1 //===- ConstantHoisting.cpp - Prepare code for expensive constants --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass identifies expensive constants to hoist and coalesces them to
11 // better prepare it for SelectionDAG-based code generation. This works around
12 // the limitations of the basic-block-at-a-time approach.
13 //
14 // First it scans all instructions for integer constants and calculates its
15 // cost. If the constant can be folded into the instruction (the cost is
16 // TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
17 // consider it expensive and leave it alone. This is the default behavior and
18 // the default implementation of getIntImmCost will always return TCC_Free.
19 //
20 // If the cost is more than TCC_BASIC, then the integer constant can't be folded
21 // into the instruction and it might be beneficial to hoist the constant.
22 // Similar constants are coalesced to reduce register pressure and
23 // materialization code.
24 //
25 // When a constant is hoisted, it is also hidden behind a bitcast to force it to
26 // be live-out of the basic block. Otherwise the constant would be just
27 // duplicated and each basic block would have its own copy in the SelectionDAG.
28 // The SelectionDAG recognizes such constants as opaque and doesn't perform
29 // certain transformations on them, which would create a new expensive constant.
30 //
31 // This optimization is only applied to integer constants in instructions and
32 // simple (this means not nested) constant cast expressions. For example:
33 // %0 = load i64* inttoptr (i64 big_constant to i64*)
34 //===----------------------------------------------------------------------===//
35 
36 #include "llvm/Transforms/Scalar/ConstantHoisting.h"
37 #include "llvm/ADT/SmallSet.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/ADT/Statistic.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/Scalar.h"
46 #include <tuple>
47 
48 using namespace llvm;
49 using namespace consthoist;
50 
51 #define DEBUG_TYPE "consthoist"
52 
53 STATISTIC(NumConstantsHoisted, "Number of constants hoisted");
54 STATISTIC(NumConstantsRebased, "Number of constants rebased");
55 
56 namespace {
57 /// \brief The constant hoisting pass.
58 class ConstantHoistingLegacyPass : public FunctionPass {
59 public:
60   static char ID; // Pass identification, replacement for typeid
ConstantHoistingLegacyPass()61   ConstantHoistingLegacyPass() : FunctionPass(ID) {
62     initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry());
63   }
64 
65   bool runOnFunction(Function &Fn) override;
66 
getPassName() const67   const char *getPassName() const override { return "Constant Hoisting"; }
68 
getAnalysisUsage(AnalysisUsage & AU) const69   void getAnalysisUsage(AnalysisUsage &AU) const override {
70     AU.setPreservesCFG();
71     AU.addRequired<DominatorTreeWrapperPass>();
72     AU.addRequired<TargetTransformInfoWrapperPass>();
73   }
74 
releaseMemory()75   void releaseMemory() override { Impl.releaseMemory(); }
76 
77 private:
78   ConstantHoistingPass Impl;
79 };
80 }
81 
82 char ConstantHoistingLegacyPass::ID = 0;
83 INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass, "consthoist",
84                       "Constant Hoisting", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)85 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
86 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
87 INITIALIZE_PASS_END(ConstantHoistingLegacyPass, "consthoist",
88                     "Constant Hoisting", false, false)
89 
90 FunctionPass *llvm::createConstantHoistingPass() {
91   return new ConstantHoistingLegacyPass();
92 }
93 
94 /// \brief Perform the constant hoisting optimization for the given function.
runOnFunction(Function & Fn)95 bool ConstantHoistingLegacyPass::runOnFunction(Function &Fn) {
96   if (skipFunction(Fn))
97     return false;
98 
99   DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n");
100   DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n');
101 
102   bool MadeChange = Impl.runImpl(
103       Fn, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn),
104       getAnalysis<DominatorTreeWrapperPass>().getDomTree(), Fn.getEntryBlock());
105 
106   if (MadeChange) {
107     DEBUG(dbgs() << "********** Function after Constant Hoisting: "
108                  << Fn.getName() << '\n');
109     DEBUG(dbgs() << Fn);
110   }
111   DEBUG(dbgs() << "********** End Constant Hoisting **********\n");
112 
113   return MadeChange;
114 }
115 
116 
117 /// \brief Find the constant materialization insertion point.
findMatInsertPt(Instruction * Inst,unsigned Idx) const118 Instruction *ConstantHoistingPass::findMatInsertPt(Instruction *Inst,
119                                                    unsigned Idx) const {
120   // If the operand is a cast instruction, then we have to materialize the
121   // constant before the cast instruction.
122   if (Idx != ~0U) {
123     Value *Opnd = Inst->getOperand(Idx);
124     if (auto CastInst = dyn_cast<Instruction>(Opnd))
125       if (CastInst->isCast())
126         return CastInst;
127   }
128 
129   // The simple and common case. This also includes constant expressions.
130   if (!isa<PHINode>(Inst) && !Inst->isEHPad())
131     return Inst;
132 
133   // We can't insert directly before a phi node or an eh pad. Insert before
134   // the terminator of the incoming or dominating block.
135   assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!");
136   if (Idx != ~0U && isa<PHINode>(Inst))
137     return cast<PHINode>(Inst)->getIncomingBlock(Idx)->getTerminator();
138 
139   BasicBlock *IDom = DT->getNode(Inst->getParent())->getIDom()->getBlock();
140   return IDom->getTerminator();
141 }
142 
143 /// \brief Find an insertion point that dominates all uses.
findConstantInsertionPoint(const ConstantInfo & ConstInfo) const144 Instruction *ConstantHoistingPass::findConstantInsertionPoint(
145     const ConstantInfo &ConstInfo) const {
146   assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry.");
147   // Collect all basic blocks.
148   SmallPtrSet<BasicBlock *, 8> BBs;
149   for (auto const &RCI : ConstInfo.RebasedConstants)
150     for (auto const &U : RCI.Uses)
151       BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent());
152 
153   if (BBs.count(Entry))
154     return &Entry->front();
155 
156   while (BBs.size() >= 2) {
157     BasicBlock *BB, *BB1, *BB2;
158     BB1 = *BBs.begin();
159     BB2 = *std::next(BBs.begin());
160     BB = DT->findNearestCommonDominator(BB1, BB2);
161     if (BB == Entry)
162       return &Entry->front();
163     BBs.erase(BB1);
164     BBs.erase(BB2);
165     BBs.insert(BB);
166   }
167   assert((BBs.size() == 1) && "Expected only one element.");
168   Instruction &FirstInst = (*BBs.begin())->front();
169   return findMatInsertPt(&FirstInst);
170 }
171 
172 
173 /// \brief Record constant integer ConstInt for instruction Inst at operand
174 /// index Idx.
175 ///
176 /// The operand at index Idx is not necessarily the constant integer itself. It
177 /// could also be a cast instruction or a constant expression that uses the
178 // constant integer.
collectConstantCandidates(ConstCandMapType & ConstCandMap,Instruction * Inst,unsigned Idx,ConstantInt * ConstInt)179 void ConstantHoistingPass::collectConstantCandidates(
180     ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
181     ConstantInt *ConstInt) {
182   unsigned Cost;
183   // Ask the target about the cost of materializing the constant for the given
184   // instruction and operand index.
185   if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst))
186     Cost = TTI->getIntImmCost(IntrInst->getIntrinsicID(), Idx,
187                               ConstInt->getValue(), ConstInt->getType());
188   else
189     Cost = TTI->getIntImmCost(Inst->getOpcode(), Idx, ConstInt->getValue(),
190                               ConstInt->getType());
191 
192   // Ignore cheap integer constants.
193   if (Cost > TargetTransformInfo::TCC_Basic) {
194     ConstCandMapType::iterator Itr;
195     bool Inserted;
196     std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(ConstInt, 0));
197     if (Inserted) {
198       ConstCandVec.push_back(ConstantCandidate(ConstInt));
199       Itr->second = ConstCandVec.size() - 1;
200     }
201     ConstCandVec[Itr->second].addUser(Inst, Idx, Cost);
202     DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx)))
203             dbgs() << "Collect constant " << *ConstInt << " from " << *Inst
204                    << " with cost " << Cost << '\n';
205           else
206           dbgs() << "Collect constant " << *ConstInt << " indirectly from "
207                  << *Inst << " via " << *Inst->getOperand(Idx) << " with cost "
208                  << Cost << '\n';
209     );
210   }
211 }
212 
213 /// \brief Scan the instruction for expensive integer constants and record them
214 /// in the constant candidate vector.
collectConstantCandidates(ConstCandMapType & ConstCandMap,Instruction * Inst)215 void ConstantHoistingPass::collectConstantCandidates(
216     ConstCandMapType &ConstCandMap, Instruction *Inst) {
217   // Skip all cast instructions. They are visited indirectly later on.
218   if (Inst->isCast())
219     return;
220 
221   // Can't handle inline asm. Skip it.
222   if (auto Call = dyn_cast<CallInst>(Inst))
223     if (isa<InlineAsm>(Call->getCalledValue()))
224       return;
225 
226   // Switch cases must remain constant, and if the value being tested is
227   // constant the entire thing should disappear.
228   if (isa<SwitchInst>(Inst))
229     return;
230 
231   // Static allocas (constant size in the entry block) are handled by
232   // prologue/epilogue insertion so they're free anyway. We definitely don't
233   // want to make them non-constant.
234   auto AI = dyn_cast<AllocaInst>(Inst);
235   if (AI && AI->isStaticAlloca())
236     return;
237 
238   // Scan all operands.
239   for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) {
240     Value *Opnd = Inst->getOperand(Idx);
241 
242     // Visit constant integers.
243     if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) {
244       collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
245       continue;
246     }
247 
248     // Visit cast instructions that have constant integers.
249     if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
250       // Only visit cast instructions, which have been skipped. All other
251       // instructions should have already been visited.
252       if (!CastInst->isCast())
253         continue;
254 
255       if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) {
256         // Pretend the constant is directly used by the instruction and ignore
257         // the cast instruction.
258         collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
259         continue;
260       }
261     }
262 
263     // Visit constant expressions that have constant integers.
264     if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
265       // Only visit constant cast expressions.
266       if (!ConstExpr->isCast())
267         continue;
268 
269       if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) {
270         // Pretend the constant is directly used by the instruction and ignore
271         // the constant expression.
272         collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
273         continue;
274       }
275     }
276   } // end of for all operands
277 }
278 
279 /// \brief Collect all integer constants in the function that cannot be folded
280 /// into an instruction itself.
collectConstantCandidates(Function & Fn)281 void ConstantHoistingPass::collectConstantCandidates(Function &Fn) {
282   ConstCandMapType ConstCandMap;
283   for (BasicBlock &BB : Fn)
284     for (Instruction &Inst : BB)
285       collectConstantCandidates(ConstCandMap, &Inst);
286 }
287 
288 // This helper function is necessary to deal with values that have different
289 // bit widths (APInt Operator- does not like that). If the value cannot be
290 // represented in uint64 we return an "empty" APInt. This is then interpreted
291 // as the value is not in range.
calculateOffsetDiff(APInt V1,APInt V2)292 static llvm::Optional<APInt> calculateOffsetDiff(APInt V1, APInt V2)
293 {
294   llvm::Optional<APInt> Res = None;
295   unsigned BW = V1.getBitWidth() > V2.getBitWidth() ?
296                 V1.getBitWidth() : V2.getBitWidth();
297   uint64_t LimVal1 = V1.getLimitedValue();
298   uint64_t LimVal2 = V2.getLimitedValue();
299 
300   if (LimVal1 == ~0ULL || LimVal2 == ~0ULL)
301     return Res;
302 
303   uint64_t Diff = LimVal1 - LimVal2;
304   return APInt(BW, Diff, true);
305 }
306 
307 // From a list of constants, one needs to picked as the base and the other
308 // constants will be transformed into an offset from that base constant. The
309 // question is which we can pick best? For example, consider these constants
310 // and their number of uses:
311 //
312 //  Constants| 2 | 4 | 12 | 42 |
313 //  NumUses  | 3 | 2 |  8 |  7 |
314 //
315 // Selecting constant 12 because it has the most uses will generate negative
316 // offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative
317 // offsets lead to less optimal code generation, then there might be better
318 // solutions. Suppose immediates in the range of 0..35 are most optimally
319 // supported by the architecture, then selecting constant 2 is most optimal
320 // because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in
321 // range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would
322 // have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in
323 // selecting the base constant the range of the offsets is a very important
324 // factor too that we take into account here. This algorithm calculates a total
325 // costs for selecting a constant as the base and substract the costs if
326 // immediates are out of range. It has quadratic complexity, so we call this
327 // function only when we're optimising for size and there are less than 100
328 // constants, we fall back to the straightforward algorithm otherwise
329 // which does not do all the offset calculations.
330 unsigned
maximizeConstantsInRange(ConstCandVecType::iterator S,ConstCandVecType::iterator E,ConstCandVecType::iterator & MaxCostItr)331 ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S,
332                                            ConstCandVecType::iterator E,
333                                            ConstCandVecType::iterator &MaxCostItr) {
334   unsigned NumUses = 0;
335 
336   if(!Entry->getParent()->optForSize() || std::distance(S,E) > 100) {
337     for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
338       NumUses += ConstCand->Uses.size();
339       if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost)
340         MaxCostItr = ConstCand;
341     }
342     return NumUses;
343   }
344 
345   DEBUG(dbgs() << "== Maximize constants in range ==\n");
346   int MaxCost = -1;
347   for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
348     auto Value = ConstCand->ConstInt->getValue();
349     Type *Ty = ConstCand->ConstInt->getType();
350     int Cost = 0;
351     NumUses += ConstCand->Uses.size();
352     DEBUG(dbgs() << "= Constant: " << ConstCand->ConstInt->getValue() << "\n");
353 
354     for (auto User : ConstCand->Uses) {
355       unsigned Opcode = User.Inst->getOpcode();
356       unsigned OpndIdx = User.OpndIdx;
357       Cost += TTI->getIntImmCost(Opcode, OpndIdx, Value, Ty);
358       DEBUG(dbgs() << "Cost: " << Cost << "\n");
359 
360       for (auto C2 = S; C2 != E; ++C2) {
361         llvm::Optional<APInt> Diff = calculateOffsetDiff(
362                                       C2->ConstInt->getValue(),
363                                       ConstCand->ConstInt->getValue());
364         if (Diff) {
365           const int ImmCosts =
366             TTI->getIntImmCodeSizeCost(Opcode, OpndIdx, Diff.getValue(), Ty);
367           Cost -= ImmCosts;
368           DEBUG(dbgs() << "Offset " << Diff.getValue() << " "
369                        << "has penalty: " << ImmCosts << "\n"
370                        << "Adjusted cost: " << Cost << "\n");
371         }
372       }
373     }
374     DEBUG(dbgs() << "Cumulative cost: " << Cost << "\n");
375     if (Cost > MaxCost) {
376       MaxCost = Cost;
377       MaxCostItr = ConstCand;
378       DEBUG(dbgs() << "New candidate: " << MaxCostItr->ConstInt->getValue()
379                    << "\n");
380     }
381   }
382   return NumUses;
383 }
384 
385 /// \brief Find the base constant within the given range and rebase all other
386 /// constants with respect to the base constant.
findAndMakeBaseConstant(ConstCandVecType::iterator S,ConstCandVecType::iterator E)387 void ConstantHoistingPass::findAndMakeBaseConstant(
388     ConstCandVecType::iterator S, ConstCandVecType::iterator E) {
389   auto MaxCostItr = S;
390   unsigned NumUses = maximizeConstantsInRange(S, E, MaxCostItr);
391 
392   // Don't hoist constants that have only one use.
393   if (NumUses <= 1)
394     return;
395 
396   ConstantInfo ConstInfo;
397   ConstInfo.BaseConstant = MaxCostItr->ConstInt;
398   Type *Ty = ConstInfo.BaseConstant->getType();
399 
400   // Rebase the constants with respect to the base constant.
401   for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
402     APInt Diff = ConstCand->ConstInt->getValue() -
403                  ConstInfo.BaseConstant->getValue();
404     Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff);
405     ConstInfo.RebasedConstants.push_back(
406       RebasedConstantInfo(std::move(ConstCand->Uses), Offset));
407   }
408   ConstantVec.push_back(std::move(ConstInfo));
409 }
410 
411 /// \brief Finds and combines constant candidates that can be easily
412 /// rematerialized with an add from a common base constant.
findBaseConstants()413 void ConstantHoistingPass::findBaseConstants() {
414   // Sort the constants by value and type. This invalidates the mapping!
415   std::sort(ConstCandVec.begin(), ConstCandVec.end(),
416             [](const ConstantCandidate &LHS, const ConstantCandidate &RHS) {
417     if (LHS.ConstInt->getType() != RHS.ConstInt->getType())
418       return LHS.ConstInt->getType()->getBitWidth() <
419              RHS.ConstInt->getType()->getBitWidth();
420     return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue());
421   });
422 
423   // Simple linear scan through the sorted constant candidate vector for viable
424   // merge candidates.
425   auto MinValItr = ConstCandVec.begin();
426   for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end();
427        CC != E; ++CC) {
428     if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) {
429       // Check if the constant is in range of an add with immediate.
430       APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue();
431       if ((Diff.getBitWidth() <= 64) &&
432           TTI->isLegalAddImmediate(Diff.getSExtValue()))
433         continue;
434     }
435     // We either have now a different constant type or the constant is not in
436     // range of an add with immediate anymore.
437     findAndMakeBaseConstant(MinValItr, CC);
438     // Start a new base constant search.
439     MinValItr = CC;
440   }
441   // Finalize the last base constant search.
442   findAndMakeBaseConstant(MinValItr, ConstCandVec.end());
443 }
444 
445 /// \brief Updates the operand at Idx in instruction Inst with the result of
446 ///        instruction Mat. If the instruction is a PHI node then special
447 ///        handling for duplicate values form the same incomming basic block is
448 ///        required.
449 /// \return The update will always succeed, but the return value indicated if
450 ///         Mat was used for the update or not.
updateOperand(Instruction * Inst,unsigned Idx,Instruction * Mat)451 static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) {
452   if (auto PHI = dyn_cast<PHINode>(Inst)) {
453     // Check if any previous operand of the PHI node has the same incoming basic
454     // block. This is a very odd case that happens when the incoming basic block
455     // has a switch statement. In this case use the same value as the previous
456     // operand(s), otherwise we will fail verification due to different values.
457     // The values are actually the same, but the variable names are different
458     // and the verifier doesn't like that.
459     BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx);
460     for (unsigned i = 0; i < Idx; ++i) {
461       if (PHI->getIncomingBlock(i) == IncomingBB) {
462         Value *IncomingVal = PHI->getIncomingValue(i);
463         Inst->setOperand(Idx, IncomingVal);
464         return false;
465       }
466     }
467   }
468 
469   Inst->setOperand(Idx, Mat);
470   return true;
471 }
472 
473 /// \brief Emit materialization code for all rebased constants and update their
474 /// users.
emitBaseConstants(Instruction * Base,Constant * Offset,const ConstantUser & ConstUser)475 void ConstantHoistingPass::emitBaseConstants(Instruction *Base,
476                                              Constant *Offset,
477                                              const ConstantUser &ConstUser) {
478   Instruction *Mat = Base;
479   if (Offset) {
480     Instruction *InsertionPt = findMatInsertPt(ConstUser.Inst,
481                                                ConstUser.OpndIdx);
482     Mat = BinaryOperator::Create(Instruction::Add, Base, Offset,
483                                  "const_mat", InsertionPt);
484 
485     DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0)
486                  << " + " << *Offset << ") in BB "
487                  << Mat->getParent()->getName() << '\n' << *Mat << '\n');
488     Mat->setDebugLoc(ConstUser.Inst->getDebugLoc());
489   }
490   Value *Opnd = ConstUser.Inst->getOperand(ConstUser.OpndIdx);
491 
492   // Visit constant integer.
493   if (isa<ConstantInt>(Opnd)) {
494     DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
495     if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat) && Offset)
496       Mat->eraseFromParent();
497     DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
498     return;
499   }
500 
501   // Visit cast instruction.
502   if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
503     assert(CastInst->isCast() && "Expected an cast instruction!");
504     // Check if we already have visited this cast instruction before to avoid
505     // unnecessary cloning.
506     Instruction *&ClonedCastInst = ClonedCastMap[CastInst];
507     if (!ClonedCastInst) {
508       ClonedCastInst = CastInst->clone();
509       ClonedCastInst->setOperand(0, Mat);
510       ClonedCastInst->insertAfter(CastInst);
511       // Use the same debug location as the original cast instruction.
512       ClonedCastInst->setDebugLoc(CastInst->getDebugLoc());
513       DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n'
514                    << "To               : " << *ClonedCastInst << '\n');
515     }
516 
517     DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
518     updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ClonedCastInst);
519     DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
520     return;
521   }
522 
523   // Visit constant expression.
524   if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
525     Instruction *ConstExprInst = ConstExpr->getAsInstruction();
526     ConstExprInst->setOperand(0, Mat);
527     ConstExprInst->insertBefore(findMatInsertPt(ConstUser.Inst,
528                                                 ConstUser.OpndIdx));
529 
530     // Use the same debug location as the instruction we are about to update.
531     ConstExprInst->setDebugLoc(ConstUser.Inst->getDebugLoc());
532 
533     DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n'
534                  << "From              : " << *ConstExpr << '\n');
535     DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
536     if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ConstExprInst)) {
537       ConstExprInst->eraseFromParent();
538       if (Offset)
539         Mat->eraseFromParent();
540     }
541     DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
542     return;
543   }
544 }
545 
546 /// \brief Hoist and hide the base constant behind a bitcast and emit
547 /// materialization code for derived constants.
emitBaseConstants()548 bool ConstantHoistingPass::emitBaseConstants() {
549   bool MadeChange = false;
550   for (auto const &ConstInfo : ConstantVec) {
551     // Hoist and hide the base constant behind a bitcast.
552     Instruction *IP = findConstantInsertionPoint(ConstInfo);
553     IntegerType *Ty = ConstInfo.BaseConstant->getType();
554     Instruction *Base =
555       new BitCastInst(ConstInfo.BaseConstant, Ty, "const", IP);
556     DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseConstant << ") to BB "
557                  << IP->getParent()->getName() << '\n' << *Base << '\n');
558     NumConstantsHoisted++;
559 
560     // Emit materialization code for all rebased constants.
561     for (auto const &RCI : ConstInfo.RebasedConstants) {
562       NumConstantsRebased++;
563       for (auto const &U : RCI.Uses)
564         emitBaseConstants(Base, RCI.Offset, U);
565     }
566 
567     // Use the same debug location as the last user of the constant.
568     assert(!Base->use_empty() && "The use list is empty!?");
569     assert(isa<Instruction>(Base->user_back()) &&
570            "All uses should be instructions.");
571     Base->setDebugLoc(cast<Instruction>(Base->user_back())->getDebugLoc());
572 
573     // Correct for base constant, which we counted above too.
574     NumConstantsRebased--;
575     MadeChange = true;
576   }
577   return MadeChange;
578 }
579 
580 /// \brief Check all cast instructions we made a copy of and remove them if they
581 /// have no more users.
deleteDeadCastInst() const582 void ConstantHoistingPass::deleteDeadCastInst() const {
583   for (auto const &I : ClonedCastMap)
584     if (I.first->use_empty())
585       I.first->eraseFromParent();
586 }
587 
588 /// \brief Optimize expensive integer constants in the given function.
runImpl(Function & Fn,TargetTransformInfo & TTI,DominatorTree & DT,BasicBlock & Entry)589 bool ConstantHoistingPass::runImpl(Function &Fn, TargetTransformInfo &TTI,
590                                    DominatorTree &DT, BasicBlock &Entry) {
591   this->TTI = &TTI;
592   this->DT = &DT;
593   this->Entry = &Entry;
594   // Collect all constant candidates.
595   collectConstantCandidates(Fn);
596 
597   // There are no constant candidates to worry about.
598   if (ConstCandVec.empty())
599     return false;
600 
601   // Combine constants that can be easily materialized with an add from a common
602   // base constant.
603   findBaseConstants();
604 
605   // There are no constants to emit.
606   if (ConstantVec.empty())
607     return false;
608 
609   // Finally hoist the base constant and emit materialization code for dependent
610   // constants.
611   bool MadeChange = emitBaseConstants();
612 
613   // Cleanup dead instructions.
614   deleteDeadCastInst();
615 
616   return MadeChange;
617 }
618 
run(Function & F,FunctionAnalysisManager & AM)619 PreservedAnalyses ConstantHoistingPass::run(Function &F,
620                                             FunctionAnalysisManager &AM) {
621   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
622   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
623   if (!runImpl(F, TTI, DT, F.getEntryBlock()))
624     return PreservedAnalyses::all();
625 
626   // FIXME: This should also 'preserve the CFG'.
627   return PreservedAnalyses::none();
628 }
629