPRegister * v,int reg_size,int reg_count,RegList allowed)304 RegList PopulateFPRegisterArray(FPRegister* s,
305                                 FPRegister* d,
306                                 FPRegister* v,
307                                 int reg_size,
308                                 int reg_count,
309                                 RegList allowed) {
310   RegList list = 0;
311   int i = 0;
312   for (unsigned n = 0; (n < kNumberOfFPRegisters) && (i < reg_count); n++) {
313     if (((UINT64_C(1) << n) & allowed) != 0) {
314       // Only assigned allowed registers.
315       if (v) {
316         v[i] = FPRegister(n, reg_size);
317       }
318       if (d) {
319         d[i] = FPRegister(n, kDRegSize);
320       }
321       if (s) {
322         s[i] = FPRegister(n, kSRegSize);
323       }
324       list |= (UINT64_C(1) << n);
325       i++;
326     }
327   }
328   // Check that we got enough registers.
329   VIXL_ASSERT(CountSetBits(list, kNumberOfFPRegisters) == reg_count);
330 
331   return list;
332 }
333 
334 
Clobber(MacroAssembler * masm,RegList reg_list,uint64_t const value)335 void Clobber(MacroAssembler* masm, RegList reg_list, uint64_t const value) {
336   Register first = NoReg;
337   for (unsigned i = 0; i < kNumberOfRegisters; i++) {
338     if (reg_list & (UINT64_C(1) << i)) {
339       Register xn(i, kXRegSize);
340       // We should never write into sp here.
341       VIXL_ASSERT(!xn.Is(sp));
342       if (!xn.IsZero()) {
343         if (!first.IsValid()) {
344           // This is the first register we've hit, so construct the literal.
345           __ Mov(xn, value);
346           first = xn;
347         } else {
348           // We've already loaded the literal, so re-use the value already
349           // loaded into the first register we hit.
350           __ Mov(xn, first);
351         }
352       }
353     }
354   }
355 }
356 
357 
ClobberFP(MacroAssembler * masm,RegList reg_list,double const value)358 void ClobberFP(MacroAssembler* masm, RegList reg_list, double const value) {
359   FPRegister first = NoFPReg;
360   for (unsigned i = 0; i < kNumberOfFPRegisters; i++) {
361     if (reg_list & (UINT64_C(1) << i)) {
362       FPRegister dn(i, kDRegSize);
363       if (!first.IsValid()) {
364         // This is the first register we've hit, so construct the literal.
365         __ Fmov(dn, value);
366         first = dn;
367       } else {
368         // We've already loaded the literal, so re-use the value already loaded
369         // into the first register we hit.
370         __ Fmov(dn, first);
371       }
372     }
373   }
374 }
375 
376 
Clobber(MacroAssembler * masm,CPURegList reg_list)377 void Clobber(MacroAssembler* masm, CPURegList reg_list) {
378   if (reg_list.GetType() == CPURegister::kRegister) {
379     // This will always clobber X registers.
380     Clobber(masm, reg_list.GetList());
381   } else if (reg_list.GetType() == CPURegister::kVRegister) {
382     // This will always clobber D registers.
383     ClobberFP(masm, reg_list.GetList());
384   } else {
385     VIXL_UNREACHABLE();
386   }
387 }
388 
389 
Dump(MacroAssembler * masm)390 void RegisterDump::Dump(MacroAssembler* masm) {
391   VIXL_ASSERT(__ StackPointer().Is(sp));
392 
393   // Ensure that we don't unintentionally clobber any registers.
394   UseScratchRegisterScope temps(masm);
395   temps.ExcludeAll();
396 
397   // Preserve some temporary registers.
398   Register dump_base = x0;
399   Register dump = x1;
400   Register tmp = x2;
401   Register dump_base_w = dump_base.W();
402   Register dump_w = dump.W();
403   Register tmp_w = tmp.W();
404 
405   // Offsets into the dump_ structure.
406   const int x_offset = offsetof(dump_t, x_);
407   const int w_offset = offsetof(dump_t, w_);
408   const int d_offset = offsetof(dump_t, d_);
409   const int s_offset = offsetof(dump_t, s_);
410   const int q_offset = offsetof(dump_t, q_);
411   const int sp_offset = offsetof(dump_t, sp_);
412   const int wsp_offset = offsetof(dump_t, wsp_);
413   const int flags_offset = offsetof(dump_t, flags_);
414 
415   __ Push(xzr, dump_base, dump, tmp);
416 
417   // Load the address where we will dump the state.
418   __ Mov(dump_base, reinterpret_cast<uintptr_t>(&dump_));
419 
420   // Dump the stack pointer (sp and wsp).
421   // The stack pointer cannot be stored directly; it needs to be moved into
422   // another register first. Also, we pushed four X registers, so we need to
423   // compensate here.
424   __ Add(tmp, sp, 4 * kXRegSizeInBytes);
425   __ Str(tmp, MemOperand(dump_base, sp_offset));
426   __ Add(tmp_w, wsp, 4 * kXRegSizeInBytes);
427   __ Str(tmp_w, MemOperand(dump_base, wsp_offset));
428 
429   // Dump X registers.
430   __ Add(dump, dump_base, x_offset);
431   for (unsigned i = 0; i < kNumberOfRegisters; i += 2) {
432     __ Stp(Register::GetXRegFromCode(i),
433            Register::GetXRegFromCode(i + 1),
434            MemOperand(dump, i * kXRegSizeInBytes));
435   }
436 
437   // Dump W registers.
438   __ Add(dump, dump_base, w_offset);
439   for (unsigned i = 0; i < kNumberOfRegisters; i += 2) {
440     __ Stp(Register::GetWRegFromCode(i),
441            Register::GetWRegFromCode(i + 1),
442            MemOperand(dump, i * kWRegSizeInBytes));
443   }
444 
445   // Dump D registers.
446   __ Add(dump, dump_base, d_offset);
447   for (unsigned i = 0; i < kNumberOfFPRegisters; i += 2) {
448     __ Stp(FPRegister::GetDRegFromCode(i),
449            FPRegister::GetDRegFromCode(i + 1),
450            MemOperand(dump, i * kDRegSizeInBytes));
451   }
452 
453   // Dump S registers.
454   __ Add(dump, dump_base, s_offset);
455   for (unsigned i = 0; i < kNumberOfFPRegisters; i += 2) {
456     __ Stp(FPRegister::GetSRegFromCode(i),
457            FPRegister::GetSRegFromCode(i + 1),
458            MemOperand(dump, i * kSRegSizeInBytes));
459   }
460 
461   // Dump Q registers.
462   __ Add(dump, dump_base, q_offset);
463   for (unsigned i = 0; i < kNumberOfVRegisters; i += 2) {
464     __ Stp(VRegister::GetQRegFromCode(i),
465            VRegister::GetQRegFromCode(i + 1),
466            MemOperand(dump, i * kQRegSizeInBytes));
467   }
468 
469   // Dump the flags.
470   __ Mrs(tmp, NZCV);
471   __ Str(tmp, MemOperand(dump_base, flags_offset));
472 
473   // To dump the values that were in tmp amd dump, we need a new scratch
474   // register. We can use any of the already dumped registers since we can
475   // easily restore them.
476   Register dump2_base = x10;
477   Register dump2 = x11;
478   VIXL_ASSERT(!AreAliased(dump_base, dump, tmp, dump2_base, dump2));
479 
480   // Don't lose the dump_ address.
481   __ Mov(dump2_base, dump_base);
482 
483   __ Pop(tmp, dump, dump_base, xzr);
484 
485   __ Add(dump2, dump2_base, w_offset);
486   __ Str(dump_base_w,
487          MemOperand(dump2, dump_base.GetCode() * kWRegSizeInBytes));
488   __ Str(dump_w, MemOperand(dump2, dump.GetCode() * kWRegSizeInBytes));
489   __ Str(tmp_w, MemOperand(dump2, tmp.GetCode() * kWRegSizeInBytes));
490 
491   __ Add(dump2, dump2_base, x_offset);
492   __ Str(dump_base, MemOperand(dump2, dump_base.GetCode() * kXRegSizeInBytes));
493   __ Str(dump, MemOperand(dump2, dump.GetCode() * kXRegSizeInBytes));
494   __ Str(tmp, MemOperand(dump2, tmp.GetCode() * kXRegSizeInBytes));
495 
496   // Finally, restore dump2_base and dump2.
497   __ Ldr(dump2_base,
498          MemOperand(dump2, dump2_base.GetCode() * kXRegSizeInBytes));
499   __ Ldr(dump2, MemOperand(dump2, dump2.GetCode() * kXRegSizeInBytes));
500 
501   completed_ = true;
502 }
503 
504 }  // namespace aarch64
505 }  // namespace vixl
506