1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "thread.h"
18
19 #if !defined(__APPLE__)
20 #include <sched.h>
21 #endif
22
23 #include <pthread.h>
24 #include <signal.h>
25 #include <sys/resource.h>
26 #include <sys/time.h>
27
28 #include <algorithm>
29 #include <bitset>
30 #include <cerrno>
31 #include <iostream>
32 #include <list>
33 #include <sstream>
34
35 #include "android-base/stringprintf.h"
36
37 #include "arch/context.h"
38 #include "art_field-inl.h"
39 #include "art_method-inl.h"
40 #include "base/bit_utils.h"
41 #include "base/memory_tool.h"
42 #include "base/mutex.h"
43 #include "base/timing_logger.h"
44 #include "base/to_str.h"
45 #include "base/systrace.h"
46 #include "class_linker-inl.h"
47 #include "debugger.h"
48 #include "dex_file-inl.h"
49 #include "dex_file_annotations.h"
50 #include "entrypoints/entrypoint_utils.h"
51 #include "entrypoints/quick/quick_alloc_entrypoints.h"
52 #include "gc/accounting/card_table-inl.h"
53 #include "gc/accounting/heap_bitmap-inl.h"
54 #include "gc/allocator/rosalloc.h"
55 #include "gc/heap.h"
56 #include "gc/space/space-inl.h"
57 #include "handle_scope-inl.h"
58 #include "indirect_reference_table-inl.h"
59 #include "java_vm_ext.h"
60 #include "jni_internal.h"
61 #include "mirror/class_loader.h"
62 #include "mirror/class-inl.h"
63 #include "mirror/object_array-inl.h"
64 #include "mirror/stack_trace_element.h"
65 #include "monitor.h"
66 #include "native_stack_dump.h"
67 #include "nth_caller_visitor.h"
68 #include "oat_quick_method_header.h"
69 #include "obj_ptr-inl.h"
70 #include "object_lock.h"
71 #include "quick_exception_handler.h"
72 #include "quick/quick_method_frame_info.h"
73 #include "read_barrier-inl.h"
74 #include "reflection.h"
75 #include "runtime.h"
76 #include "runtime_callbacks.h"
77 #include "scoped_thread_state_change-inl.h"
78 #include "ScopedLocalRef.h"
79 #include "ScopedUtfChars.h"
80 #include "stack.h"
81 #include "stack_map.h"
82 #include "thread_list.h"
83 #include "thread-inl.h"
84 #include "utils.h"
85 #include "verifier/method_verifier.h"
86 #include "verify_object.h"
87 #include "well_known_classes.h"
88 #include "interpreter/interpreter.h"
89
90 #if ART_USE_FUTEXES
91 #include "linux/futex.h"
92 #include "sys/syscall.h"
93 #ifndef SYS_futex
94 #define SYS_futex __NR_futex
95 #endif
96 #endif // ART_USE_FUTEXES
97
98 namespace art {
99
100 using android::base::StringAppendV;
101 using android::base::StringPrintf;
102
103 extern "C" NO_RETURN void artDeoptimize(Thread* self);
104
105 bool Thread::is_started_ = false;
106 pthread_key_t Thread::pthread_key_self_;
107 ConditionVariable* Thread::resume_cond_ = nullptr;
108 const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
109 bool (*Thread::is_sensitive_thread_hook_)() = nullptr;
110 Thread* Thread::jit_sensitive_thread_ = nullptr;
111
112 static constexpr bool kVerifyImageObjectsMarked = kIsDebugBuild;
113
114 // For implicit overflow checks we reserve an extra piece of memory at the bottom
115 // of the stack (lowest memory). The higher portion of the memory
116 // is protected against reads and the lower is available for use while
117 // throwing the StackOverflow exception.
118 constexpr size_t kStackOverflowProtectedSize = 4 * kMemoryToolStackGuardSizeScale * KB;
119
120 static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
121
InitCardTable()122 void Thread::InitCardTable() {
123 tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
124 }
125
UnimplementedEntryPoint()126 static void UnimplementedEntryPoint() {
127 UNIMPLEMENTED(FATAL);
128 }
129
130 void InitEntryPoints(JniEntryPoints* jpoints, QuickEntryPoints* qpoints);
131 void UpdateReadBarrierEntrypoints(QuickEntryPoints* qpoints, bool is_marking);
132
SetIsGcMarkingAndUpdateEntrypoints(bool is_marking)133 void Thread::SetIsGcMarkingAndUpdateEntrypoints(bool is_marking) {
134 CHECK(kUseReadBarrier);
135 tls32_.is_gc_marking = is_marking;
136 UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, is_marking);
137 ResetQuickAllocEntryPointsForThread(is_marking);
138 }
139
InitTlsEntryPoints()140 void Thread::InitTlsEntryPoints() {
141 // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
142 uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.jni_entrypoints);
143 uintptr_t* end = reinterpret_cast<uintptr_t*>(
144 reinterpret_cast<uint8_t*>(&tlsPtr_.quick_entrypoints) + sizeof(tlsPtr_.quick_entrypoints));
145 for (uintptr_t* it = begin; it != end; ++it) {
146 *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
147 }
148 InitEntryPoints(&tlsPtr_.jni_entrypoints, &tlsPtr_.quick_entrypoints);
149 }
150
ResetQuickAllocEntryPointsForThread(bool is_marking)151 void Thread::ResetQuickAllocEntryPointsForThread(bool is_marking) {
152 if (kUseReadBarrier && kRuntimeISA != kX86_64) {
153 // Allocation entrypoint switching is currently only implemented for X86_64.
154 is_marking = true;
155 }
156 ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints, is_marking);
157 }
158
159 class DeoptimizationContextRecord {
160 public:
DeoptimizationContextRecord(const JValue & ret_val,bool is_reference,bool from_code,ObjPtr<mirror::Throwable> pending_exception,DeoptimizationContextRecord * link)161 DeoptimizationContextRecord(const JValue& ret_val,
162 bool is_reference,
163 bool from_code,
164 ObjPtr<mirror::Throwable> pending_exception,
165 DeoptimizationContextRecord* link)
166 : ret_val_(ret_val),
167 is_reference_(is_reference),
168 from_code_(from_code),
169 pending_exception_(pending_exception.Ptr()),
170 link_(link) {}
171
GetReturnValue() const172 JValue GetReturnValue() const { return ret_val_; }
IsReference() const173 bool IsReference() const { return is_reference_; }
GetFromCode() const174 bool GetFromCode() const { return from_code_; }
GetPendingException() const175 ObjPtr<mirror::Throwable> GetPendingException() const { return pending_exception_; }
GetLink() const176 DeoptimizationContextRecord* GetLink() const { return link_; }
GetReturnValueAsGCRoot()177 mirror::Object** GetReturnValueAsGCRoot() {
178 DCHECK(is_reference_);
179 return ret_val_.GetGCRoot();
180 }
GetPendingExceptionAsGCRoot()181 mirror::Object** GetPendingExceptionAsGCRoot() {
182 return reinterpret_cast<mirror::Object**>(&pending_exception_);
183 }
184
185 private:
186 // The value returned by the method at the top of the stack before deoptimization.
187 JValue ret_val_;
188
189 // Indicates whether the returned value is a reference. If so, the GC will visit it.
190 const bool is_reference_;
191
192 // Whether the context was created from an explicit deoptimization in the code.
193 const bool from_code_;
194
195 // The exception that was pending before deoptimization (or null if there was no pending
196 // exception).
197 mirror::Throwable* pending_exception_;
198
199 // A link to the previous DeoptimizationContextRecord.
200 DeoptimizationContextRecord* const link_;
201
202 DISALLOW_COPY_AND_ASSIGN(DeoptimizationContextRecord);
203 };
204
205 class StackedShadowFrameRecord {
206 public:
StackedShadowFrameRecord(ShadowFrame * shadow_frame,StackedShadowFrameType type,StackedShadowFrameRecord * link)207 StackedShadowFrameRecord(ShadowFrame* shadow_frame,
208 StackedShadowFrameType type,
209 StackedShadowFrameRecord* link)
210 : shadow_frame_(shadow_frame),
211 type_(type),
212 link_(link) {}
213
GetShadowFrame() const214 ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
GetType() const215 StackedShadowFrameType GetType() const { return type_; }
GetLink() const216 StackedShadowFrameRecord* GetLink() const { return link_; }
217
218 private:
219 ShadowFrame* const shadow_frame_;
220 const StackedShadowFrameType type_;
221 StackedShadowFrameRecord* const link_;
222
223 DISALLOW_COPY_AND_ASSIGN(StackedShadowFrameRecord);
224 };
225
PushDeoptimizationContext(const JValue & return_value,bool is_reference,bool from_code,ObjPtr<mirror::Throwable> exception)226 void Thread::PushDeoptimizationContext(const JValue& return_value,
227 bool is_reference,
228 bool from_code,
229 ObjPtr<mirror::Throwable> exception) {
230 DeoptimizationContextRecord* record = new DeoptimizationContextRecord(
231 return_value,
232 is_reference,
233 from_code,
234 exception,
235 tlsPtr_.deoptimization_context_stack);
236 tlsPtr_.deoptimization_context_stack = record;
237 }
238
PopDeoptimizationContext(JValue * result,ObjPtr<mirror::Throwable> * exception,bool * from_code)239 void Thread::PopDeoptimizationContext(JValue* result,
240 ObjPtr<mirror::Throwable>* exception,
241 bool* from_code) {
242 AssertHasDeoptimizationContext();
243 DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
244 tlsPtr_.deoptimization_context_stack = record->GetLink();
245 result->SetJ(record->GetReturnValue().GetJ());
246 *exception = record->GetPendingException();
247 *from_code = record->GetFromCode();
248 delete record;
249 }
250
AssertHasDeoptimizationContext()251 void Thread::AssertHasDeoptimizationContext() {
252 CHECK(tlsPtr_.deoptimization_context_stack != nullptr)
253 << "No deoptimization context for thread " << *this;
254 }
255
PushStackedShadowFrame(ShadowFrame * sf,StackedShadowFrameType type)256 void Thread::PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type) {
257 StackedShadowFrameRecord* record = new StackedShadowFrameRecord(
258 sf, type, tlsPtr_.stacked_shadow_frame_record);
259 tlsPtr_.stacked_shadow_frame_record = record;
260 }
261
PopStackedShadowFrame(StackedShadowFrameType type,bool must_be_present)262 ShadowFrame* Thread::PopStackedShadowFrame(StackedShadowFrameType type, bool must_be_present) {
263 StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
264 if (must_be_present) {
265 DCHECK(record != nullptr);
266 } else {
267 if (record == nullptr || record->GetType() != type) {
268 return nullptr;
269 }
270 }
271 tlsPtr_.stacked_shadow_frame_record = record->GetLink();
272 ShadowFrame* shadow_frame = record->GetShadowFrame();
273 delete record;
274 return shadow_frame;
275 }
276
277 class FrameIdToShadowFrame {
278 public:
Create(size_t frame_id,ShadowFrame * shadow_frame,FrameIdToShadowFrame * next,size_t num_vregs)279 static FrameIdToShadowFrame* Create(size_t frame_id,
280 ShadowFrame* shadow_frame,
281 FrameIdToShadowFrame* next,
282 size_t num_vregs) {
283 // Append a bool array at the end to keep track of what vregs are updated by the debugger.
284 uint8_t* memory = new uint8_t[sizeof(FrameIdToShadowFrame) + sizeof(bool) * num_vregs];
285 return new (memory) FrameIdToShadowFrame(frame_id, shadow_frame, next);
286 }
287
Delete(FrameIdToShadowFrame * f)288 static void Delete(FrameIdToShadowFrame* f) {
289 uint8_t* memory = reinterpret_cast<uint8_t*>(f);
290 delete[] memory;
291 }
292
GetFrameId() const293 size_t GetFrameId() const { return frame_id_; }
GetShadowFrame() const294 ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
GetNext() const295 FrameIdToShadowFrame* GetNext() const { return next_; }
SetNext(FrameIdToShadowFrame * next)296 void SetNext(FrameIdToShadowFrame* next) { next_ = next; }
GetUpdatedVRegFlags()297 bool* GetUpdatedVRegFlags() {
298 return updated_vreg_flags_;
299 }
300
301 private:
FrameIdToShadowFrame(size_t frame_id,ShadowFrame * shadow_frame,FrameIdToShadowFrame * next)302 FrameIdToShadowFrame(size_t frame_id,
303 ShadowFrame* shadow_frame,
304 FrameIdToShadowFrame* next)
305 : frame_id_(frame_id),
306 shadow_frame_(shadow_frame),
307 next_(next) {}
308
309 const size_t frame_id_;
310 ShadowFrame* const shadow_frame_;
311 FrameIdToShadowFrame* next_;
312 bool updated_vreg_flags_[0];
313
314 DISALLOW_COPY_AND_ASSIGN(FrameIdToShadowFrame);
315 };
316
FindFrameIdToShadowFrame(FrameIdToShadowFrame * head,size_t frame_id)317 static FrameIdToShadowFrame* FindFrameIdToShadowFrame(FrameIdToShadowFrame* head,
318 size_t frame_id) {
319 FrameIdToShadowFrame* found = nullptr;
320 for (FrameIdToShadowFrame* record = head; record != nullptr; record = record->GetNext()) {
321 if (record->GetFrameId() == frame_id) {
322 if (kIsDebugBuild) {
323 // Sanity check we have at most one record for this frame.
324 CHECK(found == nullptr) << "Multiple records for the frame " << frame_id;
325 found = record;
326 } else {
327 return record;
328 }
329 }
330 }
331 return found;
332 }
333
FindDebuggerShadowFrame(size_t frame_id)334 ShadowFrame* Thread::FindDebuggerShadowFrame(size_t frame_id) {
335 FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
336 tlsPtr_.frame_id_to_shadow_frame, frame_id);
337 if (record != nullptr) {
338 return record->GetShadowFrame();
339 }
340 return nullptr;
341 }
342
343 // Must only be called when FindDebuggerShadowFrame(frame_id) returns non-nullptr.
GetUpdatedVRegFlags(size_t frame_id)344 bool* Thread::GetUpdatedVRegFlags(size_t frame_id) {
345 FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
346 tlsPtr_.frame_id_to_shadow_frame, frame_id);
347 CHECK(record != nullptr);
348 return record->GetUpdatedVRegFlags();
349 }
350
FindOrCreateDebuggerShadowFrame(size_t frame_id,uint32_t num_vregs,ArtMethod * method,uint32_t dex_pc)351 ShadowFrame* Thread::FindOrCreateDebuggerShadowFrame(size_t frame_id,
352 uint32_t num_vregs,
353 ArtMethod* method,
354 uint32_t dex_pc) {
355 ShadowFrame* shadow_frame = FindDebuggerShadowFrame(frame_id);
356 if (shadow_frame != nullptr) {
357 return shadow_frame;
358 }
359 VLOG(deopt) << "Create pre-deopted ShadowFrame for " << ArtMethod::PrettyMethod(method);
360 shadow_frame = ShadowFrame::CreateDeoptimizedFrame(num_vregs, nullptr, method, dex_pc);
361 FrameIdToShadowFrame* record = FrameIdToShadowFrame::Create(frame_id,
362 shadow_frame,
363 tlsPtr_.frame_id_to_shadow_frame,
364 num_vregs);
365 for (uint32_t i = 0; i < num_vregs; i++) {
366 // Do this to clear all references for root visitors.
367 shadow_frame->SetVRegReference(i, nullptr);
368 // This flag will be changed to true if the debugger modifies the value.
369 record->GetUpdatedVRegFlags()[i] = false;
370 }
371 tlsPtr_.frame_id_to_shadow_frame = record;
372 return shadow_frame;
373 }
374
RemoveDebuggerShadowFrameMapping(size_t frame_id)375 void Thread::RemoveDebuggerShadowFrameMapping(size_t frame_id) {
376 FrameIdToShadowFrame* head = tlsPtr_.frame_id_to_shadow_frame;
377 if (head->GetFrameId() == frame_id) {
378 tlsPtr_.frame_id_to_shadow_frame = head->GetNext();
379 FrameIdToShadowFrame::Delete(head);
380 return;
381 }
382 FrameIdToShadowFrame* prev = head;
383 for (FrameIdToShadowFrame* record = head->GetNext();
384 record != nullptr;
385 prev = record, record = record->GetNext()) {
386 if (record->GetFrameId() == frame_id) {
387 prev->SetNext(record->GetNext());
388 FrameIdToShadowFrame::Delete(record);
389 return;
390 }
391 }
392 LOG(FATAL) << "No shadow frame for frame " << frame_id;
393 UNREACHABLE();
394 }
395
InitTid()396 void Thread::InitTid() {
397 tls32_.tid = ::art::GetTid();
398 }
399
InitAfterFork()400 void Thread::InitAfterFork() {
401 // One thread (us) survived the fork, but we have a new tid so we need to
402 // update the value stashed in this Thread*.
403 InitTid();
404 }
405
CreateCallback(void * arg)406 void* Thread::CreateCallback(void* arg) {
407 Thread* self = reinterpret_cast<Thread*>(arg);
408 Runtime* runtime = Runtime::Current();
409 if (runtime == nullptr) {
410 LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
411 return nullptr;
412 }
413 {
414 // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
415 // after self->Init().
416 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
417 // Check that if we got here we cannot be shutting down (as shutdown should never have started
418 // while threads are being born).
419 CHECK(!runtime->IsShuttingDownLocked());
420 // Note: given that the JNIEnv is created in the parent thread, the only failure point here is
421 // a mess in InitStackHwm. We do not have a reasonable way to recover from that, so abort
422 // the runtime in such a case. In case this ever changes, we need to make sure here to
423 // delete the tmp_jni_env, as we own it at this point.
424 CHECK(self->Init(runtime->GetThreadList(), runtime->GetJavaVM(), self->tlsPtr_.tmp_jni_env));
425 self->tlsPtr_.tmp_jni_env = nullptr;
426 Runtime::Current()->EndThreadBirth();
427 }
428 {
429 ScopedObjectAccess soa(self);
430 self->InitStringEntryPoints();
431
432 // Copy peer into self, deleting global reference when done.
433 CHECK(self->tlsPtr_.jpeer != nullptr);
434 self->tlsPtr_.opeer = soa.Decode<mirror::Object>(self->tlsPtr_.jpeer).Ptr();
435 self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
436 self->tlsPtr_.jpeer = nullptr;
437 self->SetThreadName(self->GetThreadName()->ToModifiedUtf8().c_str());
438
439 ArtField* priorityField = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority);
440 self->SetNativePriority(priorityField->GetInt(self->tlsPtr_.opeer));
441
442 runtime->GetRuntimeCallbacks()->ThreadStart(self);
443
444 // Invoke the 'run' method of our java.lang.Thread.
445 ObjPtr<mirror::Object> receiver = self->tlsPtr_.opeer;
446 jmethodID mid = WellKnownClasses::java_lang_Thread_run;
447 ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(receiver));
448 InvokeVirtualOrInterfaceWithJValues(soa, ref.get(), mid, nullptr);
449 }
450 // Detach and delete self.
451 Runtime::Current()->GetThreadList()->Unregister(self);
452
453 return nullptr;
454 }
455
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,ObjPtr<mirror::Object> thread_peer)456 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
457 ObjPtr<mirror::Object> thread_peer) {
458 ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer);
459 Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
460 // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
461 // to stop it from going away.
462 if (kIsDebugBuild) {
463 MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
464 if (result != nullptr && !result->IsSuspended()) {
465 Locks::thread_list_lock_->AssertHeld(soa.Self());
466 }
467 }
468 return result;
469 }
470
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,jobject java_thread)471 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
472 jobject java_thread) {
473 return FromManagedThread(soa, soa.Decode<mirror::Object>(java_thread).Ptr());
474 }
475
FixStackSize(size_t stack_size)476 static size_t FixStackSize(size_t stack_size) {
477 // A stack size of zero means "use the default".
478 if (stack_size == 0) {
479 stack_size = Runtime::Current()->GetDefaultStackSize();
480 }
481
482 // Dalvik used the bionic pthread default stack size for native threads,
483 // so include that here to support apps that expect large native stacks.
484 stack_size += 1 * MB;
485
486 // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
487 if (stack_size < PTHREAD_STACK_MIN) {
488 stack_size = PTHREAD_STACK_MIN;
489 }
490
491 if (Runtime::Current()->ExplicitStackOverflowChecks()) {
492 // It's likely that callers are trying to ensure they have at least a certain amount of
493 // stack space, so we should add our reserved space on top of what they requested, rather
494 // than implicitly take it away from them.
495 stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
496 } else {
497 // If we are going to use implicit stack checks, allocate space for the protected
498 // region at the bottom of the stack.
499 stack_size += Thread::kStackOverflowImplicitCheckSize +
500 GetStackOverflowReservedBytes(kRuntimeISA);
501 }
502
503 // Some systems require the stack size to be a multiple of the system page size, so round up.
504 stack_size = RoundUp(stack_size, kPageSize);
505
506 return stack_size;
507 }
508
509 // Return the nearest page-aligned address below the current stack top.
510 NO_INLINE
FindStackTop()511 static uint8_t* FindStackTop() {
512 return reinterpret_cast<uint8_t*>(
513 AlignDown(__builtin_frame_address(0), kPageSize));
514 }
515
516 // Install a protected region in the stack. This is used to trigger a SIGSEGV if a stack
517 // overflow is detected. It is located right below the stack_begin_.
518 ATTRIBUTE_NO_SANITIZE_ADDRESS
InstallImplicitProtection()519 void Thread::InstallImplicitProtection() {
520 uint8_t* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
521 // Page containing current top of stack.
522 uint8_t* stack_top = FindStackTop();
523
524 // Try to directly protect the stack.
525 VLOG(threads) << "installing stack protected region at " << std::hex <<
526 static_cast<void*>(pregion) << " to " <<
527 static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
528 if (ProtectStack(/* fatal_on_error */ false)) {
529 // Tell the kernel that we won't be needing these pages any more.
530 // NB. madvise will probably write zeroes into the memory (on linux it does).
531 uint32_t unwanted_size = stack_top - pregion - kPageSize;
532 madvise(pregion, unwanted_size, MADV_DONTNEED);
533 return;
534 }
535
536 // There is a little complexity here that deserves a special mention. On some
537 // architectures, the stack is created using a VM_GROWSDOWN flag
538 // to prevent memory being allocated when it's not needed. This flag makes the
539 // kernel only allocate memory for the stack by growing down in memory. Because we
540 // want to put an mprotected region far away from that at the stack top, we need
541 // to make sure the pages for the stack are mapped in before we call mprotect.
542 //
543 // The failed mprotect in UnprotectStack is an indication of a thread with VM_GROWSDOWN
544 // with a non-mapped stack (usually only the main thread).
545 //
546 // We map in the stack by reading every page from the stack bottom (highest address)
547 // to the stack top. (We then madvise this away.) This must be done by reading from the
548 // current stack pointer downwards. Any access more than a page below the current SP
549 // might cause a segv.
550 // TODO: This comment may be out of date. It seems possible to speed this up. As
551 // this is normally done once in the zygote on startup, ignore for now.
552 //
553 // AddressSanitizer does not like the part of this functions that reads every stack page.
554 // Looks a lot like an out-of-bounds access.
555
556 // (Defensively) first remove the protection on the protected region as will want to read
557 // and write it. Ignore errors.
558 UnprotectStack();
559
560 VLOG(threads) << "Need to map in stack for thread at " << std::hex <<
561 static_cast<void*>(pregion);
562
563 // Read every page from the high address to the low.
564 volatile uint8_t dont_optimize_this;
565 UNUSED(dont_optimize_this);
566 for (uint8_t* p = stack_top; p >= pregion; p -= kPageSize) {
567 dont_optimize_this = *p;
568 }
569
570 VLOG(threads) << "(again) installing stack protected region at " << std::hex <<
571 static_cast<void*>(pregion) << " to " <<
572 static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
573
574 // Protect the bottom of the stack to prevent read/write to it.
575 ProtectStack(/* fatal_on_error */ true);
576
577 // Tell the kernel that we won't be needing these pages any more.
578 // NB. madvise will probably write zeroes into the memory (on linux it does).
579 uint32_t unwanted_size = stack_top - pregion - kPageSize;
580 madvise(pregion, unwanted_size, MADV_DONTNEED);
581 }
582
CreateNativeThread(JNIEnv * env,jobject java_peer,size_t stack_size,bool is_daemon)583 void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
584 CHECK(java_peer != nullptr);
585 Thread* self = static_cast<JNIEnvExt*>(env)->self;
586
587 if (VLOG_IS_ON(threads)) {
588 ScopedObjectAccess soa(env);
589
590 ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name);
591 ObjPtr<mirror::String> java_name =
592 f->GetObject(soa.Decode<mirror::Object>(java_peer))->AsString();
593 std::string thread_name;
594 if (java_name != nullptr) {
595 thread_name = java_name->ToModifiedUtf8();
596 } else {
597 thread_name = "(Unnamed)";
598 }
599
600 VLOG(threads) << "Creating native thread for " << thread_name;
601 self->Dump(LOG_STREAM(INFO));
602 }
603
604 Runtime* runtime = Runtime::Current();
605
606 // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
607 bool thread_start_during_shutdown = false;
608 {
609 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
610 if (runtime->IsShuttingDownLocked()) {
611 thread_start_during_shutdown = true;
612 } else {
613 runtime->StartThreadBirth();
614 }
615 }
616 if (thread_start_during_shutdown) {
617 ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
618 env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
619 return;
620 }
621
622 Thread* child_thread = new Thread(is_daemon);
623 // Use global JNI ref to hold peer live while child thread starts.
624 child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
625 stack_size = FixStackSize(stack_size);
626
627 // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
628 // assign it.
629 env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
630 reinterpret_cast<jlong>(child_thread));
631
632 // Try to allocate a JNIEnvExt for the thread. We do this here as we might be out of memory and
633 // do not have a good way to report this on the child's side.
634 std::string error_msg;
635 std::unique_ptr<JNIEnvExt> child_jni_env_ext(
636 JNIEnvExt::Create(child_thread, Runtime::Current()->GetJavaVM(), &error_msg));
637
638 int pthread_create_result = 0;
639 if (child_jni_env_ext.get() != nullptr) {
640 pthread_t new_pthread;
641 pthread_attr_t attr;
642 child_thread->tlsPtr_.tmp_jni_env = child_jni_env_ext.get();
643 CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
644 CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED),
645 "PTHREAD_CREATE_DETACHED");
646 CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
647 pthread_create_result = pthread_create(&new_pthread,
648 &attr,
649 Thread::CreateCallback,
650 child_thread);
651 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
652
653 if (pthread_create_result == 0) {
654 // pthread_create started the new thread. The child is now responsible for managing the
655 // JNIEnvExt we created.
656 // Note: we can't check for tmp_jni_env == nullptr, as that would require synchronization
657 // between the threads.
658 child_jni_env_ext.release();
659 return;
660 }
661 }
662
663 // Either JNIEnvExt::Create or pthread_create(3) failed, so clean up.
664 {
665 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
666 runtime->EndThreadBirth();
667 }
668 // Manually delete the global reference since Thread::Init will not have been run.
669 env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
670 child_thread->tlsPtr_.jpeer = nullptr;
671 delete child_thread;
672 child_thread = nullptr;
673 // TODO: remove from thread group?
674 env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
675 {
676 std::string msg(child_jni_env_ext.get() == nullptr ?
677 StringPrintf("Could not allocate JNI Env: %s", error_msg.c_str()) :
678 StringPrintf("pthread_create (%s stack) failed: %s",
679 PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
680 ScopedObjectAccess soa(env);
681 soa.Self()->ThrowOutOfMemoryError(msg.c_str());
682 }
683 }
684
Init(ThreadList * thread_list,JavaVMExt * java_vm,JNIEnvExt * jni_env_ext)685 bool Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm, JNIEnvExt* jni_env_ext) {
686 // This function does all the initialization that must be run by the native thread it applies to.
687 // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
688 // we can handshake with the corresponding native thread when it's ready.) Check this native
689 // thread hasn't been through here already...
690 CHECK(Thread::Current() == nullptr);
691
692 // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
693 // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
694 tlsPtr_.pthread_self = pthread_self();
695 CHECK(is_started_);
696
697 SetUpAlternateSignalStack();
698 if (!InitStackHwm()) {
699 return false;
700 }
701 InitCpu();
702 InitTlsEntryPoints();
703 RemoveSuspendTrigger();
704 InitCardTable();
705 InitTid();
706 interpreter::InitInterpreterTls(this);
707
708 #ifdef ART_TARGET_ANDROID
709 __get_tls()[TLS_SLOT_ART_THREAD_SELF] = this;
710 #else
711 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
712 #endif
713 DCHECK_EQ(Thread::Current(), this);
714
715 tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
716
717 if (jni_env_ext != nullptr) {
718 DCHECK_EQ(jni_env_ext->vm, java_vm);
719 DCHECK_EQ(jni_env_ext->self, this);
720 tlsPtr_.jni_env = jni_env_ext;
721 } else {
722 std::string error_msg;
723 tlsPtr_.jni_env = JNIEnvExt::Create(this, java_vm, &error_msg);
724 if (tlsPtr_.jni_env == nullptr) {
725 LOG(ERROR) << "Failed to create JNIEnvExt: " << error_msg;
726 return false;
727 }
728 }
729
730 thread_list->Register(this);
731 return true;
732 }
733
734 template <typename PeerAction>
Attach(const char * thread_name,bool as_daemon,PeerAction peer_action)735 Thread* Thread::Attach(const char* thread_name, bool as_daemon, PeerAction peer_action) {
736 Runtime* runtime = Runtime::Current();
737 if (runtime == nullptr) {
738 LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
739 return nullptr;
740 }
741 Thread* self;
742 {
743 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
744 if (runtime->IsShuttingDownLocked()) {
745 LOG(WARNING) << "Thread attaching while runtime is shutting down: " << thread_name;
746 return nullptr;
747 } else {
748 Runtime::Current()->StartThreadBirth();
749 self = new Thread(as_daemon);
750 bool init_success = self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
751 Runtime::Current()->EndThreadBirth();
752 if (!init_success) {
753 delete self;
754 return nullptr;
755 }
756 }
757 }
758
759 self->InitStringEntryPoints();
760
761 CHECK_NE(self->GetState(), kRunnable);
762 self->SetState(kNative);
763
764 // Run the action that is acting on the peer.
765 if (!peer_action(self)) {
766 runtime->GetThreadList()->Unregister(self);
767 // Unregister deletes self, no need to do this here.
768 return nullptr;
769 }
770
771 if (VLOG_IS_ON(threads)) {
772 if (thread_name != nullptr) {
773 VLOG(threads) << "Attaching thread " << thread_name;
774 } else {
775 VLOG(threads) << "Attaching unnamed thread.";
776 }
777 ScopedObjectAccess soa(self);
778 self->Dump(LOG_STREAM(INFO));
779 }
780
781 {
782 ScopedObjectAccess soa(self);
783 runtime->GetRuntimeCallbacks()->ThreadStart(self);
784 }
785
786 return self;
787 }
788
Attach(const char * thread_name,bool as_daemon,jobject thread_group,bool create_peer)789 Thread* Thread::Attach(const char* thread_name,
790 bool as_daemon,
791 jobject thread_group,
792 bool create_peer) {
793 auto create_peer_action = [&](Thread* self) {
794 // If we're the main thread, ClassLinker won't be created until after we're attached,
795 // so that thread needs a two-stage attach. Regular threads don't need this hack.
796 // In the compiler, all threads need this hack, because no-one's going to be getting
797 // a native peer!
798 if (create_peer) {
799 self->CreatePeer(thread_name, as_daemon, thread_group);
800 if (self->IsExceptionPending()) {
801 // We cannot keep the exception around, as we're deleting self. Try to be helpful and log it.
802 {
803 ScopedObjectAccess soa(self);
804 LOG(ERROR) << "Exception creating thread peer:";
805 LOG(ERROR) << self->GetException()->Dump();
806 self->ClearException();
807 }
808 return false;
809 }
810 } else {
811 // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
812 if (thread_name != nullptr) {
813 self->tlsPtr_.name->assign(thread_name);
814 ::art::SetThreadName(thread_name);
815 } else if (self->GetJniEnv()->check_jni) {
816 LOG(WARNING) << *Thread::Current() << " attached without supplying a name";
817 }
818 }
819 return true;
820 };
821 return Attach(thread_name, as_daemon, create_peer_action);
822 }
823
Attach(const char * thread_name,bool as_daemon,jobject thread_peer)824 Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_peer) {
825 auto set_peer_action = [&](Thread* self) {
826 // Install the given peer.
827 {
828 DCHECK(self == Thread::Current());
829 ScopedObjectAccess soa(self);
830 self->tlsPtr_.opeer = soa.Decode<mirror::Object>(thread_peer).Ptr();
831 }
832 self->GetJniEnv()->SetLongField(thread_peer,
833 WellKnownClasses::java_lang_Thread_nativePeer,
834 reinterpret_cast<jlong>(self));
835 return true;
836 };
837 return Attach(thread_name, as_daemon, set_peer_action);
838 }
839
CreatePeer(const char * name,bool as_daemon,jobject thread_group)840 void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
841 Runtime* runtime = Runtime::Current();
842 CHECK(runtime->IsStarted());
843 JNIEnv* env = tlsPtr_.jni_env;
844
845 if (thread_group == nullptr) {
846 thread_group = runtime->GetMainThreadGroup();
847 }
848 ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
849 // Add missing null check in case of OOM b/18297817
850 if (name != nullptr && thread_name.get() == nullptr) {
851 CHECK(IsExceptionPending());
852 return;
853 }
854 jint thread_priority = GetNativePriority();
855 jboolean thread_is_daemon = as_daemon;
856
857 ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
858 if (peer.get() == nullptr) {
859 CHECK(IsExceptionPending());
860 return;
861 }
862 {
863 ScopedObjectAccess soa(this);
864 tlsPtr_.opeer = soa.Decode<mirror::Object>(peer.get()).Ptr();
865 }
866 env->CallNonvirtualVoidMethod(peer.get(),
867 WellKnownClasses::java_lang_Thread,
868 WellKnownClasses::java_lang_Thread_init,
869 thread_group, thread_name.get(), thread_priority, thread_is_daemon);
870 if (IsExceptionPending()) {
871 return;
872 }
873
874 Thread* self = this;
875 DCHECK_EQ(self, Thread::Current());
876 env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
877 reinterpret_cast<jlong>(self));
878
879 ScopedObjectAccess soa(self);
880 StackHandleScope<1> hs(self);
881 MutableHandle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName()));
882 if (peer_thread_name == nullptr) {
883 // The Thread constructor should have set the Thread.name to a
884 // non-null value. However, because we can run without code
885 // available (in the compiler, in tests), we manually assign the
886 // fields the constructor should have set.
887 if (runtime->IsActiveTransaction()) {
888 InitPeer<true>(soa,
889 tlsPtr_.opeer,
890 thread_is_daemon,
891 thread_group,
892 thread_name.get(),
893 thread_priority);
894 } else {
895 InitPeer<false>(soa,
896 tlsPtr_.opeer,
897 thread_is_daemon,
898 thread_group,
899 thread_name.get(),
900 thread_priority);
901 }
902 peer_thread_name.Assign(GetThreadName());
903 }
904 // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
905 if (peer_thread_name != nullptr) {
906 SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
907 }
908 }
909
CreateCompileTimePeer(JNIEnv * env,const char * name,bool as_daemon,jobject thread_group)910 jobject Thread::CreateCompileTimePeer(JNIEnv* env,
911 const char* name,
912 bool as_daemon,
913 jobject thread_group) {
914 Runtime* runtime = Runtime::Current();
915 CHECK(!runtime->IsStarted());
916
917 if (thread_group == nullptr) {
918 thread_group = runtime->GetMainThreadGroup();
919 }
920 ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
921 // Add missing null check in case of OOM b/18297817
922 if (name != nullptr && thread_name.get() == nullptr) {
923 CHECK(Thread::Current()->IsExceptionPending());
924 return nullptr;
925 }
926 jint thread_priority = GetNativePriority();
927 jboolean thread_is_daemon = as_daemon;
928
929 ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
930 if (peer.get() == nullptr) {
931 CHECK(Thread::Current()->IsExceptionPending());
932 return nullptr;
933 }
934
935 // We cannot call Thread.init, as it will recursively ask for currentThread.
936
937 // The Thread constructor should have set the Thread.name to a
938 // non-null value. However, because we can run without code
939 // available (in the compiler, in tests), we manually assign the
940 // fields the constructor should have set.
941 ScopedObjectAccessUnchecked soa(Thread::Current());
942 if (runtime->IsActiveTransaction()) {
943 InitPeer<true>(soa,
944 soa.Decode<mirror::Object>(peer.get()),
945 thread_is_daemon,
946 thread_group,
947 thread_name.get(),
948 thread_priority);
949 } else {
950 InitPeer<false>(soa,
951 soa.Decode<mirror::Object>(peer.get()),
952 thread_is_daemon,
953 thread_group,
954 thread_name.get(),
955 thread_priority);
956 }
957
958 return peer.release();
959 }
960
961 template<bool kTransactionActive>
InitPeer(ScopedObjectAccessAlreadyRunnable & soa,ObjPtr<mirror::Object> peer,jboolean thread_is_daemon,jobject thread_group,jobject thread_name,jint thread_priority)962 void Thread::InitPeer(ScopedObjectAccessAlreadyRunnable& soa,
963 ObjPtr<mirror::Object> peer,
964 jboolean thread_is_daemon,
965 jobject thread_group,
966 jobject thread_name,
967 jint thread_priority) {
968 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon)->
969 SetBoolean<kTransactionActive>(peer, thread_is_daemon);
970 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)->
971 SetObject<kTransactionActive>(peer, soa.Decode<mirror::Object>(thread_group));
972 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name)->
973 SetObject<kTransactionActive>(peer, soa.Decode<mirror::Object>(thread_name));
974 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority)->
975 SetInt<kTransactionActive>(peer, thread_priority);
976 }
977
SetThreadName(const char * name)978 void Thread::SetThreadName(const char* name) {
979 tlsPtr_.name->assign(name);
980 ::art::SetThreadName(name);
981 Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
982 }
983
GetThreadStack(pthread_t thread,void ** stack_base,size_t * stack_size,size_t * guard_size)984 static void GetThreadStack(pthread_t thread,
985 void** stack_base,
986 size_t* stack_size,
987 size_t* guard_size) {
988 #if defined(__APPLE__)
989 *stack_size = pthread_get_stacksize_np(thread);
990 void* stack_addr = pthread_get_stackaddr_np(thread);
991
992 // Check whether stack_addr is the base or end of the stack.
993 // (On Mac OS 10.7, it's the end.)
994 int stack_variable;
995 if (stack_addr > &stack_variable) {
996 *stack_base = reinterpret_cast<uint8_t*>(stack_addr) - *stack_size;
997 } else {
998 *stack_base = stack_addr;
999 }
1000
1001 // This is wrong, but there doesn't seem to be a way to get the actual value on the Mac.
1002 pthread_attr_t attributes;
1003 CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), __FUNCTION__);
1004 CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
1005 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
1006 #else
1007 pthread_attr_t attributes;
1008 CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__);
1009 CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, stack_base, stack_size), __FUNCTION__);
1010 CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
1011 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
1012
1013 #if defined(__GLIBC__)
1014 // If we're the main thread, check whether we were run with an unlimited stack. In that case,
1015 // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
1016 // will be broken because we'll die long before we get close to 2GB.
1017 bool is_main_thread = (::art::GetTid() == getpid());
1018 if (is_main_thread) {
1019 rlimit stack_limit;
1020 if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
1021 PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
1022 }
1023 if (stack_limit.rlim_cur == RLIM_INFINITY) {
1024 size_t old_stack_size = *stack_size;
1025
1026 // Use the kernel default limit as our size, and adjust the base to match.
1027 *stack_size = 8 * MB;
1028 *stack_base = reinterpret_cast<uint8_t*>(*stack_base) + (old_stack_size - *stack_size);
1029
1030 VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
1031 << " to " << PrettySize(*stack_size)
1032 << " with base " << *stack_base;
1033 }
1034 }
1035 #endif
1036
1037 #endif
1038 }
1039
InitStackHwm()1040 bool Thread::InitStackHwm() {
1041 void* read_stack_base;
1042 size_t read_stack_size;
1043 size_t read_guard_size;
1044 GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size);
1045
1046 tlsPtr_.stack_begin = reinterpret_cast<uint8_t*>(read_stack_base);
1047 tlsPtr_.stack_size = read_stack_size;
1048
1049 // The minimum stack size we can cope with is the overflow reserved bytes (typically
1050 // 8K) + the protected region size (4K) + another page (4K). Typically this will
1051 // be 8+4+4 = 16K. The thread won't be able to do much with this stack even the GC takes
1052 // between 8K and 12K.
1053 uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
1054 + 4 * KB;
1055 if (read_stack_size <= min_stack) {
1056 // Note, as we know the stack is small, avoid operations that could use a lot of stack.
1057 LogHelper::LogLineLowStack(__PRETTY_FUNCTION__,
1058 __LINE__,
1059 ::android::base::ERROR,
1060 "Attempt to attach a thread with a too-small stack");
1061 return false;
1062 }
1063
1064 // This is included in the SIGQUIT output, but it's useful here for thread debugging.
1065 VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)",
1066 read_stack_base,
1067 PrettySize(read_stack_size).c_str(),
1068 PrettySize(read_guard_size).c_str());
1069
1070 // Set stack_end_ to the bottom of the stack saving space of stack overflows
1071
1072 Runtime* runtime = Runtime::Current();
1073 bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsAotCompiler();
1074
1075 // Valgrind on arm doesn't give the right values here. Do not install the guard page, and
1076 // effectively disable stack overflow checks (we'll get segfaults, potentially) by setting
1077 // stack_begin to 0.
1078 const bool valgrind_on_arm =
1079 (kRuntimeISA == kArm || kRuntimeISA == kArm64) &&
1080 kMemoryToolIsValgrind &&
1081 RUNNING_ON_MEMORY_TOOL != 0;
1082 if (valgrind_on_arm) {
1083 tlsPtr_.stack_begin = nullptr;
1084 }
1085
1086 ResetDefaultStackEnd();
1087
1088 // Install the protected region if we are doing implicit overflow checks.
1089 if (implicit_stack_check && !valgrind_on_arm) {
1090 // The thread might have protected region at the bottom. We need
1091 // to install our own region so we need to move the limits
1092 // of the stack to make room for it.
1093
1094 tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize;
1095 tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize;
1096 tlsPtr_.stack_size -= read_guard_size;
1097
1098 InstallImplicitProtection();
1099 }
1100
1101 // Sanity check.
1102 CHECK_GT(FindStackTop(), reinterpret_cast<void*>(tlsPtr_.stack_end));
1103
1104 return true;
1105 }
1106
ShortDump(std::ostream & os) const1107 void Thread::ShortDump(std::ostream& os) const {
1108 os << "Thread[";
1109 if (GetThreadId() != 0) {
1110 // If we're in kStarting, we won't have a thin lock id or tid yet.
1111 os << GetThreadId()
1112 << ",tid=" << GetTid() << ',';
1113 }
1114 os << GetState()
1115 << ",Thread*=" << this
1116 << ",peer=" << tlsPtr_.opeer
1117 << ",\"" << (tlsPtr_.name != nullptr ? *tlsPtr_.name : "null") << "\""
1118 << "]";
1119 }
1120
Dump(std::ostream & os,bool dump_native_stack,BacktraceMap * backtrace_map,bool force_dump_stack) const1121 void Thread::Dump(std::ostream& os, bool dump_native_stack, BacktraceMap* backtrace_map,
1122 bool force_dump_stack) const {
1123 DumpState(os);
1124 DumpStack(os, dump_native_stack, backtrace_map, force_dump_stack);
1125 }
1126
GetThreadName() const1127 mirror::String* Thread::GetThreadName() const {
1128 ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name);
1129 if (tlsPtr_.opeer == nullptr) {
1130 return nullptr;
1131 }
1132 ObjPtr<mirror::Object> name = f->GetObject(tlsPtr_.opeer);
1133 return name == nullptr ? nullptr : name->AsString();
1134 }
1135
GetThreadName(std::string & name) const1136 void Thread::GetThreadName(std::string& name) const {
1137 name.assign(*tlsPtr_.name);
1138 }
1139
GetCpuMicroTime() const1140 uint64_t Thread::GetCpuMicroTime() const {
1141 #if defined(__linux__)
1142 clockid_t cpu_clock_id;
1143 pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
1144 timespec now;
1145 clock_gettime(cpu_clock_id, &now);
1146 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
1147 #else // __APPLE__
1148 UNIMPLEMENTED(WARNING);
1149 return -1;
1150 #endif
1151 }
1152
1153 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
UnsafeLogFatalForSuspendCount(Thread * self,Thread * thread)1154 static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
1155 LOG(ERROR) << *thread << " suspend count already zero.";
1156 Locks::thread_suspend_count_lock_->Unlock(self);
1157 if (!Locks::mutator_lock_->IsSharedHeld(self)) {
1158 Locks::mutator_lock_->SharedTryLock(self);
1159 if (!Locks::mutator_lock_->IsSharedHeld(self)) {
1160 LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
1161 }
1162 }
1163 if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
1164 Locks::thread_list_lock_->TryLock(self);
1165 if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
1166 LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
1167 }
1168 }
1169 std::ostringstream ss;
1170 Runtime::Current()->GetThreadList()->Dump(ss);
1171 LOG(FATAL) << ss.str();
1172 }
1173
ModifySuspendCountInternal(Thread * self,int delta,AtomicInteger * suspend_barrier,bool for_debugger)1174 bool Thread::ModifySuspendCountInternal(Thread* self,
1175 int delta,
1176 AtomicInteger* suspend_barrier,
1177 bool for_debugger) {
1178 if (kIsDebugBuild) {
1179 DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
1180 << delta << " " << tls32_.debug_suspend_count << " " << this;
1181 DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
1182 Locks::thread_suspend_count_lock_->AssertHeld(self);
1183 if (this != self && !IsSuspended()) {
1184 Locks::thread_list_lock_->AssertHeld(self);
1185 }
1186 }
1187 if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
1188 UnsafeLogFatalForSuspendCount(self, this);
1189 return false;
1190 }
1191
1192 if (kUseReadBarrier && delta > 0 && this != self && tlsPtr_.flip_function != nullptr) {
1193 // Force retry of a suspend request if it's in the middle of a thread flip to avoid a
1194 // deadlock. b/31683379.
1195 return false;
1196 }
1197
1198 uint16_t flags = kSuspendRequest;
1199 if (delta > 0 && suspend_barrier != nullptr) {
1200 uint32_t available_barrier = kMaxSuspendBarriers;
1201 for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1202 if (tlsPtr_.active_suspend_barriers[i] == nullptr) {
1203 available_barrier = i;
1204 break;
1205 }
1206 }
1207 if (available_barrier == kMaxSuspendBarriers) {
1208 // No barrier spaces available, we can't add another.
1209 return false;
1210 }
1211 tlsPtr_.active_suspend_barriers[available_barrier] = suspend_barrier;
1212 flags |= kActiveSuspendBarrier;
1213 }
1214
1215 tls32_.suspend_count += delta;
1216 if (for_debugger) {
1217 tls32_.debug_suspend_count += delta;
1218 }
1219
1220 if (tls32_.suspend_count == 0) {
1221 AtomicClearFlag(kSuspendRequest);
1222 } else {
1223 // Two bits might be set simultaneously.
1224 tls32_.state_and_flags.as_atomic_int.FetchAndOrSequentiallyConsistent(flags);
1225 TriggerSuspend();
1226 }
1227 return true;
1228 }
1229
PassActiveSuspendBarriers(Thread * self)1230 bool Thread::PassActiveSuspendBarriers(Thread* self) {
1231 // Grab the suspend_count lock and copy the current set of
1232 // barriers. Then clear the list and the flag. The ModifySuspendCount
1233 // function requires the lock so we prevent a race between setting
1234 // the kActiveSuspendBarrier flag and clearing it.
1235 AtomicInteger* pass_barriers[kMaxSuspendBarriers];
1236 {
1237 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1238 if (!ReadFlag(kActiveSuspendBarrier)) {
1239 // quick exit test: the barriers have already been claimed - this is
1240 // possible as there may be a race to claim and it doesn't matter
1241 // who wins.
1242 // All of the callers of this function (except the SuspendAllInternal)
1243 // will first test the kActiveSuspendBarrier flag without lock. Here
1244 // double-check whether the barrier has been passed with the
1245 // suspend_count lock.
1246 return false;
1247 }
1248
1249 for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1250 pass_barriers[i] = tlsPtr_.active_suspend_barriers[i];
1251 tlsPtr_.active_suspend_barriers[i] = nullptr;
1252 }
1253 AtomicClearFlag(kActiveSuspendBarrier);
1254 }
1255
1256 uint32_t barrier_count = 0;
1257 for (uint32_t i = 0; i < kMaxSuspendBarriers; i++) {
1258 AtomicInteger* pending_threads = pass_barriers[i];
1259 if (pending_threads != nullptr) {
1260 bool done = false;
1261 do {
1262 int32_t cur_val = pending_threads->LoadRelaxed();
1263 CHECK_GT(cur_val, 0) << "Unexpected value for PassActiveSuspendBarriers(): " << cur_val;
1264 // Reduce value by 1.
1265 done = pending_threads->CompareExchangeWeakRelaxed(cur_val, cur_val - 1);
1266 #if ART_USE_FUTEXES
1267 if (done && (cur_val - 1) == 0) { // Weak CAS may fail spuriously.
1268 futex(pending_threads->Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
1269 }
1270 #endif
1271 } while (!done);
1272 ++barrier_count;
1273 }
1274 }
1275 CHECK_GT(barrier_count, 0U);
1276 return true;
1277 }
1278
ClearSuspendBarrier(AtomicInteger * target)1279 void Thread::ClearSuspendBarrier(AtomicInteger* target) {
1280 CHECK(ReadFlag(kActiveSuspendBarrier));
1281 bool clear_flag = true;
1282 for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1283 AtomicInteger* ptr = tlsPtr_.active_suspend_barriers[i];
1284 if (ptr == target) {
1285 tlsPtr_.active_suspend_barriers[i] = nullptr;
1286 } else if (ptr != nullptr) {
1287 clear_flag = false;
1288 }
1289 }
1290 if (LIKELY(clear_flag)) {
1291 AtomicClearFlag(kActiveSuspendBarrier);
1292 }
1293 }
1294
RunCheckpointFunction()1295 void Thread::RunCheckpointFunction() {
1296 bool done = false;
1297 do {
1298 // Grab the suspend_count lock and copy the checkpoints one by one. When the last checkpoint is
1299 // copied, clear the list and the flag. The RequestCheckpoint function will also grab this lock
1300 // to prevent a race between setting the kCheckpointRequest flag and clearing it.
1301 Closure* checkpoint = nullptr;
1302 {
1303 MutexLock mu(this, *Locks::thread_suspend_count_lock_);
1304 if (tlsPtr_.checkpoint_function != nullptr) {
1305 checkpoint = tlsPtr_.checkpoint_function;
1306 if (!checkpoint_overflow_.empty()) {
1307 // Overflow list not empty, copy the first one out and continue.
1308 tlsPtr_.checkpoint_function = checkpoint_overflow_.front();
1309 checkpoint_overflow_.pop_front();
1310 } else {
1311 // No overflow checkpoints, this means that we are on the last pending checkpoint.
1312 tlsPtr_.checkpoint_function = nullptr;
1313 AtomicClearFlag(kCheckpointRequest);
1314 done = true;
1315 }
1316 } else {
1317 LOG(FATAL) << "Checkpoint flag set without pending checkpoint";
1318 }
1319 }
1320
1321 // Outside the lock, run the checkpoint functions that we collected.
1322 ScopedTrace trace("Run checkpoint function");
1323 DCHECK(checkpoint != nullptr);
1324 checkpoint->Run(this);
1325 } while (!done);
1326 }
1327
RunEmptyCheckpoint()1328 void Thread::RunEmptyCheckpoint() {
1329 DCHECK_EQ(Thread::Current(), this);
1330 AtomicClearFlag(kEmptyCheckpointRequest);
1331 Runtime::Current()->GetThreadList()->EmptyCheckpointBarrier()->Pass(this);
1332 }
1333
RequestCheckpoint(Closure * function)1334 bool Thread::RequestCheckpoint(Closure* function) {
1335 union StateAndFlags old_state_and_flags;
1336 old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
1337 if (old_state_and_flags.as_struct.state != kRunnable) {
1338 return false; // Fail, thread is suspended and so can't run a checkpoint.
1339 }
1340
1341 // We must be runnable to request a checkpoint.
1342 DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
1343 union StateAndFlags new_state_and_flags;
1344 new_state_and_flags.as_int = old_state_and_flags.as_int;
1345 new_state_and_flags.as_struct.flags |= kCheckpointRequest;
1346 bool success = tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(
1347 old_state_and_flags.as_int, new_state_and_flags.as_int);
1348 if (success) {
1349 // Succeeded setting checkpoint flag, now insert the actual checkpoint.
1350 if (tlsPtr_.checkpoint_function == nullptr) {
1351 tlsPtr_.checkpoint_function = function;
1352 } else {
1353 checkpoint_overflow_.push_back(function);
1354 }
1355 CHECK_EQ(ReadFlag(kCheckpointRequest), true);
1356 TriggerSuspend();
1357 }
1358 return success;
1359 }
1360
RequestEmptyCheckpoint()1361 bool Thread::RequestEmptyCheckpoint() {
1362 union StateAndFlags old_state_and_flags;
1363 old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
1364 if (old_state_and_flags.as_struct.state != kRunnable) {
1365 // If it's not runnable, we don't need to do anything because it won't be in the middle of a
1366 // heap access (eg. the read barrier).
1367 return false;
1368 }
1369
1370 // We must be runnable to request a checkpoint.
1371 DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
1372 union StateAndFlags new_state_and_flags;
1373 new_state_and_flags.as_int = old_state_and_flags.as_int;
1374 new_state_and_flags.as_struct.flags |= kEmptyCheckpointRequest;
1375 bool success = tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(
1376 old_state_and_flags.as_int, new_state_and_flags.as_int);
1377 if (success) {
1378 TriggerSuspend();
1379 }
1380 return success;
1381 }
1382
1383 class BarrierClosure : public Closure {
1384 public:
BarrierClosure(Closure * wrapped)1385 explicit BarrierClosure(Closure* wrapped) : wrapped_(wrapped), barrier_(0) {}
1386
Run(Thread * self)1387 void Run(Thread* self) OVERRIDE {
1388 wrapped_->Run(self);
1389 barrier_.Pass(self);
1390 }
1391
Wait(Thread * self)1392 void Wait(Thread* self) {
1393 barrier_.Increment(self, 1);
1394 }
1395
1396 private:
1397 Closure* wrapped_;
1398 Barrier barrier_;
1399 };
1400
RequestSynchronousCheckpoint(Closure * function)1401 void Thread::RequestSynchronousCheckpoint(Closure* function) {
1402 if (this == Thread::Current()) {
1403 // Asked to run on this thread. Just run.
1404 function->Run(this);
1405 return;
1406 }
1407 Thread* self = Thread::Current();
1408
1409 // The current thread is not this thread.
1410
1411 for (;;) {
1412 // If this thread is runnable, try to schedule a checkpoint. Do some gymnastics to not hold the
1413 // suspend-count lock for too long.
1414 if (GetState() == ThreadState::kRunnable) {
1415 BarrierClosure barrier_closure(function);
1416 bool installed = false;
1417 {
1418 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1419 installed = RequestCheckpoint(&barrier_closure);
1420 }
1421 if (installed) {
1422 barrier_closure.Wait(self);
1423 return;
1424 }
1425 // Fall-through.
1426 }
1427
1428 // This thread is not runnable, make sure we stay suspended, then run the checkpoint.
1429 // Note: ModifySuspendCountInternal also expects the thread_list_lock to be held in
1430 // certain situations.
1431 {
1432 MutexLock mu(self, *Locks::thread_list_lock_);
1433 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1434
1435 if (!ModifySuspendCount(self, +1, nullptr, false)) {
1436 // Just retry the loop.
1437 sched_yield();
1438 continue;
1439 }
1440 }
1441
1442 while (GetState() == ThreadState::kRunnable) {
1443 // We became runnable again. Wait till the suspend triggered in ModifySuspendCount
1444 // moves us to suspended.
1445 sched_yield();
1446 }
1447
1448 function->Run(this);
1449
1450 {
1451 MutexLock mu(self, *Locks::thread_list_lock_);
1452 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1453
1454 DCHECK_NE(GetState(), ThreadState::kRunnable);
1455 bool updated = ModifySuspendCount(self, -1, nullptr, false);
1456 DCHECK(updated);
1457 }
1458
1459 return; // We're done, break out of the loop.
1460 }
1461 }
1462
GetFlipFunction()1463 Closure* Thread::GetFlipFunction() {
1464 Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
1465 Closure* func;
1466 do {
1467 func = atomic_func->LoadRelaxed();
1468 if (func == nullptr) {
1469 return nullptr;
1470 }
1471 } while (!atomic_func->CompareExchangeWeakSequentiallyConsistent(func, nullptr));
1472 DCHECK(func != nullptr);
1473 return func;
1474 }
1475
SetFlipFunction(Closure * function)1476 void Thread::SetFlipFunction(Closure* function) {
1477 CHECK(function != nullptr);
1478 Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
1479 atomic_func->StoreSequentiallyConsistent(function);
1480 }
1481
FullSuspendCheck()1482 void Thread::FullSuspendCheck() {
1483 ScopedTrace trace(__FUNCTION__);
1484 VLOG(threads) << this << " self-suspending";
1485 // Make thread appear suspended to other threads, release mutator_lock_.
1486 // Transition to suspended and back to runnable, re-acquire share on mutator_lock_.
1487 ScopedThreadSuspension(this, kSuspended);
1488 VLOG(threads) << this << " self-reviving";
1489 }
1490
GetSchedulerGroupName(pid_t tid)1491 static std::string GetSchedulerGroupName(pid_t tid) {
1492 // /proc/<pid>/cgroup looks like this:
1493 // 2:devices:/
1494 // 1:cpuacct,cpu:/
1495 // We want the third field from the line whose second field contains the "cpu" token.
1496 std::string cgroup_file;
1497 if (!ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid), &cgroup_file)) {
1498 return "";
1499 }
1500 std::vector<std::string> cgroup_lines;
1501 Split(cgroup_file, '\n', &cgroup_lines);
1502 for (size_t i = 0; i < cgroup_lines.size(); ++i) {
1503 std::vector<std::string> cgroup_fields;
1504 Split(cgroup_lines[i], ':', &cgroup_fields);
1505 std::vector<std::string> cgroups;
1506 Split(cgroup_fields[1], ',', &cgroups);
1507 for (size_t j = 0; j < cgroups.size(); ++j) {
1508 if (cgroups[j] == "cpu") {
1509 return cgroup_fields[2].substr(1); // Skip the leading slash.
1510 }
1511 }
1512 }
1513 return "";
1514 }
1515
1516
DumpState(std::ostream & os,const Thread * thread,pid_t tid)1517 void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
1518 std::string group_name;
1519 int priority;
1520 bool is_daemon = false;
1521 Thread* self = Thread::Current();
1522
1523 // If flip_function is not null, it means we have run a checkpoint
1524 // before the thread wakes up to execute the flip function and the
1525 // thread roots haven't been forwarded. So the following access to
1526 // the roots (opeer or methods in the frames) would be bad. Run it
1527 // here. TODO: clean up.
1528 if (thread != nullptr) {
1529 ScopedObjectAccessUnchecked soa(self);
1530 Thread* this_thread = const_cast<Thread*>(thread);
1531 Closure* flip_func = this_thread->GetFlipFunction();
1532 if (flip_func != nullptr) {
1533 flip_func->Run(this_thread);
1534 }
1535 }
1536
1537 // Don't do this if we are aborting since the GC may have all the threads suspended. This will
1538 // cause ScopedObjectAccessUnchecked to deadlock.
1539 if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
1540 ScopedObjectAccessUnchecked soa(self);
1541 priority = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority)
1542 ->GetInt(thread->tlsPtr_.opeer);
1543 is_daemon = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon)
1544 ->GetBoolean(thread->tlsPtr_.opeer);
1545
1546 ObjPtr<mirror::Object> thread_group =
1547 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)
1548 ->GetObject(thread->tlsPtr_.opeer);
1549
1550 if (thread_group != nullptr) {
1551 ArtField* group_name_field =
1552 jni::DecodeArtField(WellKnownClasses::java_lang_ThreadGroup_name);
1553 ObjPtr<mirror::String> group_name_string =
1554 group_name_field->GetObject(thread_group)->AsString();
1555 group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
1556 }
1557 } else {
1558 priority = GetNativePriority();
1559 }
1560
1561 std::string scheduler_group_name(GetSchedulerGroupName(tid));
1562 if (scheduler_group_name.empty()) {
1563 scheduler_group_name = "default";
1564 }
1565
1566 if (thread != nullptr) {
1567 os << '"' << *thread->tlsPtr_.name << '"';
1568 if (is_daemon) {
1569 os << " daemon";
1570 }
1571 os << " prio=" << priority
1572 << " tid=" << thread->GetThreadId()
1573 << " " << thread->GetState();
1574 if (thread->IsStillStarting()) {
1575 os << " (still starting up)";
1576 }
1577 os << "\n";
1578 } else {
1579 os << '"' << ::art::GetThreadName(tid) << '"'
1580 << " prio=" << priority
1581 << " (not attached)\n";
1582 }
1583
1584 if (thread != nullptr) {
1585 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1586 os << " | group=\"" << group_name << "\""
1587 << " sCount=" << thread->tls32_.suspend_count
1588 << " dsCount=" << thread->tls32_.debug_suspend_count
1589 << " flags=" << thread->tls32_.state_and_flags.as_struct.flags
1590 << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
1591 << " self=" << reinterpret_cast<const void*>(thread) << "\n";
1592 }
1593
1594 os << " | sysTid=" << tid
1595 << " nice=" << getpriority(PRIO_PROCESS, tid)
1596 << " cgrp=" << scheduler_group_name;
1597 if (thread != nullptr) {
1598 int policy;
1599 sched_param sp;
1600 #if !defined(__APPLE__)
1601 // b/36445592 Don't use pthread_getschedparam since pthread may have exited.
1602 policy = sched_getscheduler(tid);
1603 if (policy == -1) {
1604 PLOG(WARNING) << "sched_getscheduler(" << tid << ")";
1605 }
1606 int sched_getparam_result = sched_getparam(tid, &sp);
1607 if (sched_getparam_result == -1) {
1608 PLOG(WARNING) << "sched_getparam(" << tid << ", &sp)";
1609 sp.sched_priority = -1;
1610 }
1611 #else
1612 CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
1613 __FUNCTION__);
1614 #endif
1615 os << " sched=" << policy << "/" << sp.sched_priority
1616 << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
1617 }
1618 os << "\n";
1619
1620 // Grab the scheduler stats for this thread.
1621 std::string scheduler_stats;
1622 if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
1623 scheduler_stats.resize(scheduler_stats.size() - 1); // Lose the trailing '\n'.
1624 } else {
1625 scheduler_stats = "0 0 0";
1626 }
1627
1628 char native_thread_state = '?';
1629 int utime = 0;
1630 int stime = 0;
1631 int task_cpu = 0;
1632 GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
1633
1634 os << " | state=" << native_thread_state
1635 << " schedstat=( " << scheduler_stats << " )"
1636 << " utm=" << utime
1637 << " stm=" << stime
1638 << " core=" << task_cpu
1639 << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
1640 if (thread != nullptr) {
1641 os << " | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
1642 << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
1643 << PrettySize(thread->tlsPtr_.stack_size) << "\n";
1644 // Dump the held mutexes.
1645 os << " | held mutexes=";
1646 for (size_t i = 0; i < kLockLevelCount; ++i) {
1647 if (i != kMonitorLock) {
1648 BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
1649 if (mutex != nullptr) {
1650 os << " \"" << mutex->GetName() << "\"";
1651 if (mutex->IsReaderWriterMutex()) {
1652 ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
1653 if (rw_mutex->GetExclusiveOwnerTid() == static_cast<uint64_t>(tid)) {
1654 os << "(exclusive held)";
1655 } else {
1656 os << "(shared held)";
1657 }
1658 }
1659 }
1660 }
1661 }
1662 os << "\n";
1663 }
1664 }
1665
DumpState(std::ostream & os) const1666 void Thread::DumpState(std::ostream& os) const {
1667 Thread::DumpState(os, this, GetTid());
1668 }
1669
1670 struct StackDumpVisitor : public StackVisitor {
StackDumpVisitorart::StackDumpVisitor1671 StackDumpVisitor(std::ostream& os_in,
1672 Thread* thread_in,
1673 Context* context,
1674 bool can_allocate_in,
1675 bool check_suspended = true,
1676 bool dump_locks_in = true)
1677 REQUIRES_SHARED(Locks::mutator_lock_)
1678 : StackVisitor(thread_in,
1679 context,
1680 StackVisitor::StackWalkKind::kIncludeInlinedFrames,
1681 check_suspended),
1682 os(os_in),
1683 can_allocate(can_allocate_in),
1684 last_method(nullptr),
1685 last_line_number(0),
1686 repetition_count(0),
1687 frame_count(0),
1688 dump_locks(dump_locks_in) {}
1689
~StackDumpVisitorart::StackDumpVisitor1690 virtual ~StackDumpVisitor() {
1691 if (frame_count == 0) {
1692 os << " (no managed stack frames)\n";
1693 }
1694 }
1695
VisitFrameart::StackDumpVisitor1696 bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
1697 ArtMethod* m = GetMethod();
1698 if (m->IsRuntimeMethod()) {
1699 return true;
1700 }
1701 m = m->GetInterfaceMethodIfProxy(kRuntimePointerSize);
1702 const int kMaxRepetition = 3;
1703 ObjPtr<mirror::Class> c = m->GetDeclaringClass();
1704 ObjPtr<mirror::DexCache> dex_cache = c->GetDexCache();
1705 int line_number = -1;
1706 if (dex_cache != nullptr) { // be tolerant of bad input
1707 const DexFile* dex_file = dex_cache->GetDexFile();
1708 line_number = annotations::GetLineNumFromPC(dex_file, m, GetDexPc(false));
1709 }
1710 if (line_number == last_line_number && last_method == m) {
1711 ++repetition_count;
1712 } else {
1713 if (repetition_count >= kMaxRepetition) {
1714 os << " ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
1715 }
1716 repetition_count = 0;
1717 last_line_number = line_number;
1718 last_method = m;
1719 }
1720 if (repetition_count < kMaxRepetition) {
1721 os << " at " << m->PrettyMethod(false);
1722 if (m->IsNative()) {
1723 os << "(Native method)";
1724 } else {
1725 const char* source_file(m->GetDeclaringClassSourceFile());
1726 os << "(" << (source_file != nullptr ? source_file : "unavailable")
1727 << ":" << line_number << ")";
1728 }
1729 os << "\n";
1730 if (frame_count == 0) {
1731 Monitor::DescribeWait(os, GetThread());
1732 }
1733 if (can_allocate && dump_locks) {
1734 // Visit locks, but do not abort on errors. This would trigger a nested abort.
1735 // Skip visiting locks if dump_locks is false as it would cause a bad_mutexes_held in
1736 // RegTypeCache::RegTypeCache due to thread_list_lock.
1737 Monitor::VisitLocks(this, DumpLockedObject, &os, false);
1738 }
1739 }
1740
1741 ++frame_count;
1742 return true;
1743 }
1744
DumpLockedObjectart::StackDumpVisitor1745 static void DumpLockedObject(mirror::Object* o, void* context)
1746 REQUIRES_SHARED(Locks::mutator_lock_) {
1747 std::ostream& os = *reinterpret_cast<std::ostream*>(context);
1748 os << " - locked ";
1749 if (o == nullptr) {
1750 os << "an unknown object";
1751 } else {
1752 if (kUseReadBarrier && Thread::Current()->GetIsGcMarking()) {
1753 // We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack
1754 // may have not been flipped yet and "o" may be a from-space (stale) ref, in which case the
1755 // IdentityHashCode call below will crash. So explicitly mark/forward it here.
1756 o = ReadBarrier::Mark(o);
1757 }
1758 if ((o->GetLockWord(false).GetState() == LockWord::kThinLocked) &&
1759 Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
1760 // Getting the identity hashcode here would result in lock inflation and suspension of the
1761 // current thread, which isn't safe if this is the only runnable thread.
1762 os << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast<intptr_t>(o),
1763 o->PrettyTypeOf().c_str());
1764 } else {
1765 // IdentityHashCode can cause thread suspension, which would invalidate o if it moved. So
1766 // we get the pretty type beofre we call IdentityHashCode.
1767 const std::string pretty_type(o->PrettyTypeOf());
1768 os << StringPrintf("<0x%08x> (a %s)", o->IdentityHashCode(), pretty_type.c_str());
1769 }
1770 }
1771 os << "\n";
1772 }
1773
1774 std::ostream& os;
1775 const bool can_allocate;
1776 ArtMethod* last_method;
1777 int last_line_number;
1778 int repetition_count;
1779 int frame_count;
1780 const bool dump_locks;
1781 };
1782
ShouldShowNativeStack(const Thread * thread)1783 static bool ShouldShowNativeStack(const Thread* thread)
1784 REQUIRES_SHARED(Locks::mutator_lock_) {
1785 ThreadState state = thread->GetState();
1786
1787 // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
1788 if (state > kWaiting && state < kStarting) {
1789 return true;
1790 }
1791
1792 // In an Object.wait variant or Thread.sleep? That's not interesting.
1793 if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
1794 return false;
1795 }
1796
1797 // Threads with no managed stack frames should be shown.
1798 const ManagedStack* managed_stack = thread->GetManagedStack();
1799 if (managed_stack == nullptr || (managed_stack->GetTopQuickFrame() == nullptr &&
1800 managed_stack->GetTopShadowFrame() == nullptr)) {
1801 return true;
1802 }
1803
1804 // In some other native method? That's interesting.
1805 // We don't just check kNative because native methods will be in state kSuspended if they're
1806 // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
1807 // thread-startup states if it's early enough in their life cycle (http://b/7432159).
1808 ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
1809 return current_method != nullptr && current_method->IsNative();
1810 }
1811
DumpJavaStack(std::ostream & os,bool check_suspended,bool dump_locks) const1812 void Thread::DumpJavaStack(std::ostream& os, bool check_suspended, bool dump_locks) const {
1813 // If flip_function is not null, it means we have run a checkpoint
1814 // before the thread wakes up to execute the flip function and the
1815 // thread roots haven't been forwarded. So the following access to
1816 // the roots (locks or methods in the frames) would be bad. Run it
1817 // here. TODO: clean up.
1818 {
1819 Thread* this_thread = const_cast<Thread*>(this);
1820 Closure* flip_func = this_thread->GetFlipFunction();
1821 if (flip_func != nullptr) {
1822 flip_func->Run(this_thread);
1823 }
1824 }
1825
1826 // Dumping the Java stack involves the verifier for locks. The verifier operates under the
1827 // assumption that there is no exception pending on entry. Thus, stash any pending exception.
1828 // Thread::Current() instead of this in case a thread is dumping the stack of another suspended
1829 // thread.
1830 StackHandleScope<1> scope(Thread::Current());
1831 Handle<mirror::Throwable> exc;
1832 bool have_exception = false;
1833 if (IsExceptionPending()) {
1834 exc = scope.NewHandle(GetException());
1835 const_cast<Thread*>(this)->ClearException();
1836 have_exception = true;
1837 }
1838
1839 std::unique_ptr<Context> context(Context::Create());
1840 StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
1841 !tls32_.throwing_OutOfMemoryError, check_suspended, dump_locks);
1842 dumper.WalkStack();
1843
1844 if (have_exception) {
1845 const_cast<Thread*>(this)->SetException(exc.Get());
1846 }
1847 }
1848
DumpStack(std::ostream & os,bool dump_native_stack,BacktraceMap * backtrace_map,bool force_dump_stack) const1849 void Thread::DumpStack(std::ostream& os,
1850 bool dump_native_stack,
1851 BacktraceMap* backtrace_map,
1852 bool force_dump_stack) const {
1853 // TODO: we call this code when dying but may not have suspended the thread ourself. The
1854 // IsSuspended check is therefore racy with the use for dumping (normally we inhibit
1855 // the race with the thread_suspend_count_lock_).
1856 bool dump_for_abort = (gAborting > 0);
1857 bool safe_to_dump = (this == Thread::Current() || IsSuspended());
1858 if (!kIsDebugBuild) {
1859 // We always want to dump the stack for an abort, however, there is no point dumping another
1860 // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
1861 safe_to_dump = (safe_to_dump || dump_for_abort);
1862 }
1863 if (safe_to_dump || force_dump_stack) {
1864 // If we're currently in native code, dump that stack before dumping the managed stack.
1865 if (dump_native_stack && (dump_for_abort || force_dump_stack || ShouldShowNativeStack(this))) {
1866 DumpKernelStack(os, GetTid(), " kernel: ", false);
1867 ArtMethod* method =
1868 GetCurrentMethod(nullptr,
1869 /*check_suspended*/ !force_dump_stack,
1870 /*abort_on_error*/ !(dump_for_abort || force_dump_stack));
1871 DumpNativeStack(os, GetTid(), backtrace_map, " native: ", method);
1872 }
1873 DumpJavaStack(os,
1874 /*check_suspended*/ !force_dump_stack,
1875 /*dump_locks*/ !force_dump_stack);
1876 } else {
1877 os << "Not able to dump stack of thread that isn't suspended";
1878 }
1879 }
1880
ThreadExitCallback(void * arg)1881 void Thread::ThreadExitCallback(void* arg) {
1882 Thread* self = reinterpret_cast<Thread*>(arg);
1883 if (self->tls32_.thread_exit_check_count == 0) {
1884 LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
1885 "going to use a pthread_key_create destructor?): " << *self;
1886 CHECK(is_started_);
1887 #ifdef ART_TARGET_ANDROID
1888 __get_tls()[TLS_SLOT_ART_THREAD_SELF] = self;
1889 #else
1890 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
1891 #endif
1892 self->tls32_.thread_exit_check_count = 1;
1893 } else {
1894 LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
1895 }
1896 }
1897
Startup()1898 void Thread::Startup() {
1899 CHECK(!is_started_);
1900 is_started_ = true;
1901 {
1902 // MutexLock to keep annotalysis happy.
1903 //
1904 // Note we use null for the thread because Thread::Current can
1905 // return garbage since (is_started_ == true) and
1906 // Thread::pthread_key_self_ is not yet initialized.
1907 // This was seen on glibc.
1908 MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
1909 resume_cond_ = new ConditionVariable("Thread resumption condition variable",
1910 *Locks::thread_suspend_count_lock_);
1911 }
1912
1913 // Allocate a TLS slot.
1914 CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback),
1915 "self key");
1916
1917 // Double-check the TLS slot allocation.
1918 if (pthread_getspecific(pthread_key_self_) != nullptr) {
1919 LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
1920 }
1921 }
1922
FinishStartup()1923 void Thread::FinishStartup() {
1924 Runtime* runtime = Runtime::Current();
1925 CHECK(runtime->IsStarted());
1926
1927 // Finish attaching the main thread.
1928 ScopedObjectAccess soa(Thread::Current());
1929 Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
1930 Thread::Current()->AssertNoPendingException();
1931
1932 Runtime::Current()->GetClassLinker()->RunRootClinits();
1933
1934 // The thread counts as started from now on. We need to add it to the ThreadGroup. For regular
1935 // threads, this is done in Thread.start() on the Java side.
1936 {
1937 // This is only ever done once. There's no benefit in caching the method.
1938 jmethodID thread_group_add = soa.Env()->GetMethodID(WellKnownClasses::java_lang_ThreadGroup,
1939 "add",
1940 "(Ljava/lang/Thread;)V");
1941 CHECK(thread_group_add != nullptr);
1942 ScopedLocalRef<jobject> thread_jobject(
1943 soa.Env(), soa.Env()->AddLocalReference<jobject>(Thread::Current()->GetPeer()));
1944 soa.Env()->CallNonvirtualVoidMethod(runtime->GetMainThreadGroup(),
1945 WellKnownClasses::java_lang_ThreadGroup,
1946 thread_group_add,
1947 thread_jobject.get());
1948 Thread::Current()->AssertNoPendingException();
1949 }
1950 }
1951
Shutdown()1952 void Thread::Shutdown() {
1953 CHECK(is_started_);
1954 is_started_ = false;
1955 CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
1956 MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
1957 if (resume_cond_ != nullptr) {
1958 delete resume_cond_;
1959 resume_cond_ = nullptr;
1960 }
1961 }
1962
Thread(bool daemon)1963 Thread::Thread(bool daemon)
1964 : tls32_(daemon),
1965 wait_monitor_(nullptr),
1966 interrupted_(false),
1967 custom_tls_(nullptr),
1968 can_call_into_java_(true) {
1969 wait_mutex_ = new Mutex("a thread wait mutex");
1970 wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
1971 tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
1972 tlsPtr_.name = new std::string(kThreadNameDuringStartup);
1973
1974 static_assert((sizeof(Thread) % 4) == 0U,
1975 "art::Thread has a size which is not a multiple of 4.");
1976 tls32_.state_and_flags.as_struct.flags = 0;
1977 tls32_.state_and_flags.as_struct.state = kNative;
1978 memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
1979 std::fill(tlsPtr_.rosalloc_runs,
1980 tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBracketsInThread,
1981 gc::allocator::RosAlloc::GetDedicatedFullRun());
1982 tlsPtr_.checkpoint_function = nullptr;
1983 for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1984 tlsPtr_.active_suspend_barriers[i] = nullptr;
1985 }
1986 tlsPtr_.flip_function = nullptr;
1987 tlsPtr_.thread_local_mark_stack = nullptr;
1988 tls32_.is_transitioning_to_runnable = false;
1989 }
1990
IsStillStarting() const1991 bool Thread::IsStillStarting() const {
1992 // You might think you can check whether the state is kStarting, but for much of thread startup,
1993 // the thread is in kNative; it might also be in kVmWait.
1994 // You might think you can check whether the peer is null, but the peer is actually created and
1995 // assigned fairly early on, and needs to be.
1996 // It turns out that the last thing to change is the thread name; that's a good proxy for "has
1997 // this thread _ever_ entered kRunnable".
1998 return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
1999 (*tlsPtr_.name == kThreadNameDuringStartup);
2000 }
2001
AssertPendingException() const2002 void Thread::AssertPendingException() const {
2003 CHECK(IsExceptionPending()) << "Pending exception expected.";
2004 }
2005
AssertPendingOOMException() const2006 void Thread::AssertPendingOOMException() const {
2007 AssertPendingException();
2008 auto* e = GetException();
2009 CHECK_EQ(e->GetClass(), DecodeJObject(WellKnownClasses::java_lang_OutOfMemoryError)->AsClass())
2010 << e->Dump();
2011 }
2012
AssertNoPendingException() const2013 void Thread::AssertNoPendingException() const {
2014 if (UNLIKELY(IsExceptionPending())) {
2015 ScopedObjectAccess soa(Thread::Current());
2016 LOG(FATAL) << "No pending exception expected: " << GetException()->Dump();
2017 }
2018 }
2019
AssertNoPendingExceptionForNewException(const char * msg) const2020 void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
2021 if (UNLIKELY(IsExceptionPending())) {
2022 ScopedObjectAccess soa(Thread::Current());
2023 LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
2024 << GetException()->Dump();
2025 }
2026 }
2027
2028 class MonitorExitVisitor : public SingleRootVisitor {
2029 public:
MonitorExitVisitor(Thread * self)2030 explicit MonitorExitVisitor(Thread* self) : self_(self) { }
2031
2032 // NO_THREAD_SAFETY_ANALYSIS due to MonitorExit.
VisitRoot(mirror::Object * entered_monitor,const RootInfo & info ATTRIBUTE_UNUSED)2033 void VisitRoot(mirror::Object* entered_monitor, const RootInfo& info ATTRIBUTE_UNUSED)
2034 OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
2035 if (self_->HoldsLock(entered_monitor)) {
2036 LOG(WARNING) << "Calling MonitorExit on object "
2037 << entered_monitor << " (" << entered_monitor->PrettyTypeOf() << ")"
2038 << " left locked by native thread "
2039 << *Thread::Current() << " which is detaching";
2040 entered_monitor->MonitorExit(self_);
2041 }
2042 }
2043
2044 private:
2045 Thread* const self_;
2046 };
2047
Destroy()2048 void Thread::Destroy() {
2049 Thread* self = this;
2050 DCHECK_EQ(self, Thread::Current());
2051
2052 if (tlsPtr_.jni_env != nullptr) {
2053 {
2054 ScopedObjectAccess soa(self);
2055 MonitorExitVisitor visitor(self);
2056 // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
2057 tlsPtr_.jni_env->monitors.VisitRoots(&visitor, RootInfo(kRootVMInternal));
2058 }
2059 // Release locally held global references which releasing may require the mutator lock.
2060 if (tlsPtr_.jpeer != nullptr) {
2061 // If pthread_create fails we don't have a jni env here.
2062 tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
2063 tlsPtr_.jpeer = nullptr;
2064 }
2065 if (tlsPtr_.class_loader_override != nullptr) {
2066 tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.class_loader_override);
2067 tlsPtr_.class_loader_override = nullptr;
2068 }
2069 }
2070
2071 if (tlsPtr_.opeer != nullptr) {
2072 ScopedObjectAccess soa(self);
2073 // We may need to call user-supplied managed code, do this before final clean-up.
2074 HandleUncaughtExceptions(soa);
2075 RemoveFromThreadGroup(soa);
2076
2077 // this.nativePeer = 0;
2078 if (Runtime::Current()->IsActiveTransaction()) {
2079 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer)
2080 ->SetLong<true>(tlsPtr_.opeer, 0);
2081 } else {
2082 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer)
2083 ->SetLong<false>(tlsPtr_.opeer, 0);
2084 }
2085 Runtime* runtime = Runtime::Current();
2086 if (runtime != nullptr) {
2087 runtime->GetRuntimeCallbacks()->ThreadDeath(self);
2088 }
2089
2090
2091 // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
2092 // who is waiting.
2093 ObjPtr<mirror::Object> lock =
2094 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
2095 // (This conditional is only needed for tests, where Thread.lock won't have been set.)
2096 if (lock != nullptr) {
2097 StackHandleScope<1> hs(self);
2098 Handle<mirror::Object> h_obj(hs.NewHandle(lock));
2099 ObjectLock<mirror::Object> locker(self, h_obj);
2100 locker.NotifyAll();
2101 }
2102 tlsPtr_.opeer = nullptr;
2103 }
2104
2105 {
2106 ScopedObjectAccess soa(self);
2107 Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
2108 if (kUseReadBarrier) {
2109 Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->RevokeThreadLocalMarkStack(this);
2110 }
2111 }
2112 }
2113
~Thread()2114 Thread::~Thread() {
2115 CHECK(tlsPtr_.class_loader_override == nullptr);
2116 CHECK(tlsPtr_.jpeer == nullptr);
2117 CHECK(tlsPtr_.opeer == nullptr);
2118 bool initialized = (tlsPtr_.jni_env != nullptr); // Did Thread::Init run?
2119 if (initialized) {
2120 delete tlsPtr_.jni_env;
2121 tlsPtr_.jni_env = nullptr;
2122 }
2123 CHECK_NE(GetState(), kRunnable);
2124 CHECK(!ReadFlag(kCheckpointRequest));
2125 CHECK(!ReadFlag(kEmptyCheckpointRequest));
2126 CHECK(tlsPtr_.checkpoint_function == nullptr);
2127 CHECK_EQ(checkpoint_overflow_.size(), 0u);
2128 CHECK(tlsPtr_.flip_function == nullptr);
2129 CHECK_EQ(tls32_.is_transitioning_to_runnable, false);
2130
2131 // Make sure we processed all deoptimization requests.
2132 CHECK(tlsPtr_.deoptimization_context_stack == nullptr) << "Missed deoptimization";
2133 CHECK(tlsPtr_.frame_id_to_shadow_frame == nullptr) <<
2134 "Not all deoptimized frames have been consumed by the debugger.";
2135
2136 // We may be deleting a still born thread.
2137 SetStateUnsafe(kTerminated);
2138
2139 delete wait_cond_;
2140 delete wait_mutex_;
2141
2142 if (tlsPtr_.long_jump_context != nullptr) {
2143 delete tlsPtr_.long_jump_context;
2144 }
2145
2146 if (initialized) {
2147 CleanupCpu();
2148 }
2149
2150 if (tlsPtr_.single_step_control != nullptr) {
2151 delete tlsPtr_.single_step_control;
2152 }
2153 delete tlsPtr_.instrumentation_stack;
2154 delete tlsPtr_.name;
2155 delete tlsPtr_.deps_or_stack_trace_sample.stack_trace_sample;
2156
2157 Runtime::Current()->GetHeap()->AssertThreadLocalBuffersAreRevoked(this);
2158
2159 TearDownAlternateSignalStack();
2160 }
2161
HandleUncaughtExceptions(ScopedObjectAccess & soa)2162 void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) {
2163 if (!IsExceptionPending()) {
2164 return;
2165 }
2166 ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
2167 ScopedThreadStateChange tsc(this, kNative);
2168
2169 // Get and clear the exception.
2170 ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
2171 tlsPtr_.jni_env->ExceptionClear();
2172
2173 // Call the Thread instance's dispatchUncaughtException(Throwable)
2174 tlsPtr_.jni_env->CallVoidMethod(peer.get(),
2175 WellKnownClasses::java_lang_Thread_dispatchUncaughtException,
2176 exception.get());
2177
2178 // If the dispatchUncaughtException threw, clear that exception too.
2179 tlsPtr_.jni_env->ExceptionClear();
2180 }
2181
RemoveFromThreadGroup(ScopedObjectAccess & soa)2182 void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) {
2183 // this.group.removeThread(this);
2184 // group can be null if we're in the compiler or a test.
2185 ObjPtr<mirror::Object> ogroup = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)
2186 ->GetObject(tlsPtr_.opeer);
2187 if (ogroup != nullptr) {
2188 ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
2189 ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
2190 ScopedThreadStateChange tsc(soa.Self(), kNative);
2191 tlsPtr_.jni_env->CallVoidMethod(group.get(),
2192 WellKnownClasses::java_lang_ThreadGroup_removeThread,
2193 peer.get());
2194 }
2195 }
2196
HandleScopeContains(jobject obj) const2197 bool Thread::HandleScopeContains(jobject obj) const {
2198 StackReference<mirror::Object>* hs_entry =
2199 reinterpret_cast<StackReference<mirror::Object>*>(obj);
2200 for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur!= nullptr; cur = cur->GetLink()) {
2201 if (cur->Contains(hs_entry)) {
2202 return true;
2203 }
2204 }
2205 // JNI code invoked from portable code uses shadow frames rather than the handle scope.
2206 return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
2207 }
2208
HandleScopeVisitRoots(RootVisitor * visitor,uint32_t thread_id)2209 void Thread::HandleScopeVisitRoots(RootVisitor* visitor, uint32_t thread_id) {
2210 BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(
2211 visitor, RootInfo(kRootNativeStack, thread_id));
2212 for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
2213 cur->VisitRoots(buffered_visitor);
2214 }
2215 }
2216
DecodeJObject(jobject obj) const2217 ObjPtr<mirror::Object> Thread::DecodeJObject(jobject obj) const {
2218 if (obj == nullptr) {
2219 return nullptr;
2220 }
2221 IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
2222 IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
2223 ObjPtr<mirror::Object> result;
2224 bool expect_null = false;
2225 // The "kinds" below are sorted by the frequency we expect to encounter them.
2226 if (kind == kLocal) {
2227 IndirectReferenceTable& locals = tlsPtr_.jni_env->locals;
2228 // Local references do not need a read barrier.
2229 result = locals.Get<kWithoutReadBarrier>(ref);
2230 } else if (kind == kHandleScopeOrInvalid) {
2231 // TODO: make stack indirect reference table lookup more efficient.
2232 // Check if this is a local reference in the handle scope.
2233 if (LIKELY(HandleScopeContains(obj))) {
2234 // Read from handle scope.
2235 result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
2236 VerifyObject(result);
2237 } else {
2238 tlsPtr_.jni_env->vm->JniAbortF(nullptr, "use of invalid jobject %p", obj);
2239 expect_null = true;
2240 result = nullptr;
2241 }
2242 } else if (kind == kGlobal) {
2243 result = tlsPtr_.jni_env->vm->DecodeGlobal(ref);
2244 } else {
2245 DCHECK_EQ(kind, kWeakGlobal);
2246 result = tlsPtr_.jni_env->vm->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
2247 if (Runtime::Current()->IsClearedJniWeakGlobal(result)) {
2248 // This is a special case where it's okay to return null.
2249 expect_null = true;
2250 result = nullptr;
2251 }
2252 }
2253
2254 if (UNLIKELY(!expect_null && result == nullptr)) {
2255 tlsPtr_.jni_env->vm->JniAbortF(nullptr, "use of deleted %s %p",
2256 ToStr<IndirectRefKind>(kind).c_str(), obj);
2257 }
2258 return result;
2259 }
2260
IsJWeakCleared(jweak obj) const2261 bool Thread::IsJWeakCleared(jweak obj) const {
2262 CHECK(obj != nullptr);
2263 IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
2264 IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
2265 CHECK_EQ(kind, kWeakGlobal);
2266 return tlsPtr_.jni_env->vm->IsWeakGlobalCleared(const_cast<Thread*>(this), ref);
2267 }
2268
2269 // Implements java.lang.Thread.interrupted.
Interrupted()2270 bool Thread::Interrupted() {
2271 MutexLock mu(Thread::Current(), *wait_mutex_);
2272 bool interrupted = IsInterruptedLocked();
2273 SetInterruptedLocked(false);
2274 return interrupted;
2275 }
2276
2277 // Implements java.lang.Thread.isInterrupted.
IsInterrupted()2278 bool Thread::IsInterrupted() {
2279 MutexLock mu(Thread::Current(), *wait_mutex_);
2280 return IsInterruptedLocked();
2281 }
2282
Interrupt(Thread * self)2283 void Thread::Interrupt(Thread* self) {
2284 MutexLock mu(self, *wait_mutex_);
2285 if (interrupted_) {
2286 return;
2287 }
2288 interrupted_ = true;
2289 NotifyLocked(self);
2290 }
2291
Notify()2292 void Thread::Notify() {
2293 Thread* self = Thread::Current();
2294 MutexLock mu(self, *wait_mutex_);
2295 NotifyLocked(self);
2296 }
2297
NotifyLocked(Thread * self)2298 void Thread::NotifyLocked(Thread* self) {
2299 if (wait_monitor_ != nullptr) {
2300 wait_cond_->Signal(self);
2301 }
2302 }
2303
SetClassLoaderOverride(jobject class_loader_override)2304 void Thread::SetClassLoaderOverride(jobject class_loader_override) {
2305 if (tlsPtr_.class_loader_override != nullptr) {
2306 GetJniEnv()->DeleteGlobalRef(tlsPtr_.class_loader_override);
2307 }
2308 tlsPtr_.class_loader_override = GetJniEnv()->NewGlobalRef(class_loader_override);
2309 }
2310
2311 using ArtMethodDexPcPair = std::pair<ArtMethod*, uint32_t>;
2312
2313 // Counts the stack trace depth and also fetches the first max_saved_frames frames.
2314 class FetchStackTraceVisitor : public StackVisitor {
2315 public:
FetchStackTraceVisitor(Thread * thread,ArtMethodDexPcPair * saved_frames=nullptr,size_t max_saved_frames=0)2316 explicit FetchStackTraceVisitor(Thread* thread,
2317 ArtMethodDexPcPair* saved_frames = nullptr,
2318 size_t max_saved_frames = 0)
2319 REQUIRES_SHARED(Locks::mutator_lock_)
2320 : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
2321 saved_frames_(saved_frames),
2322 max_saved_frames_(max_saved_frames) {}
2323
VisitFrame()2324 bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
2325 // We want to skip frames up to and including the exception's constructor.
2326 // Note we also skip the frame if it doesn't have a method (namely the callee
2327 // save frame)
2328 ArtMethod* m = GetMethod();
2329 if (skipping_ && !m->IsRuntimeMethod() &&
2330 !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
2331 skipping_ = false;
2332 }
2333 if (!skipping_) {
2334 if (!m->IsRuntimeMethod()) { // Ignore runtime frames (in particular callee save).
2335 if (depth_ < max_saved_frames_) {
2336 saved_frames_[depth_].first = m;
2337 saved_frames_[depth_].second = m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc();
2338 }
2339 ++depth_;
2340 }
2341 } else {
2342 ++skip_depth_;
2343 }
2344 return true;
2345 }
2346
GetDepth() const2347 uint32_t GetDepth() const {
2348 return depth_;
2349 }
2350
GetSkipDepth() const2351 uint32_t GetSkipDepth() const {
2352 return skip_depth_;
2353 }
2354
2355 private:
2356 uint32_t depth_ = 0;
2357 uint32_t skip_depth_ = 0;
2358 bool skipping_ = true;
2359 ArtMethodDexPcPair* saved_frames_;
2360 const size_t max_saved_frames_;
2361
2362 DISALLOW_COPY_AND_ASSIGN(FetchStackTraceVisitor);
2363 };
2364
2365 template<bool kTransactionActive>
2366 class BuildInternalStackTraceVisitor : public StackVisitor {
2367 public:
BuildInternalStackTraceVisitor(Thread * self,Thread * thread,int skip_depth)2368 BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
2369 : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
2370 self_(self),
2371 skip_depth_(skip_depth),
2372 pointer_size_(Runtime::Current()->GetClassLinker()->GetImagePointerSize()) {}
2373
Init(int depth)2374 bool Init(int depth) REQUIRES_SHARED(Locks::mutator_lock_) ACQUIRE(Roles::uninterruptible_) {
2375 // Allocate method trace as an object array where the first element is a pointer array that
2376 // contains the ArtMethod pointers and dex PCs. The rest of the elements are the declaring
2377 // class of the ArtMethod pointers.
2378 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2379 StackHandleScope<1> hs(self_);
2380 ObjPtr<mirror::Class> array_class = class_linker->GetClassRoot(ClassLinker::kObjectArrayClass);
2381 // The first element is the methods and dex pc array, the other elements are declaring classes
2382 // for the methods to ensure classes in the stack trace don't get unloaded.
2383 Handle<mirror::ObjectArray<mirror::Object>> trace(
2384 hs.NewHandle(
2385 mirror::ObjectArray<mirror::Object>::Alloc(hs.Self(), array_class, depth + 1)));
2386 if (trace == nullptr) {
2387 // Acquire uninterruptible_ in all paths.
2388 self_->StartAssertNoThreadSuspension("Building internal stack trace");
2389 self_->AssertPendingOOMException();
2390 return false;
2391 }
2392 ObjPtr<mirror::PointerArray> methods_and_pcs =
2393 class_linker->AllocPointerArray(self_, depth * 2);
2394 const char* last_no_suspend_cause =
2395 self_->StartAssertNoThreadSuspension("Building internal stack trace");
2396 if (methods_and_pcs == nullptr) {
2397 self_->AssertPendingOOMException();
2398 return false;
2399 }
2400 trace->Set(0, methods_and_pcs);
2401 trace_ = trace.Get();
2402 // If We are called from native, use non-transactional mode.
2403 CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
2404 return true;
2405 }
2406
RELEASE(Roles::uninterruptible_)2407 virtual ~BuildInternalStackTraceVisitor() RELEASE(Roles::uninterruptible_) {
2408 self_->EndAssertNoThreadSuspension(nullptr);
2409 }
2410
VisitFrame()2411 bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
2412 if (trace_ == nullptr) {
2413 return true; // We're probably trying to fillInStackTrace for an OutOfMemoryError.
2414 }
2415 if (skip_depth_ > 0) {
2416 skip_depth_--;
2417 return true;
2418 }
2419 ArtMethod* m = GetMethod();
2420 if (m->IsRuntimeMethod()) {
2421 return true; // Ignore runtime frames (in particular callee save).
2422 }
2423 AddFrame(m, m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc());
2424 return true;
2425 }
2426
AddFrame(ArtMethod * method,uint32_t dex_pc)2427 void AddFrame(ArtMethod* method, uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) {
2428 ObjPtr<mirror::PointerArray> trace_methods_and_pcs = GetTraceMethodsAndPCs();
2429 trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(count_, method, pointer_size_);
2430 trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(
2431 trace_methods_and_pcs->GetLength() / 2 + count_,
2432 dex_pc,
2433 pointer_size_);
2434 // Save the declaring class of the method to ensure that the declaring classes of the methods
2435 // do not get unloaded while the stack trace is live.
2436 trace_->Set(count_ + 1, method->GetDeclaringClass());
2437 ++count_;
2438 }
2439
GetTraceMethodsAndPCs() const2440 ObjPtr<mirror::PointerArray> GetTraceMethodsAndPCs() const REQUIRES_SHARED(Locks::mutator_lock_) {
2441 return ObjPtr<mirror::PointerArray>::DownCast(MakeObjPtr(trace_->Get(0)));
2442 }
2443
GetInternalStackTrace() const2444 mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
2445 return trace_;
2446 }
2447
2448 private:
2449 Thread* const self_;
2450 // How many more frames to skip.
2451 int32_t skip_depth_;
2452 // Current position down stack trace.
2453 uint32_t count_ = 0;
2454 // An object array where the first element is a pointer array that contains the ArtMethod
2455 // pointers on the stack and dex PCs. The rest of the elements are the declaring
2456 // class of the ArtMethod pointers. trace_[i+1] contains the declaring class of the ArtMethod of
2457 // the i'th frame.
2458 mirror::ObjectArray<mirror::Object>* trace_ = nullptr;
2459 // For cross compilation.
2460 const PointerSize pointer_size_;
2461
2462 DISALLOW_COPY_AND_ASSIGN(BuildInternalStackTraceVisitor);
2463 };
2464
2465 template<bool kTransactionActive>
CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable & soa) const2466 jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
2467 // Compute depth of stack, save frames if possible to avoid needing to recompute many.
2468 constexpr size_t kMaxSavedFrames = 256;
2469 std::unique_ptr<ArtMethodDexPcPair[]> saved_frames(new ArtMethodDexPcPair[kMaxSavedFrames]);
2470 FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this),
2471 &saved_frames[0],
2472 kMaxSavedFrames);
2473 count_visitor.WalkStack();
2474 const uint32_t depth = count_visitor.GetDepth();
2475 const uint32_t skip_depth = count_visitor.GetSkipDepth();
2476
2477 // Build internal stack trace.
2478 BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
2479 const_cast<Thread*>(this),
2480 skip_depth);
2481 if (!build_trace_visitor.Init(depth)) {
2482 return nullptr; // Allocation failed.
2483 }
2484 // If we saved all of the frames we don't even need to do the actual stack walk. This is faster
2485 // than doing the stack walk twice.
2486 if (depth < kMaxSavedFrames) {
2487 for (size_t i = 0; i < depth; ++i) {
2488 build_trace_visitor.AddFrame(saved_frames[i].first, saved_frames[i].second);
2489 }
2490 } else {
2491 build_trace_visitor.WalkStack();
2492 }
2493
2494 mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
2495 if (kIsDebugBuild) {
2496 ObjPtr<mirror::PointerArray> trace_methods = build_trace_visitor.GetTraceMethodsAndPCs();
2497 // Second half of trace_methods is dex PCs.
2498 for (uint32_t i = 0; i < static_cast<uint32_t>(trace_methods->GetLength() / 2); ++i) {
2499 auto* method = trace_methods->GetElementPtrSize<ArtMethod*>(
2500 i, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
2501 CHECK(method != nullptr);
2502 }
2503 }
2504 return soa.AddLocalReference<jobject>(trace);
2505 }
2506 template jobject Thread::CreateInternalStackTrace<false>(
2507 const ScopedObjectAccessAlreadyRunnable& soa) const;
2508 template jobject Thread::CreateInternalStackTrace<true>(
2509 const ScopedObjectAccessAlreadyRunnable& soa) const;
2510
IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const2511 bool Thread::IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const {
2512 // Only count the depth since we do not pass a stack frame array as an argument.
2513 FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this));
2514 count_visitor.WalkStack();
2515 return count_visitor.GetDepth() == static_cast<uint32_t>(exception->GetStackDepth());
2516 }
2517
InternalStackTraceToStackTraceElementArray(const ScopedObjectAccessAlreadyRunnable & soa,jobject internal,jobjectArray output_array,int * stack_depth)2518 jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
2519 const ScopedObjectAccessAlreadyRunnable& soa,
2520 jobject internal,
2521 jobjectArray output_array,
2522 int* stack_depth) {
2523 // Decode the internal stack trace into the depth, method trace and PC trace.
2524 // Subtract one for the methods and PC trace.
2525 int32_t depth = soa.Decode<mirror::Array>(internal)->GetLength() - 1;
2526 DCHECK_GE(depth, 0);
2527
2528 ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
2529
2530 jobjectArray result;
2531
2532 if (output_array != nullptr) {
2533 // Reuse the array we were given.
2534 result = output_array;
2535 // ...adjusting the number of frames we'll write to not exceed the array length.
2536 const int32_t traces_length =
2537 soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->GetLength();
2538 depth = std::min(depth, traces_length);
2539 } else {
2540 // Create java_trace array and place in local reference table
2541 mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
2542 class_linker->AllocStackTraceElementArray(soa.Self(), depth);
2543 if (java_traces == nullptr) {
2544 return nullptr;
2545 }
2546 result = soa.AddLocalReference<jobjectArray>(java_traces);
2547 }
2548
2549 if (stack_depth != nullptr) {
2550 *stack_depth = depth;
2551 }
2552
2553 for (int32_t i = 0; i < depth; ++i) {
2554 ObjPtr<mirror::ObjectArray<mirror::Object>> decoded_traces =
2555 soa.Decode<mirror::Object>(internal)->AsObjectArray<mirror::Object>();
2556 // Methods and dex PC trace is element 0.
2557 DCHECK(decoded_traces->Get(0)->IsIntArray() || decoded_traces->Get(0)->IsLongArray());
2558 ObjPtr<mirror::PointerArray> const method_trace =
2559 ObjPtr<mirror::PointerArray>::DownCast(MakeObjPtr(decoded_traces->Get(0)));
2560 // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
2561 ArtMethod* method = method_trace->GetElementPtrSize<ArtMethod*>(i, kRuntimePointerSize);
2562 uint32_t dex_pc = method_trace->GetElementPtrSize<uint32_t>(
2563 i + method_trace->GetLength() / 2, kRuntimePointerSize);
2564 int32_t line_number;
2565 StackHandleScope<3> hs(soa.Self());
2566 auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
2567 auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
2568 if (method->IsProxyMethod()) {
2569 line_number = -1;
2570 class_name_object.Assign(method->GetDeclaringClass()->GetName());
2571 // source_name_object intentionally left null for proxy methods
2572 } else {
2573 line_number = method->GetLineNumFromDexPC(dex_pc);
2574 // Allocate element, potentially triggering GC
2575 // TODO: reuse class_name_object via Class::name_?
2576 const char* descriptor = method->GetDeclaringClassDescriptor();
2577 CHECK(descriptor != nullptr);
2578 std::string class_name(PrettyDescriptor(descriptor));
2579 class_name_object.Assign(
2580 mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
2581 if (class_name_object == nullptr) {
2582 soa.Self()->AssertPendingOOMException();
2583 return nullptr;
2584 }
2585 const char* source_file = method->GetDeclaringClassSourceFile();
2586 if (line_number == -1) {
2587 // Make the line_number field of StackTraceElement hold the dex pc.
2588 // source_name_object is intentionally left null if we failed to map the dex pc to
2589 // a line number (most probably because there is no debug info). See b/30183883.
2590 line_number = dex_pc;
2591 } else {
2592 if (source_file != nullptr) {
2593 source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
2594 if (source_name_object == nullptr) {
2595 soa.Self()->AssertPendingOOMException();
2596 return nullptr;
2597 }
2598 }
2599 }
2600 }
2601 const char* method_name = method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetName();
2602 CHECK(method_name != nullptr);
2603 Handle<mirror::String> method_name_object(
2604 hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
2605 if (method_name_object == nullptr) {
2606 return nullptr;
2607 }
2608 ObjPtr<mirror::StackTraceElement> obj = mirror::StackTraceElement::Alloc(soa.Self(),
2609 class_name_object,
2610 method_name_object,
2611 source_name_object,
2612 line_number);
2613 if (obj == nullptr) {
2614 return nullptr;
2615 }
2616 // We are called from native: use non-transactional mode.
2617 soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->Set<false>(i, obj);
2618 }
2619 return result;
2620 }
2621
ThrowNewExceptionF(const char * exception_class_descriptor,const char * fmt,...)2622 void Thread::ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) {
2623 va_list args;
2624 va_start(args, fmt);
2625 ThrowNewExceptionV(exception_class_descriptor, fmt, args);
2626 va_end(args);
2627 }
2628
ThrowNewExceptionV(const char * exception_class_descriptor,const char * fmt,va_list ap)2629 void Thread::ThrowNewExceptionV(const char* exception_class_descriptor,
2630 const char* fmt, va_list ap) {
2631 std::string msg;
2632 StringAppendV(&msg, fmt, ap);
2633 ThrowNewException(exception_class_descriptor, msg.c_str());
2634 }
2635
ThrowNewException(const char * exception_class_descriptor,const char * msg)2636 void Thread::ThrowNewException(const char* exception_class_descriptor,
2637 const char* msg) {
2638 // Callers should either clear or call ThrowNewWrappedException.
2639 AssertNoPendingExceptionForNewException(msg);
2640 ThrowNewWrappedException(exception_class_descriptor, msg);
2641 }
2642
GetCurrentClassLoader(Thread * self)2643 static ObjPtr<mirror::ClassLoader> GetCurrentClassLoader(Thread* self)
2644 REQUIRES_SHARED(Locks::mutator_lock_) {
2645 ArtMethod* method = self->GetCurrentMethod(nullptr);
2646 return method != nullptr
2647 ? method->GetDeclaringClass()->GetClassLoader()
2648 : nullptr;
2649 }
2650
ThrowNewWrappedException(const char * exception_class_descriptor,const char * msg)2651 void Thread::ThrowNewWrappedException(const char* exception_class_descriptor,
2652 const char* msg) {
2653 DCHECK_EQ(this, Thread::Current());
2654 ScopedObjectAccessUnchecked soa(this);
2655 StackHandleScope<3> hs(soa.Self());
2656 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(GetCurrentClassLoader(soa.Self())));
2657 ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException()));
2658 ClearException();
2659 Runtime* runtime = Runtime::Current();
2660 auto* cl = runtime->GetClassLinker();
2661 Handle<mirror::Class> exception_class(
2662 hs.NewHandle(cl->FindClass(this, exception_class_descriptor, class_loader)));
2663 if (UNLIKELY(exception_class == nullptr)) {
2664 CHECK(IsExceptionPending());
2665 LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
2666 return;
2667 }
2668
2669 if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(soa.Self(), exception_class, true,
2670 true))) {
2671 DCHECK(IsExceptionPending());
2672 return;
2673 }
2674 DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
2675 Handle<mirror::Throwable> exception(
2676 hs.NewHandle(ObjPtr<mirror::Throwable>::DownCast(exception_class->AllocObject(this))));
2677
2678 // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
2679 if (exception == nullptr) {
2680 SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
2681 return;
2682 }
2683
2684 // Choose an appropriate constructor and set up the arguments.
2685 const char* signature;
2686 ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
2687 if (msg != nullptr) {
2688 // Ensure we remember this and the method over the String allocation.
2689 msg_string.reset(
2690 soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
2691 if (UNLIKELY(msg_string.get() == nullptr)) {
2692 CHECK(IsExceptionPending()); // OOME.
2693 return;
2694 }
2695 if (cause.get() == nullptr) {
2696 signature = "(Ljava/lang/String;)V";
2697 } else {
2698 signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
2699 }
2700 } else {
2701 if (cause.get() == nullptr) {
2702 signature = "()V";
2703 } else {
2704 signature = "(Ljava/lang/Throwable;)V";
2705 }
2706 }
2707 ArtMethod* exception_init_method =
2708 exception_class->FindDeclaredDirectMethod("<init>", signature, cl->GetImagePointerSize());
2709
2710 CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
2711 << PrettyDescriptor(exception_class_descriptor);
2712
2713 if (UNLIKELY(!runtime->IsStarted())) {
2714 // Something is trying to throw an exception without a started runtime, which is the common
2715 // case in the compiler. We won't be able to invoke the constructor of the exception, so set
2716 // the exception fields directly.
2717 if (msg != nullptr) {
2718 exception->SetDetailMessage(DecodeJObject(msg_string.get())->AsString());
2719 }
2720 if (cause.get() != nullptr) {
2721 exception->SetCause(DecodeJObject(cause.get())->AsThrowable());
2722 }
2723 ScopedLocalRef<jobject> trace(GetJniEnv(),
2724 Runtime::Current()->IsActiveTransaction()
2725 ? CreateInternalStackTrace<true>(soa)
2726 : CreateInternalStackTrace<false>(soa));
2727 if (trace.get() != nullptr) {
2728 exception->SetStackState(DecodeJObject(trace.get()).Ptr());
2729 }
2730 SetException(exception.Get());
2731 } else {
2732 jvalue jv_args[2];
2733 size_t i = 0;
2734
2735 if (msg != nullptr) {
2736 jv_args[i].l = msg_string.get();
2737 ++i;
2738 }
2739 if (cause.get() != nullptr) {
2740 jv_args[i].l = cause.get();
2741 ++i;
2742 }
2743 ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(exception.Get()));
2744 InvokeWithJValues(soa, ref.get(), jni::EncodeArtMethod(exception_init_method), jv_args);
2745 if (LIKELY(!IsExceptionPending())) {
2746 SetException(exception.Get());
2747 }
2748 }
2749 }
2750
ThrowOutOfMemoryError(const char * msg)2751 void Thread::ThrowOutOfMemoryError(const char* msg) {
2752 LOG(WARNING) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
2753 msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : ""));
2754 if (!tls32_.throwing_OutOfMemoryError) {
2755 tls32_.throwing_OutOfMemoryError = true;
2756 ThrowNewException("Ljava/lang/OutOfMemoryError;", msg);
2757 tls32_.throwing_OutOfMemoryError = false;
2758 } else {
2759 Dump(LOG_STREAM(WARNING)); // The pre-allocated OOME has no stack, so help out and log one.
2760 SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
2761 }
2762 }
2763
CurrentFromGdb()2764 Thread* Thread::CurrentFromGdb() {
2765 return Thread::Current();
2766 }
2767
DumpFromGdb() const2768 void Thread::DumpFromGdb() const {
2769 std::ostringstream ss;
2770 Dump(ss);
2771 std::string str(ss.str());
2772 // log to stderr for debugging command line processes
2773 std::cerr << str;
2774 #ifdef ART_TARGET_ANDROID
2775 // log to logcat for debugging frameworks processes
2776 LOG(INFO) << str;
2777 #endif
2778 }
2779
2780 // Explicitly instantiate 32 and 64bit thread offset dumping support.
2781 template
2782 void Thread::DumpThreadOffset<PointerSize::k32>(std::ostream& os, uint32_t offset);
2783 template
2784 void Thread::DumpThreadOffset<PointerSize::k64>(std::ostream& os, uint32_t offset);
2785
2786 template<PointerSize ptr_size>
DumpThreadOffset(std::ostream & os,uint32_t offset)2787 void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
2788 #define DO_THREAD_OFFSET(x, y) \
2789 if (offset == (x).Uint32Value()) { \
2790 os << (y); \
2791 return; \
2792 }
2793 DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
2794 DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
2795 DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
2796 DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
2797 DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
2798 DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
2799 DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
2800 DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
2801 DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
2802 DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
2803 DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
2804 DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
2805 #undef DO_THREAD_OFFSET
2806
2807 #define JNI_ENTRY_POINT_INFO(x) \
2808 if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
2809 os << #x; \
2810 return; \
2811 }
2812 JNI_ENTRY_POINT_INFO(pDlsymLookup)
2813 #undef JNI_ENTRY_POINT_INFO
2814
2815 #define QUICK_ENTRY_POINT_INFO(x) \
2816 if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
2817 os << #x; \
2818 return; \
2819 }
2820 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
2821 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved8)
2822 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved16)
2823 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved32)
2824 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved64)
2825 QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
2826 QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
2827 QUICK_ENTRY_POINT_INFO(pAllocObjectWithChecks)
2828 QUICK_ENTRY_POINT_INFO(pAllocStringFromBytes)
2829 QUICK_ENTRY_POINT_INFO(pAllocStringFromChars)
2830 QUICK_ENTRY_POINT_INFO(pAllocStringFromString)
2831 QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
2832 QUICK_ENTRY_POINT_INFO(pCheckInstanceOf)
2833 QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
2834 QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess)
2835 QUICK_ENTRY_POINT_INFO(pInitializeType)
2836 QUICK_ENTRY_POINT_INFO(pResolveString)
2837 QUICK_ENTRY_POINT_INFO(pSet8Instance)
2838 QUICK_ENTRY_POINT_INFO(pSet8Static)
2839 QUICK_ENTRY_POINT_INFO(pSet16Instance)
2840 QUICK_ENTRY_POINT_INFO(pSet16Static)
2841 QUICK_ENTRY_POINT_INFO(pSet32Instance)
2842 QUICK_ENTRY_POINT_INFO(pSet32Static)
2843 QUICK_ENTRY_POINT_INFO(pSet64Instance)
2844 QUICK_ENTRY_POINT_INFO(pSet64Static)
2845 QUICK_ENTRY_POINT_INFO(pSetObjInstance)
2846 QUICK_ENTRY_POINT_INFO(pSetObjStatic)
2847 QUICK_ENTRY_POINT_INFO(pGetByteInstance)
2848 QUICK_ENTRY_POINT_INFO(pGetBooleanInstance)
2849 QUICK_ENTRY_POINT_INFO(pGetByteStatic)
2850 QUICK_ENTRY_POINT_INFO(pGetBooleanStatic)
2851 QUICK_ENTRY_POINT_INFO(pGetShortInstance)
2852 QUICK_ENTRY_POINT_INFO(pGetCharInstance)
2853 QUICK_ENTRY_POINT_INFO(pGetShortStatic)
2854 QUICK_ENTRY_POINT_INFO(pGetCharStatic)
2855 QUICK_ENTRY_POINT_INFO(pGet32Instance)
2856 QUICK_ENTRY_POINT_INFO(pGet32Static)
2857 QUICK_ENTRY_POINT_INFO(pGet64Instance)
2858 QUICK_ENTRY_POINT_INFO(pGet64Static)
2859 QUICK_ENTRY_POINT_INFO(pGetObjInstance)
2860 QUICK_ENTRY_POINT_INFO(pGetObjStatic)
2861 QUICK_ENTRY_POINT_INFO(pAputObject)
2862 QUICK_ENTRY_POINT_INFO(pJniMethodStart)
2863 QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
2864 QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
2865 QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
2866 QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
2867 QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
2868 QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
2869 QUICK_ENTRY_POINT_INFO(pLockObject)
2870 QUICK_ENTRY_POINT_INFO(pUnlockObject)
2871 QUICK_ENTRY_POINT_INFO(pCmpgDouble)
2872 QUICK_ENTRY_POINT_INFO(pCmpgFloat)
2873 QUICK_ENTRY_POINT_INFO(pCmplDouble)
2874 QUICK_ENTRY_POINT_INFO(pCmplFloat)
2875 QUICK_ENTRY_POINT_INFO(pCos)
2876 QUICK_ENTRY_POINT_INFO(pSin)
2877 QUICK_ENTRY_POINT_INFO(pAcos)
2878 QUICK_ENTRY_POINT_INFO(pAsin)
2879 QUICK_ENTRY_POINT_INFO(pAtan)
2880 QUICK_ENTRY_POINT_INFO(pAtan2)
2881 QUICK_ENTRY_POINT_INFO(pCbrt)
2882 QUICK_ENTRY_POINT_INFO(pCosh)
2883 QUICK_ENTRY_POINT_INFO(pExp)
2884 QUICK_ENTRY_POINT_INFO(pExpm1)
2885 QUICK_ENTRY_POINT_INFO(pHypot)
2886 QUICK_ENTRY_POINT_INFO(pLog)
2887 QUICK_ENTRY_POINT_INFO(pLog10)
2888 QUICK_ENTRY_POINT_INFO(pNextAfter)
2889 QUICK_ENTRY_POINT_INFO(pSinh)
2890 QUICK_ENTRY_POINT_INFO(pTan)
2891 QUICK_ENTRY_POINT_INFO(pTanh)
2892 QUICK_ENTRY_POINT_INFO(pFmod)
2893 QUICK_ENTRY_POINT_INFO(pL2d)
2894 QUICK_ENTRY_POINT_INFO(pFmodf)
2895 QUICK_ENTRY_POINT_INFO(pL2f)
2896 QUICK_ENTRY_POINT_INFO(pD2iz)
2897 QUICK_ENTRY_POINT_INFO(pF2iz)
2898 QUICK_ENTRY_POINT_INFO(pIdivmod)
2899 QUICK_ENTRY_POINT_INFO(pD2l)
2900 QUICK_ENTRY_POINT_INFO(pF2l)
2901 QUICK_ENTRY_POINT_INFO(pLdiv)
2902 QUICK_ENTRY_POINT_INFO(pLmod)
2903 QUICK_ENTRY_POINT_INFO(pLmul)
2904 QUICK_ENTRY_POINT_INFO(pShlLong)
2905 QUICK_ENTRY_POINT_INFO(pShrLong)
2906 QUICK_ENTRY_POINT_INFO(pUshrLong)
2907 QUICK_ENTRY_POINT_INFO(pIndexOf)
2908 QUICK_ENTRY_POINT_INFO(pStringCompareTo)
2909 QUICK_ENTRY_POINT_INFO(pMemcpy)
2910 QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
2911 QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
2912 QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
2913 QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
2914 QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
2915 QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
2916 QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
2917 QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
2918 QUICK_ENTRY_POINT_INFO(pInvokePolymorphic)
2919 QUICK_ENTRY_POINT_INFO(pTestSuspend)
2920 QUICK_ENTRY_POINT_INFO(pDeliverException)
2921 QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
2922 QUICK_ENTRY_POINT_INFO(pThrowDivZero)
2923 QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
2924 QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
2925 QUICK_ENTRY_POINT_INFO(pDeoptimize)
2926 QUICK_ENTRY_POINT_INFO(pA64Load)
2927 QUICK_ENTRY_POINT_INFO(pA64Store)
2928 QUICK_ENTRY_POINT_INFO(pNewEmptyString)
2929 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_B)
2930 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BI)
2931 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BII)
2932 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIII)
2933 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIIString)
2934 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BString)
2935 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIICharset)
2936 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BCharset)
2937 QUICK_ENTRY_POINT_INFO(pNewStringFromChars_C)
2938 QUICK_ENTRY_POINT_INFO(pNewStringFromChars_CII)
2939 QUICK_ENTRY_POINT_INFO(pNewStringFromChars_IIC)
2940 QUICK_ENTRY_POINT_INFO(pNewStringFromCodePoints)
2941 QUICK_ENTRY_POINT_INFO(pNewStringFromString)
2942 QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuffer)
2943 QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuilder)
2944 QUICK_ENTRY_POINT_INFO(pReadBarrierJni)
2945 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg00)
2946 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg01)
2947 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg02)
2948 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg03)
2949 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg04)
2950 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg05)
2951 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg06)
2952 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg07)
2953 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg08)
2954 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg09)
2955 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg10)
2956 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg11)
2957 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg12)
2958 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg13)
2959 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg14)
2960 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg15)
2961 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg16)
2962 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg17)
2963 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg18)
2964 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg19)
2965 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg20)
2966 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg21)
2967 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg22)
2968 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg23)
2969 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg24)
2970 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg25)
2971 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg26)
2972 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg27)
2973 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg28)
2974 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg29)
2975 QUICK_ENTRY_POINT_INFO(pReadBarrierSlow)
2976 QUICK_ENTRY_POINT_INFO(pReadBarrierForRootSlow)
2977
2978 QUICK_ENTRY_POINT_INFO(pJniMethodFastStart)
2979 QUICK_ENTRY_POINT_INFO(pJniMethodFastEnd)
2980 #undef QUICK_ENTRY_POINT_INFO
2981
2982 os << offset;
2983 }
2984
QuickDeliverException()2985 void Thread::QuickDeliverException() {
2986 // Get exception from thread.
2987 ObjPtr<mirror::Throwable> exception = GetException();
2988 CHECK(exception != nullptr);
2989 if (exception == GetDeoptimizationException()) {
2990 artDeoptimize(this);
2991 UNREACHABLE();
2992 }
2993
2994 // This is a real exception: let the instrumentation know about it.
2995 instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
2996 if (instrumentation->HasExceptionCaughtListeners() &&
2997 IsExceptionThrownByCurrentMethod(exception)) {
2998 // Instrumentation may cause GC so keep the exception object safe.
2999 StackHandleScope<1> hs(this);
3000 HandleWrapperObjPtr<mirror::Throwable> h_exception(hs.NewHandleWrapper(&exception));
3001 instrumentation->ExceptionCaughtEvent(this, exception.Ptr());
3002 }
3003 // Does instrumentation need to deoptimize the stack?
3004 // Note: we do this *after* reporting the exception to instrumentation in case it
3005 // now requires deoptimization. It may happen if a debugger is attached and requests
3006 // new events (single-step, breakpoint, ...) when the exception is reported.
3007 if (Dbg::IsForcedInterpreterNeededForException(this)) {
3008 NthCallerVisitor visitor(this, 0, false);
3009 visitor.WalkStack();
3010 if (Runtime::Current()->IsAsyncDeoptimizeable(visitor.caller_pc)) {
3011 // Save the exception into the deoptimization context so it can be restored
3012 // before entering the interpreter.
3013 PushDeoptimizationContext(
3014 JValue(), /*is_reference */ false, /* from_code */ false, exception);
3015 artDeoptimize(this);
3016 UNREACHABLE();
3017 } else {
3018 LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
3019 << visitor.caller->PrettyMethod();
3020 }
3021 }
3022
3023 // Don't leave exception visible while we try to find the handler, which may cause class
3024 // resolution.
3025 ClearException();
3026 QuickExceptionHandler exception_handler(this, false);
3027 exception_handler.FindCatch(exception);
3028 exception_handler.UpdateInstrumentationStack();
3029 exception_handler.DoLongJump();
3030 }
3031
GetLongJumpContext()3032 Context* Thread::GetLongJumpContext() {
3033 Context* result = tlsPtr_.long_jump_context;
3034 if (result == nullptr) {
3035 result = Context::Create();
3036 } else {
3037 tlsPtr_.long_jump_context = nullptr; // Avoid context being shared.
3038 result->Reset();
3039 }
3040 return result;
3041 }
3042
3043 // Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
3044 // so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack.
3045 struct CurrentMethodVisitor FINAL : public StackVisitor {
CurrentMethodVisitorart::FINAL3046 CurrentMethodVisitor(Thread* thread, Context* context, bool check_suspended, bool abort_on_error)
3047 REQUIRES_SHARED(Locks::mutator_lock_)
3048 : StackVisitor(thread,
3049 context,
3050 StackVisitor::StackWalkKind::kIncludeInlinedFrames,
3051 check_suspended),
3052 this_object_(nullptr),
3053 method_(nullptr),
3054 dex_pc_(0),
3055 abort_on_error_(abort_on_error) {}
VisitFrameart::FINAL3056 bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
3057 ArtMethod* m = GetMethod();
3058 if (m->IsRuntimeMethod()) {
3059 // Continue if this is a runtime method.
3060 return true;
3061 }
3062 if (context_ != nullptr) {
3063 this_object_ = GetThisObject();
3064 }
3065 method_ = m;
3066 dex_pc_ = GetDexPc(abort_on_error_);
3067 return false;
3068 }
3069 ObjPtr<mirror::Object> this_object_;
3070 ArtMethod* method_;
3071 uint32_t dex_pc_;
3072 const bool abort_on_error_;
3073 };
3074
GetCurrentMethod(uint32_t * dex_pc,bool check_suspended,bool abort_on_error) const3075 ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc,
3076 bool check_suspended,
3077 bool abort_on_error) const {
3078 CurrentMethodVisitor visitor(const_cast<Thread*>(this),
3079 nullptr,
3080 check_suspended,
3081 abort_on_error);
3082 visitor.WalkStack(false);
3083 if (dex_pc != nullptr) {
3084 *dex_pc = visitor.dex_pc_;
3085 }
3086 return visitor.method_;
3087 }
3088
HoldsLock(ObjPtr<mirror::Object> object) const3089 bool Thread::HoldsLock(ObjPtr<mirror::Object> object) const {
3090 return object != nullptr && object->GetLockOwnerThreadId() == GetThreadId();
3091 }
3092
3093 // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
3094 template <typename RootVisitor, bool kPrecise = false>
3095 class ReferenceMapVisitor : public StackVisitor {
3096 public:
ReferenceMapVisitor(Thread * thread,Context * context,RootVisitor & visitor)3097 ReferenceMapVisitor(Thread* thread, Context* context, RootVisitor& visitor)
3098 REQUIRES_SHARED(Locks::mutator_lock_)
3099 // We are visiting the references in compiled frames, so we do not need
3100 // to know the inlined frames.
3101 : StackVisitor(thread, context, StackVisitor::StackWalkKind::kSkipInlinedFrames),
3102 visitor_(visitor) {}
3103
VisitFrame()3104 bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
3105 if (false) {
3106 LOG(INFO) << "Visiting stack roots in " << ArtMethod::PrettyMethod(GetMethod())
3107 << StringPrintf("@ PC:%04x", GetDexPc());
3108 }
3109 ShadowFrame* shadow_frame = GetCurrentShadowFrame();
3110 if (shadow_frame != nullptr) {
3111 VisitShadowFrame(shadow_frame);
3112 } else {
3113 VisitQuickFrame();
3114 }
3115 return true;
3116 }
3117
VisitShadowFrame(ShadowFrame * shadow_frame)3118 void VisitShadowFrame(ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) {
3119 ArtMethod* m = shadow_frame->GetMethod();
3120 VisitDeclaringClass(m);
3121 DCHECK(m != nullptr);
3122 size_t num_regs = shadow_frame->NumberOfVRegs();
3123 DCHECK(m->IsNative() || shadow_frame->HasReferenceArray());
3124 // handle scope for JNI or References for interpreter.
3125 for (size_t reg = 0; reg < num_regs; ++reg) {
3126 mirror::Object* ref = shadow_frame->GetVRegReference(reg);
3127 if (ref != nullptr) {
3128 mirror::Object* new_ref = ref;
3129 visitor_(&new_ref, reg, this);
3130 if (new_ref != ref) {
3131 shadow_frame->SetVRegReference(reg, new_ref);
3132 }
3133 }
3134 }
3135 // Mark lock count map required for structured locking checks.
3136 shadow_frame->GetLockCountData().VisitMonitors(visitor_, -1, this);
3137 }
3138
3139 private:
3140 // Visiting the declaring class is necessary so that we don't unload the class of a method that
3141 // is executing. We need to ensure that the code stays mapped. NO_THREAD_SAFETY_ANALYSIS since
3142 // the threads do not all hold the heap bitmap lock for parallel GC.
VisitDeclaringClass(ArtMethod * method)3143 void VisitDeclaringClass(ArtMethod* method)
3144 REQUIRES_SHARED(Locks::mutator_lock_)
3145 NO_THREAD_SAFETY_ANALYSIS {
3146 ObjPtr<mirror::Class> klass = method->GetDeclaringClassUnchecked<kWithoutReadBarrier>();
3147 // klass can be null for runtime methods.
3148 if (klass != nullptr) {
3149 if (kVerifyImageObjectsMarked) {
3150 gc::Heap* const heap = Runtime::Current()->GetHeap();
3151 gc::space::ContinuousSpace* space = heap->FindContinuousSpaceFromObject(klass,
3152 /*fail_ok*/true);
3153 if (space != nullptr && space->IsImageSpace()) {
3154 bool failed = false;
3155 if (!space->GetLiveBitmap()->Test(klass.Ptr())) {
3156 failed = true;
3157 LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image " << *space;
3158 } else if (!heap->GetLiveBitmap()->Test(klass.Ptr())) {
3159 failed = true;
3160 LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image through live bitmap " << *space;
3161 }
3162 if (failed) {
3163 GetThread()->Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
3164 space->AsImageSpace()->DumpSections(LOG_STREAM(FATAL_WITHOUT_ABORT));
3165 LOG(FATAL_WITHOUT_ABORT) << "Method@" << method->GetDexMethodIndex() << ":" << method
3166 << " klass@" << klass.Ptr();
3167 // Pretty info last in case it crashes.
3168 LOG(FATAL) << "Method " << method->PrettyMethod() << " klass "
3169 << klass->PrettyClass();
3170 }
3171 }
3172 }
3173 mirror::Object* new_ref = klass.Ptr();
3174 visitor_(&new_ref, -1, this);
3175 if (new_ref != klass) {
3176 method->CASDeclaringClass(klass.Ptr(), new_ref->AsClass());
3177 }
3178 }
3179 }
3180
3181 template <typename T>
3182 ALWAYS_INLINE
VisitQuickFrameWithVregCallback()3183 inline void VisitQuickFrameWithVregCallback() REQUIRES_SHARED(Locks::mutator_lock_) {
3184 ArtMethod** cur_quick_frame = GetCurrentQuickFrame();
3185 DCHECK(cur_quick_frame != nullptr);
3186 ArtMethod* m = *cur_quick_frame;
3187 VisitDeclaringClass(m);
3188
3189 // Process register map (which native and runtime methods don't have)
3190 if (!m->IsNative() && !m->IsRuntimeMethod() && (!m->IsProxyMethod() || m->IsConstructor())) {
3191 const OatQuickMethodHeader* method_header = GetCurrentOatQuickMethodHeader();
3192 DCHECK(method_header->IsOptimized());
3193 auto* vreg_base = reinterpret_cast<StackReference<mirror::Object>*>(
3194 reinterpret_cast<uintptr_t>(cur_quick_frame));
3195 uintptr_t native_pc_offset = method_header->NativeQuickPcOffset(GetCurrentQuickFramePc());
3196 CodeInfo code_info = method_header->GetOptimizedCodeInfo();
3197 CodeInfoEncoding encoding = code_info.ExtractEncoding();
3198 StackMap map = code_info.GetStackMapForNativePcOffset(native_pc_offset, encoding);
3199 DCHECK(map.IsValid());
3200
3201 T vreg_info(m, code_info, encoding, map, visitor_);
3202
3203 // Visit stack entries that hold pointers.
3204 const size_t number_of_bits = code_info.GetNumberOfStackMaskBits(encoding);
3205 BitMemoryRegion stack_mask = code_info.GetStackMaskOf(encoding, map);
3206 for (size_t i = 0; i < number_of_bits; ++i) {
3207 if (stack_mask.LoadBit(i)) {
3208 auto* ref_addr = vreg_base + i;
3209 mirror::Object* ref = ref_addr->AsMirrorPtr();
3210 if (ref != nullptr) {
3211 mirror::Object* new_ref = ref;
3212 vreg_info.VisitStack(&new_ref, i, this);
3213 if (ref != new_ref) {
3214 ref_addr->Assign(new_ref);
3215 }
3216 }
3217 }
3218 }
3219 // Visit callee-save registers that hold pointers.
3220 uint32_t register_mask = code_info.GetRegisterMaskOf(encoding, map);
3221 for (size_t i = 0; i < BitSizeOf<uint32_t>(); ++i) {
3222 if (register_mask & (1 << i)) {
3223 mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(i));
3224 if (kIsDebugBuild && ref_addr == nullptr) {
3225 std::string thread_name;
3226 GetThread()->GetThreadName(thread_name);
3227 LOG(FATAL_WITHOUT_ABORT) << "On thread " << thread_name;
3228 DescribeStack(GetThread());
3229 LOG(FATAL) << "Found an unsaved callee-save register " << i << " (null GPRAddress) "
3230 << "set in register_mask=" << register_mask << " at " << DescribeLocation();
3231 }
3232 if (*ref_addr != nullptr) {
3233 vreg_info.VisitRegister(ref_addr, i, this);
3234 }
3235 }
3236 }
3237 }
3238 }
3239
VisitQuickFrame()3240 void VisitQuickFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
3241 if (kPrecise) {
3242 VisitQuickFramePrecise();
3243 } else {
3244 VisitQuickFrameNonPrecise();
3245 }
3246 }
3247
VisitQuickFrameNonPrecise()3248 void VisitQuickFrameNonPrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
3249 struct UndefinedVRegInfo {
3250 UndefinedVRegInfo(ArtMethod* method ATTRIBUTE_UNUSED,
3251 const CodeInfo& code_info ATTRIBUTE_UNUSED,
3252 const CodeInfoEncoding& encoding ATTRIBUTE_UNUSED,
3253 const StackMap& map ATTRIBUTE_UNUSED,
3254 RootVisitor& _visitor)
3255 : visitor(_visitor) {
3256 }
3257
3258 ALWAYS_INLINE
3259 void VisitStack(mirror::Object** ref,
3260 size_t stack_index ATTRIBUTE_UNUSED,
3261 const StackVisitor* stack_visitor)
3262 REQUIRES_SHARED(Locks::mutator_lock_) {
3263 visitor(ref, -1, stack_visitor);
3264 }
3265
3266 ALWAYS_INLINE
3267 void VisitRegister(mirror::Object** ref,
3268 size_t register_index ATTRIBUTE_UNUSED,
3269 const StackVisitor* stack_visitor)
3270 REQUIRES_SHARED(Locks::mutator_lock_) {
3271 visitor(ref, -1, stack_visitor);
3272 }
3273
3274 RootVisitor& visitor;
3275 };
3276 VisitQuickFrameWithVregCallback<UndefinedVRegInfo>();
3277 }
3278
VisitQuickFramePrecise()3279 void VisitQuickFramePrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
3280 struct StackMapVRegInfo {
3281 StackMapVRegInfo(ArtMethod* method,
3282 const CodeInfo& _code_info,
3283 const CodeInfoEncoding& _encoding,
3284 const StackMap& map,
3285 RootVisitor& _visitor)
3286 : number_of_dex_registers(method->GetCodeItem()->registers_size_),
3287 code_info(_code_info),
3288 encoding(_encoding),
3289 dex_register_map(code_info.GetDexRegisterMapOf(map,
3290 encoding,
3291 number_of_dex_registers)),
3292 visitor(_visitor) {
3293 }
3294
3295 // TODO: If necessary, we should consider caching a reverse map instead of the linear
3296 // lookups for each location.
3297 void FindWithType(const size_t index,
3298 const DexRegisterLocation::Kind kind,
3299 mirror::Object** ref,
3300 const StackVisitor* stack_visitor)
3301 REQUIRES_SHARED(Locks::mutator_lock_) {
3302 bool found = false;
3303 for (size_t dex_reg = 0; dex_reg != number_of_dex_registers; ++dex_reg) {
3304 DexRegisterLocation location = dex_register_map.GetDexRegisterLocation(
3305 dex_reg, number_of_dex_registers, code_info, encoding);
3306 if (location.GetKind() == kind && static_cast<size_t>(location.GetValue()) == index) {
3307 visitor(ref, dex_reg, stack_visitor);
3308 found = true;
3309 }
3310 }
3311
3312 if (!found) {
3313 // If nothing found, report with -1.
3314 visitor(ref, -1, stack_visitor);
3315 }
3316 }
3317
3318 void VisitStack(mirror::Object** ref, size_t stack_index, const StackVisitor* stack_visitor)
3319 REQUIRES_SHARED(Locks::mutator_lock_) {
3320 const size_t stack_offset = stack_index * kFrameSlotSize;
3321 FindWithType(stack_offset,
3322 DexRegisterLocation::Kind::kInStack,
3323 ref,
3324 stack_visitor);
3325 }
3326
3327 void VisitRegister(mirror::Object** ref,
3328 size_t register_index,
3329 const StackVisitor* stack_visitor)
3330 REQUIRES_SHARED(Locks::mutator_lock_) {
3331 FindWithType(register_index,
3332 DexRegisterLocation::Kind::kInRegister,
3333 ref,
3334 stack_visitor);
3335 }
3336
3337 size_t number_of_dex_registers;
3338 const CodeInfo& code_info;
3339 const CodeInfoEncoding& encoding;
3340 DexRegisterMap dex_register_map;
3341 RootVisitor& visitor;
3342 };
3343 VisitQuickFrameWithVregCallback<StackMapVRegInfo>();
3344 }
3345
3346 // Visitor for when we visit a root.
3347 RootVisitor& visitor_;
3348 };
3349
3350 class RootCallbackVisitor {
3351 public:
RootCallbackVisitor(RootVisitor * visitor,uint32_t tid)3352 RootCallbackVisitor(RootVisitor* visitor, uint32_t tid) : visitor_(visitor), tid_(tid) {}
3353
operator ()(mirror::Object ** obj,size_t vreg,const StackVisitor * stack_visitor) const3354 void operator()(mirror::Object** obj, size_t vreg, const StackVisitor* stack_visitor) const
3355 REQUIRES_SHARED(Locks::mutator_lock_) {
3356 visitor_->VisitRoot(obj, JavaFrameRootInfo(tid_, stack_visitor, vreg));
3357 }
3358
3359 private:
3360 RootVisitor* const visitor_;
3361 const uint32_t tid_;
3362 };
3363
3364 template <bool kPrecise>
VisitRoots(RootVisitor * visitor)3365 void Thread::VisitRoots(RootVisitor* visitor) {
3366 const uint32_t thread_id = GetThreadId();
3367 visitor->VisitRootIfNonNull(&tlsPtr_.opeer, RootInfo(kRootThreadObject, thread_id));
3368 if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
3369 visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception),
3370 RootInfo(kRootNativeStack, thread_id));
3371 }
3372 visitor->VisitRootIfNonNull(&tlsPtr_.monitor_enter_object, RootInfo(kRootNativeStack, thread_id));
3373 tlsPtr_.jni_env->locals.VisitRoots(visitor, RootInfo(kRootJNILocal, thread_id));
3374 tlsPtr_.jni_env->monitors.VisitRoots(visitor, RootInfo(kRootJNIMonitor, thread_id));
3375 HandleScopeVisitRoots(visitor, thread_id);
3376 if (tlsPtr_.debug_invoke_req != nullptr) {
3377 tlsPtr_.debug_invoke_req->VisitRoots(visitor, RootInfo(kRootDebugger, thread_id));
3378 }
3379 // Visit roots for deoptimization.
3380 if (tlsPtr_.stacked_shadow_frame_record != nullptr) {
3381 RootCallbackVisitor visitor_to_callback(visitor, thread_id);
3382 ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
3383 for (StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
3384 record != nullptr;
3385 record = record->GetLink()) {
3386 for (ShadowFrame* shadow_frame = record->GetShadowFrame();
3387 shadow_frame != nullptr;
3388 shadow_frame = shadow_frame->GetLink()) {
3389 mapper.VisitShadowFrame(shadow_frame);
3390 }
3391 }
3392 }
3393 for (DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
3394 record != nullptr;
3395 record = record->GetLink()) {
3396 if (record->IsReference()) {
3397 visitor->VisitRootIfNonNull(record->GetReturnValueAsGCRoot(),
3398 RootInfo(kRootThreadObject, thread_id));
3399 }
3400 visitor->VisitRootIfNonNull(record->GetPendingExceptionAsGCRoot(),
3401 RootInfo(kRootThreadObject, thread_id));
3402 }
3403 if (tlsPtr_.frame_id_to_shadow_frame != nullptr) {
3404 RootCallbackVisitor visitor_to_callback(visitor, thread_id);
3405 ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
3406 for (FrameIdToShadowFrame* record = tlsPtr_.frame_id_to_shadow_frame;
3407 record != nullptr;
3408 record = record->GetNext()) {
3409 mapper.VisitShadowFrame(record->GetShadowFrame());
3410 }
3411 }
3412 for (auto* verifier = tlsPtr_.method_verifier; verifier != nullptr; verifier = verifier->link_) {
3413 verifier->VisitRoots(visitor, RootInfo(kRootNativeStack, thread_id));
3414 }
3415 // Visit roots on this thread's stack
3416 Context* context = GetLongJumpContext();
3417 RootCallbackVisitor visitor_to_callback(visitor, thread_id);
3418 ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, context, visitor_to_callback);
3419 mapper.template WalkStack<StackVisitor::CountTransitions::kNo>(false);
3420 ReleaseLongJumpContext(context);
3421 for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
3422 visitor->VisitRootIfNonNull(&frame.this_object_, RootInfo(kRootVMInternal, thread_id));
3423 }
3424 }
3425
VisitRoots(RootVisitor * visitor,VisitRootFlags flags)3426 void Thread::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
3427 if ((flags & VisitRootFlags::kVisitRootFlagPrecise) != 0) {
3428 VisitRoots<true>(visitor);
3429 } else {
3430 VisitRoots<false>(visitor);
3431 }
3432 }
3433
3434 class VerifyRootVisitor : public SingleRootVisitor {
3435 public:
VisitRoot(mirror::Object * root,const RootInfo & info ATTRIBUTE_UNUSED)3436 void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
3437 OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
3438 VerifyObject(root);
3439 }
3440 };
3441
VerifyStackImpl()3442 void Thread::VerifyStackImpl() {
3443 VerifyRootVisitor visitor;
3444 std::unique_ptr<Context> context(Context::Create());
3445 RootCallbackVisitor visitor_to_callback(&visitor, GetThreadId());
3446 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitor_to_callback);
3447 mapper.WalkStack();
3448 }
3449
3450 // Set the stack end to that to be used during a stack overflow
SetStackEndForStackOverflow()3451 void Thread::SetStackEndForStackOverflow() {
3452 // During stack overflow we allow use of the full stack.
3453 if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
3454 // However, we seem to have already extended to use the full stack.
3455 LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
3456 << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
3457 DumpStack(LOG_STREAM(ERROR));
3458 LOG(FATAL) << "Recursive stack overflow.";
3459 }
3460
3461 tlsPtr_.stack_end = tlsPtr_.stack_begin;
3462
3463 // Remove the stack overflow protection if is it set up.
3464 bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
3465 if (implicit_stack_check) {
3466 if (!UnprotectStack()) {
3467 LOG(ERROR) << "Unable to remove stack protection for stack overflow";
3468 }
3469 }
3470 }
3471
SetTlab(uint8_t * start,uint8_t * end,uint8_t * limit)3472 void Thread::SetTlab(uint8_t* start, uint8_t* end, uint8_t* limit) {
3473 DCHECK_LE(start, end);
3474 DCHECK_LE(end, limit);
3475 tlsPtr_.thread_local_start = start;
3476 tlsPtr_.thread_local_pos = tlsPtr_.thread_local_start;
3477 tlsPtr_.thread_local_end = end;
3478 tlsPtr_.thread_local_limit = limit;
3479 tlsPtr_.thread_local_objects = 0;
3480 }
3481
HasTlab() const3482 bool Thread::HasTlab() const {
3483 bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
3484 if (has_tlab) {
3485 DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
3486 } else {
3487 DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
3488 }
3489 return has_tlab;
3490 }
3491
operator <<(std::ostream & os,const Thread & thread)3492 std::ostream& operator<<(std::ostream& os, const Thread& thread) {
3493 thread.ShortDump(os);
3494 return os;
3495 }
3496
ProtectStack(bool fatal_on_error)3497 bool Thread::ProtectStack(bool fatal_on_error) {
3498 void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
3499 VLOG(threads) << "Protecting stack at " << pregion;
3500 if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
3501 if (fatal_on_error) {
3502 LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. "
3503 "Reason: "
3504 << strerror(errno) << " size: " << kStackOverflowProtectedSize;
3505 }
3506 return false;
3507 }
3508 return true;
3509 }
3510
UnprotectStack()3511 bool Thread::UnprotectStack() {
3512 void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
3513 VLOG(threads) << "Unprotecting stack at " << pregion;
3514 return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
3515 }
3516
ActivateSingleStepControl(SingleStepControl * ssc)3517 void Thread::ActivateSingleStepControl(SingleStepControl* ssc) {
3518 CHECK(Dbg::IsDebuggerActive());
3519 CHECK(GetSingleStepControl() == nullptr) << "Single step already active in thread " << *this;
3520 CHECK(ssc != nullptr);
3521 tlsPtr_.single_step_control = ssc;
3522 }
3523
DeactivateSingleStepControl()3524 void Thread::DeactivateSingleStepControl() {
3525 CHECK(Dbg::IsDebuggerActive());
3526 CHECK(GetSingleStepControl() != nullptr) << "Single step not active in thread " << *this;
3527 SingleStepControl* ssc = GetSingleStepControl();
3528 tlsPtr_.single_step_control = nullptr;
3529 delete ssc;
3530 }
3531
SetDebugInvokeReq(DebugInvokeReq * req)3532 void Thread::SetDebugInvokeReq(DebugInvokeReq* req) {
3533 CHECK(Dbg::IsDebuggerActive());
3534 CHECK(GetInvokeReq() == nullptr) << "Debug invoke req already active in thread " << *this;
3535 CHECK(Thread::Current() != this) << "Debug invoke can't be dispatched by the thread itself";
3536 CHECK(req != nullptr);
3537 tlsPtr_.debug_invoke_req = req;
3538 }
3539
ClearDebugInvokeReq()3540 void Thread::ClearDebugInvokeReq() {
3541 CHECK(GetInvokeReq() != nullptr) << "Debug invoke req not active in thread " << *this;
3542 CHECK(Thread::Current() == this) << "Debug invoke must be finished by the thread itself";
3543 DebugInvokeReq* req = tlsPtr_.debug_invoke_req;
3544 tlsPtr_.debug_invoke_req = nullptr;
3545 delete req;
3546 }
3547
PushVerifier(verifier::MethodVerifier * verifier)3548 void Thread::PushVerifier(verifier::MethodVerifier* verifier) {
3549 verifier->link_ = tlsPtr_.method_verifier;
3550 tlsPtr_.method_verifier = verifier;
3551 }
3552
PopVerifier(verifier::MethodVerifier * verifier)3553 void Thread::PopVerifier(verifier::MethodVerifier* verifier) {
3554 CHECK_EQ(tlsPtr_.method_verifier, verifier);
3555 tlsPtr_.method_verifier = verifier->link_;
3556 }
3557
NumberOfHeldMutexes() const3558 size_t Thread::NumberOfHeldMutexes() const {
3559 size_t count = 0;
3560 for (BaseMutex* mu : tlsPtr_.held_mutexes) {
3561 count += mu != nullptr ? 1 : 0;
3562 }
3563 return count;
3564 }
3565
DeoptimizeWithDeoptimizationException(JValue * result)3566 void Thread::DeoptimizeWithDeoptimizationException(JValue* result) {
3567 DCHECK_EQ(GetException(), Thread::GetDeoptimizationException());
3568 ClearException();
3569 ShadowFrame* shadow_frame =
3570 PopStackedShadowFrame(StackedShadowFrameType::kDeoptimizationShadowFrame);
3571 ObjPtr<mirror::Throwable> pending_exception;
3572 bool from_code = false;
3573 PopDeoptimizationContext(result, &pending_exception, &from_code);
3574 SetTopOfStack(nullptr);
3575 SetTopOfShadowStack(shadow_frame);
3576
3577 // Restore the exception that was pending before deoptimization then interpret the
3578 // deoptimized frames.
3579 if (pending_exception != nullptr) {
3580 SetException(pending_exception);
3581 }
3582 interpreter::EnterInterpreterFromDeoptimize(this, shadow_frame, from_code, result);
3583 }
3584
SetException(ObjPtr<mirror::Throwable> new_exception)3585 void Thread::SetException(ObjPtr<mirror::Throwable> new_exception) {
3586 CHECK(new_exception != nullptr);
3587 // TODO: DCHECK(!IsExceptionPending());
3588 tlsPtr_.exception = new_exception.Ptr();
3589 }
3590
IsAotCompiler()3591 bool Thread::IsAotCompiler() {
3592 return Runtime::Current()->IsAotCompiler();
3593 }
3594
GetPeerFromOtherThread() const3595 mirror::Object* Thread::GetPeerFromOtherThread() const {
3596 DCHECK(tlsPtr_.jpeer == nullptr);
3597 mirror::Object* peer = tlsPtr_.opeer;
3598 if (kUseReadBarrier && Current()->GetIsGcMarking()) {
3599 // We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack
3600 // may have not been flipped yet and peer may be a from-space (stale) ref. So explicitly
3601 // mark/forward it here.
3602 peer = art::ReadBarrier::Mark(peer);
3603 }
3604 return peer;
3605 }
3606
3607 } // namespace art
3608