1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "runtime.h"
18 
19 // sys/mount.h has to come before linux/fs.h due to redefinition of MS_RDONLY, MS_BIND, etc
20 #include <sys/mount.h>
21 #ifdef __linux__
22 #include <linux/fs.h>
23 #include <sys/prctl.h>
24 #endif
25 
26 #include <signal.h>
27 #include <sys/syscall.h>
28 #include "base/memory_tool.h"
29 #if defined(__APPLE__)
30 #include <crt_externs.h>  // for _NSGetEnviron
31 #endif
32 
33 #include <cstdio>
34 #include <cstdlib>
35 #include <limits>
36 #include <memory_representation.h>
37 #include <vector>
38 #include <fcntl.h>
39 
40 #include "android-base/strings.h"
41 
42 #include "JniConstants.h"
43 #include "ScopedLocalRef.h"
44 #include "arch/arm/quick_method_frame_info_arm.h"
45 #include "arch/arm/registers_arm.h"
46 #include "arch/arm64/quick_method_frame_info_arm64.h"
47 #include "arch/arm64/registers_arm64.h"
48 #include "arch/instruction_set_features.h"
49 #include "arch/mips/quick_method_frame_info_mips.h"
50 #include "arch/mips/registers_mips.h"
51 #include "arch/mips64/quick_method_frame_info_mips64.h"
52 #include "arch/mips64/registers_mips64.h"
53 #include "arch/x86/quick_method_frame_info_x86.h"
54 #include "arch/x86/registers_x86.h"
55 #include "arch/x86_64/quick_method_frame_info_x86_64.h"
56 #include "arch/x86_64/registers_x86_64.h"
57 #include "art_field-inl.h"
58 #include "art_method-inl.h"
59 #include "asm_support.h"
60 #include "atomic.h"
61 #include "base/arena_allocator.h"
62 #include "base/dumpable.h"
63 #include "base/enums.h"
64 #include "base/stl_util.h"
65 #include "base/systrace.h"
66 #include "base/unix_file/fd_file.h"
67 #include "cha.h"
68 #include "class_linker-inl.h"
69 #include "compiler_callbacks.h"
70 #include "debugger.h"
71 #include "elf_file.h"
72 #include "entrypoints/runtime_asm_entrypoints.h"
73 #include "experimental_flags.h"
74 #include "fault_handler.h"
75 #include "gc/accounting/card_table-inl.h"
76 #include "gc/heap.h"
77 #include "gc/scoped_gc_critical_section.h"
78 #include "gc/space/image_space.h"
79 #include "gc/space/space-inl.h"
80 #include "gc/system_weak.h"
81 #include "handle_scope-inl.h"
82 #include "image-inl.h"
83 #include "instrumentation.h"
84 #include "intern_table.h"
85 #include "interpreter/interpreter.h"
86 #include "java_vm_ext.h"
87 #include "jit/jit.h"
88 #include "jit/jit_code_cache.h"
89 #include "jni_internal.h"
90 #include "linear_alloc.h"
91 #include "mirror/array.h"
92 #include "mirror/class-inl.h"
93 #include "mirror/class_ext.h"
94 #include "mirror/class_loader.h"
95 #include "mirror/emulated_stack_frame.h"
96 #include "mirror/field.h"
97 #include "mirror/method.h"
98 #include "mirror/method_handle_impl.h"
99 #include "mirror/method_handles_lookup.h"
100 #include "mirror/method_type.h"
101 #include "mirror/stack_trace_element.h"
102 #include "mirror/throwable.h"
103 #include "monitor.h"
104 #include "native/dalvik_system_DexFile.h"
105 #include "native/dalvik_system_VMDebug.h"
106 #include "native/dalvik_system_VMRuntime.h"
107 #include "native/dalvik_system_VMStack.h"
108 #include "native/dalvik_system_ZygoteHooks.h"
109 #include "native/java_lang_Class.h"
110 #include "native/java_lang_Object.h"
111 #include "native/java_lang_String.h"
112 #include "native/java_lang_StringFactory.h"
113 #include "native/java_lang_System.h"
114 #include "native/java_lang_Thread.h"
115 #include "native/java_lang_Throwable.h"
116 #include "native/java_lang_VMClassLoader.h"
117 #include "native/java_lang_Void.h"
118 #include "native/java_lang_invoke_MethodHandleImpl.h"
119 #include "native/java_lang_ref_FinalizerReference.h"
120 #include "native/java_lang_ref_Reference.h"
121 #include "native/java_lang_reflect_Array.h"
122 #include "native/java_lang_reflect_Constructor.h"
123 #include "native/java_lang_reflect_Executable.h"
124 #include "native/java_lang_reflect_Field.h"
125 #include "native/java_lang_reflect_Method.h"
126 #include "native/java_lang_reflect_Parameter.h"
127 #include "native/java_lang_reflect_Proxy.h"
128 #include "native/java_util_concurrent_atomic_AtomicLong.h"
129 #include "native/libcore_util_CharsetUtils.h"
130 #include "native/org_apache_harmony_dalvik_ddmc_DdmServer.h"
131 #include "native/org_apache_harmony_dalvik_ddmc_DdmVmInternal.h"
132 #include "native/sun_misc_Unsafe.h"
133 #include "native_bridge_art_interface.h"
134 #include "native_stack_dump.h"
135 #include "oat_file.h"
136 #include "oat_file_manager.h"
137 #include "os.h"
138 #include "parsed_options.h"
139 #include "jit/profile_saver.h"
140 #include "quick/quick_method_frame_info.h"
141 #include "reflection.h"
142 #include "runtime_callbacks.h"
143 #include "runtime_options.h"
144 #include "ScopedLocalRef.h"
145 #include "scoped_thread_state_change-inl.h"
146 #include "sigchain.h"
147 #include "signal_catcher.h"
148 #include "signal_set.h"
149 #include "thread.h"
150 #include "thread_list.h"
151 #include "ti/agent.h"
152 #include "trace.h"
153 #include "transaction.h"
154 #include "utils.h"
155 #include "vdex_file.h"
156 #include "verifier/method_verifier.h"
157 #include "well_known_classes.h"
158 
159 #ifdef ART_TARGET_ANDROID
160 #include <android/set_abort_message.h>
161 #endif
162 
163 namespace art {
164 
165 // If a signal isn't handled properly, enable a handler that attempts to dump the Java stack.
166 static constexpr bool kEnableJavaStackTraceHandler = false;
167 // Tuned by compiling GmsCore under perf and measuring time spent in DescriptorEquals for class
168 // linking.
169 static constexpr double kLowMemoryMinLoadFactor = 0.5;
170 static constexpr double kLowMemoryMaxLoadFactor = 0.8;
171 static constexpr double kNormalMinLoadFactor = 0.4;
172 static constexpr double kNormalMaxLoadFactor = 0.7;
173 Runtime* Runtime::instance_ = nullptr;
174 
175 struct TraceConfig {
176   Trace::TraceMode trace_mode;
177   Trace::TraceOutputMode trace_output_mode;
178   std::string trace_file;
179   size_t trace_file_size;
180 };
181 
182 namespace {
183 #ifdef __APPLE__
GetEnviron()184 inline char** GetEnviron() {
185   // When Google Test is built as a framework on MacOS X, the environ variable
186   // is unavailable. Apple's documentation (man environ) recommends using
187   // _NSGetEnviron() instead.
188   return *_NSGetEnviron();
189 }
190 #else
191 // Some POSIX platforms expect you to declare environ. extern "C" makes
192 // it reside in the global namespace.
193 extern "C" char** environ;
194 inline char** GetEnviron() { return environ; }
195 #endif
196 }  // namespace
197 
Runtime()198 Runtime::Runtime()
199     : resolution_method_(nullptr),
200       imt_conflict_method_(nullptr),
201       imt_unimplemented_method_(nullptr),
202       instruction_set_(kNone),
203       compiler_callbacks_(nullptr),
204       is_zygote_(false),
205       must_relocate_(false),
206       is_concurrent_gc_enabled_(true),
207       is_explicit_gc_disabled_(false),
208       dex2oat_enabled_(true),
209       image_dex2oat_enabled_(true),
210       default_stack_size_(0),
211       heap_(nullptr),
212       max_spins_before_thin_lock_inflation_(Monitor::kDefaultMaxSpinsBeforeThinLockInflation),
213       monitor_list_(nullptr),
214       monitor_pool_(nullptr),
215       thread_list_(nullptr),
216       intern_table_(nullptr),
217       class_linker_(nullptr),
218       signal_catcher_(nullptr),
219       java_vm_(nullptr),
220       fault_message_lock_("Fault message lock"),
221       fault_message_(""),
222       threads_being_born_(0),
223       shutdown_cond_(new ConditionVariable("Runtime shutdown", *Locks::runtime_shutdown_lock_)),
224       shutting_down_(false),
225       shutting_down_started_(false),
226       started_(false),
227       finished_starting_(false),
228       vfprintf_(nullptr),
229       exit_(nullptr),
230       abort_(nullptr),
231       stats_enabled_(false),
232       is_running_on_memory_tool_(RUNNING_ON_MEMORY_TOOL),
233       instrumentation_(),
234       main_thread_group_(nullptr),
235       system_thread_group_(nullptr),
236       system_class_loader_(nullptr),
237       dump_gc_performance_on_shutdown_(false),
238       preinitialization_transaction_(nullptr),
239       verify_(verifier::VerifyMode::kNone),
240       allow_dex_file_fallback_(true),
241       target_sdk_version_(0),
242       implicit_null_checks_(false),
243       implicit_so_checks_(false),
244       implicit_suspend_checks_(false),
245       no_sig_chain_(false),
246       force_native_bridge_(false),
247       is_native_bridge_loaded_(false),
248       is_native_debuggable_(false),
249       is_java_debuggable_(false),
250       zygote_max_failed_boots_(0),
251       experimental_flags_(ExperimentalFlags::kNone),
252       oat_file_manager_(nullptr),
253       is_low_memory_mode_(false),
254       safe_mode_(false),
255       dump_native_stack_on_sig_quit_(true),
256       pruned_dalvik_cache_(false),
257       // Initially assume we perceive jank in case the process state is never updated.
258       process_state_(kProcessStateJankPerceptible),
259       zygote_no_threads_(false),
260       cha_(nullptr) {
261   CheckAsmSupportOffsetsAndSizes();
262   std::fill(callee_save_methods_, callee_save_methods_ + arraysize(callee_save_methods_), 0u);
263   interpreter::CheckInterpreterAsmConstants();
264   callbacks_.reset(new RuntimeCallbacks());
265   for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) {
266     deoptimization_counts_[i] = 0u;
267   }
268 }
269 
~Runtime()270 Runtime::~Runtime() {
271   ScopedTrace trace("Runtime shutdown");
272   if (is_native_bridge_loaded_) {
273     UnloadNativeBridge();
274   }
275 
276   Thread* self = Thread::Current();
277   const bool attach_shutdown_thread = self == nullptr;
278   if (attach_shutdown_thread) {
279     CHECK(AttachCurrentThread("Shutdown thread", false, nullptr, false));
280     self = Thread::Current();
281   } else {
282     LOG(WARNING) << "Current thread not detached in Runtime shutdown";
283   }
284 
285   if (dump_gc_performance_on_shutdown_) {
286     // This can't be called from the Heap destructor below because it
287     // could call RosAlloc::InspectAll() which needs the thread_list
288     // to be still alive.
289     heap_->DumpGcPerformanceInfo(LOG_STREAM(INFO));
290   }
291 
292   if (jit_ != nullptr) {
293     // Stop the profile saver thread before marking the runtime as shutting down.
294     // The saver will try to dump the profiles before being sopped and that
295     // requires holding the mutator lock.
296     jit_->StopProfileSaver();
297   }
298 
299   {
300     ScopedTrace trace2("Wait for shutdown cond");
301     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
302     shutting_down_started_ = true;
303     while (threads_being_born_ > 0) {
304       shutdown_cond_->Wait(self);
305     }
306     shutting_down_ = true;
307   }
308   // Shutdown and wait for the daemons.
309   CHECK(self != nullptr);
310   if (IsFinishedStarting()) {
311     ScopedTrace trace2("Waiting for Daemons");
312     self->ClearException();
313     self->GetJniEnv()->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
314                                             WellKnownClasses::java_lang_Daemons_stop);
315   }
316 
317   Trace::Shutdown();
318 
319   // Report death. Clients me require a working thread, still, so do it before GC completes and
320   // all non-daemon threads are done.
321   {
322     ScopedObjectAccess soa(self);
323     callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kDeath);
324   }
325 
326   if (attach_shutdown_thread) {
327     DetachCurrentThread();
328     self = nullptr;
329   }
330 
331   // Make sure to let the GC complete if it is running.
332   heap_->WaitForGcToComplete(gc::kGcCauseBackground, self);
333   heap_->DeleteThreadPool();
334   if (jit_ != nullptr) {
335     ScopedTrace trace2("Delete jit");
336     VLOG(jit) << "Deleting jit thread pool";
337     // Delete thread pool before the thread list since we don't want to wait forever on the
338     // JIT compiler threads.
339     jit_->DeleteThreadPool();
340   }
341 
342   // TODO Maybe do some locking.
343   for (auto& agent : agents_) {
344     agent.Unload();
345   }
346 
347   // TODO Maybe do some locking
348   for (auto& plugin : plugins_) {
349     plugin.Unload();
350   }
351 
352   // Make sure our internal threads are dead before we start tearing down things they're using.
353   Dbg::StopJdwp();
354   delete signal_catcher_;
355 
356   // Make sure all other non-daemon threads have terminated, and all daemon threads are suspended.
357   {
358     ScopedTrace trace2("Delete thread list");
359     delete thread_list_;
360   }
361   // Delete the JIT after thread list to ensure that there is no remaining threads which could be
362   // accessing the instrumentation when we delete it.
363   if (jit_ != nullptr) {
364     VLOG(jit) << "Deleting jit";
365     jit_.reset(nullptr);
366   }
367 
368   // Shutdown the fault manager if it was initialized.
369   fault_manager.Shutdown();
370 
371   ScopedTrace trace2("Delete state");
372   delete monitor_list_;
373   delete monitor_pool_;
374   delete class_linker_;
375   delete cha_;
376   delete heap_;
377   delete intern_table_;
378   delete oat_file_manager_;
379   Thread::Shutdown();
380   QuasiAtomic::Shutdown();
381   verifier::MethodVerifier::Shutdown();
382 
383   // Destroy allocators before shutting down the MemMap because they may use it.
384   java_vm_.reset();
385   linear_alloc_.reset();
386   low_4gb_arena_pool_.reset();
387   arena_pool_.reset();
388   jit_arena_pool_.reset();
389   MemMap::Shutdown();
390 
391   // TODO: acquire a static mutex on Runtime to avoid racing.
392   CHECK(instance_ == nullptr || instance_ == this);
393   instance_ = nullptr;
394 }
395 
396 struct AbortState {
Dumpart::AbortState397   void Dump(std::ostream& os) const {
398     if (gAborting > 1) {
399       os << "Runtime aborting --- recursively, so no thread-specific detail!\n";
400       DumpRecursiveAbort(os);
401       return;
402     }
403     gAborting++;
404     os << "Runtime aborting...\n";
405     if (Runtime::Current() == nullptr) {
406       os << "(Runtime does not yet exist!)\n";
407       DumpNativeStack(os, GetTid(), nullptr, "  native: ", nullptr);
408       return;
409     }
410     Thread* self = Thread::Current();
411     if (self == nullptr) {
412       os << "(Aborting thread was not attached to runtime!)\n";
413       DumpKernelStack(os, GetTid(), "  kernel: ", false);
414       DumpNativeStack(os, GetTid(), nullptr, "  native: ", nullptr);
415     } else {
416       os << "Aborting thread:\n";
417       if (Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self)) {
418         DumpThread(os, self);
419       } else {
420         if (Locks::mutator_lock_->SharedTryLock(self)) {
421           DumpThread(os, self);
422           Locks::mutator_lock_->SharedUnlock(self);
423         }
424       }
425     }
426     DumpAllThreads(os, self);
427   }
428 
429   // No thread-safety analysis as we do explicitly test for holding the mutator lock.
DumpThreadart::AbortState430   void DumpThread(std::ostream& os, Thread* self) const NO_THREAD_SAFETY_ANALYSIS {
431     DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self));
432     self->Dump(os);
433     if (self->IsExceptionPending()) {
434       mirror::Throwable* exception = self->GetException();
435       os << "Pending exception " << exception->Dump();
436     }
437   }
438 
DumpAllThreadsart::AbortState439   void DumpAllThreads(std::ostream& os, Thread* self) const {
440     Runtime* runtime = Runtime::Current();
441     if (runtime != nullptr) {
442       ThreadList* thread_list = runtime->GetThreadList();
443       if (thread_list != nullptr) {
444         bool tll_already_held = Locks::thread_list_lock_->IsExclusiveHeld(self);
445         bool ml_already_held = Locks::mutator_lock_->IsSharedHeld(self);
446         if (!tll_already_held || !ml_already_held) {
447           os << "Dumping all threads without appropriate locks held:"
448               << (!tll_already_held ? " thread list lock" : "")
449               << (!ml_already_held ? " mutator lock" : "")
450               << "\n";
451         }
452         os << "All threads:\n";
453         thread_list->Dump(os);
454       }
455     }
456   }
457 
458   // For recursive aborts.
DumpRecursiveAbortart::AbortState459   void DumpRecursiveAbort(std::ostream& os) const NO_THREAD_SAFETY_ANALYSIS {
460     // The only thing we'll attempt is dumping the native stack of the current thread. We will only
461     // try this if we haven't exceeded an arbitrary amount of recursions, to recover and actually
462     // die.
463     // Note: as we're using a global counter for the recursive abort detection, there is a potential
464     //       race here and it is not OK to just print when the counter is "2" (one from
465     //       Runtime::Abort(), one from previous Dump() call). Use a number that seems large enough.
466     static constexpr size_t kOnlyPrintWhenRecursionLessThan = 100u;
467     if (gAborting < kOnlyPrintWhenRecursionLessThan) {
468       gAborting++;
469       DumpNativeStack(os, GetTid());
470     }
471   }
472 };
473 
Abort(const char * msg)474 void Runtime::Abort(const char* msg) {
475   gAborting++;  // set before taking any locks
476 
477   // Ensure that we don't have multiple threads trying to abort at once,
478   // which would result in significantly worse diagnostics.
479   MutexLock mu(Thread::Current(), *Locks::abort_lock_);
480 
481   // Get any pending output out of the way.
482   fflush(nullptr);
483 
484   // Many people have difficulty distinguish aborts from crashes,
485   // so be explicit.
486   // Note: use cerr on the host to print log lines immediately, so we get at least some output
487   //       in case of recursive aborts. We lose annotation with the source file and line number
488   //       here, which is a minor issue. The same is significantly more complicated on device,
489   //       which is why we ignore the issue there.
490   AbortState state;
491   if (kIsTargetBuild) {
492     LOG(FATAL_WITHOUT_ABORT) << Dumpable<AbortState>(state);
493   } else {
494     std::cerr << Dumpable<AbortState>(state);
495   }
496 
497   // Sometimes we dump long messages, and the Android abort message only retains the first line.
498   // In those cases, just log the message again, to avoid logcat limits.
499   if (msg != nullptr && strchr(msg, '\n') != nullptr) {
500     LOG(FATAL_WITHOUT_ABORT) << msg;
501   }
502 
503   // Call the abort hook if we have one.
504   if (Runtime::Current() != nullptr && Runtime::Current()->abort_ != nullptr) {
505     LOG(FATAL_WITHOUT_ABORT) << "Calling abort hook...";
506     Runtime::Current()->abort_();
507     // notreached
508     LOG(FATAL_WITHOUT_ABORT) << "Unexpectedly returned from abort hook!";
509   }
510 
511 #if defined(__GLIBC__)
512   // TODO: we ought to be able to use pthread_kill(3) here (or abort(3),
513   // which POSIX defines in terms of raise(3), which POSIX defines in terms
514   // of pthread_kill(3)). On Linux, though, libcorkscrew can't unwind through
515   // libpthread, which means the stacks we dump would be useless. Calling
516   // tgkill(2) directly avoids that.
517   syscall(__NR_tgkill, getpid(), GetTid(), SIGABRT);
518   // TODO: LLVM installs it's own SIGABRT handler so exit to be safe... Can we disable that in LLVM?
519   // If not, we could use sigaction(3) before calling tgkill(2) and lose this call to exit(3).
520   exit(1);
521 #else
522   abort();
523 #endif
524   // notreached
525 }
526 
PreZygoteFork()527 void Runtime::PreZygoteFork() {
528   heap_->PreZygoteFork();
529 }
530 
CallExitHook(jint status)531 void Runtime::CallExitHook(jint status) {
532   if (exit_ != nullptr) {
533     ScopedThreadStateChange tsc(Thread::Current(), kNative);
534     exit_(status);
535     LOG(WARNING) << "Exit hook returned instead of exiting!";
536   }
537 }
538 
SweepSystemWeaks(IsMarkedVisitor * visitor)539 void Runtime::SweepSystemWeaks(IsMarkedVisitor* visitor) {
540   GetInternTable()->SweepInternTableWeaks(visitor);
541   GetMonitorList()->SweepMonitorList(visitor);
542   GetJavaVM()->SweepJniWeakGlobals(visitor);
543   GetHeap()->SweepAllocationRecords(visitor);
544   if (GetJit() != nullptr) {
545     // Visit JIT literal tables. Objects in these tables are classes and strings
546     // and only classes can be affected by class unloading. The strings always
547     // stay alive as they are strongly interned.
548     // TODO: Move this closer to CleanupClassLoaders, to avoid blocking weak accesses
549     // from mutators. See b/32167580.
550     GetJit()->GetCodeCache()->SweepRootTables(visitor);
551   }
552 
553   // All other generic system-weak holders.
554   for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
555     holder->Sweep(visitor);
556   }
557 }
558 
ParseOptions(const RuntimeOptions & raw_options,bool ignore_unrecognized,RuntimeArgumentMap * runtime_options)559 bool Runtime::ParseOptions(const RuntimeOptions& raw_options,
560                            bool ignore_unrecognized,
561                            RuntimeArgumentMap* runtime_options) {
562   InitLogging(/* argv */ nullptr, Aborter);  // Calls Locks::Init() as a side effect.
563   bool parsed = ParsedOptions::Parse(raw_options, ignore_unrecognized, runtime_options);
564   if (!parsed) {
565     LOG(ERROR) << "Failed to parse options";
566     return false;
567   }
568   return true;
569 }
570 
571 // Callback to check whether it is safe to call Abort (e.g., to use a call to
572 // LOG(FATAL)).  It is only safe to call Abort if the runtime has been created,
573 // properly initialized, and has not shut down.
IsSafeToCallAbort()574 static bool IsSafeToCallAbort() NO_THREAD_SAFETY_ANALYSIS {
575   Runtime* runtime = Runtime::Current();
576   return runtime != nullptr && runtime->IsStarted() && !runtime->IsShuttingDownLocked();
577 }
578 
Create(RuntimeArgumentMap && runtime_options)579 bool Runtime::Create(RuntimeArgumentMap&& runtime_options) {
580   // TODO: acquire a static mutex on Runtime to avoid racing.
581   if (Runtime::instance_ != nullptr) {
582     return false;
583   }
584   instance_ = new Runtime;
585   Locks::SetClientCallback(IsSafeToCallAbort);
586   if (!instance_->Init(std::move(runtime_options))) {
587     // TODO: Currently deleting the instance will abort the runtime on destruction. Now This will
588     // leak memory, instead. Fix the destructor. b/19100793.
589     // delete instance_;
590     instance_ = nullptr;
591     return false;
592   }
593   return true;
594 }
595 
Create(const RuntimeOptions & raw_options,bool ignore_unrecognized)596 bool Runtime::Create(const RuntimeOptions& raw_options, bool ignore_unrecognized) {
597   RuntimeArgumentMap runtime_options;
598   return ParseOptions(raw_options, ignore_unrecognized, &runtime_options) &&
599       Create(std::move(runtime_options));
600 }
601 
CreateSystemClassLoader(Runtime * runtime)602 static jobject CreateSystemClassLoader(Runtime* runtime) {
603   if (runtime->IsAotCompiler() && !runtime->GetCompilerCallbacks()->IsBootImage()) {
604     return nullptr;
605   }
606 
607   ScopedObjectAccess soa(Thread::Current());
608   ClassLinker* cl = Runtime::Current()->GetClassLinker();
609   auto pointer_size = cl->GetImagePointerSize();
610 
611   StackHandleScope<2> hs(soa.Self());
612   Handle<mirror::Class> class_loader_class(
613       hs.NewHandle(soa.Decode<mirror::Class>(WellKnownClasses::java_lang_ClassLoader)));
614   CHECK(cl->EnsureInitialized(soa.Self(), class_loader_class, true, true));
615 
616   ArtMethod* getSystemClassLoader = class_loader_class->FindDirectMethod(
617       "getSystemClassLoader", "()Ljava/lang/ClassLoader;", pointer_size);
618   CHECK(getSystemClassLoader != nullptr);
619 
620   JValue result = InvokeWithJValues(soa,
621                                     nullptr,
622                                     jni::EncodeArtMethod(getSystemClassLoader),
623                                     nullptr);
624   JNIEnv* env = soa.Self()->GetJniEnv();
625   ScopedLocalRef<jobject> system_class_loader(env, soa.AddLocalReference<jobject>(result.GetL()));
626   CHECK(system_class_loader.get() != nullptr);
627 
628   soa.Self()->SetClassLoaderOverride(system_class_loader.get());
629 
630   Handle<mirror::Class> thread_class(
631       hs.NewHandle(soa.Decode<mirror::Class>(WellKnownClasses::java_lang_Thread)));
632   CHECK(cl->EnsureInitialized(soa.Self(), thread_class, true, true));
633 
634   ArtField* contextClassLoader =
635       thread_class->FindDeclaredInstanceField("contextClassLoader", "Ljava/lang/ClassLoader;");
636   CHECK(contextClassLoader != nullptr);
637 
638   // We can't run in a transaction yet.
639   contextClassLoader->SetObject<false>(
640       soa.Self()->GetPeer(),
641       soa.Decode<mirror::ClassLoader>(system_class_loader.get()).Ptr());
642 
643   return env->NewGlobalRef(system_class_loader.get());
644 }
645 
GetPatchoatExecutable() const646 std::string Runtime::GetPatchoatExecutable() const {
647   if (!patchoat_executable_.empty()) {
648     return patchoat_executable_;
649   }
650   std::string patchoat_executable(GetAndroidRoot());
651   patchoat_executable += (kIsDebugBuild ? "/bin/patchoatd" : "/bin/patchoat");
652   return patchoat_executable;
653 }
654 
GetCompilerExecutable() const655 std::string Runtime::GetCompilerExecutable() const {
656   if (!compiler_executable_.empty()) {
657     return compiler_executable_;
658   }
659   std::string compiler_executable(GetAndroidRoot());
660   compiler_executable += (kIsDebugBuild ? "/bin/dex2oatd" : "/bin/dex2oat");
661   return compiler_executable;
662 }
663 
Start()664 bool Runtime::Start() {
665   VLOG(startup) << "Runtime::Start entering";
666 
667   CHECK(!no_sig_chain_) << "A started runtime should have sig chain enabled";
668 
669   // If a debug host build, disable ptrace restriction for debugging and test timeout thread dump.
670   // Only 64-bit as prctl() may fail in 32 bit userspace on a 64-bit kernel.
671 #if defined(__linux__) && !defined(ART_TARGET_ANDROID) && defined(__x86_64__)
672   if (kIsDebugBuild) {
673     CHECK_EQ(prctl(PR_SET_PTRACER, PR_SET_PTRACER_ANY), 0);
674   }
675 #endif
676 
677   // Restore main thread state to kNative as expected by native code.
678   Thread* self = Thread::Current();
679 
680   self->TransitionFromRunnableToSuspended(kNative);
681 
682   started_ = true;
683 
684   if (!IsImageDex2OatEnabled() || !GetHeap()->HasBootImageSpace()) {
685     ScopedObjectAccess soa(self);
686     StackHandleScope<2> hs(soa.Self());
687 
688     auto class_class(hs.NewHandle<mirror::Class>(mirror::Class::GetJavaLangClass()));
689     auto field_class(hs.NewHandle<mirror::Class>(mirror::Field::StaticClass()));
690 
691     class_linker_->EnsureInitialized(soa.Self(), class_class, true, true);
692     // Field class is needed for register_java_net_InetAddress in libcore, b/28153851.
693     class_linker_->EnsureInitialized(soa.Self(), field_class, true, true);
694   }
695 
696   // InitNativeMethods needs to be after started_ so that the classes
697   // it touches will have methods linked to the oat file if necessary.
698   {
699     ScopedTrace trace2("InitNativeMethods");
700     InitNativeMethods();
701   }
702 
703   // Initialize well known thread group values that may be accessed threads while attaching.
704   InitThreadGroups(self);
705 
706   Thread::FinishStartup();
707 
708   // Create the JIT either if we have to use JIT compilation or save profiling info. This is
709   // done after FinishStartup as the JIT pool needs Java thread peers, which require the main
710   // ThreadGroup to exist.
711   //
712   // TODO(calin): We use the JIT class as a proxy for JIT compilation and for
713   // recoding profiles. Maybe we should consider changing the name to be more clear it's
714   // not only about compiling. b/28295073.
715   if (jit_options_->UseJitCompilation() || jit_options_->GetSaveProfilingInfo()) {
716     std::string error_msg;
717     if (!IsZygote()) {
718     // If we are the zygote then we need to wait until after forking to create the code cache
719     // due to SELinux restrictions on r/w/x memory regions.
720       CreateJit();
721     } else if (jit_options_->UseJitCompilation()) {
722       if (!jit::Jit::LoadCompilerLibrary(&error_msg)) {
723         // Try to load compiler pre zygote to reduce PSS. b/27744947
724         LOG(WARNING) << "Failed to load JIT compiler with error " << error_msg;
725       }
726     }
727   }
728 
729   // Send the start phase event. We have to wait till here as this is when the main thread peer
730   // has just been generated, important root clinits have been run and JNI is completely functional.
731   {
732     ScopedObjectAccess soa(self);
733     callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kStart);
734   }
735 
736   system_class_loader_ = CreateSystemClassLoader(this);
737 
738   if (!is_zygote_) {
739     if (is_native_bridge_loaded_) {
740       PreInitializeNativeBridge(".");
741     }
742     NativeBridgeAction action = force_native_bridge_
743         ? NativeBridgeAction::kInitialize
744         : NativeBridgeAction::kUnload;
745     InitNonZygoteOrPostFork(self->GetJniEnv(),
746                             /* is_system_server */ false,
747                             action,
748                             GetInstructionSetString(kRuntimeISA));
749   }
750 
751   // Send the initialized phase event. Send it before starting daemons, as otherwise
752   // sending thread events becomes complicated.
753   {
754     ScopedObjectAccess soa(self);
755     callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInit);
756   }
757 
758   StartDaemonThreads();
759 
760   {
761     ScopedObjectAccess soa(self);
762     self->GetJniEnv()->locals.AssertEmpty();
763   }
764 
765   VLOG(startup) << "Runtime::Start exiting";
766   finished_starting_ = true;
767 
768   if (trace_config_.get() != nullptr && trace_config_->trace_file != "") {
769     ScopedThreadStateChange tsc(self, kWaitingForMethodTracingStart);
770     Trace::Start(trace_config_->trace_file.c_str(),
771                  -1,
772                  static_cast<int>(trace_config_->trace_file_size),
773                  0,
774                  trace_config_->trace_output_mode,
775                  trace_config_->trace_mode,
776                  0);
777   }
778 
779   return true;
780 }
781 
EndThreadBirth()782 void Runtime::EndThreadBirth() REQUIRES(Locks::runtime_shutdown_lock_) {
783   DCHECK_GT(threads_being_born_, 0U);
784   threads_being_born_--;
785   if (shutting_down_started_ && threads_being_born_ == 0) {
786     shutdown_cond_->Broadcast(Thread::Current());
787   }
788 }
789 
InitNonZygoteOrPostFork(JNIEnv * env,bool is_system_server,NativeBridgeAction action,const char * isa)790 void Runtime::InitNonZygoteOrPostFork(
791     JNIEnv* env, bool is_system_server, NativeBridgeAction action, const char* isa) {
792   is_zygote_ = false;
793 
794   if (is_native_bridge_loaded_) {
795     switch (action) {
796       case NativeBridgeAction::kUnload:
797         UnloadNativeBridge();
798         is_native_bridge_loaded_ = false;
799         break;
800 
801       case NativeBridgeAction::kInitialize:
802         InitializeNativeBridge(env, isa);
803         break;
804     }
805   }
806 
807   // Create the thread pools.
808   heap_->CreateThreadPool();
809   // Reset the gc performance data at zygote fork so that the GCs
810   // before fork aren't attributed to an app.
811   heap_->ResetGcPerformanceInfo();
812 
813   // We may want to collect profiling samples for system server, but we never want to JIT there.
814   if ((!is_system_server || !jit_options_->UseJitCompilation()) &&
815       !safe_mode_ &&
816       (jit_options_->UseJitCompilation() || jit_options_->GetSaveProfilingInfo()) &&
817       jit_ == nullptr) {
818     // Note that when running ART standalone (not zygote, nor zygote fork),
819     // the jit may have already been created.
820     CreateJit();
821   }
822 
823   StartSignalCatcher();
824 
825   // Start the JDWP thread. If the command-line debugger flags specified "suspend=y",
826   // this will pause the runtime, so we probably want this to come last.
827   Dbg::StartJdwp();
828 }
829 
StartSignalCatcher()830 void Runtime::StartSignalCatcher() {
831   if (!is_zygote_) {
832     signal_catcher_ = new SignalCatcher(stack_trace_file_);
833   }
834 }
835 
IsShuttingDown(Thread * self)836 bool Runtime::IsShuttingDown(Thread* self) {
837   MutexLock mu(self, *Locks::runtime_shutdown_lock_);
838   return IsShuttingDownLocked();
839 }
840 
StartDaemonThreads()841 void Runtime::StartDaemonThreads() {
842   ScopedTrace trace(__FUNCTION__);
843   VLOG(startup) << "Runtime::StartDaemonThreads entering";
844 
845   Thread* self = Thread::Current();
846 
847   // Must be in the kNative state for calling native methods.
848   CHECK_EQ(self->GetState(), kNative);
849 
850   JNIEnv* env = self->GetJniEnv();
851   env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
852                             WellKnownClasses::java_lang_Daemons_start);
853   if (env->ExceptionCheck()) {
854     env->ExceptionDescribe();
855     LOG(FATAL) << "Error starting java.lang.Daemons";
856   }
857 
858   VLOG(startup) << "Runtime::StartDaemonThreads exiting";
859 }
860 
861 // Attempts to open dex files from image(s). Given the image location, try to find the oat file
862 // and open it to get the stored dex file. If the image is the first for a multi-image boot
863 // classpath, go on and also open the other images.
OpenDexFilesFromImage(const std::string & image_location,std::vector<std::unique_ptr<const DexFile>> * dex_files,size_t * failures)864 static bool OpenDexFilesFromImage(const std::string& image_location,
865                                   std::vector<std::unique_ptr<const DexFile>>* dex_files,
866                                   size_t* failures) {
867   DCHECK(dex_files != nullptr) << "OpenDexFilesFromImage: out-param is nullptr";
868 
869   // Use a work-list approach, so that we can easily reuse the opening code.
870   std::vector<std::string> image_locations;
871   image_locations.push_back(image_location);
872 
873   for (size_t index = 0; index < image_locations.size(); ++index) {
874     std::string system_filename;
875     bool has_system = false;
876     std::string cache_filename_unused;
877     bool dalvik_cache_exists_unused;
878     bool has_cache_unused;
879     bool is_global_cache_unused;
880     bool found_image = gc::space::ImageSpace::FindImageFilename(image_locations[index].c_str(),
881                                                                 kRuntimeISA,
882                                                                 &system_filename,
883                                                                 &has_system,
884                                                                 &cache_filename_unused,
885                                                                 &dalvik_cache_exists_unused,
886                                                                 &has_cache_unused,
887                                                                 &is_global_cache_unused);
888 
889     if (!found_image || !has_system) {
890       return false;
891     }
892 
893     // We are falling back to non-executable use of the oat file because patching failed, presumably
894     // due to lack of space.
895     std::string vdex_filename =
896         ImageHeader::GetVdexLocationFromImageLocation(system_filename.c_str());
897     std::string oat_filename =
898         ImageHeader::GetOatLocationFromImageLocation(system_filename.c_str());
899     std::string oat_location =
900         ImageHeader::GetOatLocationFromImageLocation(image_locations[index].c_str());
901     // Note: in the multi-image case, the image location may end in ".jar," and not ".art." Handle
902     //       that here.
903     if (android::base::EndsWith(oat_location, ".jar")) {
904       oat_location.replace(oat_location.length() - 3, 3, "oat");
905     }
906     std::string error_msg;
907 
908     std::unique_ptr<VdexFile> vdex_file(VdexFile::Open(vdex_filename,
909                                                        false /* writable */,
910                                                        false /* low_4gb */,
911                                                        false, /* unquicken */
912                                                        &error_msg));
913     if (vdex_file.get() == nullptr) {
914       return false;
915     }
916 
917     std::unique_ptr<File> file(OS::OpenFileForReading(oat_filename.c_str()));
918     if (file.get() == nullptr) {
919       return false;
920     }
921     std::unique_ptr<ElfFile> elf_file(ElfFile::Open(file.get(),
922                                                     false /* writable */,
923                                                     false /* program_header_only */,
924                                                     false /* low_4gb */,
925                                                     &error_msg));
926     if (elf_file.get() == nullptr) {
927       return false;
928     }
929     std::unique_ptr<const OatFile> oat_file(
930         OatFile::OpenWithElfFile(elf_file.release(),
931                                  vdex_file.release(),
932                                  oat_location,
933                                  nullptr,
934                                  &error_msg));
935     if (oat_file == nullptr) {
936       LOG(WARNING) << "Unable to use '" << oat_filename << "' because " << error_msg;
937       return false;
938     }
939 
940     for (const OatFile::OatDexFile* oat_dex_file : oat_file->GetOatDexFiles()) {
941       if (oat_dex_file == nullptr) {
942         *failures += 1;
943         continue;
944       }
945       std::unique_ptr<const DexFile> dex_file = oat_dex_file->OpenDexFile(&error_msg);
946       if (dex_file.get() == nullptr) {
947         *failures += 1;
948       } else {
949         dex_files->push_back(std::move(dex_file));
950       }
951     }
952 
953     if (index == 0) {
954       // First file. See if this is a multi-image environment, and if so, enqueue the other images.
955       const OatHeader& boot_oat_header = oat_file->GetOatHeader();
956       const char* boot_cp = boot_oat_header.GetStoreValueByKey(OatHeader::kBootClassPathKey);
957       if (boot_cp != nullptr) {
958         gc::space::ImageSpace::ExtractMultiImageLocations(image_locations[0],
959                                                           boot_cp,
960                                                           &image_locations);
961       }
962     }
963 
964     Runtime::Current()->GetOatFileManager().RegisterOatFile(std::move(oat_file));
965   }
966   return true;
967 }
968 
969 
OpenDexFiles(const std::vector<std::string> & dex_filenames,const std::vector<std::string> & dex_locations,const std::string & image_location,std::vector<std::unique_ptr<const DexFile>> * dex_files)970 static size_t OpenDexFiles(const std::vector<std::string>& dex_filenames,
971                            const std::vector<std::string>& dex_locations,
972                            const std::string& image_location,
973                            std::vector<std::unique_ptr<const DexFile>>* dex_files) {
974   DCHECK(dex_files != nullptr) << "OpenDexFiles: out-param is nullptr";
975   size_t failure_count = 0;
976   if (!image_location.empty() && OpenDexFilesFromImage(image_location, dex_files, &failure_count)) {
977     return failure_count;
978   }
979   failure_count = 0;
980   for (size_t i = 0; i < dex_filenames.size(); i++) {
981     const char* dex_filename = dex_filenames[i].c_str();
982     const char* dex_location = dex_locations[i].c_str();
983     static constexpr bool kVerifyChecksum = true;
984     std::string error_msg;
985     if (!OS::FileExists(dex_filename)) {
986       LOG(WARNING) << "Skipping non-existent dex file '" << dex_filename << "'";
987       continue;
988     }
989     if (!DexFile::Open(dex_filename, dex_location, kVerifyChecksum, &error_msg, dex_files)) {
990       LOG(WARNING) << "Failed to open .dex from file '" << dex_filename << "': " << error_msg;
991       ++failure_count;
992     }
993   }
994   return failure_count;
995 }
996 
SetSentinel(mirror::Object * sentinel)997 void Runtime::SetSentinel(mirror::Object* sentinel) {
998   CHECK(sentinel_.Read() == nullptr);
999   CHECK(sentinel != nullptr);
1000   CHECK(!heap_->IsMovableObject(sentinel));
1001   sentinel_ = GcRoot<mirror::Object>(sentinel);
1002 }
1003 
Init(RuntimeArgumentMap && runtime_options_in)1004 bool Runtime::Init(RuntimeArgumentMap&& runtime_options_in) {
1005   // (b/30160149): protect subprocesses from modifications to LD_LIBRARY_PATH, etc.
1006   // Take a snapshot of the environment at the time the runtime was created, for use by Exec, etc.
1007   env_snapshot_.TakeSnapshot();
1008 
1009   RuntimeArgumentMap runtime_options(std::move(runtime_options_in));
1010   ScopedTrace trace(__FUNCTION__);
1011   CHECK_EQ(sysconf(_SC_PAGE_SIZE), kPageSize);
1012 
1013   MemMap::Init();
1014 
1015   using Opt = RuntimeArgumentMap;
1016   VLOG(startup) << "Runtime::Init -verbose:startup enabled";
1017 
1018   QuasiAtomic::Startup();
1019 
1020   oat_file_manager_ = new OatFileManager;
1021 
1022   Thread::SetSensitiveThreadHook(runtime_options.GetOrDefault(Opt::HookIsSensitiveThread));
1023   Monitor::Init(runtime_options.GetOrDefault(Opt::LockProfThreshold));
1024 
1025   boot_class_path_string_ = runtime_options.ReleaseOrDefault(Opt::BootClassPath);
1026   class_path_string_ = runtime_options.ReleaseOrDefault(Opt::ClassPath);
1027   properties_ = runtime_options.ReleaseOrDefault(Opt::PropertiesList);
1028 
1029   compiler_callbacks_ = runtime_options.GetOrDefault(Opt::CompilerCallbacksPtr);
1030   patchoat_executable_ = runtime_options.ReleaseOrDefault(Opt::PatchOat);
1031   must_relocate_ = runtime_options.GetOrDefault(Opt::Relocate);
1032   is_zygote_ = runtime_options.Exists(Opt::Zygote);
1033   is_explicit_gc_disabled_ = runtime_options.Exists(Opt::DisableExplicitGC);
1034   dex2oat_enabled_ = runtime_options.GetOrDefault(Opt::Dex2Oat);
1035   image_dex2oat_enabled_ = runtime_options.GetOrDefault(Opt::ImageDex2Oat);
1036   dump_native_stack_on_sig_quit_ = runtime_options.GetOrDefault(Opt::DumpNativeStackOnSigQuit);
1037 
1038   vfprintf_ = runtime_options.GetOrDefault(Opt::HookVfprintf);
1039   exit_ = runtime_options.GetOrDefault(Opt::HookExit);
1040   abort_ = runtime_options.GetOrDefault(Opt::HookAbort);
1041 
1042   default_stack_size_ = runtime_options.GetOrDefault(Opt::StackSize);
1043   stack_trace_file_ = runtime_options.ReleaseOrDefault(Opt::StackTraceFile);
1044 
1045   compiler_executable_ = runtime_options.ReleaseOrDefault(Opt::Compiler);
1046   compiler_options_ = runtime_options.ReleaseOrDefault(Opt::CompilerOptions);
1047   for (StringPiece option : Runtime::Current()->GetCompilerOptions()) {
1048     if (option.starts_with("--debuggable")) {
1049       SetJavaDebuggable(true);
1050       break;
1051     }
1052   }
1053   image_compiler_options_ = runtime_options.ReleaseOrDefault(Opt::ImageCompilerOptions);
1054   image_location_ = runtime_options.GetOrDefault(Opt::Image);
1055 
1056   max_spins_before_thin_lock_inflation_ =
1057       runtime_options.GetOrDefault(Opt::MaxSpinsBeforeThinLockInflation);
1058 
1059   monitor_list_ = new MonitorList;
1060   monitor_pool_ = MonitorPool::Create();
1061   thread_list_ = new ThreadList(runtime_options.GetOrDefault(Opt::ThreadSuspendTimeout));
1062   intern_table_ = new InternTable;
1063 
1064   verify_ = runtime_options.GetOrDefault(Opt::Verify);
1065   allow_dex_file_fallback_ = !runtime_options.Exists(Opt::NoDexFileFallback);
1066 
1067   no_sig_chain_ = runtime_options.Exists(Opt::NoSigChain);
1068   force_native_bridge_ = runtime_options.Exists(Opt::ForceNativeBridge);
1069 
1070   Split(runtime_options.GetOrDefault(Opt::CpuAbiList), ',', &cpu_abilist_);
1071 
1072   fingerprint_ = runtime_options.ReleaseOrDefault(Opt::Fingerprint);
1073 
1074   if (runtime_options.GetOrDefault(Opt::Interpret)) {
1075     GetInstrumentation()->ForceInterpretOnly();
1076   }
1077 
1078   zygote_max_failed_boots_ = runtime_options.GetOrDefault(Opt::ZygoteMaxFailedBoots);
1079   experimental_flags_ = runtime_options.GetOrDefault(Opt::Experimental);
1080   is_low_memory_mode_ = runtime_options.Exists(Opt::LowMemoryMode);
1081 
1082   plugins_ = runtime_options.ReleaseOrDefault(Opt::Plugins);
1083   agents_ = runtime_options.ReleaseOrDefault(Opt::AgentPath);
1084   // TODO Add back in -agentlib
1085   // for (auto lib : runtime_options.ReleaseOrDefault(Opt::AgentLib)) {
1086   //   agents_.push_back(lib);
1087   // }
1088 
1089   XGcOption xgc_option = runtime_options.GetOrDefault(Opt::GcOption);
1090   heap_ = new gc::Heap(runtime_options.GetOrDefault(Opt::MemoryInitialSize),
1091                        runtime_options.GetOrDefault(Opt::HeapGrowthLimit),
1092                        runtime_options.GetOrDefault(Opt::HeapMinFree),
1093                        runtime_options.GetOrDefault(Opt::HeapMaxFree),
1094                        runtime_options.GetOrDefault(Opt::HeapTargetUtilization),
1095                        runtime_options.GetOrDefault(Opt::ForegroundHeapGrowthMultiplier),
1096                        runtime_options.GetOrDefault(Opt::MemoryMaximumSize),
1097                        runtime_options.GetOrDefault(Opt::NonMovingSpaceCapacity),
1098                        runtime_options.GetOrDefault(Opt::Image),
1099                        runtime_options.GetOrDefault(Opt::ImageInstructionSet),
1100                        // Override the collector type to CC if the read barrier config.
1101                        kUseReadBarrier ? gc::kCollectorTypeCC : xgc_option.collector_type_,
1102                        kUseReadBarrier ? BackgroundGcOption(gc::kCollectorTypeCCBackground)
1103                                        : runtime_options.GetOrDefault(Opt::BackgroundGc),
1104                        runtime_options.GetOrDefault(Opt::LargeObjectSpace),
1105                        runtime_options.GetOrDefault(Opt::LargeObjectThreshold),
1106                        runtime_options.GetOrDefault(Opt::ParallelGCThreads),
1107                        runtime_options.GetOrDefault(Opt::ConcGCThreads),
1108                        runtime_options.Exists(Opt::LowMemoryMode),
1109                        runtime_options.GetOrDefault(Opt::LongPauseLogThreshold),
1110                        runtime_options.GetOrDefault(Opt::LongGCLogThreshold),
1111                        runtime_options.Exists(Opt::IgnoreMaxFootprint),
1112                        runtime_options.GetOrDefault(Opt::UseTLAB),
1113                        xgc_option.verify_pre_gc_heap_,
1114                        xgc_option.verify_pre_sweeping_heap_,
1115                        xgc_option.verify_post_gc_heap_,
1116                        xgc_option.verify_pre_gc_rosalloc_,
1117                        xgc_option.verify_pre_sweeping_rosalloc_,
1118                        xgc_option.verify_post_gc_rosalloc_,
1119                        xgc_option.gcstress_,
1120                        xgc_option.measure_,
1121                        runtime_options.GetOrDefault(Opt::EnableHSpaceCompactForOOM),
1122                        runtime_options.GetOrDefault(Opt::HSpaceCompactForOOMMinIntervalsMs));
1123 
1124   if (!heap_->HasBootImageSpace() && !allow_dex_file_fallback_) {
1125     LOG(ERROR) << "Dex file fallback disabled, cannot continue without image.";
1126     return false;
1127   }
1128 
1129   dump_gc_performance_on_shutdown_ = runtime_options.Exists(Opt::DumpGCPerformanceOnShutdown);
1130 
1131   if (runtime_options.Exists(Opt::JdwpOptions)) {
1132     Dbg::ConfigureJdwp(runtime_options.GetOrDefault(Opt::JdwpOptions));
1133   }
1134   callbacks_->AddThreadLifecycleCallback(Dbg::GetThreadLifecycleCallback());
1135   callbacks_->AddClassLoadCallback(Dbg::GetClassLoadCallback());
1136 
1137   jit_options_.reset(jit::JitOptions::CreateFromRuntimeArguments(runtime_options));
1138   if (IsAotCompiler()) {
1139     // If we are already the compiler at this point, we must be dex2oat. Don't create the jit in
1140     // this case.
1141     // If runtime_options doesn't have UseJIT set to true then CreateFromRuntimeArguments returns
1142     // null and we don't create the jit.
1143     jit_options_->SetUseJitCompilation(false);
1144     jit_options_->SetSaveProfilingInfo(false);
1145   }
1146 
1147   // Use MemMap arena pool for jit, malloc otherwise. Malloc arenas are faster to allocate but
1148   // can't be trimmed as easily.
1149   const bool use_malloc = IsAotCompiler();
1150   arena_pool_.reset(new ArenaPool(use_malloc, /* low_4gb */ false));
1151   jit_arena_pool_.reset(
1152       new ArenaPool(/* use_malloc */ false, /* low_4gb */ false, "CompilerMetadata"));
1153 
1154   if (IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA)) {
1155     // 4gb, no malloc. Explanation in header.
1156     low_4gb_arena_pool_.reset(new ArenaPool(/* use_malloc */ false, /* low_4gb */ true));
1157   }
1158   linear_alloc_.reset(CreateLinearAlloc());
1159 
1160   BlockSignals();
1161   InitPlatformSignalHandlers();
1162 
1163   // Change the implicit checks flags based on runtime architecture.
1164   switch (kRuntimeISA) {
1165     case kArm:
1166     case kThumb2:
1167     case kX86:
1168     case kArm64:
1169     case kX86_64:
1170     case kMips:
1171     case kMips64:
1172       implicit_null_checks_ = true;
1173       // Installing stack protection does not play well with valgrind.
1174       implicit_so_checks_ = !(RUNNING_ON_MEMORY_TOOL && kMemoryToolIsValgrind);
1175       break;
1176     default:
1177       // Keep the defaults.
1178       break;
1179   }
1180 
1181   if (!no_sig_chain_) {
1182     // Dex2Oat's Runtime does not need the signal chain or the fault handler.
1183     if (implicit_null_checks_ || implicit_so_checks_ || implicit_suspend_checks_) {
1184       fault_manager.Init();
1185 
1186       // These need to be in a specific order.  The null point check handler must be
1187       // after the suspend check and stack overflow check handlers.
1188       //
1189       // Note: the instances attach themselves to the fault manager and are handled by it. The manager
1190       //       will delete the instance on Shutdown().
1191       if (implicit_suspend_checks_) {
1192         new SuspensionHandler(&fault_manager);
1193       }
1194 
1195       if (implicit_so_checks_) {
1196         new StackOverflowHandler(&fault_manager);
1197       }
1198 
1199       if (implicit_null_checks_) {
1200         new NullPointerHandler(&fault_manager);
1201       }
1202 
1203       if (kEnableJavaStackTraceHandler) {
1204         new JavaStackTraceHandler(&fault_manager);
1205       }
1206     }
1207   }
1208 
1209   std::string error_msg;
1210   java_vm_ = JavaVMExt::Create(this, runtime_options, &error_msg);
1211   if (java_vm_.get() == nullptr) {
1212     LOG(ERROR) << "Could not initialize JavaVMExt: " << error_msg;
1213     return false;
1214   }
1215 
1216   // Add the JniEnv handler.
1217   // TODO Refactor this stuff.
1218   java_vm_->AddEnvironmentHook(JNIEnvExt::GetEnvHandler);
1219 
1220   Thread::Startup();
1221 
1222   // ClassLinker needs an attached thread, but we can't fully attach a thread without creating
1223   // objects. We can't supply a thread group yet; it will be fixed later. Since we are the main
1224   // thread, we do not get a java peer.
1225   Thread* self = Thread::Attach("main", false, nullptr, false);
1226   CHECK_EQ(self->GetThreadId(), ThreadList::kMainThreadId);
1227   CHECK(self != nullptr);
1228 
1229   self->SetCanCallIntoJava(!IsAotCompiler());
1230 
1231   // Set us to runnable so tools using a runtime can allocate and GC by default
1232   self->TransitionFromSuspendedToRunnable();
1233 
1234   // Now we're attached, we can take the heap locks and validate the heap.
1235   GetHeap()->EnableObjectValidation();
1236 
1237   CHECK_GE(GetHeap()->GetContinuousSpaces().size(), 1U);
1238   class_linker_ = new ClassLinker(intern_table_);
1239   cha_ = new ClassHierarchyAnalysis;
1240   if (GetHeap()->HasBootImageSpace()) {
1241     bool result = class_linker_->InitFromBootImage(&error_msg);
1242     if (!result) {
1243       LOG(ERROR) << "Could not initialize from image: " << error_msg;
1244       return false;
1245     }
1246     if (kIsDebugBuild) {
1247       for (auto image_space : GetHeap()->GetBootImageSpaces()) {
1248         image_space->VerifyImageAllocations();
1249       }
1250     }
1251     if (boot_class_path_string_.empty()) {
1252       // The bootclasspath is not explicitly specified: construct it from the loaded dex files.
1253       const std::vector<const DexFile*>& boot_class_path = GetClassLinker()->GetBootClassPath();
1254       std::vector<std::string> dex_locations;
1255       dex_locations.reserve(boot_class_path.size());
1256       for (const DexFile* dex_file : boot_class_path) {
1257         dex_locations.push_back(dex_file->GetLocation());
1258       }
1259       boot_class_path_string_ = android::base::Join(dex_locations, ':');
1260     }
1261     {
1262       ScopedTrace trace2("AddImageStringsToTable");
1263       GetInternTable()->AddImagesStringsToTable(heap_->GetBootImageSpaces());
1264     }
1265     if (IsJavaDebuggable()) {
1266       // Now that we have loaded the boot image, deoptimize its methods if we are running
1267       // debuggable, as the code may have been compiled non-debuggable.
1268       DeoptimizeBootImage();
1269     }
1270   } else {
1271     std::vector<std::string> dex_filenames;
1272     Split(boot_class_path_string_, ':', &dex_filenames);
1273 
1274     std::vector<std::string> dex_locations;
1275     if (!runtime_options.Exists(Opt::BootClassPathLocations)) {
1276       dex_locations = dex_filenames;
1277     } else {
1278       dex_locations = runtime_options.GetOrDefault(Opt::BootClassPathLocations);
1279       CHECK_EQ(dex_filenames.size(), dex_locations.size());
1280     }
1281 
1282     std::vector<std::unique_ptr<const DexFile>> boot_class_path;
1283     if (runtime_options.Exists(Opt::BootClassPathDexList)) {
1284       boot_class_path.swap(*runtime_options.GetOrDefault(Opt::BootClassPathDexList));
1285     } else {
1286       OpenDexFiles(dex_filenames,
1287                    dex_locations,
1288                    runtime_options.GetOrDefault(Opt::Image),
1289                    &boot_class_path);
1290     }
1291     instruction_set_ = runtime_options.GetOrDefault(Opt::ImageInstructionSet);
1292     if (!class_linker_->InitWithoutImage(std::move(boot_class_path), &error_msg)) {
1293       LOG(ERROR) << "Could not initialize without image: " << error_msg;
1294       return false;
1295     }
1296 
1297     // TODO: Should we move the following to InitWithoutImage?
1298     SetInstructionSet(instruction_set_);
1299     for (int i = 0; i < Runtime::kLastCalleeSaveType; i++) {
1300       Runtime::CalleeSaveType type = Runtime::CalleeSaveType(i);
1301       if (!HasCalleeSaveMethod(type)) {
1302         SetCalleeSaveMethod(CreateCalleeSaveMethod(), type);
1303       }
1304     }
1305   }
1306 
1307   CHECK(class_linker_ != nullptr);
1308 
1309   verifier::MethodVerifier::Init();
1310 
1311   if (runtime_options.Exists(Opt::MethodTrace)) {
1312     trace_config_.reset(new TraceConfig());
1313     trace_config_->trace_file = runtime_options.ReleaseOrDefault(Opt::MethodTraceFile);
1314     trace_config_->trace_file_size = runtime_options.ReleaseOrDefault(Opt::MethodTraceFileSize);
1315     trace_config_->trace_mode = Trace::TraceMode::kMethodTracing;
1316     trace_config_->trace_output_mode = runtime_options.Exists(Opt::MethodTraceStreaming) ?
1317         Trace::TraceOutputMode::kStreaming :
1318         Trace::TraceOutputMode::kFile;
1319   }
1320 
1321   // TODO: move this to just be an Trace::Start argument
1322   Trace::SetDefaultClockSource(runtime_options.GetOrDefault(Opt::ProfileClock));
1323 
1324   // Pre-allocate an OutOfMemoryError for the double-OOME case.
1325   self->ThrowNewException("Ljava/lang/OutOfMemoryError;",
1326                           "OutOfMemoryError thrown while trying to throw OutOfMemoryError; "
1327                           "no stack trace available");
1328   pre_allocated_OutOfMemoryError_ = GcRoot<mirror::Throwable>(self->GetException());
1329   self->ClearException();
1330 
1331   // Pre-allocate a NoClassDefFoundError for the common case of failing to find a system class
1332   // ahead of checking the application's class loader.
1333   self->ThrowNewException("Ljava/lang/NoClassDefFoundError;",
1334                           "Class not found using the boot class loader; no stack trace available");
1335   pre_allocated_NoClassDefFoundError_ = GcRoot<mirror::Throwable>(self->GetException());
1336   self->ClearException();
1337 
1338   // Runtime initialization is largely done now.
1339   // We load plugins first since that can modify the runtime state slightly.
1340   // Load all plugins
1341   for (auto& plugin : plugins_) {
1342     std::string err;
1343     if (!plugin.Load(&err)) {
1344       LOG(FATAL) << plugin << " failed to load: " << err;
1345     }
1346   }
1347 
1348   // Look for a native bridge.
1349   //
1350   // The intended flow here is, in the case of a running system:
1351   //
1352   // Runtime::Init() (zygote):
1353   //   LoadNativeBridge -> dlopen from cmd line parameter.
1354   //  |
1355   //  V
1356   // Runtime::Start() (zygote):
1357   //   No-op wrt native bridge.
1358   //  |
1359   //  | start app
1360   //  V
1361   // DidForkFromZygote(action)
1362   //   action = kUnload -> dlclose native bridge.
1363   //   action = kInitialize -> initialize library
1364   //
1365   //
1366   // The intended flow here is, in the case of a simple dalvikvm call:
1367   //
1368   // Runtime::Init():
1369   //   LoadNativeBridge -> dlopen from cmd line parameter.
1370   //  |
1371   //  V
1372   // Runtime::Start():
1373   //   DidForkFromZygote(kInitialize) -> try to initialize any native bridge given.
1374   //   No-op wrt native bridge.
1375   {
1376     std::string native_bridge_file_name = runtime_options.ReleaseOrDefault(Opt::NativeBridge);
1377     is_native_bridge_loaded_ = LoadNativeBridge(native_bridge_file_name);
1378   }
1379 
1380   // Startup agents
1381   // TODO Maybe we should start a new thread to run these on. Investigate RI behavior more.
1382   for (auto& agent : agents_) {
1383     // TODO Check err
1384     int res = 0;
1385     std::string err = "";
1386     ti::Agent::LoadError result = agent.Load(&res, &err);
1387     if (result == ti::Agent::kInitializationError) {
1388       LOG(FATAL) << "Unable to initialize agent!";
1389     } else if (result != ti::Agent::kNoError) {
1390       LOG(ERROR) << "Unable to load an agent: " << err;
1391     }
1392   }
1393   {
1394     ScopedObjectAccess soa(self);
1395     callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInitialAgents);
1396   }
1397 
1398   VLOG(startup) << "Runtime::Init exiting";
1399 
1400   return true;
1401 }
1402 
EnsureJvmtiPlugin(Runtime * runtime,std::vector<Plugin> * plugins,std::string * error_msg)1403 static bool EnsureJvmtiPlugin(Runtime* runtime,
1404                               std::vector<Plugin>* plugins,
1405                               std::string* error_msg) {
1406   constexpr const char* plugin_name = kIsDebugBuild ? "libopenjdkjvmtid.so" : "libopenjdkjvmti.so";
1407 
1408   // Is the plugin already loaded?
1409   for (const Plugin& p : *plugins) {
1410     if (p.GetLibrary() == plugin_name) {
1411       return true;
1412     }
1413   }
1414 
1415   // Is the process debuggable? Otherwise, do not attempt to load the plugin.
1416   if (!runtime->IsJavaDebuggable()) {
1417     *error_msg = "Process is not debuggable.";
1418     return false;
1419   }
1420 
1421   Plugin new_plugin = Plugin::Create(plugin_name);
1422 
1423   if (!new_plugin.Load(error_msg)) {
1424     return false;
1425   }
1426 
1427   plugins->push_back(std::move(new_plugin));
1428   return true;
1429 }
1430 
1431 // Attach a new agent and add it to the list of runtime agents
1432 //
1433 // TODO: once we decide on the threading model for agents,
1434 //   revisit this and make sure we're doing this on the right thread
1435 //   (and we synchronize access to any shared data structures like "agents_")
1436 //
AttachAgent(const std::string & agent_arg)1437 void Runtime::AttachAgent(const std::string& agent_arg) {
1438   std::string error_msg;
1439   if (!EnsureJvmtiPlugin(this, &plugins_, &error_msg)) {
1440     LOG(WARNING) << "Could not load plugin: " << error_msg;
1441     ScopedObjectAccess soa(Thread::Current());
1442     ThrowIOException("%s", error_msg.c_str());
1443     return;
1444   }
1445 
1446   ti::Agent agent(agent_arg);
1447 
1448   int res = 0;
1449   ti::Agent::LoadError result = agent.Attach(&res, &error_msg);
1450 
1451   if (result == ti::Agent::kNoError) {
1452     agents_.push_back(std::move(agent));
1453   } else {
1454     LOG(WARNING) << "Agent attach failed (result=" << result << ") : " << error_msg;
1455     ScopedObjectAccess soa(Thread::Current());
1456     ThrowIOException("%s", error_msg.c_str());
1457   }
1458 }
1459 
InitNativeMethods()1460 void Runtime::InitNativeMethods() {
1461   VLOG(startup) << "Runtime::InitNativeMethods entering";
1462   Thread* self = Thread::Current();
1463   JNIEnv* env = self->GetJniEnv();
1464 
1465   // Must be in the kNative state for calling native methods (JNI_OnLoad code).
1466   CHECK_EQ(self->GetState(), kNative);
1467 
1468   // First set up JniConstants, which is used by both the runtime's built-in native
1469   // methods and libcore.
1470   JniConstants::init(env);
1471 
1472   // Then set up the native methods provided by the runtime itself.
1473   RegisterRuntimeNativeMethods(env);
1474 
1475   // Initialize classes used in JNI. The initialization requires runtime native
1476   // methods to be loaded first.
1477   WellKnownClasses::Init(env);
1478 
1479   // Then set up libjavacore / libopenjdk, which are just a regular JNI libraries with
1480   // a regular JNI_OnLoad. Most JNI libraries can just use System.loadLibrary, but
1481   // libcore can't because it's the library that implements System.loadLibrary!
1482   {
1483     std::string error_msg;
1484     if (!java_vm_->LoadNativeLibrary(env, "libjavacore.so", nullptr, nullptr, &error_msg)) {
1485       LOG(FATAL) << "LoadNativeLibrary failed for \"libjavacore.so\": " << error_msg;
1486     }
1487   }
1488   {
1489     constexpr const char* kOpenJdkLibrary = kIsDebugBuild
1490                                                 ? "libopenjdkd.so"
1491                                                 : "libopenjdk.so";
1492     std::string error_msg;
1493     if (!java_vm_->LoadNativeLibrary(env, kOpenJdkLibrary, nullptr, nullptr, &error_msg)) {
1494       LOG(FATAL) << "LoadNativeLibrary failed for \"" << kOpenJdkLibrary << "\": " << error_msg;
1495     }
1496   }
1497 
1498   // Initialize well known classes that may invoke runtime native methods.
1499   WellKnownClasses::LateInit(env);
1500 
1501   VLOG(startup) << "Runtime::InitNativeMethods exiting";
1502 }
1503 
ReclaimArenaPoolMemory()1504 void Runtime::ReclaimArenaPoolMemory() {
1505   arena_pool_->LockReclaimMemory();
1506 }
1507 
InitThreadGroups(Thread * self)1508 void Runtime::InitThreadGroups(Thread* self) {
1509   JNIEnvExt* env = self->GetJniEnv();
1510   ScopedJniEnvLocalRefState env_state(env);
1511   main_thread_group_ =
1512       env->NewGlobalRef(env->GetStaticObjectField(
1513           WellKnownClasses::java_lang_ThreadGroup,
1514           WellKnownClasses::java_lang_ThreadGroup_mainThreadGroup));
1515   CHECK(main_thread_group_ != nullptr || IsAotCompiler());
1516   system_thread_group_ =
1517       env->NewGlobalRef(env->GetStaticObjectField(
1518           WellKnownClasses::java_lang_ThreadGroup,
1519           WellKnownClasses::java_lang_ThreadGroup_systemThreadGroup));
1520   CHECK(system_thread_group_ != nullptr || IsAotCompiler());
1521 }
1522 
GetMainThreadGroup() const1523 jobject Runtime::GetMainThreadGroup() const {
1524   CHECK(main_thread_group_ != nullptr || IsAotCompiler());
1525   return main_thread_group_;
1526 }
1527 
GetSystemThreadGroup() const1528 jobject Runtime::GetSystemThreadGroup() const {
1529   CHECK(system_thread_group_ != nullptr || IsAotCompiler());
1530   return system_thread_group_;
1531 }
1532 
GetSystemClassLoader() const1533 jobject Runtime::GetSystemClassLoader() const {
1534   CHECK(system_class_loader_ != nullptr || IsAotCompiler());
1535   return system_class_loader_;
1536 }
1537 
RegisterRuntimeNativeMethods(JNIEnv * env)1538 void Runtime::RegisterRuntimeNativeMethods(JNIEnv* env) {
1539   register_dalvik_system_DexFile(env);
1540   register_dalvik_system_VMDebug(env);
1541   register_dalvik_system_VMRuntime(env);
1542   register_dalvik_system_VMStack(env);
1543   register_dalvik_system_ZygoteHooks(env);
1544   register_java_lang_Class(env);
1545   register_java_lang_Object(env);
1546   register_java_lang_invoke_MethodHandleImpl(env);
1547   register_java_lang_ref_FinalizerReference(env);
1548   register_java_lang_reflect_Array(env);
1549   register_java_lang_reflect_Constructor(env);
1550   register_java_lang_reflect_Executable(env);
1551   register_java_lang_reflect_Field(env);
1552   register_java_lang_reflect_Method(env);
1553   register_java_lang_reflect_Parameter(env);
1554   register_java_lang_reflect_Proxy(env);
1555   register_java_lang_ref_Reference(env);
1556   register_java_lang_String(env);
1557   register_java_lang_StringFactory(env);
1558   register_java_lang_System(env);
1559   register_java_lang_Thread(env);
1560   register_java_lang_Throwable(env);
1561   register_java_lang_VMClassLoader(env);
1562   register_java_lang_Void(env);
1563   register_java_util_concurrent_atomic_AtomicLong(env);
1564   register_libcore_util_CharsetUtils(env);
1565   register_org_apache_harmony_dalvik_ddmc_DdmServer(env);
1566   register_org_apache_harmony_dalvik_ddmc_DdmVmInternal(env);
1567   register_sun_misc_Unsafe(env);
1568 }
1569 
operator <<(std::ostream & os,const DeoptimizationKind & kind)1570 std::ostream& operator<<(std::ostream& os, const DeoptimizationKind& kind) {
1571   os << GetDeoptimizationKindName(kind);
1572   return os;
1573 }
1574 
DumpDeoptimizations(std::ostream & os)1575 void Runtime::DumpDeoptimizations(std::ostream& os) {
1576   for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) {
1577     if (deoptimization_counts_[i] != 0) {
1578       os << "Number of "
1579          << GetDeoptimizationKindName(static_cast<DeoptimizationKind>(i))
1580          << " deoptimizations: "
1581          << deoptimization_counts_[i]
1582          << "\n";
1583     }
1584   }
1585 }
1586 
DumpForSigQuit(std::ostream & os)1587 void Runtime::DumpForSigQuit(std::ostream& os) {
1588   GetClassLinker()->DumpForSigQuit(os);
1589   GetInternTable()->DumpForSigQuit(os);
1590   GetJavaVM()->DumpForSigQuit(os);
1591   GetHeap()->DumpForSigQuit(os);
1592   oat_file_manager_->DumpForSigQuit(os);
1593   if (GetJit() != nullptr) {
1594     GetJit()->DumpForSigQuit(os);
1595   } else {
1596     os << "Running non JIT\n";
1597   }
1598   DumpDeoptimizations(os);
1599   TrackedAllocators::Dump(os);
1600   os << "\n";
1601 
1602   thread_list_->DumpForSigQuit(os);
1603   BaseMutex::DumpAll(os);
1604 
1605   // Inform anyone else who is interested in SigQuit.
1606   {
1607     ScopedObjectAccess soa(Thread::Current());
1608     callbacks_->SigQuit();
1609   }
1610 }
1611 
DumpLockHolders(std::ostream & os)1612 void Runtime::DumpLockHolders(std::ostream& os) {
1613   uint64_t mutator_lock_owner = Locks::mutator_lock_->GetExclusiveOwnerTid();
1614   pid_t thread_list_lock_owner = GetThreadList()->GetLockOwner();
1615   pid_t classes_lock_owner = GetClassLinker()->GetClassesLockOwner();
1616   pid_t dex_lock_owner = GetClassLinker()->GetDexLockOwner();
1617   if ((thread_list_lock_owner | classes_lock_owner | dex_lock_owner) != 0) {
1618     os << "Mutator lock exclusive owner tid: " << mutator_lock_owner << "\n"
1619        << "ThreadList lock owner tid: " << thread_list_lock_owner << "\n"
1620        << "ClassLinker classes lock owner tid: " << classes_lock_owner << "\n"
1621        << "ClassLinker dex lock owner tid: " << dex_lock_owner << "\n";
1622   }
1623 }
1624 
SetStatsEnabled(bool new_state)1625 void Runtime::SetStatsEnabled(bool new_state) {
1626   Thread* self = Thread::Current();
1627   MutexLock mu(self, *Locks::instrument_entrypoints_lock_);
1628   if (new_state == true) {
1629     GetStats()->Clear(~0);
1630     // TODO: wouldn't it make more sense to clear _all_ threads' stats?
1631     self->GetStats()->Clear(~0);
1632     if (stats_enabled_ != new_state) {
1633       GetInstrumentation()->InstrumentQuickAllocEntryPointsLocked();
1634     }
1635   } else if (stats_enabled_ != new_state) {
1636     GetInstrumentation()->UninstrumentQuickAllocEntryPointsLocked();
1637   }
1638   stats_enabled_ = new_state;
1639 }
1640 
ResetStats(int kinds)1641 void Runtime::ResetStats(int kinds) {
1642   GetStats()->Clear(kinds & 0xffff);
1643   // TODO: wouldn't it make more sense to clear _all_ threads' stats?
1644   Thread::Current()->GetStats()->Clear(kinds >> 16);
1645 }
1646 
GetStat(int kind)1647 int32_t Runtime::GetStat(int kind) {
1648   RuntimeStats* stats;
1649   if (kind < (1<<16)) {
1650     stats = GetStats();
1651   } else {
1652     stats = Thread::Current()->GetStats();
1653     kind >>= 16;
1654   }
1655   switch (kind) {
1656   case KIND_ALLOCATED_OBJECTS:
1657     return stats->allocated_objects;
1658   case KIND_ALLOCATED_BYTES:
1659     return stats->allocated_bytes;
1660   case KIND_FREED_OBJECTS:
1661     return stats->freed_objects;
1662   case KIND_FREED_BYTES:
1663     return stats->freed_bytes;
1664   case KIND_GC_INVOCATIONS:
1665     return stats->gc_for_alloc_count;
1666   case KIND_CLASS_INIT_COUNT:
1667     return stats->class_init_count;
1668   case KIND_CLASS_INIT_TIME:
1669     // Convert ns to us, reduce to 32 bits.
1670     return static_cast<int>(stats->class_init_time_ns / 1000);
1671   case KIND_EXT_ALLOCATED_OBJECTS:
1672   case KIND_EXT_ALLOCATED_BYTES:
1673   case KIND_EXT_FREED_OBJECTS:
1674   case KIND_EXT_FREED_BYTES:
1675     return 0;  // backward compatibility
1676   default:
1677     LOG(FATAL) << "Unknown statistic " << kind;
1678     return -1;  // unreachable
1679   }
1680 }
1681 
BlockSignals()1682 void Runtime::BlockSignals() {
1683   SignalSet signals;
1684   signals.Add(SIGPIPE);
1685   // SIGQUIT is used to dump the runtime's state (including stack traces).
1686   signals.Add(SIGQUIT);
1687   // SIGUSR1 is used to initiate a GC.
1688   signals.Add(SIGUSR1);
1689   signals.Block();
1690 }
1691 
AttachCurrentThread(const char * thread_name,bool as_daemon,jobject thread_group,bool create_peer)1692 bool Runtime::AttachCurrentThread(const char* thread_name, bool as_daemon, jobject thread_group,
1693                                   bool create_peer) {
1694   ScopedTrace trace(__FUNCTION__);
1695   return Thread::Attach(thread_name, as_daemon, thread_group, create_peer) != nullptr;
1696 }
1697 
DetachCurrentThread()1698 void Runtime::DetachCurrentThread() {
1699   ScopedTrace trace(__FUNCTION__);
1700   Thread* self = Thread::Current();
1701   if (self == nullptr) {
1702     LOG(FATAL) << "attempting to detach thread that is not attached";
1703   }
1704   if (self->HasManagedStack()) {
1705     LOG(FATAL) << *Thread::Current() << " attempting to detach while still running code";
1706   }
1707   thread_list_->Unregister(self);
1708 }
1709 
GetPreAllocatedOutOfMemoryError()1710 mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryError() {
1711   mirror::Throwable* oome = pre_allocated_OutOfMemoryError_.Read();
1712   if (oome == nullptr) {
1713     LOG(ERROR) << "Failed to return pre-allocated OOME";
1714   }
1715   return oome;
1716 }
1717 
GetPreAllocatedNoClassDefFoundError()1718 mirror::Throwable* Runtime::GetPreAllocatedNoClassDefFoundError() {
1719   mirror::Throwable* ncdfe = pre_allocated_NoClassDefFoundError_.Read();
1720   if (ncdfe == nullptr) {
1721     LOG(ERROR) << "Failed to return pre-allocated NoClassDefFoundError";
1722   }
1723   return ncdfe;
1724 }
1725 
VisitConstantRoots(RootVisitor * visitor)1726 void Runtime::VisitConstantRoots(RootVisitor* visitor) {
1727   // Visit the classes held as static in mirror classes, these can be visited concurrently and only
1728   // need to be visited once per GC since they never change.
1729   mirror::Class::VisitRoots(visitor);
1730   mirror::Constructor::VisitRoots(visitor);
1731   mirror::Reference::VisitRoots(visitor);
1732   mirror::Method::VisitRoots(visitor);
1733   mirror::StackTraceElement::VisitRoots(visitor);
1734   mirror::String::VisitRoots(visitor);
1735   mirror::Throwable::VisitRoots(visitor);
1736   mirror::Field::VisitRoots(visitor);
1737   mirror::MethodType::VisitRoots(visitor);
1738   mirror::MethodHandleImpl::VisitRoots(visitor);
1739   mirror::MethodHandlesLookup::VisitRoots(visitor);
1740   mirror::EmulatedStackFrame::VisitRoots(visitor);
1741   mirror::ClassExt::VisitRoots(visitor);
1742   mirror::CallSite::VisitRoots(visitor);
1743   // Visit all the primitive array types classes.
1744   mirror::PrimitiveArray<uint8_t>::VisitRoots(visitor);   // BooleanArray
1745   mirror::PrimitiveArray<int8_t>::VisitRoots(visitor);    // ByteArray
1746   mirror::PrimitiveArray<uint16_t>::VisitRoots(visitor);  // CharArray
1747   mirror::PrimitiveArray<double>::VisitRoots(visitor);    // DoubleArray
1748   mirror::PrimitiveArray<float>::VisitRoots(visitor);     // FloatArray
1749   mirror::PrimitiveArray<int32_t>::VisitRoots(visitor);   // IntArray
1750   mirror::PrimitiveArray<int64_t>::VisitRoots(visitor);   // LongArray
1751   mirror::PrimitiveArray<int16_t>::VisitRoots(visitor);   // ShortArray
1752   // Visiting the roots of these ArtMethods is not currently required since all the GcRoots are
1753   // null.
1754   BufferedRootVisitor<16> buffered_visitor(visitor, RootInfo(kRootVMInternal));
1755   const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize();
1756   if (HasResolutionMethod()) {
1757     resolution_method_->VisitRoots(buffered_visitor, pointer_size);
1758   }
1759   if (HasImtConflictMethod()) {
1760     imt_conflict_method_->VisitRoots(buffered_visitor, pointer_size);
1761   }
1762   if (imt_unimplemented_method_ != nullptr) {
1763     imt_unimplemented_method_->VisitRoots(buffered_visitor, pointer_size);
1764   }
1765   for (size_t i = 0; i < kLastCalleeSaveType; ++i) {
1766     auto* m = reinterpret_cast<ArtMethod*>(callee_save_methods_[i]);
1767     if (m != nullptr) {
1768       m->VisitRoots(buffered_visitor, pointer_size);
1769     }
1770   }
1771 }
1772 
VisitConcurrentRoots(RootVisitor * visitor,VisitRootFlags flags)1773 void Runtime::VisitConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) {
1774   intern_table_->VisitRoots(visitor, flags);
1775   class_linker_->VisitRoots(visitor, flags);
1776   heap_->VisitAllocationRecords(visitor);
1777   if ((flags & kVisitRootFlagNewRoots) == 0) {
1778     // Guaranteed to have no new roots in the constant roots.
1779     VisitConstantRoots(visitor);
1780   }
1781   Dbg::VisitRoots(visitor);
1782 }
1783 
VisitTransactionRoots(RootVisitor * visitor)1784 void Runtime::VisitTransactionRoots(RootVisitor* visitor) {
1785   if (preinitialization_transaction_ != nullptr) {
1786     preinitialization_transaction_->VisitRoots(visitor);
1787   }
1788 }
1789 
VisitNonThreadRoots(RootVisitor * visitor)1790 void Runtime::VisitNonThreadRoots(RootVisitor* visitor) {
1791   java_vm_->VisitRoots(visitor);
1792   sentinel_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
1793   pre_allocated_OutOfMemoryError_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
1794   pre_allocated_NoClassDefFoundError_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
1795   verifier::MethodVerifier::VisitStaticRoots(visitor);
1796   VisitTransactionRoots(visitor);
1797 }
1798 
VisitNonConcurrentRoots(RootVisitor * visitor,VisitRootFlags flags)1799 void Runtime::VisitNonConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) {
1800   VisitThreadRoots(visitor, flags);
1801   VisitNonThreadRoots(visitor);
1802 }
1803 
VisitThreadRoots(RootVisitor * visitor,VisitRootFlags flags)1804 void Runtime::VisitThreadRoots(RootVisitor* visitor, VisitRootFlags flags) {
1805   thread_list_->VisitRoots(visitor, flags);
1806 }
1807 
FlipThreadRoots(Closure * thread_flip_visitor,Closure * flip_callback,gc::collector::GarbageCollector * collector)1808 size_t Runtime::FlipThreadRoots(Closure* thread_flip_visitor, Closure* flip_callback,
1809                                 gc::collector::GarbageCollector* collector) {
1810   return thread_list_->FlipThreadRoots(thread_flip_visitor, flip_callback, collector);
1811 }
1812 
VisitRoots(RootVisitor * visitor,VisitRootFlags flags)1813 void Runtime::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
1814   VisitNonConcurrentRoots(visitor, flags);
1815   VisitConcurrentRoots(visitor, flags);
1816 }
1817 
VisitImageRoots(RootVisitor * visitor)1818 void Runtime::VisitImageRoots(RootVisitor* visitor) {
1819   for (auto* space : GetHeap()->GetContinuousSpaces()) {
1820     if (space->IsImageSpace()) {
1821       auto* image_space = space->AsImageSpace();
1822       const auto& image_header = image_space->GetImageHeader();
1823       for (int32_t i = 0, size = image_header.GetImageRoots()->GetLength(); i != size; ++i) {
1824         auto* obj = image_header.GetImageRoot(static_cast<ImageHeader::ImageRoot>(i));
1825         if (obj != nullptr) {
1826           auto* after_obj = obj;
1827           visitor->VisitRoot(&after_obj, RootInfo(kRootStickyClass));
1828           CHECK_EQ(after_obj, obj);
1829         }
1830       }
1831     }
1832   }
1833 }
1834 
CreateRuntimeMethod(ClassLinker * class_linker,LinearAlloc * linear_alloc)1835 static ArtMethod* CreateRuntimeMethod(ClassLinker* class_linker, LinearAlloc* linear_alloc) {
1836   const PointerSize image_pointer_size = class_linker->GetImagePointerSize();
1837   const size_t method_alignment = ArtMethod::Alignment(image_pointer_size);
1838   const size_t method_size = ArtMethod::Size(image_pointer_size);
1839   LengthPrefixedArray<ArtMethod>* method_array = class_linker->AllocArtMethodArray(
1840       Thread::Current(),
1841       linear_alloc,
1842       1);
1843   ArtMethod* method = &method_array->At(0, method_size, method_alignment);
1844   CHECK(method != nullptr);
1845   method->SetDexMethodIndex(DexFile::kDexNoIndex);
1846   CHECK(method->IsRuntimeMethod());
1847   return method;
1848 }
1849 
CreateImtConflictMethod(LinearAlloc * linear_alloc)1850 ArtMethod* Runtime::CreateImtConflictMethod(LinearAlloc* linear_alloc) {
1851   ClassLinker* const class_linker = GetClassLinker();
1852   ArtMethod* method = CreateRuntimeMethod(class_linker, linear_alloc);
1853   // When compiling, the code pointer will get set later when the image is loaded.
1854   const PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
1855   if (IsAotCompiler()) {
1856     method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
1857   } else {
1858     method->SetEntryPointFromQuickCompiledCode(GetQuickImtConflictStub());
1859   }
1860   // Create empty conflict table.
1861   method->SetImtConflictTable(class_linker->CreateImtConflictTable(/*count*/0u, linear_alloc),
1862                               pointer_size);
1863   return method;
1864 }
1865 
SetImtConflictMethod(ArtMethod * method)1866 void Runtime::SetImtConflictMethod(ArtMethod* method) {
1867   CHECK(method != nullptr);
1868   CHECK(method->IsRuntimeMethod());
1869   imt_conflict_method_ = method;
1870 }
1871 
CreateResolutionMethod()1872 ArtMethod* Runtime::CreateResolutionMethod() {
1873   auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc());
1874   // When compiling, the code pointer will get set later when the image is loaded.
1875   if (IsAotCompiler()) {
1876     PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
1877     method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
1878   } else {
1879     method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionStub());
1880   }
1881   return method;
1882 }
1883 
CreateCalleeSaveMethod()1884 ArtMethod* Runtime::CreateCalleeSaveMethod() {
1885   auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc());
1886   PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
1887   method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
1888   DCHECK_NE(instruction_set_, kNone);
1889   DCHECK(method->IsRuntimeMethod());
1890   return method;
1891 }
1892 
DisallowNewSystemWeaks()1893 void Runtime::DisallowNewSystemWeaks() {
1894   CHECK(!kUseReadBarrier);
1895   monitor_list_->DisallowNewMonitors();
1896   intern_table_->ChangeWeakRootState(gc::kWeakRootStateNoReadsOrWrites);
1897   java_vm_->DisallowNewWeakGlobals();
1898   heap_->DisallowNewAllocationRecords();
1899   if (GetJit() != nullptr) {
1900     GetJit()->GetCodeCache()->DisallowInlineCacheAccess();
1901   }
1902 
1903   // All other generic system-weak holders.
1904   for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
1905     holder->Disallow();
1906   }
1907 }
1908 
AllowNewSystemWeaks()1909 void Runtime::AllowNewSystemWeaks() {
1910   CHECK(!kUseReadBarrier);
1911   monitor_list_->AllowNewMonitors();
1912   intern_table_->ChangeWeakRootState(gc::kWeakRootStateNormal);  // TODO: Do this in the sweeping.
1913   java_vm_->AllowNewWeakGlobals();
1914   heap_->AllowNewAllocationRecords();
1915   if (GetJit() != nullptr) {
1916     GetJit()->GetCodeCache()->AllowInlineCacheAccess();
1917   }
1918 
1919   // All other generic system-weak holders.
1920   for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
1921     holder->Allow();
1922   }
1923 }
1924 
BroadcastForNewSystemWeaks(bool broadcast_for_checkpoint)1925 void Runtime::BroadcastForNewSystemWeaks(bool broadcast_for_checkpoint) {
1926   // This is used for the read barrier case that uses the thread-local
1927   // Thread::GetWeakRefAccessEnabled() flag and the checkpoint while weak ref access is disabled
1928   // (see ThreadList::RunCheckpoint).
1929   monitor_list_->BroadcastForNewMonitors();
1930   intern_table_->BroadcastForNewInterns();
1931   java_vm_->BroadcastForNewWeakGlobals();
1932   heap_->BroadcastForNewAllocationRecords();
1933   if (GetJit() != nullptr) {
1934     GetJit()->GetCodeCache()->BroadcastForInlineCacheAccess();
1935   }
1936 
1937   // All other generic system-weak holders.
1938   for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
1939     holder->Broadcast(broadcast_for_checkpoint);
1940   }
1941 }
1942 
SetInstructionSet(InstructionSet instruction_set)1943 void Runtime::SetInstructionSet(InstructionSet instruction_set) {
1944   instruction_set_ = instruction_set;
1945   if ((instruction_set_ == kThumb2) || (instruction_set_ == kArm)) {
1946     for (int i = 0; i != kLastCalleeSaveType; ++i) {
1947       CalleeSaveType type = static_cast<CalleeSaveType>(i);
1948       callee_save_method_frame_infos_[i] = arm::ArmCalleeSaveMethodFrameInfo(type);
1949     }
1950   } else if (instruction_set_ == kMips) {
1951     for (int i = 0; i != kLastCalleeSaveType; ++i) {
1952       CalleeSaveType type = static_cast<CalleeSaveType>(i);
1953       callee_save_method_frame_infos_[i] = mips::MipsCalleeSaveMethodFrameInfo(type);
1954     }
1955   } else if (instruction_set_ == kMips64) {
1956     for (int i = 0; i != kLastCalleeSaveType; ++i) {
1957       CalleeSaveType type = static_cast<CalleeSaveType>(i);
1958       callee_save_method_frame_infos_[i] = mips64::Mips64CalleeSaveMethodFrameInfo(type);
1959     }
1960   } else if (instruction_set_ == kX86) {
1961     for (int i = 0; i != kLastCalleeSaveType; ++i) {
1962       CalleeSaveType type = static_cast<CalleeSaveType>(i);
1963       callee_save_method_frame_infos_[i] = x86::X86CalleeSaveMethodFrameInfo(type);
1964     }
1965   } else if (instruction_set_ == kX86_64) {
1966     for (int i = 0; i != kLastCalleeSaveType; ++i) {
1967       CalleeSaveType type = static_cast<CalleeSaveType>(i);
1968       callee_save_method_frame_infos_[i] = x86_64::X86_64CalleeSaveMethodFrameInfo(type);
1969     }
1970   } else if (instruction_set_ == kArm64) {
1971     for (int i = 0; i != kLastCalleeSaveType; ++i) {
1972       CalleeSaveType type = static_cast<CalleeSaveType>(i);
1973       callee_save_method_frame_infos_[i] = arm64::Arm64CalleeSaveMethodFrameInfo(type);
1974     }
1975   } else {
1976     UNIMPLEMENTED(FATAL) << instruction_set_;
1977   }
1978 }
1979 
ClearInstructionSet()1980 void Runtime::ClearInstructionSet() {
1981   instruction_set_ = InstructionSet::kNone;
1982 }
1983 
SetCalleeSaveMethod(ArtMethod * method,CalleeSaveType type)1984 void Runtime::SetCalleeSaveMethod(ArtMethod* method, CalleeSaveType type) {
1985   DCHECK_LT(static_cast<int>(type), static_cast<int>(kLastCalleeSaveType));
1986   CHECK(method != nullptr);
1987   callee_save_methods_[type] = reinterpret_cast<uintptr_t>(method);
1988 }
1989 
ClearCalleeSaveMethods()1990 void Runtime::ClearCalleeSaveMethods() {
1991   for (size_t i = 0; i < static_cast<size_t>(kLastCalleeSaveType); ++i) {
1992     CalleeSaveType type = static_cast<CalleeSaveType>(i);
1993     callee_save_methods_[type] = reinterpret_cast<uintptr_t>(nullptr);
1994   }
1995 }
1996 
RegisterAppInfo(const std::vector<std::string> & code_paths,const std::string & profile_output_filename)1997 void Runtime::RegisterAppInfo(const std::vector<std::string>& code_paths,
1998                               const std::string& profile_output_filename) {
1999   if (jit_.get() == nullptr) {
2000     // We are not JITing. Nothing to do.
2001     return;
2002   }
2003 
2004   VLOG(profiler) << "Register app with " << profile_output_filename
2005       << " " << android::base::Join(code_paths, ':');
2006 
2007   if (profile_output_filename.empty()) {
2008     LOG(WARNING) << "JIT profile information will not be recorded: profile filename is empty.";
2009     return;
2010   }
2011   if (!FileExists(profile_output_filename)) {
2012     LOG(WARNING) << "JIT profile information will not be recorded: profile file does not exits.";
2013     return;
2014   }
2015   if (code_paths.empty()) {
2016     LOG(WARNING) << "JIT profile information will not be recorded: code paths is empty.";
2017     return;
2018   }
2019 
2020   jit_->StartProfileSaver(profile_output_filename, code_paths);
2021 }
2022 
2023 // Transaction support.
EnterTransactionMode(Transaction * transaction)2024 void Runtime::EnterTransactionMode(Transaction* transaction) {
2025   DCHECK(IsAotCompiler());
2026   DCHECK(transaction != nullptr);
2027   DCHECK(!IsActiveTransaction());
2028   preinitialization_transaction_ = transaction;
2029 }
2030 
ExitTransactionMode()2031 void Runtime::ExitTransactionMode() {
2032   DCHECK(IsAotCompiler());
2033   DCHECK(IsActiveTransaction());
2034   preinitialization_transaction_ = nullptr;
2035 }
2036 
IsTransactionAborted() const2037 bool Runtime::IsTransactionAborted() const {
2038   if (!IsActiveTransaction()) {
2039     return false;
2040   } else {
2041     DCHECK(IsAotCompiler());
2042     return preinitialization_transaction_->IsAborted();
2043   }
2044 }
2045 
AbortTransactionAndThrowAbortError(Thread * self,const std::string & abort_message)2046 void Runtime::AbortTransactionAndThrowAbortError(Thread* self, const std::string& abort_message) {
2047   DCHECK(IsAotCompiler());
2048   DCHECK(IsActiveTransaction());
2049   // Throwing an exception may cause its class initialization. If we mark the transaction
2050   // aborted before that, we may warn with a false alarm. Throwing the exception before
2051   // marking the transaction aborted avoids that.
2052   preinitialization_transaction_->ThrowAbortError(self, &abort_message);
2053   preinitialization_transaction_->Abort(abort_message);
2054 }
2055 
ThrowTransactionAbortError(Thread * self)2056 void Runtime::ThrowTransactionAbortError(Thread* self) {
2057   DCHECK(IsAotCompiler());
2058   DCHECK(IsActiveTransaction());
2059   // Passing nullptr means we rethrow an exception with the earlier transaction abort message.
2060   preinitialization_transaction_->ThrowAbortError(self, nullptr);
2061 }
2062 
RecordWriteFieldBoolean(mirror::Object * obj,MemberOffset field_offset,uint8_t value,bool is_volatile) const2063 void Runtime::RecordWriteFieldBoolean(mirror::Object* obj, MemberOffset field_offset,
2064                                       uint8_t value, bool is_volatile) const {
2065   DCHECK(IsAotCompiler());
2066   DCHECK(IsActiveTransaction());
2067   preinitialization_transaction_->RecordWriteFieldBoolean(obj, field_offset, value, is_volatile);
2068 }
2069 
RecordWriteFieldByte(mirror::Object * obj,MemberOffset field_offset,int8_t value,bool is_volatile) const2070 void Runtime::RecordWriteFieldByte(mirror::Object* obj, MemberOffset field_offset,
2071                                    int8_t value, bool is_volatile) const {
2072   DCHECK(IsAotCompiler());
2073   DCHECK(IsActiveTransaction());
2074   preinitialization_transaction_->RecordWriteFieldByte(obj, field_offset, value, is_volatile);
2075 }
2076 
RecordWriteFieldChar(mirror::Object * obj,MemberOffset field_offset,uint16_t value,bool is_volatile) const2077 void Runtime::RecordWriteFieldChar(mirror::Object* obj, MemberOffset field_offset,
2078                                    uint16_t value, bool is_volatile) const {
2079   DCHECK(IsAotCompiler());
2080   DCHECK(IsActiveTransaction());
2081   preinitialization_transaction_->RecordWriteFieldChar(obj, field_offset, value, is_volatile);
2082 }
2083 
RecordWriteFieldShort(mirror::Object * obj,MemberOffset field_offset,int16_t value,bool is_volatile) const2084 void Runtime::RecordWriteFieldShort(mirror::Object* obj, MemberOffset field_offset,
2085                                     int16_t value, bool is_volatile) const {
2086   DCHECK(IsAotCompiler());
2087   DCHECK(IsActiveTransaction());
2088   preinitialization_transaction_->RecordWriteFieldShort(obj, field_offset, value, is_volatile);
2089 }
2090 
RecordWriteField32(mirror::Object * obj,MemberOffset field_offset,uint32_t value,bool is_volatile) const2091 void Runtime::RecordWriteField32(mirror::Object* obj, MemberOffset field_offset,
2092                                  uint32_t value, bool is_volatile) const {
2093   DCHECK(IsAotCompiler());
2094   DCHECK(IsActiveTransaction());
2095   preinitialization_transaction_->RecordWriteField32(obj, field_offset, value, is_volatile);
2096 }
2097 
RecordWriteField64(mirror::Object * obj,MemberOffset field_offset,uint64_t value,bool is_volatile) const2098 void Runtime::RecordWriteField64(mirror::Object* obj, MemberOffset field_offset,
2099                                  uint64_t value, bool is_volatile) const {
2100   DCHECK(IsAotCompiler());
2101   DCHECK(IsActiveTransaction());
2102   preinitialization_transaction_->RecordWriteField64(obj, field_offset, value, is_volatile);
2103 }
2104 
RecordWriteFieldReference(mirror::Object * obj,MemberOffset field_offset,ObjPtr<mirror::Object> value,bool is_volatile) const2105 void Runtime::RecordWriteFieldReference(mirror::Object* obj,
2106                                         MemberOffset field_offset,
2107                                         ObjPtr<mirror::Object> value,
2108                                         bool is_volatile) const {
2109   DCHECK(IsAotCompiler());
2110   DCHECK(IsActiveTransaction());
2111   preinitialization_transaction_->RecordWriteFieldReference(obj,
2112                                                             field_offset,
2113                                                             value.Ptr(),
2114                                                             is_volatile);
2115 }
2116 
RecordWriteArray(mirror::Array * array,size_t index,uint64_t value) const2117 void Runtime::RecordWriteArray(mirror::Array* array, size_t index, uint64_t value) const {
2118   DCHECK(IsAotCompiler());
2119   DCHECK(IsActiveTransaction());
2120   preinitialization_transaction_->RecordWriteArray(array, index, value);
2121 }
2122 
RecordStrongStringInsertion(ObjPtr<mirror::String> s) const2123 void Runtime::RecordStrongStringInsertion(ObjPtr<mirror::String> s) const {
2124   DCHECK(IsAotCompiler());
2125   DCHECK(IsActiveTransaction());
2126   preinitialization_transaction_->RecordStrongStringInsertion(s);
2127 }
2128 
RecordWeakStringInsertion(ObjPtr<mirror::String> s) const2129 void Runtime::RecordWeakStringInsertion(ObjPtr<mirror::String> s) const {
2130   DCHECK(IsAotCompiler());
2131   DCHECK(IsActiveTransaction());
2132   preinitialization_transaction_->RecordWeakStringInsertion(s);
2133 }
2134 
RecordStrongStringRemoval(ObjPtr<mirror::String> s) const2135 void Runtime::RecordStrongStringRemoval(ObjPtr<mirror::String> s) const {
2136   DCHECK(IsAotCompiler());
2137   DCHECK(IsActiveTransaction());
2138   preinitialization_transaction_->RecordStrongStringRemoval(s);
2139 }
2140 
RecordWeakStringRemoval(ObjPtr<mirror::String> s) const2141 void Runtime::RecordWeakStringRemoval(ObjPtr<mirror::String> s) const {
2142   DCHECK(IsAotCompiler());
2143   DCHECK(IsActiveTransaction());
2144   preinitialization_transaction_->RecordWeakStringRemoval(s);
2145 }
2146 
RecordResolveString(ObjPtr<mirror::DexCache> dex_cache,dex::StringIndex string_idx) const2147 void Runtime::RecordResolveString(ObjPtr<mirror::DexCache> dex_cache,
2148                                   dex::StringIndex string_idx) const {
2149   DCHECK(IsAotCompiler());
2150   DCHECK(IsActiveTransaction());
2151   preinitialization_transaction_->RecordResolveString(dex_cache, string_idx);
2152 }
2153 
SetFaultMessage(const std::string & message)2154 void Runtime::SetFaultMessage(const std::string& message) {
2155   MutexLock mu(Thread::Current(), fault_message_lock_);
2156   fault_message_ = message;
2157 }
2158 
AddCurrentRuntimeFeaturesAsDex2OatArguments(std::vector<std::string> * argv) const2159 void Runtime::AddCurrentRuntimeFeaturesAsDex2OatArguments(std::vector<std::string>* argv)
2160     const {
2161   if (GetInstrumentation()->InterpretOnly()) {
2162     argv->push_back("--compiler-filter=quicken");
2163   }
2164 
2165   // Make the dex2oat instruction set match that of the launching runtime. If we have multiple
2166   // architecture support, dex2oat may be compiled as a different instruction-set than that
2167   // currently being executed.
2168   std::string instruction_set("--instruction-set=");
2169   instruction_set += GetInstructionSetString(kRuntimeISA);
2170   argv->push_back(instruction_set);
2171 
2172   std::unique_ptr<const InstructionSetFeatures> features(InstructionSetFeatures::FromCppDefines());
2173   std::string feature_string("--instruction-set-features=");
2174   feature_string += features->GetFeatureString();
2175   argv->push_back(feature_string);
2176 }
2177 
CreateJit()2178 void Runtime::CreateJit() {
2179   CHECK(!IsAotCompiler());
2180   if (kIsDebugBuild && GetInstrumentation()->IsForcedInterpretOnly()) {
2181     DCHECK(!jit_options_->UseJitCompilation());
2182   }
2183   std::string error_msg;
2184   jit_.reset(jit::Jit::Create(jit_options_.get(), &error_msg));
2185   if (jit_.get() == nullptr) {
2186     LOG(WARNING) << "Failed to create JIT " << error_msg;
2187     return;
2188   }
2189 
2190   // In case we have a profile path passed as a command line argument,
2191   // register the current class path for profiling now. Note that we cannot do
2192   // this before we create the JIT and having it here is the most convenient way.
2193   // This is used when testing profiles with dalvikvm command as there is no
2194   // framework to register the dex files for profiling.
2195   if (jit_options_->GetSaveProfilingInfo() &&
2196       !jit_options_->GetProfileSaverOptions().GetProfilePath().empty()) {
2197     std::vector<std::string> dex_filenames;
2198     Split(class_path_string_, ':', &dex_filenames);
2199     RegisterAppInfo(dex_filenames, jit_options_->GetProfileSaverOptions().GetProfilePath());
2200   }
2201 }
2202 
CanRelocate() const2203 bool Runtime::CanRelocate() const {
2204   return !IsAotCompiler() || compiler_callbacks_->IsRelocationPossible();
2205 }
2206 
IsCompilingBootImage() const2207 bool Runtime::IsCompilingBootImage() const {
2208   return IsCompiler() && compiler_callbacks_->IsBootImage();
2209 }
2210 
SetResolutionMethod(ArtMethod * method)2211 void Runtime::SetResolutionMethod(ArtMethod* method) {
2212   CHECK(method != nullptr);
2213   CHECK(method->IsRuntimeMethod()) << method;
2214   resolution_method_ = method;
2215 }
2216 
SetImtUnimplementedMethod(ArtMethod * method)2217 void Runtime::SetImtUnimplementedMethod(ArtMethod* method) {
2218   CHECK(method != nullptr);
2219   CHECK(method->IsRuntimeMethod());
2220   imt_unimplemented_method_ = method;
2221 }
2222 
FixupConflictTables()2223 void Runtime::FixupConflictTables() {
2224   // We can only do this after the class linker is created.
2225   const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize();
2226   if (imt_unimplemented_method_->GetImtConflictTable(pointer_size) == nullptr) {
2227     imt_unimplemented_method_->SetImtConflictTable(
2228         ClassLinker::CreateImtConflictTable(/*count*/0u, GetLinearAlloc(), pointer_size),
2229         pointer_size);
2230   }
2231   if (imt_conflict_method_->GetImtConflictTable(pointer_size) == nullptr) {
2232     imt_conflict_method_->SetImtConflictTable(
2233           ClassLinker::CreateImtConflictTable(/*count*/0u, GetLinearAlloc(), pointer_size),
2234           pointer_size);
2235   }
2236 }
2237 
IsVerificationEnabled() const2238 bool Runtime::IsVerificationEnabled() const {
2239   return verify_ == verifier::VerifyMode::kEnable ||
2240       verify_ == verifier::VerifyMode::kSoftFail;
2241 }
2242 
IsVerificationSoftFail() const2243 bool Runtime::IsVerificationSoftFail() const {
2244   return verify_ == verifier::VerifyMode::kSoftFail;
2245 }
2246 
IsAsyncDeoptimizeable(uintptr_t code) const2247 bool Runtime::IsAsyncDeoptimizeable(uintptr_t code) const {
2248   // We only support async deopt (ie the compiled code is not explicitly asking for
2249   // deopt, but something else like the debugger) in debuggable JIT code.
2250   // We could look at the oat file where `code` is being defined,
2251   // and check whether it's been compiled debuggable, but we decided to
2252   // only rely on the JIT for debuggable apps.
2253   return IsJavaDebuggable() &&
2254       GetJit() != nullptr &&
2255       GetJit()->GetCodeCache()->ContainsPc(reinterpret_cast<const void*>(code));
2256 }
2257 
CreateLinearAlloc()2258 LinearAlloc* Runtime::CreateLinearAlloc() {
2259   // For 64 bit compilers, it needs to be in low 4GB in the case where we are cross compiling for a
2260   // 32 bit target. In this case, we have 32 bit pointers in the dex cache arrays which can't hold
2261   // when we have 64 bit ArtMethod pointers.
2262   return (IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA))
2263       ? new LinearAlloc(low_4gb_arena_pool_.get())
2264       : new LinearAlloc(arena_pool_.get());
2265 }
2266 
GetHashTableMinLoadFactor() const2267 double Runtime::GetHashTableMinLoadFactor() const {
2268   return is_low_memory_mode_ ? kLowMemoryMinLoadFactor : kNormalMinLoadFactor;
2269 }
2270 
GetHashTableMaxLoadFactor() const2271 double Runtime::GetHashTableMaxLoadFactor() const {
2272   return is_low_memory_mode_ ? kLowMemoryMaxLoadFactor : kNormalMaxLoadFactor;
2273 }
2274 
UpdateProcessState(ProcessState process_state)2275 void Runtime::UpdateProcessState(ProcessState process_state) {
2276   ProcessState old_process_state = process_state_;
2277   process_state_ = process_state;
2278   GetHeap()->UpdateProcessState(old_process_state, process_state);
2279 }
2280 
RegisterSensitiveThread() const2281 void Runtime::RegisterSensitiveThread() const {
2282   Thread::SetJitSensitiveThread();
2283 }
2284 
2285 // Returns true if JIT compilations are enabled. GetJit() will be not null in this case.
UseJitCompilation() const2286 bool Runtime::UseJitCompilation() const {
2287   return (jit_ != nullptr) && jit_->UseJitCompilation();
2288 }
2289 
TakeSnapshot()2290 void Runtime::EnvSnapshot::TakeSnapshot() {
2291   char** env = GetEnviron();
2292   for (size_t i = 0; env[i] != nullptr; ++i) {
2293     name_value_pairs_.emplace_back(new std::string(env[i]));
2294   }
2295   // The strings in name_value_pairs_ retain ownership of the c_str, but we assign pointers
2296   // for quick use by GetSnapshot.  This avoids allocation and copying cost at Exec.
2297   c_env_vector_.reset(new char*[name_value_pairs_.size() + 1]);
2298   for (size_t i = 0; env[i] != nullptr; ++i) {
2299     c_env_vector_[i] = const_cast<char*>(name_value_pairs_[i]->c_str());
2300   }
2301   c_env_vector_[name_value_pairs_.size()] = nullptr;
2302 }
2303 
GetSnapshot() const2304 char** Runtime::EnvSnapshot::GetSnapshot() const {
2305   return c_env_vector_.get();
2306 }
2307 
AddSystemWeakHolder(gc::AbstractSystemWeakHolder * holder)2308 void Runtime::AddSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) {
2309   gc::ScopedGCCriticalSection gcs(Thread::Current(),
2310                                   gc::kGcCauseAddRemoveSystemWeakHolder,
2311                                   gc::kCollectorTypeAddRemoveSystemWeakHolder);
2312   // Note: The ScopedGCCriticalSection also ensures that the rest of the function is in
2313   //       a critical section.
2314   system_weak_holders_.push_back(holder);
2315 }
2316 
RemoveSystemWeakHolder(gc::AbstractSystemWeakHolder * holder)2317 void Runtime::RemoveSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) {
2318   gc::ScopedGCCriticalSection gcs(Thread::Current(),
2319                                   gc::kGcCauseAddRemoveSystemWeakHolder,
2320                                   gc::kCollectorTypeAddRemoveSystemWeakHolder);
2321   auto it = std::find(system_weak_holders_.begin(), system_weak_holders_.end(), holder);
2322   if (it != system_weak_holders_.end()) {
2323     system_weak_holders_.erase(it);
2324   }
2325 }
2326 
2327 NO_RETURN
Aborter(const char * abort_message)2328 void Runtime::Aborter(const char* abort_message) {
2329 #ifdef ART_TARGET_ANDROID
2330   android_set_abort_message(abort_message);
2331 #endif
2332   Runtime::Abort(abort_message);
2333 }
2334 
GetRuntimeCallbacks()2335 RuntimeCallbacks* Runtime::GetRuntimeCallbacks() {
2336   return callbacks_.get();
2337 }
2338 
2339 // Used to patch boot image method entry point to interpreter bridge.
2340 class UpdateEntryPointsClassVisitor : public ClassVisitor {
2341  public:
UpdateEntryPointsClassVisitor(instrumentation::Instrumentation * instrumentation)2342   explicit UpdateEntryPointsClassVisitor(instrumentation::Instrumentation* instrumentation)
2343       : instrumentation_(instrumentation) {}
2344 
operator ()(ObjPtr<mirror::Class> klass)2345   bool operator()(ObjPtr<mirror::Class> klass) OVERRIDE REQUIRES(Locks::mutator_lock_) {
2346     auto pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
2347     for (auto& m : klass->GetMethods(pointer_size)) {
2348       const void* code = m.GetEntryPointFromQuickCompiledCode();
2349       if (Runtime::Current()->GetHeap()->IsInBootImageOatFile(code) &&
2350           !m.IsNative() &&
2351           !m.IsProxyMethod()) {
2352         instrumentation_->UpdateMethodsCodeForJavaDebuggable(&m, GetQuickToInterpreterBridge());
2353       }
2354     }
2355     return true;
2356   }
2357 
2358  private:
2359   instrumentation::Instrumentation* const instrumentation_;
2360 };
2361 
SetJavaDebuggable(bool value)2362 void Runtime::SetJavaDebuggable(bool value) {
2363   is_java_debuggable_ = value;
2364   // Do not call DeoptimizeBootImage just yet, the runtime may still be starting up.
2365 }
2366 
DeoptimizeBootImage()2367 void Runtime::DeoptimizeBootImage() {
2368   // If we've already started and we are setting this runtime to debuggable,
2369   // we patch entry points of methods in boot image to interpreter bridge, as
2370   // boot image code may be AOT compiled as not debuggable.
2371   if (!GetInstrumentation()->IsForcedInterpretOnly()) {
2372     ScopedObjectAccess soa(Thread::Current());
2373     UpdateEntryPointsClassVisitor visitor(GetInstrumentation());
2374     GetClassLinker()->VisitClasses(&visitor);
2375   }
2376 }
2377 
2378 }  // namespace art
2379