1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CloneFunctionInto interface, which is used as the
11 // low-level function cloner. This is used by the CloneFunction and function
12 // inliner to do the dirty work of copying the body of a function around.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Transforms/Utils/Cloning.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/IR/CFG.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DebugInfo.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Transforms/Utils/ValueMapper.h"
35 #include <map>
36 using namespace llvm;
37
38 /// See comments in Cloning.h.
CloneBasicBlock(const BasicBlock * BB,ValueToValueMapTy & VMap,const Twine & NameSuffix,Function * F,ClonedCodeInfo * CodeInfo)39 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
40 ValueToValueMapTy &VMap,
41 const Twine &NameSuffix, Function *F,
42 ClonedCodeInfo *CodeInfo) {
43 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
44 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
45
46 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
47
48 // Loop over all instructions, and copy them over.
49 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
50 II != IE; ++II) {
51 Instruction *NewInst = II->clone();
52 if (II->hasName())
53 NewInst->setName(II->getName()+NameSuffix);
54 NewBB->getInstList().push_back(NewInst);
55 VMap[&*II] = NewInst; // Add instruction map to value.
56
57 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
58 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
59 if (isa<ConstantInt>(AI->getArraySize()))
60 hasStaticAllocas = true;
61 else
62 hasDynamicAllocas = true;
63 }
64 }
65
66 if (CodeInfo) {
67 CodeInfo->ContainsCalls |= hasCalls;
68 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
69 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
70 BB != &BB->getParent()->getEntryBlock();
71 }
72 return NewBB;
73 }
74
75 // Clone OldFunc into NewFunc, transforming the old arguments into references to
76 // VMap values.
77 //
CloneFunctionInto(Function * NewFunc,const Function * OldFunc,ValueToValueMapTy & VMap,bool ModuleLevelChanges,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)78 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
79 ValueToValueMapTy &VMap,
80 bool ModuleLevelChanges,
81 SmallVectorImpl<ReturnInst*> &Returns,
82 const char *NameSuffix, ClonedCodeInfo *CodeInfo,
83 ValueMapTypeRemapper *TypeMapper,
84 ValueMaterializer *Materializer) {
85 assert(NameSuffix && "NameSuffix cannot be null!");
86
87 #ifndef NDEBUG
88 for (const Argument &I : OldFunc->args())
89 assert(VMap.count(&I) && "No mapping from source argument specified!");
90 #endif
91
92 // Copy all attributes other than those stored in the AttributeSet. We need
93 // to remap the parameter indices of the AttributeSet.
94 AttributeSet NewAttrs = NewFunc->getAttributes();
95 NewFunc->copyAttributesFrom(OldFunc);
96 NewFunc->setAttributes(NewAttrs);
97
98 // Fix up the personality function that got copied over.
99 if (OldFunc->hasPersonalityFn())
100 NewFunc->setPersonalityFn(
101 MapValue(OldFunc->getPersonalityFn(), VMap,
102 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
103 TypeMapper, Materializer));
104
105 AttributeSet OldAttrs = OldFunc->getAttributes();
106 // Clone any argument attributes that are present in the VMap.
107 for (const Argument &OldArg : OldFunc->args())
108 if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
109 AttributeSet attrs =
110 OldAttrs.getParamAttributes(OldArg.getArgNo() + 1);
111 if (attrs.getNumSlots() > 0)
112 NewArg->addAttr(attrs);
113 }
114
115 NewFunc->setAttributes(
116 NewFunc->getAttributes()
117 .addAttributes(NewFunc->getContext(), AttributeSet::ReturnIndex,
118 OldAttrs.getRetAttributes())
119 .addAttributes(NewFunc->getContext(), AttributeSet::FunctionIndex,
120 OldAttrs.getFnAttributes()));
121
122 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
123 OldFunc->getAllMetadata(MDs);
124 for (auto MD : MDs)
125 NewFunc->addMetadata(
126 MD.first,
127 *MapMetadata(MD.second, VMap,
128 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
129 TypeMapper, Materializer));
130
131 // Loop over all of the basic blocks in the function, cloning them as
132 // appropriate. Note that we save BE this way in order to handle cloning of
133 // recursive functions into themselves.
134 //
135 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
136 BI != BE; ++BI) {
137 const BasicBlock &BB = *BI;
138
139 // Create a new basic block and copy instructions into it!
140 BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo);
141
142 // Add basic block mapping.
143 VMap[&BB] = CBB;
144
145 // It is only legal to clone a function if a block address within that
146 // function is never referenced outside of the function. Given that, we
147 // want to map block addresses from the old function to block addresses in
148 // the clone. (This is different from the generic ValueMapper
149 // implementation, which generates an invalid blockaddress when
150 // cloning a function.)
151 if (BB.hasAddressTaken()) {
152 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
153 const_cast<BasicBlock*>(&BB));
154 VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
155 }
156
157 // Note return instructions for the caller.
158 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
159 Returns.push_back(RI);
160 }
161
162 // Loop over all of the instructions in the function, fixing up operand
163 // references as we go. This uses VMap to do all the hard work.
164 for (Function::iterator BB =
165 cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
166 BE = NewFunc->end();
167 BB != BE; ++BB)
168 // Loop over all instructions, fixing each one as we find it...
169 for (Instruction &II : *BB)
170 RemapInstruction(&II, VMap,
171 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
172 TypeMapper, Materializer);
173 }
174
175 /// Return a copy of the specified function and add it to that function's
176 /// module. Also, any references specified in the VMap are changed to refer to
177 /// their mapped value instead of the original one. If any of the arguments to
178 /// the function are in the VMap, the arguments are deleted from the resultant
179 /// function. The VMap is updated to include mappings from all of the
180 /// instructions and basicblocks in the function from their old to new values.
181 ///
CloneFunction(Function * F,ValueToValueMapTy & VMap,ClonedCodeInfo * CodeInfo)182 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap,
183 ClonedCodeInfo *CodeInfo) {
184 std::vector<Type*> ArgTypes;
185
186 // The user might be deleting arguments to the function by specifying them in
187 // the VMap. If so, we need to not add the arguments to the arg ty vector
188 //
189 for (const Argument &I : F->args())
190 if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
191 ArgTypes.push_back(I.getType());
192
193 // Create a new function type...
194 FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
195 ArgTypes, F->getFunctionType()->isVarArg());
196
197 // Create the new function...
198 Function *NewF =
199 Function::Create(FTy, F->getLinkage(), F->getName(), F->getParent());
200
201 // Loop over the arguments, copying the names of the mapped arguments over...
202 Function::arg_iterator DestI = NewF->arg_begin();
203 for (const Argument & I : F->args())
204 if (VMap.count(&I) == 0) { // Is this argument preserved?
205 DestI->setName(I.getName()); // Copy the name over...
206 VMap[&I] = &*DestI++; // Add mapping to VMap
207 }
208
209 SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned.
210 CloneFunctionInto(NewF, F, VMap, /*ModuleLevelChanges=*/false, Returns, "",
211 CodeInfo);
212
213 return NewF;
214 }
215
216
217
218 namespace {
219 /// This is a private class used to implement CloneAndPruneFunctionInto.
220 struct PruningFunctionCloner {
221 Function *NewFunc;
222 const Function *OldFunc;
223 ValueToValueMapTy &VMap;
224 bool ModuleLevelChanges;
225 const char *NameSuffix;
226 ClonedCodeInfo *CodeInfo;
227
228 public:
PruningFunctionCloner__anondaf9d3c70111::PruningFunctionCloner229 PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
230 ValueToValueMapTy &valueMap, bool moduleLevelChanges,
231 const char *nameSuffix, ClonedCodeInfo *codeInfo)
232 : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
233 ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
234 CodeInfo(codeInfo) {}
235
236 /// The specified block is found to be reachable, clone it and
237 /// anything that it can reach.
238 void CloneBlock(const BasicBlock *BB,
239 BasicBlock::const_iterator StartingInst,
240 std::vector<const BasicBlock*> &ToClone);
241 };
242 }
243
244 /// The specified block is found to be reachable, clone it and
245 /// anything that it can reach.
CloneBlock(const BasicBlock * BB,BasicBlock::const_iterator StartingInst,std::vector<const BasicBlock * > & ToClone)246 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
247 BasicBlock::const_iterator StartingInst,
248 std::vector<const BasicBlock*> &ToClone){
249 WeakVH &BBEntry = VMap[BB];
250
251 // Have we already cloned this block?
252 if (BBEntry) return;
253
254 // Nope, clone it now.
255 BasicBlock *NewBB;
256 BBEntry = NewBB = BasicBlock::Create(BB->getContext());
257 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
258
259 // It is only legal to clone a function if a block address within that
260 // function is never referenced outside of the function. Given that, we
261 // want to map block addresses from the old function to block addresses in
262 // the clone. (This is different from the generic ValueMapper
263 // implementation, which generates an invalid blockaddress when
264 // cloning a function.)
265 //
266 // Note that we don't need to fix the mapping for unreachable blocks;
267 // the default mapping there is safe.
268 if (BB->hasAddressTaken()) {
269 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
270 const_cast<BasicBlock*>(BB));
271 VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
272 }
273
274 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
275
276 // Loop over all instructions, and copy them over, DCE'ing as we go. This
277 // loop doesn't include the terminator.
278 for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end();
279 II != IE; ++II) {
280
281 Instruction *NewInst = II->clone();
282
283 // Eagerly remap operands to the newly cloned instruction, except for PHI
284 // nodes for which we defer processing until we update the CFG.
285 if (!isa<PHINode>(NewInst)) {
286 RemapInstruction(NewInst, VMap,
287 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
288
289 // If we can simplify this instruction to some other value, simply add
290 // a mapping to that value rather than inserting a new instruction into
291 // the basic block.
292 if (Value *V =
293 SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
294 // On the off-chance that this simplifies to an instruction in the old
295 // function, map it back into the new function.
296 if (Value *MappedV = VMap.lookup(V))
297 V = MappedV;
298
299 if (!NewInst->mayHaveSideEffects()) {
300 VMap[&*II] = V;
301 delete NewInst;
302 continue;
303 }
304 }
305 }
306
307 if (II->hasName())
308 NewInst->setName(II->getName()+NameSuffix);
309 VMap[&*II] = NewInst; // Add instruction map to value.
310 NewBB->getInstList().push_back(NewInst);
311 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
312
313 if (CodeInfo)
314 if (auto CS = ImmutableCallSite(&*II))
315 if (CS.hasOperandBundles())
316 CodeInfo->OperandBundleCallSites.push_back(NewInst);
317
318 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
319 if (isa<ConstantInt>(AI->getArraySize()))
320 hasStaticAllocas = true;
321 else
322 hasDynamicAllocas = true;
323 }
324 }
325
326 // Finally, clone over the terminator.
327 const TerminatorInst *OldTI = BB->getTerminator();
328 bool TerminatorDone = false;
329 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
330 if (BI->isConditional()) {
331 // If the condition was a known constant in the callee...
332 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
333 // Or is a known constant in the caller...
334 if (!Cond) {
335 Value *V = VMap.lookup(BI->getCondition());
336 Cond = dyn_cast_or_null<ConstantInt>(V);
337 }
338
339 // Constant fold to uncond branch!
340 if (Cond) {
341 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
342 VMap[OldTI] = BranchInst::Create(Dest, NewBB);
343 ToClone.push_back(Dest);
344 TerminatorDone = true;
345 }
346 }
347 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
348 // If switching on a value known constant in the caller.
349 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
350 if (!Cond) { // Or known constant after constant prop in the callee...
351 Value *V = VMap.lookup(SI->getCondition());
352 Cond = dyn_cast_or_null<ConstantInt>(V);
353 }
354 if (Cond) { // Constant fold to uncond branch!
355 SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond);
356 BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
357 VMap[OldTI] = BranchInst::Create(Dest, NewBB);
358 ToClone.push_back(Dest);
359 TerminatorDone = true;
360 }
361 }
362
363 if (!TerminatorDone) {
364 Instruction *NewInst = OldTI->clone();
365 if (OldTI->hasName())
366 NewInst->setName(OldTI->getName()+NameSuffix);
367 NewBB->getInstList().push_back(NewInst);
368 VMap[OldTI] = NewInst; // Add instruction map to value.
369
370 if (CodeInfo)
371 if (auto CS = ImmutableCallSite(OldTI))
372 if (CS.hasOperandBundles())
373 CodeInfo->OperandBundleCallSites.push_back(NewInst);
374
375 // Recursively clone any reachable successor blocks.
376 const TerminatorInst *TI = BB->getTerminator();
377 for (const BasicBlock *Succ : TI->successors())
378 ToClone.push_back(Succ);
379 }
380
381 if (CodeInfo) {
382 CodeInfo->ContainsCalls |= hasCalls;
383 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
384 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
385 BB != &BB->getParent()->front();
386 }
387 }
388
389 /// This works like CloneAndPruneFunctionInto, except that it does not clone the
390 /// entire function. Instead it starts at an instruction provided by the caller
391 /// and copies (and prunes) only the code reachable from that instruction.
CloneAndPruneIntoFromInst(Function * NewFunc,const Function * OldFunc,const Instruction * StartingInst,ValueToValueMapTy & VMap,bool ModuleLevelChanges,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo)392 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
393 const Instruction *StartingInst,
394 ValueToValueMapTy &VMap,
395 bool ModuleLevelChanges,
396 SmallVectorImpl<ReturnInst *> &Returns,
397 const char *NameSuffix,
398 ClonedCodeInfo *CodeInfo) {
399 assert(NameSuffix && "NameSuffix cannot be null!");
400
401 ValueMapTypeRemapper *TypeMapper = nullptr;
402 ValueMaterializer *Materializer = nullptr;
403
404 #ifndef NDEBUG
405 // If the cloning starts at the beginning of the function, verify that
406 // the function arguments are mapped.
407 if (!StartingInst)
408 for (const Argument &II : OldFunc->args())
409 assert(VMap.count(&II) && "No mapping from source argument specified!");
410 #endif
411
412 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
413 NameSuffix, CodeInfo);
414 const BasicBlock *StartingBB;
415 if (StartingInst)
416 StartingBB = StartingInst->getParent();
417 else {
418 StartingBB = &OldFunc->getEntryBlock();
419 StartingInst = &StartingBB->front();
420 }
421
422 // Clone the entry block, and anything recursively reachable from it.
423 std::vector<const BasicBlock*> CloneWorklist;
424 PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
425 while (!CloneWorklist.empty()) {
426 const BasicBlock *BB = CloneWorklist.back();
427 CloneWorklist.pop_back();
428 PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
429 }
430
431 // Loop over all of the basic blocks in the old function. If the block was
432 // reachable, we have cloned it and the old block is now in the value map:
433 // insert it into the new function in the right order. If not, ignore it.
434 //
435 // Defer PHI resolution until rest of function is resolved.
436 SmallVector<const PHINode*, 16> PHIToResolve;
437 for (const BasicBlock &BI : *OldFunc) {
438 Value *V = VMap.lookup(&BI);
439 BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
440 if (!NewBB) continue; // Dead block.
441
442 // Add the new block to the new function.
443 NewFunc->getBasicBlockList().push_back(NewBB);
444
445 // Handle PHI nodes specially, as we have to remove references to dead
446 // blocks.
447 for (BasicBlock::const_iterator I = BI.begin(), E = BI.end(); I != E; ++I) {
448 // PHI nodes may have been remapped to non-PHI nodes by the caller or
449 // during the cloning process.
450 if (const PHINode *PN = dyn_cast<PHINode>(I)) {
451 if (isa<PHINode>(VMap[PN]))
452 PHIToResolve.push_back(PN);
453 else
454 break;
455 } else {
456 break;
457 }
458 }
459
460 // Finally, remap the terminator instructions, as those can't be remapped
461 // until all BBs are mapped.
462 RemapInstruction(NewBB->getTerminator(), VMap,
463 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
464 TypeMapper, Materializer);
465 }
466
467 // Defer PHI resolution until rest of function is resolved, PHI resolution
468 // requires the CFG to be up-to-date.
469 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
470 const PHINode *OPN = PHIToResolve[phino];
471 unsigned NumPreds = OPN->getNumIncomingValues();
472 const BasicBlock *OldBB = OPN->getParent();
473 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
474
475 // Map operands for blocks that are live and remove operands for blocks
476 // that are dead.
477 for (; phino != PHIToResolve.size() &&
478 PHIToResolve[phino]->getParent() == OldBB; ++phino) {
479 OPN = PHIToResolve[phino];
480 PHINode *PN = cast<PHINode>(VMap[OPN]);
481 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
482 Value *V = VMap.lookup(PN->getIncomingBlock(pred));
483 if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
484 Value *InVal = MapValue(PN->getIncomingValue(pred),
485 VMap,
486 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
487 assert(InVal && "Unknown input value?");
488 PN->setIncomingValue(pred, InVal);
489 PN->setIncomingBlock(pred, MappedBlock);
490 } else {
491 PN->removeIncomingValue(pred, false);
492 --pred; // Revisit the next entry.
493 --e;
494 }
495 }
496 }
497
498 // The loop above has removed PHI entries for those blocks that are dead
499 // and has updated others. However, if a block is live (i.e. copied over)
500 // but its terminator has been changed to not go to this block, then our
501 // phi nodes will have invalid entries. Update the PHI nodes in this
502 // case.
503 PHINode *PN = cast<PHINode>(NewBB->begin());
504 NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
505 if (NumPreds != PN->getNumIncomingValues()) {
506 assert(NumPreds < PN->getNumIncomingValues());
507 // Count how many times each predecessor comes to this block.
508 std::map<BasicBlock*, unsigned> PredCount;
509 for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
510 PI != E; ++PI)
511 --PredCount[*PI];
512
513 // Figure out how many entries to remove from each PHI.
514 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
515 ++PredCount[PN->getIncomingBlock(i)];
516
517 // At this point, the excess predecessor entries are positive in the
518 // map. Loop over all of the PHIs and remove excess predecessor
519 // entries.
520 BasicBlock::iterator I = NewBB->begin();
521 for (; (PN = dyn_cast<PHINode>(I)); ++I) {
522 for (const auto &PCI : PredCount) {
523 BasicBlock *Pred = PCI.first;
524 for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
525 PN->removeIncomingValue(Pred, false);
526 }
527 }
528 }
529
530 // If the loops above have made these phi nodes have 0 or 1 operand,
531 // replace them with undef or the input value. We must do this for
532 // correctness, because 0-operand phis are not valid.
533 PN = cast<PHINode>(NewBB->begin());
534 if (PN->getNumIncomingValues() == 0) {
535 BasicBlock::iterator I = NewBB->begin();
536 BasicBlock::const_iterator OldI = OldBB->begin();
537 while ((PN = dyn_cast<PHINode>(I++))) {
538 Value *NV = UndefValue::get(PN->getType());
539 PN->replaceAllUsesWith(NV);
540 assert(VMap[&*OldI] == PN && "VMap mismatch");
541 VMap[&*OldI] = NV;
542 PN->eraseFromParent();
543 ++OldI;
544 }
545 }
546 }
547
548 // Make a second pass over the PHINodes now that all of them have been
549 // remapped into the new function, simplifying the PHINode and performing any
550 // recursive simplifications exposed. This will transparently update the
551 // WeakVH in the VMap. Notably, we rely on that so that if we coalesce
552 // two PHINodes, the iteration over the old PHIs remains valid, and the
553 // mapping will just map us to the new node (which may not even be a PHI
554 // node).
555 for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
556 if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]]))
557 recursivelySimplifyInstruction(PN);
558
559 // Now that the inlined function body has been fully constructed, go through
560 // and zap unconditional fall-through branches. This happens all the time when
561 // specializing code: code specialization turns conditional branches into
562 // uncond branches, and this code folds them.
563 Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
564 Function::iterator I = Begin;
565 while (I != NewFunc->end()) {
566 // Check if this block has become dead during inlining or other
567 // simplifications. Note that the first block will appear dead, as it has
568 // not yet been wired up properly.
569 if (I != Begin && (pred_begin(&*I) == pred_end(&*I) ||
570 I->getSinglePredecessor() == &*I)) {
571 BasicBlock *DeadBB = &*I++;
572 DeleteDeadBlock(DeadBB);
573 continue;
574 }
575
576 // We need to simplify conditional branches and switches with a constant
577 // operand. We try to prune these out when cloning, but if the
578 // simplification required looking through PHI nodes, those are only
579 // available after forming the full basic block. That may leave some here,
580 // and we still want to prune the dead code as early as possible.
581 ConstantFoldTerminator(&*I);
582
583 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
584 if (!BI || BI->isConditional()) { ++I; continue; }
585
586 BasicBlock *Dest = BI->getSuccessor(0);
587 if (!Dest->getSinglePredecessor()) {
588 ++I; continue;
589 }
590
591 // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
592 // above should have zapped all of them..
593 assert(!isa<PHINode>(Dest->begin()));
594
595 // We know all single-entry PHI nodes in the inlined function have been
596 // removed, so we just need to splice the blocks.
597 BI->eraseFromParent();
598
599 // Make all PHI nodes that referred to Dest now refer to I as their source.
600 Dest->replaceAllUsesWith(&*I);
601
602 // Move all the instructions in the succ to the pred.
603 I->getInstList().splice(I->end(), Dest->getInstList());
604
605 // Remove the dest block.
606 Dest->eraseFromParent();
607
608 // Do not increment I, iteratively merge all things this block branches to.
609 }
610
611 // Make a final pass over the basic blocks from the old function to gather
612 // any return instructions which survived folding. We have to do this here
613 // because we can iteratively remove and merge returns above.
614 for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
615 E = NewFunc->end();
616 I != E; ++I)
617 if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
618 Returns.push_back(RI);
619 }
620
621
622 /// This works exactly like CloneFunctionInto,
623 /// except that it does some simple constant prop and DCE on the fly. The
624 /// effect of this is to copy significantly less code in cases where (for
625 /// example) a function call with constant arguments is inlined, and those
626 /// constant arguments cause a significant amount of code in the callee to be
627 /// dead. Since this doesn't produce an exact copy of the input, it can't be
628 /// used for things like CloneFunction or CloneModule.
CloneAndPruneFunctionInto(Function * NewFunc,const Function * OldFunc,ValueToValueMapTy & VMap,bool ModuleLevelChanges,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo,Instruction * TheCall)629 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
630 ValueToValueMapTy &VMap,
631 bool ModuleLevelChanges,
632 SmallVectorImpl<ReturnInst*> &Returns,
633 const char *NameSuffix,
634 ClonedCodeInfo *CodeInfo,
635 Instruction *TheCall) {
636 CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
637 ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
638 }
639
640 /// \brief Remaps instructions in \p Blocks using the mapping in \p VMap.
remapInstructionsInBlocks(const SmallVectorImpl<BasicBlock * > & Blocks,ValueToValueMapTy & VMap)641 void llvm::remapInstructionsInBlocks(
642 const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
643 // Rewrite the code to refer to itself.
644 for (auto *BB : Blocks)
645 for (auto &Inst : *BB)
646 RemapInstruction(&Inst, VMap,
647 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
648 }
649
650 /// \brief Clones a loop \p OrigLoop. Returns the loop and the blocks in \p
651 /// Blocks.
652 ///
653 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
654 /// \p LoopDomBB. Insert the new blocks before block specified in \p Before.
cloneLoopWithPreheader(BasicBlock * Before,BasicBlock * LoopDomBB,Loop * OrigLoop,ValueToValueMapTy & VMap,const Twine & NameSuffix,LoopInfo * LI,DominatorTree * DT,SmallVectorImpl<BasicBlock * > & Blocks)655 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
656 Loop *OrigLoop, ValueToValueMapTy &VMap,
657 const Twine &NameSuffix, LoopInfo *LI,
658 DominatorTree *DT,
659 SmallVectorImpl<BasicBlock *> &Blocks) {
660 assert(OrigLoop->getSubLoops().empty() &&
661 "Loop to be cloned cannot have inner loop");
662 Function *F = OrigLoop->getHeader()->getParent();
663 Loop *ParentLoop = OrigLoop->getParentLoop();
664
665 Loop *NewLoop = new Loop();
666 if (ParentLoop)
667 ParentLoop->addChildLoop(NewLoop);
668 else
669 LI->addTopLevelLoop(NewLoop);
670
671 BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
672 assert(OrigPH && "No preheader");
673 BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
674 // To rename the loop PHIs.
675 VMap[OrigPH] = NewPH;
676 Blocks.push_back(NewPH);
677
678 // Update LoopInfo.
679 if (ParentLoop)
680 ParentLoop->addBasicBlockToLoop(NewPH, *LI);
681
682 // Update DominatorTree.
683 DT->addNewBlock(NewPH, LoopDomBB);
684
685 for (BasicBlock *BB : OrigLoop->getBlocks()) {
686 BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
687 VMap[BB] = NewBB;
688
689 // Update LoopInfo.
690 NewLoop->addBasicBlockToLoop(NewBB, *LI);
691
692 // Add DominatorTree node. After seeing all blocks, update to correct IDom.
693 DT->addNewBlock(NewBB, NewPH);
694
695 Blocks.push_back(NewBB);
696 }
697
698 for (BasicBlock *BB : OrigLoop->getBlocks()) {
699 // Update DominatorTree.
700 BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
701 DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
702 cast<BasicBlock>(VMap[IDomBB]));
703 }
704
705 // Move them physically from the end of the block list.
706 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
707 NewPH);
708 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
709 NewLoop->getHeader()->getIterator(), F->end());
710
711 return NewLoop;
712 }
713