1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "thread.h"
18 
19 #if !defined(__APPLE__)
20 #include <sched.h>
21 #endif
22 
23 #include <pthread.h>
24 #include <signal.h>
25 #include <sys/resource.h>
26 #include <sys/time.h>
27 
28 #include <algorithm>
29 #include <bitset>
30 #include <cerrno>
31 #include <iostream>
32 #include <list>
33 #include <sstream>
34 
35 #include "android-base/stringprintf.h"
36 
37 #include "arch/context.h"
38 #include "art_field-inl.h"
39 #include "art_method-inl.h"
40 #include "base/bit_utils.h"
41 #include "base/memory_tool.h"
42 #include "base/mutex.h"
43 #include "base/timing_logger.h"
44 #include "base/to_str.h"
45 #include "base/systrace.h"
46 #include "class_linker-inl.h"
47 #include "debugger.h"
48 #include "dex_file-inl.h"
49 #include "dex_file_annotations.h"
50 #include "entrypoints/entrypoint_utils.h"
51 #include "entrypoints/quick/quick_alloc_entrypoints.h"
52 #include "gc/accounting/card_table-inl.h"
53 #include "gc/accounting/heap_bitmap-inl.h"
54 #include "gc/allocator/rosalloc.h"
55 #include "gc/heap.h"
56 #include "gc/space/space-inl.h"
57 #include "handle_scope-inl.h"
58 #include "indirect_reference_table-inl.h"
59 #include "java_vm_ext.h"
60 #include "jni_internal.h"
61 #include "mirror/class_loader.h"
62 #include "mirror/class-inl.h"
63 #include "mirror/object_array-inl.h"
64 #include "mirror/stack_trace_element.h"
65 #include "monitor.h"
66 #include "native_stack_dump.h"
67 #include "nth_caller_visitor.h"
68 #include "oat_quick_method_header.h"
69 #include "obj_ptr-inl.h"
70 #include "object_lock.h"
71 #include "quick_exception_handler.h"
72 #include "quick/quick_method_frame_info.h"
73 #include "read_barrier-inl.h"
74 #include "reflection.h"
75 #include "runtime.h"
76 #include "runtime_callbacks.h"
77 #include "scoped_thread_state_change-inl.h"
78 #include "ScopedLocalRef.h"
79 #include "ScopedUtfChars.h"
80 #include "stack.h"
81 #include "stack_map.h"
82 #include "thread_list.h"
83 #include "thread-inl.h"
84 #include "utils.h"
85 #include "verifier/method_verifier.h"
86 #include "verify_object.h"
87 #include "well_known_classes.h"
88 #include "interpreter/interpreter.h"
89 
90 #if ART_USE_FUTEXES
91 #include "linux/futex.h"
92 #include "sys/syscall.h"
93 #ifndef SYS_futex
94 #define SYS_futex __NR_futex
95 #endif
96 #endif  // ART_USE_FUTEXES
97 
98 namespace art {
99 
100 using android::base::StringAppendV;
101 using android::base::StringPrintf;
102 
103 extern "C" NO_RETURN void artDeoptimize(Thread* self);
104 
105 bool Thread::is_started_ = false;
106 pthread_key_t Thread::pthread_key_self_;
107 ConditionVariable* Thread::resume_cond_ = nullptr;
108 const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
109 bool (*Thread::is_sensitive_thread_hook_)() = nullptr;
110 Thread* Thread::jit_sensitive_thread_ = nullptr;
111 
112 static constexpr bool kVerifyImageObjectsMarked = kIsDebugBuild;
113 
114 // For implicit overflow checks we reserve an extra piece of memory at the bottom
115 // of the stack (lowest memory).  The higher portion of the memory
116 // is protected against reads and the lower is available for use while
117 // throwing the StackOverflow exception.
118 constexpr size_t kStackOverflowProtectedSize = 4 * kMemoryToolStackGuardSizeScale * KB;
119 
120 static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
121 
InitCardTable()122 void Thread::InitCardTable() {
123   tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
124 }
125 
UnimplementedEntryPoint()126 static void UnimplementedEntryPoint() {
127   UNIMPLEMENTED(FATAL);
128 }
129 
130 void InitEntryPoints(JniEntryPoints* jpoints, QuickEntryPoints* qpoints);
131 void UpdateReadBarrierEntrypoints(QuickEntryPoints* qpoints, bool is_marking);
132 
SetIsGcMarkingAndUpdateEntrypoints(bool is_marking)133 void Thread::SetIsGcMarkingAndUpdateEntrypoints(bool is_marking) {
134   CHECK(kUseReadBarrier);
135   tls32_.is_gc_marking = is_marking;
136   UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, is_marking);
137   ResetQuickAllocEntryPointsForThread(is_marking);
138 }
139 
InitTlsEntryPoints()140 void Thread::InitTlsEntryPoints() {
141   // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
142   uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.jni_entrypoints);
143   uintptr_t* end = reinterpret_cast<uintptr_t*>(
144       reinterpret_cast<uint8_t*>(&tlsPtr_.quick_entrypoints) + sizeof(tlsPtr_.quick_entrypoints));
145   for (uintptr_t* it = begin; it != end; ++it) {
146     *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
147   }
148   InitEntryPoints(&tlsPtr_.jni_entrypoints, &tlsPtr_.quick_entrypoints);
149 }
150 
ResetQuickAllocEntryPointsForThread(bool is_marking)151 void Thread::ResetQuickAllocEntryPointsForThread(bool is_marking) {
152   if (kUseReadBarrier && kRuntimeISA != kX86_64) {
153     // Allocation entrypoint switching is currently only implemented for X86_64.
154     is_marking = true;
155   }
156   ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints, is_marking);
157 }
158 
159 class DeoptimizationContextRecord {
160  public:
DeoptimizationContextRecord(const JValue & ret_val,bool is_reference,bool from_code,ObjPtr<mirror::Throwable> pending_exception,DeoptimizationContextRecord * link)161   DeoptimizationContextRecord(const JValue& ret_val,
162                               bool is_reference,
163                               bool from_code,
164                               ObjPtr<mirror::Throwable> pending_exception,
165                               DeoptimizationContextRecord* link)
166       : ret_val_(ret_val),
167         is_reference_(is_reference),
168         from_code_(from_code),
169         pending_exception_(pending_exception.Ptr()),
170         link_(link) {}
171 
GetReturnValue() const172   JValue GetReturnValue() const { return ret_val_; }
IsReference() const173   bool IsReference() const { return is_reference_; }
GetFromCode() const174   bool GetFromCode() const { return from_code_; }
GetPendingException() const175   ObjPtr<mirror::Throwable> GetPendingException() const { return pending_exception_; }
GetLink() const176   DeoptimizationContextRecord* GetLink() const { return link_; }
GetReturnValueAsGCRoot()177   mirror::Object** GetReturnValueAsGCRoot() {
178     DCHECK(is_reference_);
179     return ret_val_.GetGCRoot();
180   }
GetPendingExceptionAsGCRoot()181   mirror::Object** GetPendingExceptionAsGCRoot() {
182     return reinterpret_cast<mirror::Object**>(&pending_exception_);
183   }
184 
185  private:
186   // The value returned by the method at the top of the stack before deoptimization.
187   JValue ret_val_;
188 
189   // Indicates whether the returned value is a reference. If so, the GC will visit it.
190   const bool is_reference_;
191 
192   // Whether the context was created from an explicit deoptimization in the code.
193   const bool from_code_;
194 
195   // The exception that was pending before deoptimization (or null if there was no pending
196   // exception).
197   mirror::Throwable* pending_exception_;
198 
199   // A link to the previous DeoptimizationContextRecord.
200   DeoptimizationContextRecord* const link_;
201 
202   DISALLOW_COPY_AND_ASSIGN(DeoptimizationContextRecord);
203 };
204 
205 class StackedShadowFrameRecord {
206  public:
StackedShadowFrameRecord(ShadowFrame * shadow_frame,StackedShadowFrameType type,StackedShadowFrameRecord * link)207   StackedShadowFrameRecord(ShadowFrame* shadow_frame,
208                            StackedShadowFrameType type,
209                            StackedShadowFrameRecord* link)
210       : shadow_frame_(shadow_frame),
211         type_(type),
212         link_(link) {}
213 
GetShadowFrame() const214   ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
GetType() const215   StackedShadowFrameType GetType() const { return type_; }
GetLink() const216   StackedShadowFrameRecord* GetLink() const { return link_; }
217 
218  private:
219   ShadowFrame* const shadow_frame_;
220   const StackedShadowFrameType type_;
221   StackedShadowFrameRecord* const link_;
222 
223   DISALLOW_COPY_AND_ASSIGN(StackedShadowFrameRecord);
224 };
225 
PushDeoptimizationContext(const JValue & return_value,bool is_reference,bool from_code,ObjPtr<mirror::Throwable> exception)226 void Thread::PushDeoptimizationContext(const JValue& return_value,
227                                        bool is_reference,
228                                        bool from_code,
229                                        ObjPtr<mirror::Throwable> exception) {
230   DeoptimizationContextRecord* record = new DeoptimizationContextRecord(
231       return_value,
232       is_reference,
233       from_code,
234       exception,
235       tlsPtr_.deoptimization_context_stack);
236   tlsPtr_.deoptimization_context_stack = record;
237 }
238 
PopDeoptimizationContext(JValue * result,ObjPtr<mirror::Throwable> * exception,bool * from_code)239 void Thread::PopDeoptimizationContext(JValue* result,
240                                       ObjPtr<mirror::Throwable>* exception,
241                                       bool* from_code) {
242   AssertHasDeoptimizationContext();
243   DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
244   tlsPtr_.deoptimization_context_stack = record->GetLink();
245   result->SetJ(record->GetReturnValue().GetJ());
246   *exception = record->GetPendingException();
247   *from_code = record->GetFromCode();
248   delete record;
249 }
250 
AssertHasDeoptimizationContext()251 void Thread::AssertHasDeoptimizationContext() {
252   CHECK(tlsPtr_.deoptimization_context_stack != nullptr)
253       << "No deoptimization context for thread " << *this;
254 }
255 
PushStackedShadowFrame(ShadowFrame * sf,StackedShadowFrameType type)256 void Thread::PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type) {
257   StackedShadowFrameRecord* record = new StackedShadowFrameRecord(
258       sf, type, tlsPtr_.stacked_shadow_frame_record);
259   tlsPtr_.stacked_shadow_frame_record = record;
260 }
261 
PopStackedShadowFrame(StackedShadowFrameType type,bool must_be_present)262 ShadowFrame* Thread::PopStackedShadowFrame(StackedShadowFrameType type, bool must_be_present) {
263   StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
264   if (must_be_present) {
265     DCHECK(record != nullptr);
266   } else {
267     if (record == nullptr || record->GetType() != type) {
268       return nullptr;
269     }
270   }
271   tlsPtr_.stacked_shadow_frame_record = record->GetLink();
272   ShadowFrame* shadow_frame = record->GetShadowFrame();
273   delete record;
274   return shadow_frame;
275 }
276 
277 class FrameIdToShadowFrame {
278  public:
Create(size_t frame_id,ShadowFrame * shadow_frame,FrameIdToShadowFrame * next,size_t num_vregs)279   static FrameIdToShadowFrame* Create(size_t frame_id,
280                                       ShadowFrame* shadow_frame,
281                                       FrameIdToShadowFrame* next,
282                                       size_t num_vregs) {
283     // Append a bool array at the end to keep track of what vregs are updated by the debugger.
284     uint8_t* memory = new uint8_t[sizeof(FrameIdToShadowFrame) + sizeof(bool) * num_vregs];
285     return new (memory) FrameIdToShadowFrame(frame_id, shadow_frame, next);
286   }
287 
Delete(FrameIdToShadowFrame * f)288   static void Delete(FrameIdToShadowFrame* f) {
289     uint8_t* memory = reinterpret_cast<uint8_t*>(f);
290     delete[] memory;
291   }
292 
GetFrameId() const293   size_t GetFrameId() const { return frame_id_; }
GetShadowFrame() const294   ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
GetNext() const295   FrameIdToShadowFrame* GetNext() const { return next_; }
SetNext(FrameIdToShadowFrame * next)296   void SetNext(FrameIdToShadowFrame* next) { next_ = next; }
GetUpdatedVRegFlags()297   bool* GetUpdatedVRegFlags() {
298     return updated_vreg_flags_;
299   }
300 
301  private:
FrameIdToShadowFrame(size_t frame_id,ShadowFrame * shadow_frame,FrameIdToShadowFrame * next)302   FrameIdToShadowFrame(size_t frame_id,
303                        ShadowFrame* shadow_frame,
304                        FrameIdToShadowFrame* next)
305       : frame_id_(frame_id),
306         shadow_frame_(shadow_frame),
307         next_(next) {}
308 
309   const size_t frame_id_;
310   ShadowFrame* const shadow_frame_;
311   FrameIdToShadowFrame* next_;
312   bool updated_vreg_flags_[0];
313 
314   DISALLOW_COPY_AND_ASSIGN(FrameIdToShadowFrame);
315 };
316 
FindFrameIdToShadowFrame(FrameIdToShadowFrame * head,size_t frame_id)317 static FrameIdToShadowFrame* FindFrameIdToShadowFrame(FrameIdToShadowFrame* head,
318                                                       size_t frame_id) {
319   FrameIdToShadowFrame* found = nullptr;
320   for (FrameIdToShadowFrame* record = head; record != nullptr; record = record->GetNext()) {
321     if (record->GetFrameId() == frame_id) {
322       if (kIsDebugBuild) {
323         // Sanity check we have at most one record for this frame.
324         CHECK(found == nullptr) << "Multiple records for the frame " << frame_id;
325         found = record;
326       } else {
327         return record;
328       }
329     }
330   }
331   return found;
332 }
333 
FindDebuggerShadowFrame(size_t frame_id)334 ShadowFrame* Thread::FindDebuggerShadowFrame(size_t frame_id) {
335   FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
336       tlsPtr_.frame_id_to_shadow_frame, frame_id);
337   if (record != nullptr) {
338     return record->GetShadowFrame();
339   }
340   return nullptr;
341 }
342 
343 // Must only be called when FindDebuggerShadowFrame(frame_id) returns non-nullptr.
GetUpdatedVRegFlags(size_t frame_id)344 bool* Thread::GetUpdatedVRegFlags(size_t frame_id) {
345   FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
346       tlsPtr_.frame_id_to_shadow_frame, frame_id);
347   CHECK(record != nullptr);
348   return record->GetUpdatedVRegFlags();
349 }
350 
FindOrCreateDebuggerShadowFrame(size_t frame_id,uint32_t num_vregs,ArtMethod * method,uint32_t dex_pc)351 ShadowFrame* Thread::FindOrCreateDebuggerShadowFrame(size_t frame_id,
352                                                      uint32_t num_vregs,
353                                                      ArtMethod* method,
354                                                      uint32_t dex_pc) {
355   ShadowFrame* shadow_frame = FindDebuggerShadowFrame(frame_id);
356   if (shadow_frame != nullptr) {
357     return shadow_frame;
358   }
359   VLOG(deopt) << "Create pre-deopted ShadowFrame for " << ArtMethod::PrettyMethod(method);
360   shadow_frame = ShadowFrame::CreateDeoptimizedFrame(num_vregs, nullptr, method, dex_pc);
361   FrameIdToShadowFrame* record = FrameIdToShadowFrame::Create(frame_id,
362                                                               shadow_frame,
363                                                               tlsPtr_.frame_id_to_shadow_frame,
364                                                               num_vregs);
365   for (uint32_t i = 0; i < num_vregs; i++) {
366     // Do this to clear all references for root visitors.
367     shadow_frame->SetVRegReference(i, nullptr);
368     // This flag will be changed to true if the debugger modifies the value.
369     record->GetUpdatedVRegFlags()[i] = false;
370   }
371   tlsPtr_.frame_id_to_shadow_frame = record;
372   return shadow_frame;
373 }
374 
RemoveDebuggerShadowFrameMapping(size_t frame_id)375 void Thread::RemoveDebuggerShadowFrameMapping(size_t frame_id) {
376   FrameIdToShadowFrame* head = tlsPtr_.frame_id_to_shadow_frame;
377   if (head->GetFrameId() == frame_id) {
378     tlsPtr_.frame_id_to_shadow_frame = head->GetNext();
379     FrameIdToShadowFrame::Delete(head);
380     return;
381   }
382   FrameIdToShadowFrame* prev = head;
383   for (FrameIdToShadowFrame* record = head->GetNext();
384        record != nullptr;
385        prev = record, record = record->GetNext()) {
386     if (record->GetFrameId() == frame_id) {
387       prev->SetNext(record->GetNext());
388       FrameIdToShadowFrame::Delete(record);
389       return;
390     }
391   }
392   LOG(FATAL) << "No shadow frame for frame " << frame_id;
393   UNREACHABLE();
394 }
395 
InitTid()396 void Thread::InitTid() {
397   tls32_.tid = ::art::GetTid();
398 }
399 
InitAfterFork()400 void Thread::InitAfterFork() {
401   // One thread (us) survived the fork, but we have a new tid so we need to
402   // update the value stashed in this Thread*.
403   InitTid();
404 }
405 
CreateCallback(void * arg)406 void* Thread::CreateCallback(void* arg) {
407   Thread* self = reinterpret_cast<Thread*>(arg);
408   Runtime* runtime = Runtime::Current();
409   if (runtime == nullptr) {
410     LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
411     return nullptr;
412   }
413   {
414     // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
415     //       after self->Init().
416     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
417     // Check that if we got here we cannot be shutting down (as shutdown should never have started
418     // while threads are being born).
419     CHECK(!runtime->IsShuttingDownLocked());
420     // Note: given that the JNIEnv is created in the parent thread, the only failure point here is
421     //       a mess in InitStackHwm. We do not have a reasonable way to recover from that, so abort
422     //       the runtime in such a case. In case this ever changes, we need to make sure here to
423     //       delete the tmp_jni_env, as we own it at this point.
424     CHECK(self->Init(runtime->GetThreadList(), runtime->GetJavaVM(), self->tlsPtr_.tmp_jni_env));
425     self->tlsPtr_.tmp_jni_env = nullptr;
426     Runtime::Current()->EndThreadBirth();
427   }
428   {
429     ScopedObjectAccess soa(self);
430     self->InitStringEntryPoints();
431 
432     // Copy peer into self, deleting global reference when done.
433     CHECK(self->tlsPtr_.jpeer != nullptr);
434     self->tlsPtr_.opeer = soa.Decode<mirror::Object>(self->tlsPtr_.jpeer).Ptr();
435     self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
436     self->tlsPtr_.jpeer = nullptr;
437     self->SetThreadName(self->GetThreadName()->ToModifiedUtf8().c_str());
438 
439     ArtField* priorityField = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority);
440     self->SetNativePriority(priorityField->GetInt(self->tlsPtr_.opeer));
441 
442     runtime->GetRuntimeCallbacks()->ThreadStart(self);
443 
444     // Invoke the 'run' method of our java.lang.Thread.
445     ObjPtr<mirror::Object> receiver = self->tlsPtr_.opeer;
446     jmethodID mid = WellKnownClasses::java_lang_Thread_run;
447     ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(receiver));
448     InvokeVirtualOrInterfaceWithJValues(soa, ref.get(), mid, nullptr);
449   }
450   // Detach and delete self.
451   Runtime::Current()->GetThreadList()->Unregister(self);
452 
453   return nullptr;
454 }
455 
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,ObjPtr<mirror::Object> thread_peer)456 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
457                                   ObjPtr<mirror::Object> thread_peer) {
458   ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer);
459   Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
460   // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
461   // to stop it from going away.
462   if (kIsDebugBuild) {
463     MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
464     if (result != nullptr && !result->IsSuspended()) {
465       Locks::thread_list_lock_->AssertHeld(soa.Self());
466     }
467   }
468   return result;
469 }
470 
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,jobject java_thread)471 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
472                                   jobject java_thread) {
473   return FromManagedThread(soa, soa.Decode<mirror::Object>(java_thread).Ptr());
474 }
475 
FixStackSize(size_t stack_size)476 static size_t FixStackSize(size_t stack_size) {
477   // A stack size of zero means "use the default".
478   if (stack_size == 0) {
479     stack_size = Runtime::Current()->GetDefaultStackSize();
480   }
481 
482   // Dalvik used the bionic pthread default stack size for native threads,
483   // so include that here to support apps that expect large native stacks.
484   stack_size += 1 * MB;
485 
486   // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
487   if (stack_size < PTHREAD_STACK_MIN) {
488     stack_size = PTHREAD_STACK_MIN;
489   }
490 
491   if (Runtime::Current()->ExplicitStackOverflowChecks()) {
492     // It's likely that callers are trying to ensure they have at least a certain amount of
493     // stack space, so we should add our reserved space on top of what they requested, rather
494     // than implicitly take it away from them.
495     stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
496   } else {
497     // If we are going to use implicit stack checks, allocate space for the protected
498     // region at the bottom of the stack.
499     stack_size += Thread::kStackOverflowImplicitCheckSize +
500         GetStackOverflowReservedBytes(kRuntimeISA);
501   }
502 
503   // Some systems require the stack size to be a multiple of the system page size, so round up.
504   stack_size = RoundUp(stack_size, kPageSize);
505 
506   return stack_size;
507 }
508 
509 // Return the nearest page-aligned address below the current stack top.
510 NO_INLINE
FindStackTop()511 static uint8_t* FindStackTop() {
512   return reinterpret_cast<uint8_t*>(
513       AlignDown(__builtin_frame_address(0), kPageSize));
514 }
515 
516 // Install a protected region in the stack.  This is used to trigger a SIGSEGV if a stack
517 // overflow is detected.  It is located right below the stack_begin_.
518 ATTRIBUTE_NO_SANITIZE_ADDRESS
InstallImplicitProtection()519 void Thread::InstallImplicitProtection() {
520   uint8_t* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
521   // Page containing current top of stack.
522   uint8_t* stack_top = FindStackTop();
523 
524   // Try to directly protect the stack.
525   VLOG(threads) << "installing stack protected region at " << std::hex <<
526         static_cast<void*>(pregion) << " to " <<
527         static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
528   if (ProtectStack(/* fatal_on_error */ false)) {
529     // Tell the kernel that we won't be needing these pages any more.
530     // NB. madvise will probably write zeroes into the memory (on linux it does).
531     uint32_t unwanted_size = stack_top - pregion - kPageSize;
532     madvise(pregion, unwanted_size, MADV_DONTNEED);
533     return;
534   }
535 
536   // There is a little complexity here that deserves a special mention.  On some
537   // architectures, the stack is created using a VM_GROWSDOWN flag
538   // to prevent memory being allocated when it's not needed.  This flag makes the
539   // kernel only allocate memory for the stack by growing down in memory.  Because we
540   // want to put an mprotected region far away from that at the stack top, we need
541   // to make sure the pages for the stack are mapped in before we call mprotect.
542   //
543   // The failed mprotect in UnprotectStack is an indication of a thread with VM_GROWSDOWN
544   // with a non-mapped stack (usually only the main thread).
545   //
546   // We map in the stack by reading every page from the stack bottom (highest address)
547   // to the stack top. (We then madvise this away.) This must be done by reading from the
548   // current stack pointer downwards. Any access more than a page below the current SP
549   // might cause a segv.
550   // TODO: This comment may be out of date. It seems possible to speed this up. As
551   //       this is normally done once in the zygote on startup, ignore for now.
552   //
553   // AddressSanitizer does not like the part of this functions that reads every stack page.
554   // Looks a lot like an out-of-bounds access.
555 
556   // (Defensively) first remove the protection on the protected region as will want to read
557   // and write it. Ignore errors.
558   UnprotectStack();
559 
560   VLOG(threads) << "Need to map in stack for thread at " << std::hex <<
561       static_cast<void*>(pregion);
562 
563   // Read every page from the high address to the low.
564   volatile uint8_t dont_optimize_this;
565   UNUSED(dont_optimize_this);
566   for (uint8_t* p = stack_top; p >= pregion; p -= kPageSize) {
567     dont_optimize_this = *p;
568   }
569 
570   VLOG(threads) << "(again) installing stack protected region at " << std::hex <<
571       static_cast<void*>(pregion) << " to " <<
572       static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
573 
574   // Protect the bottom of the stack to prevent read/write to it.
575   ProtectStack(/* fatal_on_error */ true);
576 
577   // Tell the kernel that we won't be needing these pages any more.
578   // NB. madvise will probably write zeroes into the memory (on linux it does).
579   uint32_t unwanted_size = stack_top - pregion - kPageSize;
580   madvise(pregion, unwanted_size, MADV_DONTNEED);
581 }
582 
CreateNativeThread(JNIEnv * env,jobject java_peer,size_t stack_size,bool is_daemon)583 void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
584   CHECK(java_peer != nullptr);
585   Thread* self = static_cast<JNIEnvExt*>(env)->self;
586 
587   if (VLOG_IS_ON(threads)) {
588     ScopedObjectAccess soa(env);
589 
590     ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name);
591     ObjPtr<mirror::String> java_name =
592         f->GetObject(soa.Decode<mirror::Object>(java_peer))->AsString();
593     std::string thread_name;
594     if (java_name != nullptr) {
595       thread_name = java_name->ToModifiedUtf8();
596     } else {
597       thread_name = "(Unnamed)";
598     }
599 
600     VLOG(threads) << "Creating native thread for " << thread_name;
601     self->Dump(LOG_STREAM(INFO));
602   }
603 
604   Runtime* runtime = Runtime::Current();
605 
606   // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
607   bool thread_start_during_shutdown = false;
608   {
609     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
610     if (runtime->IsShuttingDownLocked()) {
611       thread_start_during_shutdown = true;
612     } else {
613       runtime->StartThreadBirth();
614     }
615   }
616   if (thread_start_during_shutdown) {
617     ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
618     env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
619     return;
620   }
621 
622   Thread* child_thread = new Thread(is_daemon);
623   // Use global JNI ref to hold peer live while child thread starts.
624   child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
625   stack_size = FixStackSize(stack_size);
626 
627   // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
628   // assign it.
629   env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
630                     reinterpret_cast<jlong>(child_thread));
631 
632   // Try to allocate a JNIEnvExt for the thread. We do this here as we might be out of memory and
633   // do not have a good way to report this on the child's side.
634   std::string error_msg;
635   std::unique_ptr<JNIEnvExt> child_jni_env_ext(
636       JNIEnvExt::Create(child_thread, Runtime::Current()->GetJavaVM(), &error_msg));
637 
638   int pthread_create_result = 0;
639   if (child_jni_env_ext.get() != nullptr) {
640     pthread_t new_pthread;
641     pthread_attr_t attr;
642     child_thread->tlsPtr_.tmp_jni_env = child_jni_env_ext.get();
643     CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
644     CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED),
645                        "PTHREAD_CREATE_DETACHED");
646     CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
647     pthread_create_result = pthread_create(&new_pthread,
648                                            &attr,
649                                            Thread::CreateCallback,
650                                            child_thread);
651     CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
652 
653     if (pthread_create_result == 0) {
654       // pthread_create started the new thread. The child is now responsible for managing the
655       // JNIEnvExt we created.
656       // Note: we can't check for tmp_jni_env == nullptr, as that would require synchronization
657       //       between the threads.
658       child_jni_env_ext.release();
659       return;
660     }
661   }
662 
663   // Either JNIEnvExt::Create or pthread_create(3) failed, so clean up.
664   {
665     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
666     runtime->EndThreadBirth();
667   }
668   // Manually delete the global reference since Thread::Init will not have been run.
669   env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
670   child_thread->tlsPtr_.jpeer = nullptr;
671   delete child_thread;
672   child_thread = nullptr;
673   // TODO: remove from thread group?
674   env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
675   {
676     std::string msg(child_jni_env_ext.get() == nullptr ?
677         StringPrintf("Could not allocate JNI Env: %s", error_msg.c_str()) :
678         StringPrintf("pthread_create (%s stack) failed: %s",
679                                  PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
680     ScopedObjectAccess soa(env);
681     soa.Self()->ThrowOutOfMemoryError(msg.c_str());
682   }
683 }
684 
Init(ThreadList * thread_list,JavaVMExt * java_vm,JNIEnvExt * jni_env_ext)685 bool Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm, JNIEnvExt* jni_env_ext) {
686   // This function does all the initialization that must be run by the native thread it applies to.
687   // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
688   // we can handshake with the corresponding native thread when it's ready.) Check this native
689   // thread hasn't been through here already...
690   CHECK(Thread::Current() == nullptr);
691 
692   // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
693   // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
694   tlsPtr_.pthread_self = pthread_self();
695   CHECK(is_started_);
696 
697   SetUpAlternateSignalStack();
698   if (!InitStackHwm()) {
699     return false;
700   }
701   InitCpu();
702   InitTlsEntryPoints();
703   RemoveSuspendTrigger();
704   InitCardTable();
705   InitTid();
706   interpreter::InitInterpreterTls(this);
707 
708 #ifdef ART_TARGET_ANDROID
709   __get_tls()[TLS_SLOT_ART_THREAD_SELF] = this;
710 #else
711   CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
712 #endif
713   DCHECK_EQ(Thread::Current(), this);
714 
715   tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
716 
717   if (jni_env_ext != nullptr) {
718     DCHECK_EQ(jni_env_ext->vm, java_vm);
719     DCHECK_EQ(jni_env_ext->self, this);
720     tlsPtr_.jni_env = jni_env_ext;
721   } else {
722     std::string error_msg;
723     tlsPtr_.jni_env = JNIEnvExt::Create(this, java_vm, &error_msg);
724     if (tlsPtr_.jni_env == nullptr) {
725       LOG(ERROR) << "Failed to create JNIEnvExt: " << error_msg;
726       return false;
727     }
728   }
729 
730   thread_list->Register(this);
731   return true;
732 }
733 
734 template <typename PeerAction>
Attach(const char * thread_name,bool as_daemon,PeerAction peer_action)735 Thread* Thread::Attach(const char* thread_name, bool as_daemon, PeerAction peer_action) {
736   Runtime* runtime = Runtime::Current();
737   if (runtime == nullptr) {
738     LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
739     return nullptr;
740   }
741   Thread* self;
742   {
743     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
744     if (runtime->IsShuttingDownLocked()) {
745       LOG(WARNING) << "Thread attaching while runtime is shutting down: " << thread_name;
746       return nullptr;
747     } else {
748       Runtime::Current()->StartThreadBirth();
749       self = new Thread(as_daemon);
750       bool init_success = self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
751       Runtime::Current()->EndThreadBirth();
752       if (!init_success) {
753         delete self;
754         return nullptr;
755       }
756     }
757   }
758 
759   self->InitStringEntryPoints();
760 
761   CHECK_NE(self->GetState(), kRunnable);
762   self->SetState(kNative);
763 
764   // Run the action that is acting on the peer.
765   if (!peer_action(self)) {
766     runtime->GetThreadList()->Unregister(self);
767     // Unregister deletes self, no need to do this here.
768     return nullptr;
769   }
770 
771   if (VLOG_IS_ON(threads)) {
772     if (thread_name != nullptr) {
773       VLOG(threads) << "Attaching thread " << thread_name;
774     } else {
775       VLOG(threads) << "Attaching unnamed thread.";
776     }
777     ScopedObjectAccess soa(self);
778     self->Dump(LOG_STREAM(INFO));
779   }
780 
781   {
782     ScopedObjectAccess soa(self);
783     runtime->GetRuntimeCallbacks()->ThreadStart(self);
784   }
785 
786   return self;
787 }
788 
Attach(const char * thread_name,bool as_daemon,jobject thread_group,bool create_peer)789 Thread* Thread::Attach(const char* thread_name,
790                        bool as_daemon,
791                        jobject thread_group,
792                        bool create_peer) {
793   auto create_peer_action = [&](Thread* self) {
794     // If we're the main thread, ClassLinker won't be created until after we're attached,
795     // so that thread needs a two-stage attach. Regular threads don't need this hack.
796     // In the compiler, all threads need this hack, because no-one's going to be getting
797     // a native peer!
798     if (create_peer) {
799       self->CreatePeer(thread_name, as_daemon, thread_group);
800       if (self->IsExceptionPending()) {
801         // We cannot keep the exception around, as we're deleting self. Try to be helpful and log it.
802         {
803           ScopedObjectAccess soa(self);
804           LOG(ERROR) << "Exception creating thread peer:";
805           LOG(ERROR) << self->GetException()->Dump();
806           self->ClearException();
807         }
808         return false;
809       }
810     } else {
811       // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
812       if (thread_name != nullptr) {
813         self->tlsPtr_.name->assign(thread_name);
814         ::art::SetThreadName(thread_name);
815       } else if (self->GetJniEnv()->check_jni) {
816         LOG(WARNING) << *Thread::Current() << " attached without supplying a name";
817       }
818     }
819     return true;
820   };
821   return Attach(thread_name, as_daemon, create_peer_action);
822 }
823 
Attach(const char * thread_name,bool as_daemon,jobject thread_peer)824 Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_peer) {
825   auto set_peer_action = [&](Thread* self) {
826     // Install the given peer.
827     {
828       DCHECK(self == Thread::Current());
829       ScopedObjectAccess soa(self);
830       self->tlsPtr_.opeer = soa.Decode<mirror::Object>(thread_peer).Ptr();
831     }
832     self->GetJniEnv()->SetLongField(thread_peer,
833                                     WellKnownClasses::java_lang_Thread_nativePeer,
834                                     reinterpret_cast<jlong>(self));
835     return true;
836   };
837   return Attach(thread_name, as_daemon, set_peer_action);
838 }
839 
CreatePeer(const char * name,bool as_daemon,jobject thread_group)840 void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
841   Runtime* runtime = Runtime::Current();
842   CHECK(runtime->IsStarted());
843   JNIEnv* env = tlsPtr_.jni_env;
844 
845   if (thread_group == nullptr) {
846     thread_group = runtime->GetMainThreadGroup();
847   }
848   ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
849   // Add missing null check in case of OOM b/18297817
850   if (name != nullptr && thread_name.get() == nullptr) {
851     CHECK(IsExceptionPending());
852     return;
853   }
854   jint thread_priority = GetNativePriority();
855   jboolean thread_is_daemon = as_daemon;
856 
857   ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
858   if (peer.get() == nullptr) {
859     CHECK(IsExceptionPending());
860     return;
861   }
862   {
863     ScopedObjectAccess soa(this);
864     tlsPtr_.opeer = soa.Decode<mirror::Object>(peer.get()).Ptr();
865   }
866   env->CallNonvirtualVoidMethod(peer.get(),
867                                 WellKnownClasses::java_lang_Thread,
868                                 WellKnownClasses::java_lang_Thread_init,
869                                 thread_group, thread_name.get(), thread_priority, thread_is_daemon);
870   if (IsExceptionPending()) {
871     return;
872   }
873 
874   Thread* self = this;
875   DCHECK_EQ(self, Thread::Current());
876   env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
877                     reinterpret_cast<jlong>(self));
878 
879   ScopedObjectAccess soa(self);
880   StackHandleScope<1> hs(self);
881   MutableHandle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName()));
882   if (peer_thread_name == nullptr) {
883     // The Thread constructor should have set the Thread.name to a
884     // non-null value. However, because we can run without code
885     // available (in the compiler, in tests), we manually assign the
886     // fields the constructor should have set.
887     if (runtime->IsActiveTransaction()) {
888       InitPeer<true>(soa,
889                      tlsPtr_.opeer,
890                      thread_is_daemon,
891                      thread_group,
892                      thread_name.get(),
893                      thread_priority);
894     } else {
895       InitPeer<false>(soa,
896                       tlsPtr_.opeer,
897                       thread_is_daemon,
898                       thread_group,
899                       thread_name.get(),
900                       thread_priority);
901     }
902     peer_thread_name.Assign(GetThreadName());
903   }
904   // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
905   if (peer_thread_name != nullptr) {
906     SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
907   }
908 }
909 
CreateCompileTimePeer(JNIEnv * env,const char * name,bool as_daemon,jobject thread_group)910 jobject Thread::CreateCompileTimePeer(JNIEnv* env,
911                                       const char* name,
912                                       bool as_daemon,
913                                       jobject thread_group) {
914   Runtime* runtime = Runtime::Current();
915   CHECK(!runtime->IsStarted());
916 
917   if (thread_group == nullptr) {
918     thread_group = runtime->GetMainThreadGroup();
919   }
920   ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
921   // Add missing null check in case of OOM b/18297817
922   if (name != nullptr && thread_name.get() == nullptr) {
923     CHECK(Thread::Current()->IsExceptionPending());
924     return nullptr;
925   }
926   jint thread_priority = GetNativePriority();
927   jboolean thread_is_daemon = as_daemon;
928 
929   ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
930   if (peer.get() == nullptr) {
931     CHECK(Thread::Current()->IsExceptionPending());
932     return nullptr;
933   }
934 
935   // We cannot call Thread.init, as it will recursively ask for currentThread.
936 
937   // The Thread constructor should have set the Thread.name to a
938   // non-null value. However, because we can run without code
939   // available (in the compiler, in tests), we manually assign the
940   // fields the constructor should have set.
941   ScopedObjectAccessUnchecked soa(Thread::Current());
942   if (runtime->IsActiveTransaction()) {
943     InitPeer<true>(soa,
944                    soa.Decode<mirror::Object>(peer.get()),
945                    thread_is_daemon,
946                    thread_group,
947                    thread_name.get(),
948                    thread_priority);
949   } else {
950     InitPeer<false>(soa,
951                     soa.Decode<mirror::Object>(peer.get()),
952                     thread_is_daemon,
953                     thread_group,
954                     thread_name.get(),
955                     thread_priority);
956   }
957 
958   return peer.release();
959 }
960 
961 template<bool kTransactionActive>
InitPeer(ScopedObjectAccessAlreadyRunnable & soa,ObjPtr<mirror::Object> peer,jboolean thread_is_daemon,jobject thread_group,jobject thread_name,jint thread_priority)962 void Thread::InitPeer(ScopedObjectAccessAlreadyRunnable& soa,
963                       ObjPtr<mirror::Object> peer,
964                       jboolean thread_is_daemon,
965                       jobject thread_group,
966                       jobject thread_name,
967                       jint thread_priority) {
968   jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon)->
969       SetBoolean<kTransactionActive>(peer, thread_is_daemon);
970   jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)->
971       SetObject<kTransactionActive>(peer, soa.Decode<mirror::Object>(thread_group));
972   jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name)->
973       SetObject<kTransactionActive>(peer, soa.Decode<mirror::Object>(thread_name));
974   jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority)->
975       SetInt<kTransactionActive>(peer, thread_priority);
976 }
977 
SetThreadName(const char * name)978 void Thread::SetThreadName(const char* name) {
979   tlsPtr_.name->assign(name);
980   ::art::SetThreadName(name);
981   Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
982 }
983 
GetThreadStack(pthread_t thread,void ** stack_base,size_t * stack_size,size_t * guard_size)984 static void GetThreadStack(pthread_t thread,
985                            void** stack_base,
986                            size_t* stack_size,
987                            size_t* guard_size) {
988 #if defined(__APPLE__)
989   *stack_size = pthread_get_stacksize_np(thread);
990   void* stack_addr = pthread_get_stackaddr_np(thread);
991 
992   // Check whether stack_addr is the base or end of the stack.
993   // (On Mac OS 10.7, it's the end.)
994   int stack_variable;
995   if (stack_addr > &stack_variable) {
996     *stack_base = reinterpret_cast<uint8_t*>(stack_addr) - *stack_size;
997   } else {
998     *stack_base = stack_addr;
999   }
1000 
1001   // This is wrong, but there doesn't seem to be a way to get the actual value on the Mac.
1002   pthread_attr_t attributes;
1003   CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), __FUNCTION__);
1004   CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
1005   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
1006 #else
1007   pthread_attr_t attributes;
1008   CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__);
1009   CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, stack_base, stack_size), __FUNCTION__);
1010   CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
1011   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
1012 
1013 #if defined(__GLIBC__)
1014   // If we're the main thread, check whether we were run with an unlimited stack. In that case,
1015   // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
1016   // will be broken because we'll die long before we get close to 2GB.
1017   bool is_main_thread = (::art::GetTid() == getpid());
1018   if (is_main_thread) {
1019     rlimit stack_limit;
1020     if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
1021       PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
1022     }
1023     if (stack_limit.rlim_cur == RLIM_INFINITY) {
1024       size_t old_stack_size = *stack_size;
1025 
1026       // Use the kernel default limit as our size, and adjust the base to match.
1027       *stack_size = 8 * MB;
1028       *stack_base = reinterpret_cast<uint8_t*>(*stack_base) + (old_stack_size - *stack_size);
1029 
1030       VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
1031                     << " to " << PrettySize(*stack_size)
1032                     << " with base " << *stack_base;
1033     }
1034   }
1035 #endif
1036 
1037 #endif
1038 }
1039 
InitStackHwm()1040 bool Thread::InitStackHwm() {
1041   void* read_stack_base;
1042   size_t read_stack_size;
1043   size_t read_guard_size;
1044   GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size);
1045 
1046   tlsPtr_.stack_begin = reinterpret_cast<uint8_t*>(read_stack_base);
1047   tlsPtr_.stack_size = read_stack_size;
1048 
1049   // The minimum stack size we can cope with is the overflow reserved bytes (typically
1050   // 8K) + the protected region size (4K) + another page (4K).  Typically this will
1051   // be 8+4+4 = 16K.  The thread won't be able to do much with this stack even the GC takes
1052   // between 8K and 12K.
1053   uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
1054     + 4 * KB;
1055   if (read_stack_size <= min_stack) {
1056     // Note, as we know the stack is small, avoid operations that could use a lot of stack.
1057     LogHelper::LogLineLowStack(__PRETTY_FUNCTION__,
1058                                __LINE__,
1059                                ::android::base::ERROR,
1060                                "Attempt to attach a thread with a too-small stack");
1061     return false;
1062   }
1063 
1064   // This is included in the SIGQUIT output, but it's useful here for thread debugging.
1065   VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)",
1066                                 read_stack_base,
1067                                 PrettySize(read_stack_size).c_str(),
1068                                 PrettySize(read_guard_size).c_str());
1069 
1070   // Set stack_end_ to the bottom of the stack saving space of stack overflows
1071 
1072   Runtime* runtime = Runtime::Current();
1073   bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsAotCompiler();
1074 
1075   // Valgrind on arm doesn't give the right values here. Do not install the guard page, and
1076   // effectively disable stack overflow checks (we'll get segfaults, potentially) by setting
1077   // stack_begin to 0.
1078   const bool valgrind_on_arm =
1079       (kRuntimeISA == kArm || kRuntimeISA == kArm64) &&
1080       kMemoryToolIsValgrind &&
1081       RUNNING_ON_MEMORY_TOOL != 0;
1082   if (valgrind_on_arm) {
1083     tlsPtr_.stack_begin = nullptr;
1084   }
1085 
1086   ResetDefaultStackEnd();
1087 
1088   // Install the protected region if we are doing implicit overflow checks.
1089   if (implicit_stack_check && !valgrind_on_arm) {
1090     // The thread might have protected region at the bottom.  We need
1091     // to install our own region so we need to move the limits
1092     // of the stack to make room for it.
1093 
1094     tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize;
1095     tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize;
1096     tlsPtr_.stack_size -= read_guard_size;
1097 
1098     InstallImplicitProtection();
1099   }
1100 
1101   // Sanity check.
1102   CHECK_GT(FindStackTop(), reinterpret_cast<void*>(tlsPtr_.stack_end));
1103 
1104   return true;
1105 }
1106 
ShortDump(std::ostream & os) const1107 void Thread::ShortDump(std::ostream& os) const {
1108   os << "Thread[";
1109   if (GetThreadId() != 0) {
1110     // If we're in kStarting, we won't have a thin lock id or tid yet.
1111     os << GetThreadId()
1112        << ",tid=" << GetTid() << ',';
1113   }
1114   os << GetState()
1115      << ",Thread*=" << this
1116      << ",peer=" << tlsPtr_.opeer
1117      << ",\"" << (tlsPtr_.name != nullptr ? *tlsPtr_.name : "null") << "\""
1118      << "]";
1119 }
1120 
Dump(std::ostream & os,bool dump_native_stack,BacktraceMap * backtrace_map,bool force_dump_stack) const1121 void Thread::Dump(std::ostream& os, bool dump_native_stack, BacktraceMap* backtrace_map,
1122                   bool force_dump_stack) const {
1123   DumpState(os);
1124   DumpStack(os, dump_native_stack, backtrace_map, force_dump_stack);
1125 }
1126 
GetThreadName() const1127 mirror::String* Thread::GetThreadName() const {
1128   ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name);
1129   if (tlsPtr_.opeer == nullptr) {
1130     return nullptr;
1131   }
1132   ObjPtr<mirror::Object> name = f->GetObject(tlsPtr_.opeer);
1133   return name == nullptr ? nullptr : name->AsString();
1134 }
1135 
GetThreadName(std::string & name) const1136 void Thread::GetThreadName(std::string& name) const {
1137   name.assign(*tlsPtr_.name);
1138 }
1139 
GetCpuMicroTime() const1140 uint64_t Thread::GetCpuMicroTime() const {
1141 #if defined(__linux__)
1142   clockid_t cpu_clock_id;
1143   pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
1144   timespec now;
1145   clock_gettime(cpu_clock_id, &now);
1146   return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
1147 #else  // __APPLE__
1148   UNIMPLEMENTED(WARNING);
1149   return -1;
1150 #endif
1151 }
1152 
1153 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
UnsafeLogFatalForSuspendCount(Thread * self,Thread * thread)1154 static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
1155   LOG(ERROR) << *thread << " suspend count already zero.";
1156   Locks::thread_suspend_count_lock_->Unlock(self);
1157   if (!Locks::mutator_lock_->IsSharedHeld(self)) {
1158     Locks::mutator_lock_->SharedTryLock(self);
1159     if (!Locks::mutator_lock_->IsSharedHeld(self)) {
1160       LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
1161     }
1162   }
1163   if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
1164     Locks::thread_list_lock_->TryLock(self);
1165     if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
1166       LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
1167     }
1168   }
1169   std::ostringstream ss;
1170   Runtime::Current()->GetThreadList()->Dump(ss);
1171   LOG(FATAL) << ss.str();
1172 }
1173 
ModifySuspendCountInternal(Thread * self,int delta,AtomicInteger * suspend_barrier,bool for_debugger)1174 bool Thread::ModifySuspendCountInternal(Thread* self,
1175                                         int delta,
1176                                         AtomicInteger* suspend_barrier,
1177                                         bool for_debugger) {
1178   if (kIsDebugBuild) {
1179     DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
1180           << delta << " " << tls32_.debug_suspend_count << " " << this;
1181     DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
1182     Locks::thread_suspend_count_lock_->AssertHeld(self);
1183     if (this != self && !IsSuspended()) {
1184       Locks::thread_list_lock_->AssertHeld(self);
1185     }
1186   }
1187   if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
1188     UnsafeLogFatalForSuspendCount(self, this);
1189     return false;
1190   }
1191 
1192   if (kUseReadBarrier && delta > 0 && this != self && tlsPtr_.flip_function != nullptr) {
1193     // Force retry of a suspend request if it's in the middle of a thread flip to avoid a
1194     // deadlock. b/31683379.
1195     return false;
1196   }
1197 
1198   uint16_t flags = kSuspendRequest;
1199   if (delta > 0 && suspend_barrier != nullptr) {
1200     uint32_t available_barrier = kMaxSuspendBarriers;
1201     for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1202       if (tlsPtr_.active_suspend_barriers[i] == nullptr) {
1203         available_barrier = i;
1204         break;
1205       }
1206     }
1207     if (available_barrier == kMaxSuspendBarriers) {
1208       // No barrier spaces available, we can't add another.
1209       return false;
1210     }
1211     tlsPtr_.active_suspend_barriers[available_barrier] = suspend_barrier;
1212     flags |= kActiveSuspendBarrier;
1213   }
1214 
1215   tls32_.suspend_count += delta;
1216   if (for_debugger) {
1217     tls32_.debug_suspend_count += delta;
1218   }
1219 
1220   if (tls32_.suspend_count == 0) {
1221     AtomicClearFlag(kSuspendRequest);
1222   } else {
1223     // Two bits might be set simultaneously.
1224     tls32_.state_and_flags.as_atomic_int.FetchAndOrSequentiallyConsistent(flags);
1225     TriggerSuspend();
1226   }
1227   return true;
1228 }
1229 
PassActiveSuspendBarriers(Thread * self)1230 bool Thread::PassActiveSuspendBarriers(Thread* self) {
1231   // Grab the suspend_count lock and copy the current set of
1232   // barriers. Then clear the list and the flag. The ModifySuspendCount
1233   // function requires the lock so we prevent a race between setting
1234   // the kActiveSuspendBarrier flag and clearing it.
1235   AtomicInteger* pass_barriers[kMaxSuspendBarriers];
1236   {
1237     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1238     if (!ReadFlag(kActiveSuspendBarrier)) {
1239       // quick exit test: the barriers have already been claimed - this is
1240       // possible as there may be a race to claim and it doesn't matter
1241       // who wins.
1242       // All of the callers of this function (except the SuspendAllInternal)
1243       // will first test the kActiveSuspendBarrier flag without lock. Here
1244       // double-check whether the barrier has been passed with the
1245       // suspend_count lock.
1246       return false;
1247     }
1248 
1249     for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1250       pass_barriers[i] = tlsPtr_.active_suspend_barriers[i];
1251       tlsPtr_.active_suspend_barriers[i] = nullptr;
1252     }
1253     AtomicClearFlag(kActiveSuspendBarrier);
1254   }
1255 
1256   uint32_t barrier_count = 0;
1257   for (uint32_t i = 0; i < kMaxSuspendBarriers; i++) {
1258     AtomicInteger* pending_threads = pass_barriers[i];
1259     if (pending_threads != nullptr) {
1260       bool done = false;
1261       do {
1262         int32_t cur_val = pending_threads->LoadRelaxed();
1263         CHECK_GT(cur_val, 0) << "Unexpected value for PassActiveSuspendBarriers(): " << cur_val;
1264         // Reduce value by 1.
1265         done = pending_threads->CompareExchangeWeakRelaxed(cur_val, cur_val - 1);
1266 #if ART_USE_FUTEXES
1267         if (done && (cur_val - 1) == 0) {  // Weak CAS may fail spuriously.
1268           futex(pending_threads->Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
1269         }
1270 #endif
1271       } while (!done);
1272       ++barrier_count;
1273     }
1274   }
1275   CHECK_GT(barrier_count, 0U);
1276   return true;
1277 }
1278 
ClearSuspendBarrier(AtomicInteger * target)1279 void Thread::ClearSuspendBarrier(AtomicInteger* target) {
1280   CHECK(ReadFlag(kActiveSuspendBarrier));
1281   bool clear_flag = true;
1282   for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1283     AtomicInteger* ptr = tlsPtr_.active_suspend_barriers[i];
1284     if (ptr == target) {
1285       tlsPtr_.active_suspend_barriers[i] = nullptr;
1286     } else if (ptr != nullptr) {
1287       clear_flag = false;
1288     }
1289   }
1290   if (LIKELY(clear_flag)) {
1291     AtomicClearFlag(kActiveSuspendBarrier);
1292   }
1293 }
1294 
RunCheckpointFunction()1295 void Thread::RunCheckpointFunction() {
1296   bool done = false;
1297   do {
1298     // Grab the suspend_count lock and copy the checkpoints one by one. When the last checkpoint is
1299     // copied, clear the list and the flag. The RequestCheckpoint function will also grab this lock
1300     // to prevent a race between setting the kCheckpointRequest flag and clearing it.
1301     Closure* checkpoint = nullptr;
1302     {
1303       MutexLock mu(this, *Locks::thread_suspend_count_lock_);
1304       if (tlsPtr_.checkpoint_function != nullptr) {
1305         checkpoint = tlsPtr_.checkpoint_function;
1306         if (!checkpoint_overflow_.empty()) {
1307           // Overflow list not empty, copy the first one out and continue.
1308           tlsPtr_.checkpoint_function = checkpoint_overflow_.front();
1309           checkpoint_overflow_.pop_front();
1310         } else {
1311           // No overflow checkpoints, this means that we are on the last pending checkpoint.
1312           tlsPtr_.checkpoint_function = nullptr;
1313           AtomicClearFlag(kCheckpointRequest);
1314           done = true;
1315         }
1316       } else {
1317         LOG(FATAL) << "Checkpoint flag set without pending checkpoint";
1318       }
1319     }
1320 
1321     // Outside the lock, run the checkpoint functions that we collected.
1322     ScopedTrace trace("Run checkpoint function");
1323     DCHECK(checkpoint != nullptr);
1324     checkpoint->Run(this);
1325   } while (!done);
1326 }
1327 
RunEmptyCheckpoint()1328 void Thread::RunEmptyCheckpoint() {
1329   DCHECK_EQ(Thread::Current(), this);
1330   AtomicClearFlag(kEmptyCheckpointRequest);
1331   Runtime::Current()->GetThreadList()->EmptyCheckpointBarrier()->Pass(this);
1332 }
1333 
RequestCheckpoint(Closure * function)1334 bool Thread::RequestCheckpoint(Closure* function) {
1335   union StateAndFlags old_state_and_flags;
1336   old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
1337   if (old_state_and_flags.as_struct.state != kRunnable) {
1338     return false;  // Fail, thread is suspended and so can't run a checkpoint.
1339   }
1340 
1341   // We must be runnable to request a checkpoint.
1342   DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
1343   union StateAndFlags new_state_and_flags;
1344   new_state_and_flags.as_int = old_state_and_flags.as_int;
1345   new_state_and_flags.as_struct.flags |= kCheckpointRequest;
1346   bool success = tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(
1347       old_state_and_flags.as_int, new_state_and_flags.as_int);
1348   if (success) {
1349     // Succeeded setting checkpoint flag, now insert the actual checkpoint.
1350     if (tlsPtr_.checkpoint_function == nullptr) {
1351       tlsPtr_.checkpoint_function = function;
1352     } else {
1353       checkpoint_overflow_.push_back(function);
1354     }
1355     CHECK_EQ(ReadFlag(kCheckpointRequest), true);
1356     TriggerSuspend();
1357   }
1358   return success;
1359 }
1360 
RequestEmptyCheckpoint()1361 bool Thread::RequestEmptyCheckpoint() {
1362   union StateAndFlags old_state_and_flags;
1363   old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
1364   if (old_state_and_flags.as_struct.state != kRunnable) {
1365     // If it's not runnable, we don't need to do anything because it won't be in the middle of a
1366     // heap access (eg. the read barrier).
1367     return false;
1368   }
1369 
1370   // We must be runnable to request a checkpoint.
1371   DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
1372   union StateAndFlags new_state_and_flags;
1373   new_state_and_flags.as_int = old_state_and_flags.as_int;
1374   new_state_and_flags.as_struct.flags |= kEmptyCheckpointRequest;
1375   bool success = tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(
1376       old_state_and_flags.as_int, new_state_and_flags.as_int);
1377   if (success) {
1378     TriggerSuspend();
1379   }
1380   return success;
1381 }
1382 
1383 class BarrierClosure : public Closure {
1384  public:
BarrierClosure(Closure * wrapped)1385   explicit BarrierClosure(Closure* wrapped) : wrapped_(wrapped), barrier_(0) {}
1386 
Run(Thread * self)1387   void Run(Thread* self) OVERRIDE {
1388     wrapped_->Run(self);
1389     barrier_.Pass(self);
1390   }
1391 
Wait(Thread * self)1392   void Wait(Thread* self) {
1393     barrier_.Increment(self, 1);
1394   }
1395 
1396  private:
1397   Closure* wrapped_;
1398   Barrier barrier_;
1399 };
1400 
RequestSynchronousCheckpoint(Closure * function)1401 void Thread::RequestSynchronousCheckpoint(Closure* function) {
1402   if (this == Thread::Current()) {
1403     // Asked to run on this thread. Just run.
1404     function->Run(this);
1405     return;
1406   }
1407   Thread* self = Thread::Current();
1408 
1409   // The current thread is not this thread.
1410 
1411   for (;;) {
1412     // If this thread is runnable, try to schedule a checkpoint. Do some gymnastics to not hold the
1413     // suspend-count lock for too long.
1414     if (GetState() == ThreadState::kRunnable) {
1415       BarrierClosure barrier_closure(function);
1416       bool installed = false;
1417       {
1418         MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1419         installed = RequestCheckpoint(&barrier_closure);
1420       }
1421       if (installed) {
1422         barrier_closure.Wait(self);
1423         return;
1424       }
1425       // Fall-through.
1426     }
1427 
1428     // This thread is not runnable, make sure we stay suspended, then run the checkpoint.
1429     // Note: ModifySuspendCountInternal also expects the thread_list_lock to be held in
1430     //       certain situations.
1431     {
1432       MutexLock mu(self, *Locks::thread_list_lock_);
1433       MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1434 
1435       if (!ModifySuspendCount(self, +1, nullptr, false)) {
1436         // Just retry the loop.
1437         sched_yield();
1438         continue;
1439       }
1440     }
1441 
1442     while (GetState() == ThreadState::kRunnable) {
1443       // We became runnable again. Wait till the suspend triggered in ModifySuspendCount
1444       // moves us to suspended.
1445       sched_yield();
1446     }
1447 
1448     function->Run(this);
1449 
1450     {
1451       MutexLock mu(self, *Locks::thread_list_lock_);
1452       MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1453 
1454       DCHECK_NE(GetState(), ThreadState::kRunnable);
1455       bool updated = ModifySuspendCount(self, -1, nullptr, false);
1456       DCHECK(updated);
1457     }
1458 
1459     return;  // We're done, break out of the loop.
1460   }
1461 }
1462 
GetFlipFunction()1463 Closure* Thread::GetFlipFunction() {
1464   Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
1465   Closure* func;
1466   do {
1467     func = atomic_func->LoadRelaxed();
1468     if (func == nullptr) {
1469       return nullptr;
1470     }
1471   } while (!atomic_func->CompareExchangeWeakSequentiallyConsistent(func, nullptr));
1472   DCHECK(func != nullptr);
1473   return func;
1474 }
1475 
SetFlipFunction(Closure * function)1476 void Thread::SetFlipFunction(Closure* function) {
1477   CHECK(function != nullptr);
1478   Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
1479   atomic_func->StoreSequentiallyConsistent(function);
1480 }
1481 
FullSuspendCheck()1482 void Thread::FullSuspendCheck() {
1483   ScopedTrace trace(__FUNCTION__);
1484   VLOG(threads) << this << " self-suspending";
1485   // Make thread appear suspended to other threads, release mutator_lock_.
1486   // Transition to suspended and back to runnable, re-acquire share on mutator_lock_.
1487   ScopedThreadSuspension(this, kSuspended);
1488   VLOG(threads) << this << " self-reviving";
1489 }
1490 
GetSchedulerGroupName(pid_t tid)1491 static std::string GetSchedulerGroupName(pid_t tid) {
1492   // /proc/<pid>/cgroup looks like this:
1493   // 2:devices:/
1494   // 1:cpuacct,cpu:/
1495   // We want the third field from the line whose second field contains the "cpu" token.
1496   std::string cgroup_file;
1497   if (!ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid), &cgroup_file)) {
1498     return "";
1499   }
1500   std::vector<std::string> cgroup_lines;
1501   Split(cgroup_file, '\n', &cgroup_lines);
1502   for (size_t i = 0; i < cgroup_lines.size(); ++i) {
1503     std::vector<std::string> cgroup_fields;
1504     Split(cgroup_lines[i], ':', &cgroup_fields);
1505     std::vector<std::string> cgroups;
1506     Split(cgroup_fields[1], ',', &cgroups);
1507     for (size_t j = 0; j < cgroups.size(); ++j) {
1508       if (cgroups[j] == "cpu") {
1509         return cgroup_fields[2].substr(1);  // Skip the leading slash.
1510       }
1511     }
1512   }
1513   return "";
1514 }
1515 
1516 
DumpState(std::ostream & os,const Thread * thread,pid_t tid)1517 void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
1518   std::string group_name;
1519   int priority;
1520   bool is_daemon = false;
1521   Thread* self = Thread::Current();
1522 
1523   // If flip_function is not null, it means we have run a checkpoint
1524   // before the thread wakes up to execute the flip function and the
1525   // thread roots haven't been forwarded.  So the following access to
1526   // the roots (opeer or methods in the frames) would be bad. Run it
1527   // here. TODO: clean up.
1528   if (thread != nullptr) {
1529     ScopedObjectAccessUnchecked soa(self);
1530     Thread* this_thread = const_cast<Thread*>(thread);
1531     Closure* flip_func = this_thread->GetFlipFunction();
1532     if (flip_func != nullptr) {
1533       flip_func->Run(this_thread);
1534     }
1535   }
1536 
1537   // Don't do this if we are aborting since the GC may have all the threads suspended. This will
1538   // cause ScopedObjectAccessUnchecked to deadlock.
1539   if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
1540     ScopedObjectAccessUnchecked soa(self);
1541     priority = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority)
1542         ->GetInt(thread->tlsPtr_.opeer);
1543     is_daemon = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon)
1544         ->GetBoolean(thread->tlsPtr_.opeer);
1545 
1546     ObjPtr<mirror::Object> thread_group =
1547         jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)
1548             ->GetObject(thread->tlsPtr_.opeer);
1549 
1550     if (thread_group != nullptr) {
1551       ArtField* group_name_field =
1552           jni::DecodeArtField(WellKnownClasses::java_lang_ThreadGroup_name);
1553       ObjPtr<mirror::String> group_name_string =
1554           group_name_field->GetObject(thread_group)->AsString();
1555       group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
1556     }
1557   } else {
1558     priority = GetNativePriority();
1559   }
1560 
1561   std::string scheduler_group_name(GetSchedulerGroupName(tid));
1562   if (scheduler_group_name.empty()) {
1563     scheduler_group_name = "default";
1564   }
1565 
1566   if (thread != nullptr) {
1567     os << '"' << *thread->tlsPtr_.name << '"';
1568     if (is_daemon) {
1569       os << " daemon";
1570     }
1571     os << " prio=" << priority
1572        << " tid=" << thread->GetThreadId()
1573        << " " << thread->GetState();
1574     if (thread->IsStillStarting()) {
1575       os << " (still starting up)";
1576     }
1577     os << "\n";
1578   } else {
1579     os << '"' << ::art::GetThreadName(tid) << '"'
1580        << " prio=" << priority
1581        << " (not attached)\n";
1582   }
1583 
1584   if (thread != nullptr) {
1585     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1586     os << "  | group=\"" << group_name << "\""
1587        << " sCount=" << thread->tls32_.suspend_count
1588        << " dsCount=" << thread->tls32_.debug_suspend_count
1589        << " flags=" << thread->tls32_.state_and_flags.as_struct.flags
1590        << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
1591        << " self=" << reinterpret_cast<const void*>(thread) << "\n";
1592   }
1593 
1594   os << "  | sysTid=" << tid
1595      << " nice=" << getpriority(PRIO_PROCESS, tid)
1596      << " cgrp=" << scheduler_group_name;
1597   if (thread != nullptr) {
1598     int policy;
1599     sched_param sp;
1600 #if !defined(__APPLE__)
1601     // b/36445592 Don't use pthread_getschedparam since pthread may have exited.
1602     policy = sched_getscheduler(tid);
1603     if (policy == -1) {
1604       PLOG(WARNING) << "sched_getscheduler(" << tid << ")";
1605     }
1606     int sched_getparam_result = sched_getparam(tid, &sp);
1607     if (sched_getparam_result == -1) {
1608       PLOG(WARNING) << "sched_getparam(" << tid << ", &sp)";
1609       sp.sched_priority = -1;
1610     }
1611 #else
1612     CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
1613                        __FUNCTION__);
1614 #endif
1615     os << " sched=" << policy << "/" << sp.sched_priority
1616        << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
1617   }
1618   os << "\n";
1619 
1620   // Grab the scheduler stats for this thread.
1621   std::string scheduler_stats;
1622   if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
1623     scheduler_stats.resize(scheduler_stats.size() - 1);  // Lose the trailing '\n'.
1624   } else {
1625     scheduler_stats = "0 0 0";
1626   }
1627 
1628   char native_thread_state = '?';
1629   int utime = 0;
1630   int stime = 0;
1631   int task_cpu = 0;
1632   GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
1633 
1634   os << "  | state=" << native_thread_state
1635      << " schedstat=( " << scheduler_stats << " )"
1636      << " utm=" << utime
1637      << " stm=" << stime
1638      << " core=" << task_cpu
1639      << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
1640   if (thread != nullptr) {
1641     os << "  | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
1642         << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
1643         << PrettySize(thread->tlsPtr_.stack_size) << "\n";
1644     // Dump the held mutexes.
1645     os << "  | held mutexes=";
1646     for (size_t i = 0; i < kLockLevelCount; ++i) {
1647       if (i != kMonitorLock) {
1648         BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
1649         if (mutex != nullptr) {
1650           os << " \"" << mutex->GetName() << "\"";
1651           if (mutex->IsReaderWriterMutex()) {
1652             ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
1653             if (rw_mutex->GetExclusiveOwnerTid() == static_cast<uint64_t>(tid)) {
1654               os << "(exclusive held)";
1655             } else {
1656               os << "(shared held)";
1657             }
1658           }
1659         }
1660       }
1661     }
1662     os << "\n";
1663   }
1664 }
1665 
DumpState(std::ostream & os) const1666 void Thread::DumpState(std::ostream& os) const {
1667   Thread::DumpState(os, this, GetTid());
1668 }
1669 
1670 struct StackDumpVisitor : public StackVisitor {
StackDumpVisitorart::StackDumpVisitor1671   StackDumpVisitor(std::ostream& os_in,
1672                    Thread* thread_in,
1673                    Context* context,
1674                    bool can_allocate_in,
1675                    bool check_suspended = true,
1676                    bool dump_locks_in = true)
1677       REQUIRES_SHARED(Locks::mutator_lock_)
1678       : StackVisitor(thread_in,
1679                      context,
1680                      StackVisitor::StackWalkKind::kIncludeInlinedFrames,
1681                      check_suspended),
1682         os(os_in),
1683         can_allocate(can_allocate_in),
1684         last_method(nullptr),
1685         last_line_number(0),
1686         repetition_count(0),
1687         frame_count(0),
1688         dump_locks(dump_locks_in) {}
1689 
~StackDumpVisitorart::StackDumpVisitor1690   virtual ~StackDumpVisitor() {
1691     if (frame_count == 0) {
1692       os << "  (no managed stack frames)\n";
1693     }
1694   }
1695 
VisitFrameart::StackDumpVisitor1696   bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
1697     ArtMethod* m = GetMethod();
1698     if (m->IsRuntimeMethod()) {
1699       return true;
1700     }
1701     m = m->GetInterfaceMethodIfProxy(kRuntimePointerSize);
1702     const int kMaxRepetition = 3;
1703     ObjPtr<mirror::Class> c = m->GetDeclaringClass();
1704     ObjPtr<mirror::DexCache> dex_cache = c->GetDexCache();
1705     int line_number = -1;
1706     if (dex_cache != nullptr) {  // be tolerant of bad input
1707       const DexFile* dex_file = dex_cache->GetDexFile();
1708       line_number = annotations::GetLineNumFromPC(dex_file, m, GetDexPc(false));
1709     }
1710     if (line_number == last_line_number && last_method == m) {
1711       ++repetition_count;
1712     } else {
1713       if (repetition_count >= kMaxRepetition) {
1714         os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
1715       }
1716       repetition_count = 0;
1717       last_line_number = line_number;
1718       last_method = m;
1719     }
1720     if (repetition_count < kMaxRepetition) {
1721       os << "  at " << m->PrettyMethod(false);
1722       if (m->IsNative()) {
1723         os << "(Native method)";
1724       } else {
1725         const char* source_file(m->GetDeclaringClassSourceFile());
1726         os << "(" << (source_file != nullptr ? source_file : "unavailable")
1727            << ":" << line_number << ")";
1728       }
1729       os << "\n";
1730       if (frame_count == 0) {
1731         Monitor::DescribeWait(os, GetThread());
1732       }
1733       if (can_allocate && dump_locks) {
1734         // Visit locks, but do not abort on errors. This would trigger a nested abort.
1735         // Skip visiting locks if dump_locks is false as it would cause a bad_mutexes_held in
1736         // RegTypeCache::RegTypeCache due to thread_list_lock.
1737         Monitor::VisitLocks(this, DumpLockedObject, &os, false);
1738       }
1739     }
1740 
1741     ++frame_count;
1742     return true;
1743   }
1744 
DumpLockedObjectart::StackDumpVisitor1745   static void DumpLockedObject(mirror::Object* o, void* context)
1746       REQUIRES_SHARED(Locks::mutator_lock_) {
1747     std::ostream& os = *reinterpret_cast<std::ostream*>(context);
1748     os << "  - locked ";
1749     if (o == nullptr) {
1750       os << "an unknown object";
1751     } else {
1752       if (kUseReadBarrier && Thread::Current()->GetIsGcMarking()) {
1753         // We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack
1754         // may have not been flipped yet and "o" may be a from-space (stale) ref, in which case the
1755         // IdentityHashCode call below will crash. So explicitly mark/forward it here.
1756         o = ReadBarrier::Mark(o);
1757       }
1758       if ((o->GetLockWord(false).GetState() == LockWord::kThinLocked) &&
1759           Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
1760         // Getting the identity hashcode here would result in lock inflation and suspension of the
1761         // current thread, which isn't safe if this is the only runnable thread.
1762         os << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast<intptr_t>(o),
1763                            o->PrettyTypeOf().c_str());
1764       } else {
1765         // IdentityHashCode can cause thread suspension, which would invalidate o if it moved. So
1766         // we get the pretty type beofre we call IdentityHashCode.
1767         const std::string pretty_type(o->PrettyTypeOf());
1768         os << StringPrintf("<0x%08x> (a %s)", o->IdentityHashCode(), pretty_type.c_str());
1769       }
1770     }
1771     os << "\n";
1772   }
1773 
1774   std::ostream& os;
1775   const bool can_allocate;
1776   ArtMethod* last_method;
1777   int last_line_number;
1778   int repetition_count;
1779   int frame_count;
1780   const bool dump_locks;
1781 };
1782 
ShouldShowNativeStack(const Thread * thread)1783 static bool ShouldShowNativeStack(const Thread* thread)
1784     REQUIRES_SHARED(Locks::mutator_lock_) {
1785   ThreadState state = thread->GetState();
1786 
1787   // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
1788   if (state > kWaiting && state < kStarting) {
1789     return true;
1790   }
1791 
1792   // In an Object.wait variant or Thread.sleep? That's not interesting.
1793   if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
1794     return false;
1795   }
1796 
1797   // Threads with no managed stack frames should be shown.
1798   const ManagedStack* managed_stack = thread->GetManagedStack();
1799   if (managed_stack == nullptr || (managed_stack->GetTopQuickFrame() == nullptr &&
1800       managed_stack->GetTopShadowFrame() == nullptr)) {
1801     return true;
1802   }
1803 
1804   // In some other native method? That's interesting.
1805   // We don't just check kNative because native methods will be in state kSuspended if they're
1806   // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
1807   // thread-startup states if it's early enough in their life cycle (http://b/7432159).
1808   ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
1809   return current_method != nullptr && current_method->IsNative();
1810 }
1811 
DumpJavaStack(std::ostream & os,bool check_suspended,bool dump_locks) const1812 void Thread::DumpJavaStack(std::ostream& os, bool check_suspended, bool dump_locks) const {
1813   // If flip_function is not null, it means we have run a checkpoint
1814   // before the thread wakes up to execute the flip function and the
1815   // thread roots haven't been forwarded.  So the following access to
1816   // the roots (locks or methods in the frames) would be bad. Run it
1817   // here. TODO: clean up.
1818   {
1819     Thread* this_thread = const_cast<Thread*>(this);
1820     Closure* flip_func = this_thread->GetFlipFunction();
1821     if (flip_func != nullptr) {
1822       flip_func->Run(this_thread);
1823     }
1824   }
1825 
1826   // Dumping the Java stack involves the verifier for locks. The verifier operates under the
1827   // assumption that there is no exception pending on entry. Thus, stash any pending exception.
1828   // Thread::Current() instead of this in case a thread is dumping the stack of another suspended
1829   // thread.
1830   StackHandleScope<1> scope(Thread::Current());
1831   Handle<mirror::Throwable> exc;
1832   bool have_exception = false;
1833   if (IsExceptionPending()) {
1834     exc = scope.NewHandle(GetException());
1835     const_cast<Thread*>(this)->ClearException();
1836     have_exception = true;
1837   }
1838 
1839   std::unique_ptr<Context> context(Context::Create());
1840   StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
1841                           !tls32_.throwing_OutOfMemoryError, check_suspended, dump_locks);
1842   dumper.WalkStack();
1843 
1844   if (have_exception) {
1845     const_cast<Thread*>(this)->SetException(exc.Get());
1846   }
1847 }
1848 
DumpStack(std::ostream & os,bool dump_native_stack,BacktraceMap * backtrace_map,bool force_dump_stack) const1849 void Thread::DumpStack(std::ostream& os,
1850                        bool dump_native_stack,
1851                        BacktraceMap* backtrace_map,
1852                        bool force_dump_stack) const {
1853   // TODO: we call this code when dying but may not have suspended the thread ourself. The
1854   //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
1855   //       the race with the thread_suspend_count_lock_).
1856   bool dump_for_abort = (gAborting > 0);
1857   bool safe_to_dump = (this == Thread::Current() || IsSuspended());
1858   if (!kIsDebugBuild) {
1859     // We always want to dump the stack for an abort, however, there is no point dumping another
1860     // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
1861     safe_to_dump = (safe_to_dump || dump_for_abort);
1862   }
1863   if (safe_to_dump || force_dump_stack) {
1864     // If we're currently in native code, dump that stack before dumping the managed stack.
1865     if (dump_native_stack && (dump_for_abort || force_dump_stack || ShouldShowNativeStack(this))) {
1866       DumpKernelStack(os, GetTid(), "  kernel: ", false);
1867       ArtMethod* method =
1868           GetCurrentMethod(nullptr,
1869                            /*check_suspended*/ !force_dump_stack,
1870                            /*abort_on_error*/ !(dump_for_abort || force_dump_stack));
1871       DumpNativeStack(os, GetTid(), backtrace_map, "  native: ", method);
1872     }
1873     DumpJavaStack(os,
1874                   /*check_suspended*/ !force_dump_stack,
1875                   /*dump_locks*/ !force_dump_stack);
1876   } else {
1877     os << "Not able to dump stack of thread that isn't suspended";
1878   }
1879 }
1880 
ThreadExitCallback(void * arg)1881 void Thread::ThreadExitCallback(void* arg) {
1882   Thread* self = reinterpret_cast<Thread*>(arg);
1883   if (self->tls32_.thread_exit_check_count == 0) {
1884     LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
1885         "going to use a pthread_key_create destructor?): " << *self;
1886     CHECK(is_started_);
1887 #ifdef ART_TARGET_ANDROID
1888     __get_tls()[TLS_SLOT_ART_THREAD_SELF] = self;
1889 #else
1890     CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
1891 #endif
1892     self->tls32_.thread_exit_check_count = 1;
1893   } else {
1894     LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
1895   }
1896 }
1897 
Startup()1898 void Thread::Startup() {
1899   CHECK(!is_started_);
1900   is_started_ = true;
1901   {
1902     // MutexLock to keep annotalysis happy.
1903     //
1904     // Note we use null for the thread because Thread::Current can
1905     // return garbage since (is_started_ == true) and
1906     // Thread::pthread_key_self_ is not yet initialized.
1907     // This was seen on glibc.
1908     MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
1909     resume_cond_ = new ConditionVariable("Thread resumption condition variable",
1910                                          *Locks::thread_suspend_count_lock_);
1911   }
1912 
1913   // Allocate a TLS slot.
1914   CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback),
1915                      "self key");
1916 
1917   // Double-check the TLS slot allocation.
1918   if (pthread_getspecific(pthread_key_self_) != nullptr) {
1919     LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
1920   }
1921 }
1922 
FinishStartup()1923 void Thread::FinishStartup() {
1924   Runtime* runtime = Runtime::Current();
1925   CHECK(runtime->IsStarted());
1926 
1927   // Finish attaching the main thread.
1928   ScopedObjectAccess soa(Thread::Current());
1929   Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
1930   Thread::Current()->AssertNoPendingException();
1931 
1932   Runtime::Current()->GetClassLinker()->RunRootClinits();
1933 
1934   // The thread counts as started from now on. We need to add it to the ThreadGroup. For regular
1935   // threads, this is done in Thread.start() on the Java side.
1936   {
1937     // This is only ever done once. There's no benefit in caching the method.
1938     jmethodID thread_group_add = soa.Env()->GetMethodID(WellKnownClasses::java_lang_ThreadGroup,
1939                                                         "add",
1940                                                         "(Ljava/lang/Thread;)V");
1941     CHECK(thread_group_add != nullptr);
1942     ScopedLocalRef<jobject> thread_jobject(
1943         soa.Env(), soa.Env()->AddLocalReference<jobject>(Thread::Current()->GetPeer()));
1944     soa.Env()->CallNonvirtualVoidMethod(runtime->GetMainThreadGroup(),
1945                                         WellKnownClasses::java_lang_ThreadGroup,
1946                                         thread_group_add,
1947                                         thread_jobject.get());
1948     Thread::Current()->AssertNoPendingException();
1949   }
1950 }
1951 
Shutdown()1952 void Thread::Shutdown() {
1953   CHECK(is_started_);
1954   is_started_ = false;
1955   CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
1956   MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
1957   if (resume_cond_ != nullptr) {
1958     delete resume_cond_;
1959     resume_cond_ = nullptr;
1960   }
1961 }
1962 
Thread(bool daemon)1963 Thread::Thread(bool daemon)
1964     : tls32_(daemon),
1965       wait_monitor_(nullptr),
1966       interrupted_(false),
1967       custom_tls_(nullptr),
1968       can_call_into_java_(true) {
1969   wait_mutex_ = new Mutex("a thread wait mutex");
1970   wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
1971   tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
1972   tlsPtr_.name = new std::string(kThreadNameDuringStartup);
1973 
1974   static_assert((sizeof(Thread) % 4) == 0U,
1975                 "art::Thread has a size which is not a multiple of 4.");
1976   tls32_.state_and_flags.as_struct.flags = 0;
1977   tls32_.state_and_flags.as_struct.state = kNative;
1978   memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
1979   std::fill(tlsPtr_.rosalloc_runs,
1980             tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBracketsInThread,
1981             gc::allocator::RosAlloc::GetDedicatedFullRun());
1982   tlsPtr_.checkpoint_function = nullptr;
1983   for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1984     tlsPtr_.active_suspend_barriers[i] = nullptr;
1985   }
1986   tlsPtr_.flip_function = nullptr;
1987   tlsPtr_.thread_local_mark_stack = nullptr;
1988   tls32_.is_transitioning_to_runnable = false;
1989 }
1990 
IsStillStarting() const1991 bool Thread::IsStillStarting() const {
1992   // You might think you can check whether the state is kStarting, but for much of thread startup,
1993   // the thread is in kNative; it might also be in kVmWait.
1994   // You might think you can check whether the peer is null, but the peer is actually created and
1995   // assigned fairly early on, and needs to be.
1996   // It turns out that the last thing to change is the thread name; that's a good proxy for "has
1997   // this thread _ever_ entered kRunnable".
1998   return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
1999       (*tlsPtr_.name == kThreadNameDuringStartup);
2000 }
2001 
AssertPendingException() const2002 void Thread::AssertPendingException() const {
2003   CHECK(IsExceptionPending()) << "Pending exception expected.";
2004 }
2005 
AssertPendingOOMException() const2006 void Thread::AssertPendingOOMException() const {
2007   AssertPendingException();
2008   auto* e = GetException();
2009   CHECK_EQ(e->GetClass(), DecodeJObject(WellKnownClasses::java_lang_OutOfMemoryError)->AsClass())
2010       << e->Dump();
2011 }
2012 
AssertNoPendingException() const2013 void Thread::AssertNoPendingException() const {
2014   if (UNLIKELY(IsExceptionPending())) {
2015     ScopedObjectAccess soa(Thread::Current());
2016     LOG(FATAL) << "No pending exception expected: " << GetException()->Dump();
2017   }
2018 }
2019 
AssertNoPendingExceptionForNewException(const char * msg) const2020 void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
2021   if (UNLIKELY(IsExceptionPending())) {
2022     ScopedObjectAccess soa(Thread::Current());
2023     LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
2024         << GetException()->Dump();
2025   }
2026 }
2027 
2028 class MonitorExitVisitor : public SingleRootVisitor {
2029  public:
MonitorExitVisitor(Thread * self)2030   explicit MonitorExitVisitor(Thread* self) : self_(self) { }
2031 
2032   // NO_THREAD_SAFETY_ANALYSIS due to MonitorExit.
VisitRoot(mirror::Object * entered_monitor,const RootInfo & info ATTRIBUTE_UNUSED)2033   void VisitRoot(mirror::Object* entered_monitor, const RootInfo& info ATTRIBUTE_UNUSED)
2034       OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
2035     if (self_->HoldsLock(entered_monitor)) {
2036       LOG(WARNING) << "Calling MonitorExit on object "
2037                    << entered_monitor << " (" << entered_monitor->PrettyTypeOf() << ")"
2038                    << " left locked by native thread "
2039                    << *Thread::Current() << " which is detaching";
2040       entered_monitor->MonitorExit(self_);
2041     }
2042   }
2043 
2044  private:
2045   Thread* const self_;
2046 };
2047 
Destroy()2048 void Thread::Destroy() {
2049   Thread* self = this;
2050   DCHECK_EQ(self, Thread::Current());
2051 
2052   if (tlsPtr_.jni_env != nullptr) {
2053     {
2054       ScopedObjectAccess soa(self);
2055       MonitorExitVisitor visitor(self);
2056       // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
2057       tlsPtr_.jni_env->monitors.VisitRoots(&visitor, RootInfo(kRootVMInternal));
2058     }
2059     // Release locally held global references which releasing may require the mutator lock.
2060     if (tlsPtr_.jpeer != nullptr) {
2061       // If pthread_create fails we don't have a jni env here.
2062       tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
2063       tlsPtr_.jpeer = nullptr;
2064     }
2065     if (tlsPtr_.class_loader_override != nullptr) {
2066       tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.class_loader_override);
2067       tlsPtr_.class_loader_override = nullptr;
2068     }
2069   }
2070 
2071   if (tlsPtr_.opeer != nullptr) {
2072     ScopedObjectAccess soa(self);
2073     // We may need to call user-supplied managed code, do this before final clean-up.
2074     HandleUncaughtExceptions(soa);
2075     RemoveFromThreadGroup(soa);
2076 
2077     // this.nativePeer = 0;
2078     if (Runtime::Current()->IsActiveTransaction()) {
2079       jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer)
2080           ->SetLong<true>(tlsPtr_.opeer, 0);
2081     } else {
2082       jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer)
2083           ->SetLong<false>(tlsPtr_.opeer, 0);
2084     }
2085     Runtime* runtime = Runtime::Current();
2086     if (runtime != nullptr) {
2087       runtime->GetRuntimeCallbacks()->ThreadDeath(self);
2088     }
2089 
2090 
2091     // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
2092     // who is waiting.
2093     ObjPtr<mirror::Object> lock =
2094         jni::DecodeArtField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
2095     // (This conditional is only needed for tests, where Thread.lock won't have been set.)
2096     if (lock != nullptr) {
2097       StackHandleScope<1> hs(self);
2098       Handle<mirror::Object> h_obj(hs.NewHandle(lock));
2099       ObjectLock<mirror::Object> locker(self, h_obj);
2100       locker.NotifyAll();
2101     }
2102     tlsPtr_.opeer = nullptr;
2103   }
2104 
2105   {
2106     ScopedObjectAccess soa(self);
2107     Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
2108     if (kUseReadBarrier) {
2109       Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->RevokeThreadLocalMarkStack(this);
2110     }
2111   }
2112 }
2113 
~Thread()2114 Thread::~Thread() {
2115   CHECK(tlsPtr_.class_loader_override == nullptr);
2116   CHECK(tlsPtr_.jpeer == nullptr);
2117   CHECK(tlsPtr_.opeer == nullptr);
2118   bool initialized = (tlsPtr_.jni_env != nullptr);  // Did Thread::Init run?
2119   if (initialized) {
2120     delete tlsPtr_.jni_env;
2121     tlsPtr_.jni_env = nullptr;
2122   }
2123   CHECK_NE(GetState(), kRunnable);
2124   CHECK(!ReadFlag(kCheckpointRequest));
2125   CHECK(!ReadFlag(kEmptyCheckpointRequest));
2126   CHECK(tlsPtr_.checkpoint_function == nullptr);
2127   CHECK_EQ(checkpoint_overflow_.size(), 0u);
2128   CHECK(tlsPtr_.flip_function == nullptr);
2129   CHECK_EQ(tls32_.is_transitioning_to_runnable, false);
2130 
2131   // Make sure we processed all deoptimization requests.
2132   CHECK(tlsPtr_.deoptimization_context_stack == nullptr) << "Missed deoptimization";
2133   CHECK(tlsPtr_.frame_id_to_shadow_frame == nullptr) <<
2134       "Not all deoptimized frames have been consumed by the debugger.";
2135 
2136   // We may be deleting a still born thread.
2137   SetStateUnsafe(kTerminated);
2138 
2139   delete wait_cond_;
2140   delete wait_mutex_;
2141 
2142   if (tlsPtr_.long_jump_context != nullptr) {
2143     delete tlsPtr_.long_jump_context;
2144   }
2145 
2146   if (initialized) {
2147     CleanupCpu();
2148   }
2149 
2150   if (tlsPtr_.single_step_control != nullptr) {
2151     delete tlsPtr_.single_step_control;
2152   }
2153   delete tlsPtr_.instrumentation_stack;
2154   delete tlsPtr_.name;
2155   delete tlsPtr_.deps_or_stack_trace_sample.stack_trace_sample;
2156 
2157   Runtime::Current()->GetHeap()->AssertThreadLocalBuffersAreRevoked(this);
2158 
2159   TearDownAlternateSignalStack();
2160 }
2161 
HandleUncaughtExceptions(ScopedObjectAccess & soa)2162 void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) {
2163   if (!IsExceptionPending()) {
2164     return;
2165   }
2166   ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
2167   ScopedThreadStateChange tsc(this, kNative);
2168 
2169   // Get and clear the exception.
2170   ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
2171   tlsPtr_.jni_env->ExceptionClear();
2172 
2173   // Call the Thread instance's dispatchUncaughtException(Throwable)
2174   tlsPtr_.jni_env->CallVoidMethod(peer.get(),
2175       WellKnownClasses::java_lang_Thread_dispatchUncaughtException,
2176       exception.get());
2177 
2178   // If the dispatchUncaughtException threw, clear that exception too.
2179   tlsPtr_.jni_env->ExceptionClear();
2180 }
2181 
RemoveFromThreadGroup(ScopedObjectAccess & soa)2182 void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) {
2183   // this.group.removeThread(this);
2184   // group can be null if we're in the compiler or a test.
2185   ObjPtr<mirror::Object> ogroup = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)
2186       ->GetObject(tlsPtr_.opeer);
2187   if (ogroup != nullptr) {
2188     ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
2189     ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
2190     ScopedThreadStateChange tsc(soa.Self(), kNative);
2191     tlsPtr_.jni_env->CallVoidMethod(group.get(),
2192                                     WellKnownClasses::java_lang_ThreadGroup_removeThread,
2193                                     peer.get());
2194   }
2195 }
2196 
HandleScopeContains(jobject obj) const2197 bool Thread::HandleScopeContains(jobject obj) const {
2198   StackReference<mirror::Object>* hs_entry =
2199       reinterpret_cast<StackReference<mirror::Object>*>(obj);
2200   for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur!= nullptr; cur = cur->GetLink()) {
2201     if (cur->Contains(hs_entry)) {
2202       return true;
2203     }
2204   }
2205   // JNI code invoked from portable code uses shadow frames rather than the handle scope.
2206   return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
2207 }
2208 
HandleScopeVisitRoots(RootVisitor * visitor,uint32_t thread_id)2209 void Thread::HandleScopeVisitRoots(RootVisitor* visitor, uint32_t thread_id) {
2210   BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(
2211       visitor, RootInfo(kRootNativeStack, thread_id));
2212   for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
2213     cur->VisitRoots(buffered_visitor);
2214   }
2215 }
2216 
DecodeJObject(jobject obj) const2217 ObjPtr<mirror::Object> Thread::DecodeJObject(jobject obj) const {
2218   if (obj == nullptr) {
2219     return nullptr;
2220   }
2221   IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
2222   IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
2223   ObjPtr<mirror::Object> result;
2224   bool expect_null = false;
2225   // The "kinds" below are sorted by the frequency we expect to encounter them.
2226   if (kind == kLocal) {
2227     IndirectReferenceTable& locals = tlsPtr_.jni_env->locals;
2228     // Local references do not need a read barrier.
2229     result = locals.Get<kWithoutReadBarrier>(ref);
2230   } else if (kind == kHandleScopeOrInvalid) {
2231     // TODO: make stack indirect reference table lookup more efficient.
2232     // Check if this is a local reference in the handle scope.
2233     if (LIKELY(HandleScopeContains(obj))) {
2234       // Read from handle scope.
2235       result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
2236       VerifyObject(result);
2237     } else {
2238       tlsPtr_.jni_env->vm->JniAbortF(nullptr, "use of invalid jobject %p", obj);
2239       expect_null = true;
2240       result = nullptr;
2241     }
2242   } else if (kind == kGlobal) {
2243     result = tlsPtr_.jni_env->vm->DecodeGlobal(ref);
2244   } else {
2245     DCHECK_EQ(kind, kWeakGlobal);
2246     result = tlsPtr_.jni_env->vm->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
2247     if (Runtime::Current()->IsClearedJniWeakGlobal(result)) {
2248       // This is a special case where it's okay to return null.
2249       expect_null = true;
2250       result = nullptr;
2251     }
2252   }
2253 
2254   if (UNLIKELY(!expect_null && result == nullptr)) {
2255     tlsPtr_.jni_env->vm->JniAbortF(nullptr, "use of deleted %s %p",
2256                                    ToStr<IndirectRefKind>(kind).c_str(), obj);
2257   }
2258   return result;
2259 }
2260 
IsJWeakCleared(jweak obj) const2261 bool Thread::IsJWeakCleared(jweak obj) const {
2262   CHECK(obj != nullptr);
2263   IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
2264   IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
2265   CHECK_EQ(kind, kWeakGlobal);
2266   return tlsPtr_.jni_env->vm->IsWeakGlobalCleared(const_cast<Thread*>(this), ref);
2267 }
2268 
2269 // Implements java.lang.Thread.interrupted.
Interrupted()2270 bool Thread::Interrupted() {
2271   MutexLock mu(Thread::Current(), *wait_mutex_);
2272   bool interrupted = IsInterruptedLocked();
2273   SetInterruptedLocked(false);
2274   return interrupted;
2275 }
2276 
2277 // Implements java.lang.Thread.isInterrupted.
IsInterrupted()2278 bool Thread::IsInterrupted() {
2279   MutexLock mu(Thread::Current(), *wait_mutex_);
2280   return IsInterruptedLocked();
2281 }
2282 
Interrupt(Thread * self)2283 void Thread::Interrupt(Thread* self) {
2284   MutexLock mu(self, *wait_mutex_);
2285   if (interrupted_) {
2286     return;
2287   }
2288   interrupted_ = true;
2289   NotifyLocked(self);
2290 }
2291 
Notify()2292 void Thread::Notify() {
2293   Thread* self = Thread::Current();
2294   MutexLock mu(self, *wait_mutex_);
2295   NotifyLocked(self);
2296 }
2297 
NotifyLocked(Thread * self)2298 void Thread::NotifyLocked(Thread* self) {
2299   if (wait_monitor_ != nullptr) {
2300     wait_cond_->Signal(self);
2301   }
2302 }
2303 
SetClassLoaderOverride(jobject class_loader_override)2304 void Thread::SetClassLoaderOverride(jobject class_loader_override) {
2305   if (tlsPtr_.class_loader_override != nullptr) {
2306     GetJniEnv()->DeleteGlobalRef(tlsPtr_.class_loader_override);
2307   }
2308   tlsPtr_.class_loader_override = GetJniEnv()->NewGlobalRef(class_loader_override);
2309 }
2310 
2311 using ArtMethodDexPcPair = std::pair<ArtMethod*, uint32_t>;
2312 
2313 // Counts the stack trace depth and also fetches the first max_saved_frames frames.
2314 class FetchStackTraceVisitor : public StackVisitor {
2315  public:
FetchStackTraceVisitor(Thread * thread,ArtMethodDexPcPair * saved_frames=nullptr,size_t max_saved_frames=0)2316   explicit FetchStackTraceVisitor(Thread* thread,
2317                                   ArtMethodDexPcPair* saved_frames = nullptr,
2318                                   size_t max_saved_frames = 0)
2319       REQUIRES_SHARED(Locks::mutator_lock_)
2320       : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
2321         saved_frames_(saved_frames),
2322         max_saved_frames_(max_saved_frames) {}
2323 
VisitFrame()2324   bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
2325     // We want to skip frames up to and including the exception's constructor.
2326     // Note we also skip the frame if it doesn't have a method (namely the callee
2327     // save frame)
2328     ArtMethod* m = GetMethod();
2329     if (skipping_ && !m->IsRuntimeMethod() &&
2330         !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
2331       skipping_ = false;
2332     }
2333     if (!skipping_) {
2334       if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
2335         if (depth_ < max_saved_frames_) {
2336           saved_frames_[depth_].first = m;
2337           saved_frames_[depth_].second = m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc();
2338         }
2339         ++depth_;
2340       }
2341     } else {
2342       ++skip_depth_;
2343     }
2344     return true;
2345   }
2346 
GetDepth() const2347   uint32_t GetDepth() const {
2348     return depth_;
2349   }
2350 
GetSkipDepth() const2351   uint32_t GetSkipDepth() const {
2352     return skip_depth_;
2353   }
2354 
2355  private:
2356   uint32_t depth_ = 0;
2357   uint32_t skip_depth_ = 0;
2358   bool skipping_ = true;
2359   ArtMethodDexPcPair* saved_frames_;
2360   const size_t max_saved_frames_;
2361 
2362   DISALLOW_COPY_AND_ASSIGN(FetchStackTraceVisitor);
2363 };
2364 
2365 template<bool kTransactionActive>
2366 class BuildInternalStackTraceVisitor : public StackVisitor {
2367  public:
BuildInternalStackTraceVisitor(Thread * self,Thread * thread,int skip_depth)2368   BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
2369       : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
2370         self_(self),
2371         skip_depth_(skip_depth),
2372         pointer_size_(Runtime::Current()->GetClassLinker()->GetImagePointerSize()) {}
2373 
Init(int depth)2374   bool Init(int depth) REQUIRES_SHARED(Locks::mutator_lock_) ACQUIRE(Roles::uninterruptible_) {
2375     // Allocate method trace as an object array where the first element is a pointer array that
2376     // contains the ArtMethod pointers and dex PCs. The rest of the elements are the declaring
2377     // class of the ArtMethod pointers.
2378     ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2379     StackHandleScope<1> hs(self_);
2380     ObjPtr<mirror::Class> array_class = class_linker->GetClassRoot(ClassLinker::kObjectArrayClass);
2381     // The first element is the methods and dex pc array, the other elements are declaring classes
2382     // for the methods to ensure classes in the stack trace don't get unloaded.
2383     Handle<mirror::ObjectArray<mirror::Object>> trace(
2384         hs.NewHandle(
2385             mirror::ObjectArray<mirror::Object>::Alloc(hs.Self(), array_class, depth + 1)));
2386     if (trace == nullptr) {
2387       // Acquire uninterruptible_ in all paths.
2388       self_->StartAssertNoThreadSuspension("Building internal stack trace");
2389       self_->AssertPendingOOMException();
2390       return false;
2391     }
2392     ObjPtr<mirror::PointerArray> methods_and_pcs =
2393         class_linker->AllocPointerArray(self_, depth * 2);
2394     const char* last_no_suspend_cause =
2395         self_->StartAssertNoThreadSuspension("Building internal stack trace");
2396     if (methods_and_pcs == nullptr) {
2397       self_->AssertPendingOOMException();
2398       return false;
2399     }
2400     trace->Set(0, methods_and_pcs);
2401     trace_ = trace.Get();
2402     // If We are called from native, use non-transactional mode.
2403     CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
2404     return true;
2405   }
2406 
RELEASE(Roles::uninterruptible_)2407   virtual ~BuildInternalStackTraceVisitor() RELEASE(Roles::uninterruptible_) {
2408     self_->EndAssertNoThreadSuspension(nullptr);
2409   }
2410 
VisitFrame()2411   bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
2412     if (trace_ == nullptr) {
2413       return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
2414     }
2415     if (skip_depth_ > 0) {
2416       skip_depth_--;
2417       return true;
2418     }
2419     ArtMethod* m = GetMethod();
2420     if (m->IsRuntimeMethod()) {
2421       return true;  // Ignore runtime frames (in particular callee save).
2422     }
2423     AddFrame(m, m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc());
2424     return true;
2425   }
2426 
AddFrame(ArtMethod * method,uint32_t dex_pc)2427   void AddFrame(ArtMethod* method, uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) {
2428     ObjPtr<mirror::PointerArray> trace_methods_and_pcs = GetTraceMethodsAndPCs();
2429     trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(count_, method, pointer_size_);
2430     trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(
2431         trace_methods_and_pcs->GetLength() / 2 + count_,
2432         dex_pc,
2433         pointer_size_);
2434     // Save the declaring class of the method to ensure that the declaring classes of the methods
2435     // do not get unloaded while the stack trace is live.
2436     trace_->Set(count_ + 1, method->GetDeclaringClass());
2437     ++count_;
2438   }
2439 
GetTraceMethodsAndPCs() const2440   ObjPtr<mirror::PointerArray> GetTraceMethodsAndPCs() const REQUIRES_SHARED(Locks::mutator_lock_) {
2441     return ObjPtr<mirror::PointerArray>::DownCast(MakeObjPtr(trace_->Get(0)));
2442   }
2443 
GetInternalStackTrace() const2444   mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
2445     return trace_;
2446   }
2447 
2448  private:
2449   Thread* const self_;
2450   // How many more frames to skip.
2451   int32_t skip_depth_;
2452   // Current position down stack trace.
2453   uint32_t count_ = 0;
2454   // An object array where the first element is a pointer array that contains the ArtMethod
2455   // pointers on the stack and dex PCs. The rest of the elements are the declaring
2456   // class of the ArtMethod pointers. trace_[i+1] contains the declaring class of the ArtMethod of
2457   // the i'th frame.
2458   mirror::ObjectArray<mirror::Object>* trace_ = nullptr;
2459   // For cross compilation.
2460   const PointerSize pointer_size_;
2461 
2462   DISALLOW_COPY_AND_ASSIGN(BuildInternalStackTraceVisitor);
2463 };
2464 
2465 template<bool kTransactionActive>
CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable & soa) const2466 jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
2467   // Compute depth of stack, save frames if possible to avoid needing to recompute many.
2468   constexpr size_t kMaxSavedFrames = 256;
2469   std::unique_ptr<ArtMethodDexPcPair[]> saved_frames(new ArtMethodDexPcPair[kMaxSavedFrames]);
2470   FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this),
2471                                        &saved_frames[0],
2472                                        kMaxSavedFrames);
2473   count_visitor.WalkStack();
2474   const uint32_t depth = count_visitor.GetDepth();
2475   const uint32_t skip_depth = count_visitor.GetSkipDepth();
2476 
2477   // Build internal stack trace.
2478   BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
2479                                                                          const_cast<Thread*>(this),
2480                                                                          skip_depth);
2481   if (!build_trace_visitor.Init(depth)) {
2482     return nullptr;  // Allocation failed.
2483   }
2484   // If we saved all of the frames we don't even need to do the actual stack walk. This is faster
2485   // than doing the stack walk twice.
2486   if (depth < kMaxSavedFrames) {
2487     for (size_t i = 0; i < depth; ++i) {
2488       build_trace_visitor.AddFrame(saved_frames[i].first, saved_frames[i].second);
2489     }
2490   } else {
2491     build_trace_visitor.WalkStack();
2492   }
2493 
2494   mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
2495   if (kIsDebugBuild) {
2496     ObjPtr<mirror::PointerArray> trace_methods = build_trace_visitor.GetTraceMethodsAndPCs();
2497     // Second half of trace_methods is dex PCs.
2498     for (uint32_t i = 0; i < static_cast<uint32_t>(trace_methods->GetLength() / 2); ++i) {
2499       auto* method = trace_methods->GetElementPtrSize<ArtMethod*>(
2500           i, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
2501       CHECK(method != nullptr);
2502     }
2503   }
2504   return soa.AddLocalReference<jobject>(trace);
2505 }
2506 template jobject Thread::CreateInternalStackTrace<false>(
2507     const ScopedObjectAccessAlreadyRunnable& soa) const;
2508 template jobject Thread::CreateInternalStackTrace<true>(
2509     const ScopedObjectAccessAlreadyRunnable& soa) const;
2510 
IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const2511 bool Thread::IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const {
2512   // Only count the depth since we do not pass a stack frame array as an argument.
2513   FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this));
2514   count_visitor.WalkStack();
2515   return count_visitor.GetDepth() == static_cast<uint32_t>(exception->GetStackDepth());
2516 }
2517 
InternalStackTraceToStackTraceElementArray(const ScopedObjectAccessAlreadyRunnable & soa,jobject internal,jobjectArray output_array,int * stack_depth)2518 jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
2519     const ScopedObjectAccessAlreadyRunnable& soa,
2520     jobject internal,
2521     jobjectArray output_array,
2522     int* stack_depth) {
2523   // Decode the internal stack trace into the depth, method trace and PC trace.
2524   // Subtract one for the methods and PC trace.
2525   int32_t depth = soa.Decode<mirror::Array>(internal)->GetLength() - 1;
2526   DCHECK_GE(depth, 0);
2527 
2528   ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
2529 
2530   jobjectArray result;
2531 
2532   if (output_array != nullptr) {
2533     // Reuse the array we were given.
2534     result = output_array;
2535     // ...adjusting the number of frames we'll write to not exceed the array length.
2536     const int32_t traces_length =
2537         soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->GetLength();
2538     depth = std::min(depth, traces_length);
2539   } else {
2540     // Create java_trace array and place in local reference table
2541     mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
2542         class_linker->AllocStackTraceElementArray(soa.Self(), depth);
2543     if (java_traces == nullptr) {
2544       return nullptr;
2545     }
2546     result = soa.AddLocalReference<jobjectArray>(java_traces);
2547   }
2548 
2549   if (stack_depth != nullptr) {
2550     *stack_depth = depth;
2551   }
2552 
2553   for (int32_t i = 0; i < depth; ++i) {
2554     ObjPtr<mirror::ObjectArray<mirror::Object>> decoded_traces =
2555         soa.Decode<mirror::Object>(internal)->AsObjectArray<mirror::Object>();
2556     // Methods and dex PC trace is element 0.
2557     DCHECK(decoded_traces->Get(0)->IsIntArray() || decoded_traces->Get(0)->IsLongArray());
2558     ObjPtr<mirror::PointerArray> const method_trace =
2559         ObjPtr<mirror::PointerArray>::DownCast(MakeObjPtr(decoded_traces->Get(0)));
2560     // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
2561     ArtMethod* method = method_trace->GetElementPtrSize<ArtMethod*>(i, kRuntimePointerSize);
2562     uint32_t dex_pc = method_trace->GetElementPtrSize<uint32_t>(
2563         i + method_trace->GetLength() / 2, kRuntimePointerSize);
2564     int32_t line_number;
2565     StackHandleScope<3> hs(soa.Self());
2566     auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
2567     auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
2568     if (method->IsProxyMethod()) {
2569       line_number = -1;
2570       class_name_object.Assign(method->GetDeclaringClass()->GetName());
2571       // source_name_object intentionally left null for proxy methods
2572     } else {
2573       line_number = method->GetLineNumFromDexPC(dex_pc);
2574       // Allocate element, potentially triggering GC
2575       // TODO: reuse class_name_object via Class::name_?
2576       const char* descriptor = method->GetDeclaringClassDescriptor();
2577       CHECK(descriptor != nullptr);
2578       std::string class_name(PrettyDescriptor(descriptor));
2579       class_name_object.Assign(
2580           mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
2581       if (class_name_object == nullptr) {
2582         soa.Self()->AssertPendingOOMException();
2583         return nullptr;
2584       }
2585       const char* source_file = method->GetDeclaringClassSourceFile();
2586       if (line_number == -1) {
2587         // Make the line_number field of StackTraceElement hold the dex pc.
2588         // source_name_object is intentionally left null if we failed to map the dex pc to
2589         // a line number (most probably because there is no debug info). See b/30183883.
2590         line_number = dex_pc;
2591       } else {
2592         if (source_file != nullptr) {
2593           source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
2594           if (source_name_object == nullptr) {
2595             soa.Self()->AssertPendingOOMException();
2596             return nullptr;
2597           }
2598         }
2599       }
2600     }
2601     const char* method_name = method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetName();
2602     CHECK(method_name != nullptr);
2603     Handle<mirror::String> method_name_object(
2604         hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
2605     if (method_name_object == nullptr) {
2606       return nullptr;
2607     }
2608     ObjPtr<mirror::StackTraceElement> obj = mirror::StackTraceElement::Alloc(soa.Self(),
2609                                                                              class_name_object,
2610                                                                              method_name_object,
2611                                                                              source_name_object,
2612                                                                              line_number);
2613     if (obj == nullptr) {
2614       return nullptr;
2615     }
2616     // We are called from native: use non-transactional mode.
2617     soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->Set<false>(i, obj);
2618   }
2619   return result;
2620 }
2621 
ThrowNewExceptionF(const char * exception_class_descriptor,const char * fmt,...)2622 void Thread::ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) {
2623   va_list args;
2624   va_start(args, fmt);
2625   ThrowNewExceptionV(exception_class_descriptor, fmt, args);
2626   va_end(args);
2627 }
2628 
ThrowNewExceptionV(const char * exception_class_descriptor,const char * fmt,va_list ap)2629 void Thread::ThrowNewExceptionV(const char* exception_class_descriptor,
2630                                 const char* fmt, va_list ap) {
2631   std::string msg;
2632   StringAppendV(&msg, fmt, ap);
2633   ThrowNewException(exception_class_descriptor, msg.c_str());
2634 }
2635 
ThrowNewException(const char * exception_class_descriptor,const char * msg)2636 void Thread::ThrowNewException(const char* exception_class_descriptor,
2637                                const char* msg) {
2638   // Callers should either clear or call ThrowNewWrappedException.
2639   AssertNoPendingExceptionForNewException(msg);
2640   ThrowNewWrappedException(exception_class_descriptor, msg);
2641 }
2642 
GetCurrentClassLoader(Thread * self)2643 static ObjPtr<mirror::ClassLoader> GetCurrentClassLoader(Thread* self)
2644     REQUIRES_SHARED(Locks::mutator_lock_) {
2645   ArtMethod* method = self->GetCurrentMethod(nullptr);
2646   return method != nullptr
2647       ? method->GetDeclaringClass()->GetClassLoader()
2648       : nullptr;
2649 }
2650 
ThrowNewWrappedException(const char * exception_class_descriptor,const char * msg)2651 void Thread::ThrowNewWrappedException(const char* exception_class_descriptor,
2652                                       const char* msg) {
2653   DCHECK_EQ(this, Thread::Current());
2654   ScopedObjectAccessUnchecked soa(this);
2655   StackHandleScope<3> hs(soa.Self());
2656   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(GetCurrentClassLoader(soa.Self())));
2657   ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException()));
2658   ClearException();
2659   Runtime* runtime = Runtime::Current();
2660   auto* cl = runtime->GetClassLinker();
2661   Handle<mirror::Class> exception_class(
2662       hs.NewHandle(cl->FindClass(this, exception_class_descriptor, class_loader)));
2663   if (UNLIKELY(exception_class == nullptr)) {
2664     CHECK(IsExceptionPending());
2665     LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
2666     return;
2667   }
2668 
2669   if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(soa.Self(), exception_class, true,
2670                                                              true))) {
2671     DCHECK(IsExceptionPending());
2672     return;
2673   }
2674   DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
2675   Handle<mirror::Throwable> exception(
2676       hs.NewHandle(ObjPtr<mirror::Throwable>::DownCast(exception_class->AllocObject(this))));
2677 
2678   // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
2679   if (exception == nullptr) {
2680     SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
2681     return;
2682   }
2683 
2684   // Choose an appropriate constructor and set up the arguments.
2685   const char* signature;
2686   ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
2687   if (msg != nullptr) {
2688     // Ensure we remember this and the method over the String allocation.
2689     msg_string.reset(
2690         soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
2691     if (UNLIKELY(msg_string.get() == nullptr)) {
2692       CHECK(IsExceptionPending());  // OOME.
2693       return;
2694     }
2695     if (cause.get() == nullptr) {
2696       signature = "(Ljava/lang/String;)V";
2697     } else {
2698       signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
2699     }
2700   } else {
2701     if (cause.get() == nullptr) {
2702       signature = "()V";
2703     } else {
2704       signature = "(Ljava/lang/Throwable;)V";
2705     }
2706   }
2707   ArtMethod* exception_init_method =
2708       exception_class->FindDeclaredDirectMethod("<init>", signature, cl->GetImagePointerSize());
2709 
2710   CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
2711       << PrettyDescriptor(exception_class_descriptor);
2712 
2713   if (UNLIKELY(!runtime->IsStarted())) {
2714     // Something is trying to throw an exception without a started runtime, which is the common
2715     // case in the compiler. We won't be able to invoke the constructor of the exception, so set
2716     // the exception fields directly.
2717     if (msg != nullptr) {
2718       exception->SetDetailMessage(DecodeJObject(msg_string.get())->AsString());
2719     }
2720     if (cause.get() != nullptr) {
2721       exception->SetCause(DecodeJObject(cause.get())->AsThrowable());
2722     }
2723     ScopedLocalRef<jobject> trace(GetJniEnv(),
2724                                   Runtime::Current()->IsActiveTransaction()
2725                                       ? CreateInternalStackTrace<true>(soa)
2726                                       : CreateInternalStackTrace<false>(soa));
2727     if (trace.get() != nullptr) {
2728       exception->SetStackState(DecodeJObject(trace.get()).Ptr());
2729     }
2730     SetException(exception.Get());
2731   } else {
2732     jvalue jv_args[2];
2733     size_t i = 0;
2734 
2735     if (msg != nullptr) {
2736       jv_args[i].l = msg_string.get();
2737       ++i;
2738     }
2739     if (cause.get() != nullptr) {
2740       jv_args[i].l = cause.get();
2741       ++i;
2742     }
2743     ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(exception.Get()));
2744     InvokeWithJValues(soa, ref.get(), jni::EncodeArtMethod(exception_init_method), jv_args);
2745     if (LIKELY(!IsExceptionPending())) {
2746       SetException(exception.Get());
2747     }
2748   }
2749 }
2750 
ThrowOutOfMemoryError(const char * msg)2751 void Thread::ThrowOutOfMemoryError(const char* msg) {
2752   LOG(WARNING) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
2753       msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : ""));
2754   if (!tls32_.throwing_OutOfMemoryError) {
2755     tls32_.throwing_OutOfMemoryError = true;
2756     ThrowNewException("Ljava/lang/OutOfMemoryError;", msg);
2757     tls32_.throwing_OutOfMemoryError = false;
2758   } else {
2759     Dump(LOG_STREAM(WARNING));  // The pre-allocated OOME has no stack, so help out and log one.
2760     SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
2761   }
2762 }
2763 
CurrentFromGdb()2764 Thread* Thread::CurrentFromGdb() {
2765   return Thread::Current();
2766 }
2767 
DumpFromGdb() const2768 void Thread::DumpFromGdb() const {
2769   std::ostringstream ss;
2770   Dump(ss);
2771   std::string str(ss.str());
2772   // log to stderr for debugging command line processes
2773   std::cerr << str;
2774 #ifdef ART_TARGET_ANDROID
2775   // log to logcat for debugging frameworks processes
2776   LOG(INFO) << str;
2777 #endif
2778 }
2779 
2780 // Explicitly instantiate 32 and 64bit thread offset dumping support.
2781 template
2782 void Thread::DumpThreadOffset<PointerSize::k32>(std::ostream& os, uint32_t offset);
2783 template
2784 void Thread::DumpThreadOffset<PointerSize::k64>(std::ostream& os, uint32_t offset);
2785 
2786 template<PointerSize ptr_size>
DumpThreadOffset(std::ostream & os,uint32_t offset)2787 void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
2788 #define DO_THREAD_OFFSET(x, y) \
2789     if (offset == (x).Uint32Value()) { \
2790       os << (y); \
2791       return; \
2792     }
2793   DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
2794   DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
2795   DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
2796   DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
2797   DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
2798   DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
2799   DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
2800   DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
2801   DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
2802   DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
2803   DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
2804   DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
2805 #undef DO_THREAD_OFFSET
2806 
2807 #define JNI_ENTRY_POINT_INFO(x) \
2808     if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
2809       os << #x; \
2810       return; \
2811     }
2812   JNI_ENTRY_POINT_INFO(pDlsymLookup)
2813 #undef JNI_ENTRY_POINT_INFO
2814 
2815 #define QUICK_ENTRY_POINT_INFO(x) \
2816     if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
2817       os << #x; \
2818       return; \
2819     }
2820   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
2821   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved8)
2822   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved16)
2823   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved32)
2824   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved64)
2825   QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
2826   QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
2827   QUICK_ENTRY_POINT_INFO(pAllocObjectWithChecks)
2828   QUICK_ENTRY_POINT_INFO(pAllocStringFromBytes)
2829   QUICK_ENTRY_POINT_INFO(pAllocStringFromChars)
2830   QUICK_ENTRY_POINT_INFO(pAllocStringFromString)
2831   QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
2832   QUICK_ENTRY_POINT_INFO(pCheckInstanceOf)
2833   QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
2834   QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess)
2835   QUICK_ENTRY_POINT_INFO(pInitializeType)
2836   QUICK_ENTRY_POINT_INFO(pResolveString)
2837   QUICK_ENTRY_POINT_INFO(pSet8Instance)
2838   QUICK_ENTRY_POINT_INFO(pSet8Static)
2839   QUICK_ENTRY_POINT_INFO(pSet16Instance)
2840   QUICK_ENTRY_POINT_INFO(pSet16Static)
2841   QUICK_ENTRY_POINT_INFO(pSet32Instance)
2842   QUICK_ENTRY_POINT_INFO(pSet32Static)
2843   QUICK_ENTRY_POINT_INFO(pSet64Instance)
2844   QUICK_ENTRY_POINT_INFO(pSet64Static)
2845   QUICK_ENTRY_POINT_INFO(pSetObjInstance)
2846   QUICK_ENTRY_POINT_INFO(pSetObjStatic)
2847   QUICK_ENTRY_POINT_INFO(pGetByteInstance)
2848   QUICK_ENTRY_POINT_INFO(pGetBooleanInstance)
2849   QUICK_ENTRY_POINT_INFO(pGetByteStatic)
2850   QUICK_ENTRY_POINT_INFO(pGetBooleanStatic)
2851   QUICK_ENTRY_POINT_INFO(pGetShortInstance)
2852   QUICK_ENTRY_POINT_INFO(pGetCharInstance)
2853   QUICK_ENTRY_POINT_INFO(pGetShortStatic)
2854   QUICK_ENTRY_POINT_INFO(pGetCharStatic)
2855   QUICK_ENTRY_POINT_INFO(pGet32Instance)
2856   QUICK_ENTRY_POINT_INFO(pGet32Static)
2857   QUICK_ENTRY_POINT_INFO(pGet64Instance)
2858   QUICK_ENTRY_POINT_INFO(pGet64Static)
2859   QUICK_ENTRY_POINT_INFO(pGetObjInstance)
2860   QUICK_ENTRY_POINT_INFO(pGetObjStatic)
2861   QUICK_ENTRY_POINT_INFO(pAputObject)
2862   QUICK_ENTRY_POINT_INFO(pJniMethodStart)
2863   QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
2864   QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
2865   QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
2866   QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
2867   QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
2868   QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
2869   QUICK_ENTRY_POINT_INFO(pLockObject)
2870   QUICK_ENTRY_POINT_INFO(pUnlockObject)
2871   QUICK_ENTRY_POINT_INFO(pCmpgDouble)
2872   QUICK_ENTRY_POINT_INFO(pCmpgFloat)
2873   QUICK_ENTRY_POINT_INFO(pCmplDouble)
2874   QUICK_ENTRY_POINT_INFO(pCmplFloat)
2875   QUICK_ENTRY_POINT_INFO(pCos)
2876   QUICK_ENTRY_POINT_INFO(pSin)
2877   QUICK_ENTRY_POINT_INFO(pAcos)
2878   QUICK_ENTRY_POINT_INFO(pAsin)
2879   QUICK_ENTRY_POINT_INFO(pAtan)
2880   QUICK_ENTRY_POINT_INFO(pAtan2)
2881   QUICK_ENTRY_POINT_INFO(pCbrt)
2882   QUICK_ENTRY_POINT_INFO(pCosh)
2883   QUICK_ENTRY_POINT_INFO(pExp)
2884   QUICK_ENTRY_POINT_INFO(pExpm1)
2885   QUICK_ENTRY_POINT_INFO(pHypot)
2886   QUICK_ENTRY_POINT_INFO(pLog)
2887   QUICK_ENTRY_POINT_INFO(pLog10)
2888   QUICK_ENTRY_POINT_INFO(pNextAfter)
2889   QUICK_ENTRY_POINT_INFO(pSinh)
2890   QUICK_ENTRY_POINT_INFO(pTan)
2891   QUICK_ENTRY_POINT_INFO(pTanh)
2892   QUICK_ENTRY_POINT_INFO(pFmod)
2893   QUICK_ENTRY_POINT_INFO(pL2d)
2894   QUICK_ENTRY_POINT_INFO(pFmodf)
2895   QUICK_ENTRY_POINT_INFO(pL2f)
2896   QUICK_ENTRY_POINT_INFO(pD2iz)
2897   QUICK_ENTRY_POINT_INFO(pF2iz)
2898   QUICK_ENTRY_POINT_INFO(pIdivmod)
2899   QUICK_ENTRY_POINT_INFO(pD2l)
2900   QUICK_ENTRY_POINT_INFO(pF2l)
2901   QUICK_ENTRY_POINT_INFO(pLdiv)
2902   QUICK_ENTRY_POINT_INFO(pLmod)
2903   QUICK_ENTRY_POINT_INFO(pLmul)
2904   QUICK_ENTRY_POINT_INFO(pShlLong)
2905   QUICK_ENTRY_POINT_INFO(pShrLong)
2906   QUICK_ENTRY_POINT_INFO(pUshrLong)
2907   QUICK_ENTRY_POINT_INFO(pIndexOf)
2908   QUICK_ENTRY_POINT_INFO(pStringCompareTo)
2909   QUICK_ENTRY_POINT_INFO(pMemcpy)
2910   QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
2911   QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
2912   QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
2913   QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
2914   QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
2915   QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
2916   QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
2917   QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
2918   QUICK_ENTRY_POINT_INFO(pInvokePolymorphic)
2919   QUICK_ENTRY_POINT_INFO(pTestSuspend)
2920   QUICK_ENTRY_POINT_INFO(pDeliverException)
2921   QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
2922   QUICK_ENTRY_POINT_INFO(pThrowDivZero)
2923   QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
2924   QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
2925   QUICK_ENTRY_POINT_INFO(pDeoptimize)
2926   QUICK_ENTRY_POINT_INFO(pA64Load)
2927   QUICK_ENTRY_POINT_INFO(pA64Store)
2928   QUICK_ENTRY_POINT_INFO(pNewEmptyString)
2929   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_B)
2930   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BI)
2931   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BII)
2932   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIII)
2933   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIIString)
2934   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BString)
2935   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIICharset)
2936   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BCharset)
2937   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_C)
2938   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_CII)
2939   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_IIC)
2940   QUICK_ENTRY_POINT_INFO(pNewStringFromCodePoints)
2941   QUICK_ENTRY_POINT_INFO(pNewStringFromString)
2942   QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuffer)
2943   QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuilder)
2944   QUICK_ENTRY_POINT_INFO(pReadBarrierJni)
2945   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg00)
2946   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg01)
2947   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg02)
2948   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg03)
2949   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg04)
2950   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg05)
2951   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg06)
2952   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg07)
2953   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg08)
2954   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg09)
2955   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg10)
2956   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg11)
2957   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg12)
2958   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg13)
2959   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg14)
2960   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg15)
2961   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg16)
2962   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg17)
2963   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg18)
2964   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg19)
2965   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg20)
2966   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg21)
2967   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg22)
2968   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg23)
2969   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg24)
2970   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg25)
2971   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg26)
2972   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg27)
2973   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg28)
2974   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg29)
2975   QUICK_ENTRY_POINT_INFO(pReadBarrierSlow)
2976   QUICK_ENTRY_POINT_INFO(pReadBarrierForRootSlow)
2977 
2978   QUICK_ENTRY_POINT_INFO(pJniMethodFastStart)
2979   QUICK_ENTRY_POINT_INFO(pJniMethodFastEnd)
2980 #undef QUICK_ENTRY_POINT_INFO
2981 
2982   os << offset;
2983 }
2984 
QuickDeliverException()2985 void Thread::QuickDeliverException() {
2986   // Get exception from thread.
2987   ObjPtr<mirror::Throwable> exception = GetException();
2988   CHECK(exception != nullptr);
2989   if (exception == GetDeoptimizationException()) {
2990     artDeoptimize(this);
2991     UNREACHABLE();
2992   }
2993 
2994   // This is a real exception: let the instrumentation know about it.
2995   instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
2996   if (instrumentation->HasExceptionCaughtListeners() &&
2997       IsExceptionThrownByCurrentMethod(exception)) {
2998     // Instrumentation may cause GC so keep the exception object safe.
2999     StackHandleScope<1> hs(this);
3000     HandleWrapperObjPtr<mirror::Throwable> h_exception(hs.NewHandleWrapper(&exception));
3001     instrumentation->ExceptionCaughtEvent(this, exception.Ptr());
3002   }
3003   // Does instrumentation need to deoptimize the stack?
3004   // Note: we do this *after* reporting the exception to instrumentation in case it
3005   // now requires deoptimization. It may happen if a debugger is attached and requests
3006   // new events (single-step, breakpoint, ...) when the exception is reported.
3007   if (Dbg::IsForcedInterpreterNeededForException(this)) {
3008     NthCallerVisitor visitor(this, 0, false);
3009     visitor.WalkStack();
3010     if (Runtime::Current()->IsAsyncDeoptimizeable(visitor.caller_pc)) {
3011       // Save the exception into the deoptimization context so it can be restored
3012       // before entering the interpreter.
3013       PushDeoptimizationContext(
3014           JValue(), /*is_reference */ false, /* from_code */ false, exception);
3015       artDeoptimize(this);
3016       UNREACHABLE();
3017     } else {
3018       LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
3019                    << visitor.caller->PrettyMethod();
3020     }
3021   }
3022 
3023   // Don't leave exception visible while we try to find the handler, which may cause class
3024   // resolution.
3025   ClearException();
3026   QuickExceptionHandler exception_handler(this, false);
3027   exception_handler.FindCatch(exception);
3028   exception_handler.UpdateInstrumentationStack();
3029   exception_handler.DoLongJump();
3030 }
3031 
GetLongJumpContext()3032 Context* Thread::GetLongJumpContext() {
3033   Context* result = tlsPtr_.long_jump_context;
3034   if (result == nullptr) {
3035     result = Context::Create();
3036   } else {
3037     tlsPtr_.long_jump_context = nullptr;  // Avoid context being shared.
3038     result->Reset();
3039   }
3040   return result;
3041 }
3042 
3043 // Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
3044 //       so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack.
3045 struct CurrentMethodVisitor FINAL : public StackVisitor {
CurrentMethodVisitorart::FINAL3046   CurrentMethodVisitor(Thread* thread, Context* context, bool check_suspended, bool abort_on_error)
3047       REQUIRES_SHARED(Locks::mutator_lock_)
3048       : StackVisitor(thread,
3049                      context,
3050                      StackVisitor::StackWalkKind::kIncludeInlinedFrames,
3051                      check_suspended),
3052         this_object_(nullptr),
3053         method_(nullptr),
3054         dex_pc_(0),
3055         abort_on_error_(abort_on_error) {}
VisitFrameart::FINAL3056   bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
3057     ArtMethod* m = GetMethod();
3058     if (m->IsRuntimeMethod()) {
3059       // Continue if this is a runtime method.
3060       return true;
3061     }
3062     if (context_ != nullptr) {
3063       this_object_ = GetThisObject();
3064     }
3065     method_ = m;
3066     dex_pc_ = GetDexPc(abort_on_error_);
3067     return false;
3068   }
3069   ObjPtr<mirror::Object> this_object_;
3070   ArtMethod* method_;
3071   uint32_t dex_pc_;
3072   const bool abort_on_error_;
3073 };
3074 
GetCurrentMethod(uint32_t * dex_pc,bool check_suspended,bool abort_on_error) const3075 ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc,
3076                                     bool check_suspended,
3077                                     bool abort_on_error) const {
3078   CurrentMethodVisitor visitor(const_cast<Thread*>(this),
3079                                nullptr,
3080                                check_suspended,
3081                                abort_on_error);
3082   visitor.WalkStack(false);
3083   if (dex_pc != nullptr) {
3084     *dex_pc = visitor.dex_pc_;
3085   }
3086   return visitor.method_;
3087 }
3088 
HoldsLock(ObjPtr<mirror::Object> object) const3089 bool Thread::HoldsLock(ObjPtr<mirror::Object> object) const {
3090   return object != nullptr && object->GetLockOwnerThreadId() == GetThreadId();
3091 }
3092 
3093 // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
3094 template <typename RootVisitor, bool kPrecise = false>
3095 class ReferenceMapVisitor : public StackVisitor {
3096  public:
ReferenceMapVisitor(Thread * thread,Context * context,RootVisitor & visitor)3097   ReferenceMapVisitor(Thread* thread, Context* context, RootVisitor& visitor)
3098       REQUIRES_SHARED(Locks::mutator_lock_)
3099         // We are visiting the references in compiled frames, so we do not need
3100         // to know the inlined frames.
3101       : StackVisitor(thread, context, StackVisitor::StackWalkKind::kSkipInlinedFrames),
3102         visitor_(visitor) {}
3103 
VisitFrame()3104   bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
3105     if (false) {
3106       LOG(INFO) << "Visiting stack roots in " << ArtMethod::PrettyMethod(GetMethod())
3107                 << StringPrintf("@ PC:%04x", GetDexPc());
3108     }
3109     ShadowFrame* shadow_frame = GetCurrentShadowFrame();
3110     if (shadow_frame != nullptr) {
3111       VisitShadowFrame(shadow_frame);
3112     } else {
3113       VisitQuickFrame();
3114     }
3115     return true;
3116   }
3117 
VisitShadowFrame(ShadowFrame * shadow_frame)3118   void VisitShadowFrame(ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) {
3119     ArtMethod* m = shadow_frame->GetMethod();
3120     VisitDeclaringClass(m);
3121     DCHECK(m != nullptr);
3122     size_t num_regs = shadow_frame->NumberOfVRegs();
3123     DCHECK(m->IsNative() || shadow_frame->HasReferenceArray());
3124     // handle scope for JNI or References for interpreter.
3125     for (size_t reg = 0; reg < num_regs; ++reg) {
3126       mirror::Object* ref = shadow_frame->GetVRegReference(reg);
3127       if (ref != nullptr) {
3128         mirror::Object* new_ref = ref;
3129         visitor_(&new_ref, reg, this);
3130         if (new_ref != ref) {
3131           shadow_frame->SetVRegReference(reg, new_ref);
3132         }
3133       }
3134     }
3135     // Mark lock count map required for structured locking checks.
3136     shadow_frame->GetLockCountData().VisitMonitors(visitor_, -1, this);
3137   }
3138 
3139  private:
3140   // Visiting the declaring class is necessary so that we don't unload the class of a method that
3141   // is executing. We need to ensure that the code stays mapped. NO_THREAD_SAFETY_ANALYSIS since
3142   // the threads do not all hold the heap bitmap lock for parallel GC.
VisitDeclaringClass(ArtMethod * method)3143   void VisitDeclaringClass(ArtMethod* method)
3144       REQUIRES_SHARED(Locks::mutator_lock_)
3145       NO_THREAD_SAFETY_ANALYSIS {
3146     ObjPtr<mirror::Class> klass = method->GetDeclaringClassUnchecked<kWithoutReadBarrier>();
3147     // klass can be null for runtime methods.
3148     if (klass != nullptr) {
3149       if (kVerifyImageObjectsMarked) {
3150         gc::Heap* const heap = Runtime::Current()->GetHeap();
3151         gc::space::ContinuousSpace* space = heap->FindContinuousSpaceFromObject(klass,
3152                                                                                 /*fail_ok*/true);
3153         if (space != nullptr && space->IsImageSpace()) {
3154           bool failed = false;
3155           if (!space->GetLiveBitmap()->Test(klass.Ptr())) {
3156             failed = true;
3157             LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image " << *space;
3158           } else if (!heap->GetLiveBitmap()->Test(klass.Ptr())) {
3159             failed = true;
3160             LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image through live bitmap " << *space;
3161           }
3162           if (failed) {
3163             GetThread()->Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
3164             space->AsImageSpace()->DumpSections(LOG_STREAM(FATAL_WITHOUT_ABORT));
3165             LOG(FATAL_WITHOUT_ABORT) << "Method@" << method->GetDexMethodIndex() << ":" << method
3166                                      << " klass@" << klass.Ptr();
3167             // Pretty info last in case it crashes.
3168             LOG(FATAL) << "Method " << method->PrettyMethod() << " klass "
3169                        << klass->PrettyClass();
3170           }
3171         }
3172       }
3173       mirror::Object* new_ref = klass.Ptr();
3174       visitor_(&new_ref, -1, this);
3175       if (new_ref != klass) {
3176         method->CASDeclaringClass(klass.Ptr(), new_ref->AsClass());
3177       }
3178     }
3179   }
3180 
3181   template <typename T>
3182   ALWAYS_INLINE
VisitQuickFrameWithVregCallback()3183   inline void VisitQuickFrameWithVregCallback() REQUIRES_SHARED(Locks::mutator_lock_) {
3184     ArtMethod** cur_quick_frame = GetCurrentQuickFrame();
3185     DCHECK(cur_quick_frame != nullptr);
3186     ArtMethod* m = *cur_quick_frame;
3187     VisitDeclaringClass(m);
3188 
3189     // Process register map (which native and runtime methods don't have)
3190     if (!m->IsNative() && !m->IsRuntimeMethod() && (!m->IsProxyMethod() || m->IsConstructor())) {
3191       const OatQuickMethodHeader* method_header = GetCurrentOatQuickMethodHeader();
3192       DCHECK(method_header->IsOptimized());
3193       auto* vreg_base = reinterpret_cast<StackReference<mirror::Object>*>(
3194           reinterpret_cast<uintptr_t>(cur_quick_frame));
3195       uintptr_t native_pc_offset = method_header->NativeQuickPcOffset(GetCurrentQuickFramePc());
3196       CodeInfo code_info = method_header->GetOptimizedCodeInfo();
3197       CodeInfoEncoding encoding = code_info.ExtractEncoding();
3198       StackMap map = code_info.GetStackMapForNativePcOffset(native_pc_offset, encoding);
3199       DCHECK(map.IsValid());
3200 
3201       T vreg_info(m, code_info, encoding, map, visitor_);
3202 
3203       // Visit stack entries that hold pointers.
3204       const size_t number_of_bits = code_info.GetNumberOfStackMaskBits(encoding);
3205       BitMemoryRegion stack_mask = code_info.GetStackMaskOf(encoding, map);
3206       for (size_t i = 0; i < number_of_bits; ++i) {
3207         if (stack_mask.LoadBit(i)) {
3208           auto* ref_addr = vreg_base + i;
3209           mirror::Object* ref = ref_addr->AsMirrorPtr();
3210           if (ref != nullptr) {
3211             mirror::Object* new_ref = ref;
3212             vreg_info.VisitStack(&new_ref, i, this);
3213             if (ref != new_ref) {
3214               ref_addr->Assign(new_ref);
3215            }
3216           }
3217         }
3218       }
3219       // Visit callee-save registers that hold pointers.
3220       uint32_t register_mask = code_info.GetRegisterMaskOf(encoding, map);
3221       for (size_t i = 0; i < BitSizeOf<uint32_t>(); ++i) {
3222         if (register_mask & (1 << i)) {
3223           mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(i));
3224           if (kIsDebugBuild && ref_addr == nullptr) {
3225             std::string thread_name;
3226             GetThread()->GetThreadName(thread_name);
3227             LOG(FATAL_WITHOUT_ABORT) << "On thread " << thread_name;
3228             DescribeStack(GetThread());
3229             LOG(FATAL) << "Found an unsaved callee-save register " << i << " (null GPRAddress) "
3230                        << "set in register_mask=" << register_mask << " at " << DescribeLocation();
3231           }
3232           if (*ref_addr != nullptr) {
3233             vreg_info.VisitRegister(ref_addr, i, this);
3234           }
3235         }
3236       }
3237     }
3238   }
3239 
VisitQuickFrame()3240   void VisitQuickFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
3241     if (kPrecise) {
3242       VisitQuickFramePrecise();
3243     } else {
3244       VisitQuickFrameNonPrecise();
3245     }
3246   }
3247 
VisitQuickFrameNonPrecise()3248   void VisitQuickFrameNonPrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
3249     struct UndefinedVRegInfo {
3250       UndefinedVRegInfo(ArtMethod* method ATTRIBUTE_UNUSED,
3251                         const CodeInfo& code_info ATTRIBUTE_UNUSED,
3252                         const CodeInfoEncoding& encoding ATTRIBUTE_UNUSED,
3253                         const StackMap& map ATTRIBUTE_UNUSED,
3254                         RootVisitor& _visitor)
3255           : visitor(_visitor) {
3256       }
3257 
3258       ALWAYS_INLINE
3259       void VisitStack(mirror::Object** ref,
3260                       size_t stack_index ATTRIBUTE_UNUSED,
3261                       const StackVisitor* stack_visitor)
3262           REQUIRES_SHARED(Locks::mutator_lock_) {
3263         visitor(ref, -1, stack_visitor);
3264       }
3265 
3266       ALWAYS_INLINE
3267       void VisitRegister(mirror::Object** ref,
3268                          size_t register_index ATTRIBUTE_UNUSED,
3269                          const StackVisitor* stack_visitor)
3270           REQUIRES_SHARED(Locks::mutator_lock_) {
3271         visitor(ref, -1, stack_visitor);
3272       }
3273 
3274       RootVisitor& visitor;
3275     };
3276     VisitQuickFrameWithVregCallback<UndefinedVRegInfo>();
3277   }
3278 
VisitQuickFramePrecise()3279   void VisitQuickFramePrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
3280     struct StackMapVRegInfo {
3281       StackMapVRegInfo(ArtMethod* method,
3282                        const CodeInfo& _code_info,
3283                        const CodeInfoEncoding& _encoding,
3284                        const StackMap& map,
3285                        RootVisitor& _visitor)
3286           : number_of_dex_registers(method->GetCodeItem()->registers_size_),
3287             code_info(_code_info),
3288             encoding(_encoding),
3289             dex_register_map(code_info.GetDexRegisterMapOf(map,
3290                                                            encoding,
3291                                                            number_of_dex_registers)),
3292             visitor(_visitor) {
3293       }
3294 
3295       // TODO: If necessary, we should consider caching a reverse map instead of the linear
3296       //       lookups for each location.
3297       void FindWithType(const size_t index,
3298                         const DexRegisterLocation::Kind kind,
3299                         mirror::Object** ref,
3300                         const StackVisitor* stack_visitor)
3301           REQUIRES_SHARED(Locks::mutator_lock_) {
3302         bool found = false;
3303         for (size_t dex_reg = 0; dex_reg != number_of_dex_registers; ++dex_reg) {
3304           DexRegisterLocation location = dex_register_map.GetDexRegisterLocation(
3305               dex_reg, number_of_dex_registers, code_info, encoding);
3306           if (location.GetKind() == kind && static_cast<size_t>(location.GetValue()) == index) {
3307             visitor(ref, dex_reg, stack_visitor);
3308             found = true;
3309           }
3310         }
3311 
3312         if (!found) {
3313           // If nothing found, report with -1.
3314           visitor(ref, -1, stack_visitor);
3315         }
3316       }
3317 
3318       void VisitStack(mirror::Object** ref, size_t stack_index, const StackVisitor* stack_visitor)
3319           REQUIRES_SHARED(Locks::mutator_lock_) {
3320         const size_t stack_offset = stack_index * kFrameSlotSize;
3321         FindWithType(stack_offset,
3322                      DexRegisterLocation::Kind::kInStack,
3323                      ref,
3324                      stack_visitor);
3325       }
3326 
3327       void VisitRegister(mirror::Object** ref,
3328                          size_t register_index,
3329                          const StackVisitor* stack_visitor)
3330           REQUIRES_SHARED(Locks::mutator_lock_) {
3331         FindWithType(register_index,
3332                      DexRegisterLocation::Kind::kInRegister,
3333                      ref,
3334                      stack_visitor);
3335       }
3336 
3337       size_t number_of_dex_registers;
3338       const CodeInfo& code_info;
3339       const CodeInfoEncoding& encoding;
3340       DexRegisterMap dex_register_map;
3341       RootVisitor& visitor;
3342     };
3343     VisitQuickFrameWithVregCallback<StackMapVRegInfo>();
3344   }
3345 
3346   // Visitor for when we visit a root.
3347   RootVisitor& visitor_;
3348 };
3349 
3350 class RootCallbackVisitor {
3351  public:
RootCallbackVisitor(RootVisitor * visitor,uint32_t tid)3352   RootCallbackVisitor(RootVisitor* visitor, uint32_t tid) : visitor_(visitor), tid_(tid) {}
3353 
operator ()(mirror::Object ** obj,size_t vreg,const StackVisitor * stack_visitor) const3354   void operator()(mirror::Object** obj, size_t vreg, const StackVisitor* stack_visitor) const
3355       REQUIRES_SHARED(Locks::mutator_lock_) {
3356     visitor_->VisitRoot(obj, JavaFrameRootInfo(tid_, stack_visitor, vreg));
3357   }
3358 
3359  private:
3360   RootVisitor* const visitor_;
3361   const uint32_t tid_;
3362 };
3363 
3364 template <bool kPrecise>
VisitRoots(RootVisitor * visitor)3365 void Thread::VisitRoots(RootVisitor* visitor) {
3366   const uint32_t thread_id = GetThreadId();
3367   visitor->VisitRootIfNonNull(&tlsPtr_.opeer, RootInfo(kRootThreadObject, thread_id));
3368   if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
3369     visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception),
3370                        RootInfo(kRootNativeStack, thread_id));
3371   }
3372   visitor->VisitRootIfNonNull(&tlsPtr_.monitor_enter_object, RootInfo(kRootNativeStack, thread_id));
3373   tlsPtr_.jni_env->locals.VisitRoots(visitor, RootInfo(kRootJNILocal, thread_id));
3374   tlsPtr_.jni_env->monitors.VisitRoots(visitor, RootInfo(kRootJNIMonitor, thread_id));
3375   HandleScopeVisitRoots(visitor, thread_id);
3376   if (tlsPtr_.debug_invoke_req != nullptr) {
3377     tlsPtr_.debug_invoke_req->VisitRoots(visitor, RootInfo(kRootDebugger, thread_id));
3378   }
3379   // Visit roots for deoptimization.
3380   if (tlsPtr_.stacked_shadow_frame_record != nullptr) {
3381     RootCallbackVisitor visitor_to_callback(visitor, thread_id);
3382     ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
3383     for (StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
3384          record != nullptr;
3385          record = record->GetLink()) {
3386       for (ShadowFrame* shadow_frame = record->GetShadowFrame();
3387            shadow_frame != nullptr;
3388            shadow_frame = shadow_frame->GetLink()) {
3389         mapper.VisitShadowFrame(shadow_frame);
3390       }
3391     }
3392   }
3393   for (DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
3394        record != nullptr;
3395        record = record->GetLink()) {
3396     if (record->IsReference()) {
3397       visitor->VisitRootIfNonNull(record->GetReturnValueAsGCRoot(),
3398                                   RootInfo(kRootThreadObject, thread_id));
3399     }
3400     visitor->VisitRootIfNonNull(record->GetPendingExceptionAsGCRoot(),
3401                                 RootInfo(kRootThreadObject, thread_id));
3402   }
3403   if (tlsPtr_.frame_id_to_shadow_frame != nullptr) {
3404     RootCallbackVisitor visitor_to_callback(visitor, thread_id);
3405     ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
3406     for (FrameIdToShadowFrame* record = tlsPtr_.frame_id_to_shadow_frame;
3407          record != nullptr;
3408          record = record->GetNext()) {
3409       mapper.VisitShadowFrame(record->GetShadowFrame());
3410     }
3411   }
3412   for (auto* verifier = tlsPtr_.method_verifier; verifier != nullptr; verifier = verifier->link_) {
3413     verifier->VisitRoots(visitor, RootInfo(kRootNativeStack, thread_id));
3414   }
3415   // Visit roots on this thread's stack
3416   Context* context = GetLongJumpContext();
3417   RootCallbackVisitor visitor_to_callback(visitor, thread_id);
3418   ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, context, visitor_to_callback);
3419   mapper.template WalkStack<StackVisitor::CountTransitions::kNo>(false);
3420   ReleaseLongJumpContext(context);
3421   for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
3422     visitor->VisitRootIfNonNull(&frame.this_object_, RootInfo(kRootVMInternal, thread_id));
3423   }
3424 }
3425 
VisitRoots(RootVisitor * visitor,VisitRootFlags flags)3426 void Thread::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
3427   if ((flags & VisitRootFlags::kVisitRootFlagPrecise) != 0) {
3428     VisitRoots<true>(visitor);
3429   } else {
3430     VisitRoots<false>(visitor);
3431   }
3432 }
3433 
3434 class VerifyRootVisitor : public SingleRootVisitor {
3435  public:
VisitRoot(mirror::Object * root,const RootInfo & info ATTRIBUTE_UNUSED)3436   void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
3437       OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
3438     VerifyObject(root);
3439   }
3440 };
3441 
VerifyStackImpl()3442 void Thread::VerifyStackImpl() {
3443   VerifyRootVisitor visitor;
3444   std::unique_ptr<Context> context(Context::Create());
3445   RootCallbackVisitor visitor_to_callback(&visitor, GetThreadId());
3446   ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitor_to_callback);
3447   mapper.WalkStack();
3448 }
3449 
3450 // Set the stack end to that to be used during a stack overflow
SetStackEndForStackOverflow()3451 void Thread::SetStackEndForStackOverflow() {
3452   // During stack overflow we allow use of the full stack.
3453   if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
3454     // However, we seem to have already extended to use the full stack.
3455     LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
3456                << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
3457     DumpStack(LOG_STREAM(ERROR));
3458     LOG(FATAL) << "Recursive stack overflow.";
3459   }
3460 
3461   tlsPtr_.stack_end = tlsPtr_.stack_begin;
3462 
3463   // Remove the stack overflow protection if is it set up.
3464   bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
3465   if (implicit_stack_check) {
3466     if (!UnprotectStack()) {
3467       LOG(ERROR) << "Unable to remove stack protection for stack overflow";
3468     }
3469   }
3470 }
3471 
SetTlab(uint8_t * start,uint8_t * end,uint8_t * limit)3472 void Thread::SetTlab(uint8_t* start, uint8_t* end, uint8_t* limit) {
3473   DCHECK_LE(start, end);
3474   DCHECK_LE(end, limit);
3475   tlsPtr_.thread_local_start = start;
3476   tlsPtr_.thread_local_pos  = tlsPtr_.thread_local_start;
3477   tlsPtr_.thread_local_end = end;
3478   tlsPtr_.thread_local_limit = limit;
3479   tlsPtr_.thread_local_objects = 0;
3480 }
3481 
HasTlab() const3482 bool Thread::HasTlab() const {
3483   bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
3484   if (has_tlab) {
3485     DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
3486   } else {
3487     DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
3488   }
3489   return has_tlab;
3490 }
3491 
operator <<(std::ostream & os,const Thread & thread)3492 std::ostream& operator<<(std::ostream& os, const Thread& thread) {
3493   thread.ShortDump(os);
3494   return os;
3495 }
3496 
ProtectStack(bool fatal_on_error)3497 bool Thread::ProtectStack(bool fatal_on_error) {
3498   void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
3499   VLOG(threads) << "Protecting stack at " << pregion;
3500   if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
3501     if (fatal_on_error) {
3502       LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. "
3503           "Reason: "
3504           << strerror(errno) << " size:  " << kStackOverflowProtectedSize;
3505     }
3506     return false;
3507   }
3508   return true;
3509 }
3510 
UnprotectStack()3511 bool Thread::UnprotectStack() {
3512   void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
3513   VLOG(threads) << "Unprotecting stack at " << pregion;
3514   return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
3515 }
3516 
ActivateSingleStepControl(SingleStepControl * ssc)3517 void Thread::ActivateSingleStepControl(SingleStepControl* ssc) {
3518   CHECK(Dbg::IsDebuggerActive());
3519   CHECK(GetSingleStepControl() == nullptr) << "Single step already active in thread " << *this;
3520   CHECK(ssc != nullptr);
3521   tlsPtr_.single_step_control = ssc;
3522 }
3523 
DeactivateSingleStepControl()3524 void Thread::DeactivateSingleStepControl() {
3525   CHECK(Dbg::IsDebuggerActive());
3526   CHECK(GetSingleStepControl() != nullptr) << "Single step not active in thread " << *this;
3527   SingleStepControl* ssc = GetSingleStepControl();
3528   tlsPtr_.single_step_control = nullptr;
3529   delete ssc;
3530 }
3531 
SetDebugInvokeReq(DebugInvokeReq * req)3532 void Thread::SetDebugInvokeReq(DebugInvokeReq* req) {
3533   CHECK(Dbg::IsDebuggerActive());
3534   CHECK(GetInvokeReq() == nullptr) << "Debug invoke req already active in thread " << *this;
3535   CHECK(Thread::Current() != this) << "Debug invoke can't be dispatched by the thread itself";
3536   CHECK(req != nullptr);
3537   tlsPtr_.debug_invoke_req = req;
3538 }
3539 
ClearDebugInvokeReq()3540 void Thread::ClearDebugInvokeReq() {
3541   CHECK(GetInvokeReq() != nullptr) << "Debug invoke req not active in thread " << *this;
3542   CHECK(Thread::Current() == this) << "Debug invoke must be finished by the thread itself";
3543   DebugInvokeReq* req = tlsPtr_.debug_invoke_req;
3544   tlsPtr_.debug_invoke_req = nullptr;
3545   delete req;
3546 }
3547 
PushVerifier(verifier::MethodVerifier * verifier)3548 void Thread::PushVerifier(verifier::MethodVerifier* verifier) {
3549   verifier->link_ = tlsPtr_.method_verifier;
3550   tlsPtr_.method_verifier = verifier;
3551 }
3552 
PopVerifier(verifier::MethodVerifier * verifier)3553 void Thread::PopVerifier(verifier::MethodVerifier* verifier) {
3554   CHECK_EQ(tlsPtr_.method_verifier, verifier);
3555   tlsPtr_.method_verifier = verifier->link_;
3556 }
3557 
NumberOfHeldMutexes() const3558 size_t Thread::NumberOfHeldMutexes() const {
3559   size_t count = 0;
3560   for (BaseMutex* mu : tlsPtr_.held_mutexes) {
3561     count += mu != nullptr ? 1 : 0;
3562   }
3563   return count;
3564 }
3565 
DeoptimizeWithDeoptimizationException(JValue * result)3566 void Thread::DeoptimizeWithDeoptimizationException(JValue* result) {
3567   DCHECK_EQ(GetException(), Thread::GetDeoptimizationException());
3568   ClearException();
3569   ShadowFrame* shadow_frame =
3570       PopStackedShadowFrame(StackedShadowFrameType::kDeoptimizationShadowFrame);
3571   ObjPtr<mirror::Throwable> pending_exception;
3572   bool from_code = false;
3573   PopDeoptimizationContext(result, &pending_exception, &from_code);
3574   SetTopOfStack(nullptr);
3575   SetTopOfShadowStack(shadow_frame);
3576 
3577   // Restore the exception that was pending before deoptimization then interpret the
3578   // deoptimized frames.
3579   if (pending_exception != nullptr) {
3580     SetException(pending_exception);
3581   }
3582   interpreter::EnterInterpreterFromDeoptimize(this, shadow_frame, from_code, result);
3583 }
3584 
SetException(ObjPtr<mirror::Throwable> new_exception)3585 void Thread::SetException(ObjPtr<mirror::Throwable> new_exception) {
3586   CHECK(new_exception != nullptr);
3587   // TODO: DCHECK(!IsExceptionPending());
3588   tlsPtr_.exception = new_exception.Ptr();
3589 }
3590 
IsAotCompiler()3591 bool Thread::IsAotCompiler() {
3592   return Runtime::Current()->IsAotCompiler();
3593 }
3594 
GetPeerFromOtherThread() const3595 mirror::Object* Thread::GetPeerFromOtherThread() const {
3596   DCHECK(tlsPtr_.jpeer == nullptr);
3597   mirror::Object* peer = tlsPtr_.opeer;
3598   if (kUseReadBarrier && Current()->GetIsGcMarking()) {
3599     // We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack
3600     // may have not been flipped yet and peer may be a from-space (stale) ref. So explicitly
3601     // mark/forward it here.
3602     peer = art::ReadBarrier::Mark(peer);
3603   }
3604   return peer;
3605 }
3606 
3607 }  // namespace art
3608