1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 
18 // SOME COMMENTS ABOUT USAGE:
19 
20 // This provides primarily wp<> weak pointer types and RefBase, which work
21 // together with sp<> from <StrongPointer.h>.
22 
23 // sp<> (and wp<>) are a type of smart pointer that use a well defined protocol
24 // to operate. As long as the object they are templated with implements that
25 // protocol, these smart pointers work. In several places the platform
26 // instantiates sp<> with non-RefBase objects; the two are not tied to each
27 // other.
28 
29 // RefBase is such an implementation and it supports strong pointers, weak
30 // pointers and some magic features for the binder.
31 
32 // So, when using RefBase objects, you have the ability to use strong and weak
33 // pointers through sp<> and wp<>.
34 
35 // Normally, when the last strong pointer goes away, the object is destroyed,
36 // i.e. it's destructor is called. HOWEVER, parts of its associated memory is not
37 // freed until the last weak pointer is released.
38 
39 // Weak pointers are essentially "safe" pointers. They are always safe to
40 // access through promote(). They may return nullptr if the object was
41 // destroyed because it ran out of strong pointers. This makes them good candidates
42 // for keys in a cache for instance.
43 
44 // Weak pointers remain valid for comparison purposes even after the underlying
45 // object has been destroyed. Even if object A is destroyed and its memory reused
46 // for B, A remaining weak pointer to A will not compare equal to one to B.
47 // This again makes them attractive for use as keys.
48 
49 // How is this supposed / intended to be used?
50 
51 // Our recommendation is to use strong references (sp<>) when there is an
52 // ownership relation. e.g. when an object "owns" another one, use a strong
53 // ref. And of course use strong refs as arguments of functions (it's extremely
54 // rare that a function will take a wp<>).
55 
56 // Typically a newly allocated object will immediately be used to initialize
57 // a strong pointer, which may then be used to construct or assign to other
58 // strong and weak pointers.
59 
60 // Use weak references when there are no ownership relation. e.g. the keys in a
61 // cache (you cannot use plain pointers because there is no safe way to acquire
62 // a strong reference from a vanilla pointer).
63 
64 // This implies that two objects should never (or very rarely) have sp<> on
65 // each other, because they can't both own each other.
66 
67 
68 // Caveats with reference counting
69 
70 // Obviously, circular strong references are a big problem; this creates leaks
71 // and it's hard to debug -- except it's in fact really easy because RefBase has
72 // tons of debugging code for that. It can basically tell you exactly where the
73 // leak is.
74 
75 // Another problem has to do with destructors with side effects. You must
76 // assume that the destructor of reference counted objects can be called AT ANY
77 // TIME. For instance code as simple as this:
78 
79 // void setStuff(const sp<Stuff>& stuff) {
80 //   std::lock_guard<std::mutex> lock(mMutex);
81 //   mStuff = stuff;
82 // }
83 
84 // is very dangerous. This code WILL deadlock one day or another.
85 
86 // What isn't obvious is that ~Stuff() can be called as a result of the
87 // assignment. And it gets called with the lock held. First of all, the lock is
88 // protecting mStuff, not ~Stuff(). Secondly, if ~Stuff() uses its own internal
89 // mutex, now you have mutex ordering issues.  Even worse, if ~Stuff() is
90 // virtual, now you're calling into "user" code (potentially), by that, I mean,
91 // code you didn't even write.
92 
93 // A correct way to write this code is something like:
94 
95 // void setStuff(const sp<Stuff>& stuff) {
96 //   std::unique_lock<std::mutex> lock(mMutex);
97 //   sp<Stuff> hold = mStuff;
98 //   mStuff = stuff;
99 //   lock.unlock();
100 // }
101 
102 // More importantly, reference counted objects should do as little work as
103 // possible in their destructor, or at least be mindful that their destructor
104 // could be called from very weird and unintended places.
105 
106 // Other more specific restrictions for wp<> and sp<>:
107 
108 // Do not construct a strong pointer to "this" in an object's constructor.
109 // The onFirstRef() callback would be made on an incompletely constructed
110 // object.
111 // Construction of a weak pointer to "this" in an object's constructor is also
112 // discouraged. But the implementation was recently changed so that, in the
113 // absence of extendObjectLifetime() calls, weak pointers no longer impact
114 // object lifetime, and hence this no longer risks premature deallocation,
115 // and hence usually works correctly.
116 
117 // Such strong or weak pointers can be safely created in the RefBase onFirstRef()
118 // callback.
119 
120 // Use of wp::unsafe_get() for any purpose other than debugging is almost
121 // always wrong.  Unless you somehow know that there is a longer-lived sp<> to
122 // the same object, it may well return a pointer to a deallocated object that
123 // has since been reallocated for a different purpose. (And if you know there
124 // is a longer-lived sp<>, why not use an sp<> directly?) A wp<> should only be
125 // dereferenced by using promote().
126 
127 // Any object inheriting from RefBase should always be destroyed as the result
128 // of a reference count decrement, not via any other means.  Such objects
129 // should never be stack allocated, or appear directly as data members in other
130 // objects. Objects inheriting from RefBase should have their strong reference
131 // count incremented as soon as possible after construction. Usually this
132 // will be done via construction of an sp<> to the object, but may instead
133 // involve other means of calling RefBase::incStrong().
134 // Explicitly deleting or otherwise destroying a RefBase object with outstanding
135 // wp<> or sp<> pointers to it will result in an abort or heap corruption.
136 
137 // It is particularly important not to mix sp<> and direct storage management
138 // since the sp from raw pointer constructor is implicit. Thus if a RefBase-
139 // -derived object of type T is managed without ever incrementing its strong
140 // count, and accidentally passed to f(sp<T>), a strong pointer to the object
141 // will be temporarily constructed and destroyed, prematurely deallocating the
142 // object, and resulting in heap corruption. None of this would be easily
143 // visible in the source.
144 
145 // Extra Features:
146 
147 // RefBase::extendObjectLifetime() can be used to prevent destruction of the
148 // object while there are still weak references. This is really special purpose
149 // functionality to support Binder.
150 
151 // Wp::promote(), implemented via the attemptIncStrong() member function, is
152 // used to try to convert a weak pointer back to a strong pointer.  It's the
153 // normal way to try to access the fields of an object referenced only through
154 // a wp<>.  Binder code also sometimes uses attemptIncStrong() directly.
155 
156 // RefBase provides a number of additional callbacks for certain reference count
157 // events, as well as some debugging facilities.
158 
159 // Debugging support can be enabled by turning on DEBUG_REFS in RefBase.cpp.
160 // Otherwise little checking is provided.
161 
162 // Thread safety:
163 
164 // Like std::shared_ptr, sp<> and wp<> allow concurrent accesses to DIFFERENT
165 // sp<> and wp<> instances that happen to refer to the same underlying object.
166 // They do NOT support concurrent access (where at least one access is a write)
167 // to THE SAME sp<> or wp<>.  In effect, their thread-safety properties are
168 // exactly like those of T*, NOT atomic<T*>.
169 
170 #ifndef ANDROID_REF_BASE_H
171 #define ANDROID_REF_BASE_H
172 
173 #include <atomic>
174 
175 #include <stdint.h>
176 #include <sys/types.h>
177 #include <stdlib.h>
178 #include <string.h>
179 
180 // LightRefBase used to be declared in this header, so we have to include it
181 #include <utils/LightRefBase.h>
182 
183 #include <utils/StrongPointer.h>
184 #include <utils/TypeHelpers.h>
185 
186 // ---------------------------------------------------------------------------
187 namespace android {
188 
189 class TextOutput;
190 TextOutput& printWeakPointer(TextOutput& to, const void* val);
191 
192 // ---------------------------------------------------------------------------
193 
194 #define COMPARE_WEAK(_op_)                                      \
195 inline bool operator _op_ (const sp<T>& o) const {              \
196     return m_ptr _op_ o.m_ptr;                                  \
197 }                                                               \
198 inline bool operator _op_ (const T* o) const {                  \
199     return m_ptr _op_ o;                                        \
200 }                                                               \
201 template<typename U>                                            \
202 inline bool operator _op_ (const sp<U>& o) const {              \
203     return m_ptr _op_ o.m_ptr;                                  \
204 }                                                               \
205 template<typename U>                                            \
206 inline bool operator _op_ (const U* o) const {                  \
207     return m_ptr _op_ o;                                        \
208 }
209 
210 // ---------------------------------------------------------------------------
211 
212 // RefererenceRenamer is pure abstract, there is no virtual method
213 // implementation to put in a translation unit in order to silence the
214 // weak vtables warning.
215 #if defined(__clang__)
216 #pragma clang diagnostic push
217 #pragma clang diagnostic ignored "-Wweak-vtables"
218 #endif
219 
220 class ReferenceRenamer {
221 protected:
222     // destructor is purposely not virtual so we avoid code overhead from
223     // subclasses; we have to make it protected to guarantee that it
224     // cannot be called from this base class (and to make strict compilers
225     // happy).
~ReferenceRenamer()226     ~ReferenceRenamer() { }
227 public:
228     virtual void operator()(size_t i) const = 0;
229 };
230 
231 #if defined(__clang__)
232 #pragma clang diagnostic pop
233 #endif
234 
235 // ---------------------------------------------------------------------------
236 
237 class RefBase
238 {
239 public:
240             void            incStrong(const void* id) const;
241             void            decStrong(const void* id) const;
242 
243             void            forceIncStrong(const void* id) const;
244 
245             //! DEBUGGING ONLY: Get current strong ref count.
246             int32_t         getStrongCount() const;
247 
248     class weakref_type
249     {
250     public:
251         RefBase*            refBase() const;
252 
253         void                incWeak(const void* id);
254         void                decWeak(const void* id);
255 
256         // acquires a strong reference if there is already one.
257         bool                attemptIncStrong(const void* id);
258 
259         // acquires a weak reference if there is already one.
260         // This is not always safe. see ProcessState.cpp and BpBinder.cpp
261         // for proper use.
262         bool                attemptIncWeak(const void* id);
263 
264         //! DEBUGGING ONLY: Get current weak ref count.
265         int32_t             getWeakCount() const;
266 
267         //! DEBUGGING ONLY: Print references held on object.
268         void                printRefs() const;
269 
270         //! DEBUGGING ONLY: Enable tracking for this object.
271         // enable -- enable/disable tracking
272         // retain -- when tracking is enable, if true, then we save a stack trace
273         //           for each reference and dereference; when retain == false, we
274         //           match up references and dereferences and keep only the
275         //           outstanding ones.
276 
277         void                trackMe(bool enable, bool retain);
278     };
279 
280             weakref_type*   createWeak(const void* id) const;
281 
282             weakref_type*   getWeakRefs() const;
283 
284             //! DEBUGGING ONLY: Print references held on object.
printRefs()285     inline  void            printRefs() const { getWeakRefs()->printRefs(); }
286 
287             //! DEBUGGING ONLY: Enable tracking of object.
trackMe(bool enable,bool retain)288     inline  void            trackMe(bool enable, bool retain)
289     {
290         getWeakRefs()->trackMe(enable, retain);
291     }
292 
293     typedef RefBase basetype;
294 
295 protected:
296                             RefBase();
297     virtual                 ~RefBase();
298 
299     //! Flags for extendObjectLifetime()
300     enum {
301         OBJECT_LIFETIME_STRONG  = 0x0000,
302         OBJECT_LIFETIME_WEAK    = 0x0001,
303         OBJECT_LIFETIME_MASK    = 0x0001
304     };
305 
306             void            extendObjectLifetime(int32_t mode);
307 
308     //! Flags for onIncStrongAttempted()
309     enum {
310         FIRST_INC_STRONG = 0x0001
311     };
312 
313     // Invoked after creation of initial strong pointer/reference.
314     virtual void            onFirstRef();
315     // Invoked when either the last strong reference goes away, or we need to undo
316     // the effect of an unnecessary onIncStrongAttempted.
317     virtual void            onLastStrongRef(const void* id);
318     // Only called in OBJECT_LIFETIME_WEAK case.  Returns true if OK to promote to
319     // strong reference. May have side effects if it returns true.
320     // The first flags argument is always FIRST_INC_STRONG.
321     // TODO: Remove initial flag argument.
322     virtual bool            onIncStrongAttempted(uint32_t flags, const void* id);
323     // Invoked in the OBJECT_LIFETIME_WEAK case when the last reference of either
324     // kind goes away.  Unused.
325     // TODO: Remove.
326     virtual void            onLastWeakRef(const void* id);
327 
328 private:
329     friend class weakref_type;
330     class weakref_impl;
331 
332                             RefBase(const RefBase& o);
333             RefBase&        operator=(const RefBase& o);
334 
335 private:
336     friend class ReferenceMover;
337 
338     static void renameRefs(size_t n, const ReferenceRenamer& renamer);
339 
340     static void renameRefId(weakref_type* ref,
341             const void* old_id, const void* new_id);
342 
343     static void renameRefId(RefBase* ref,
344             const void* old_id, const void* new_id);
345 
346         weakref_impl* const mRefs;
347 };
348 
349 // ---------------------------------------------------------------------------
350 
351 template <typename T>
352 class wp
353 {
354 public:
355     typedef typename RefBase::weakref_type weakref_type;
356 
wp()357     inline wp() : m_ptr(0) { }
358 
359     wp(T* other);  // NOLINT(implicit)
360     wp(const wp<T>& other);
361     explicit wp(const sp<T>& other);
362     template<typename U> wp(U* other);  // NOLINT(implicit)
363     template<typename U> wp(const sp<U>& other);  // NOLINT(implicit)
364     template<typename U> wp(const wp<U>& other);  // NOLINT(implicit)
365 
366     ~wp();
367 
368     // Assignment
369 
370     wp& operator = (T* other);
371     wp& operator = (const wp<T>& other);
372     wp& operator = (const sp<T>& other);
373 
374     template<typename U> wp& operator = (U* other);
375     template<typename U> wp& operator = (const wp<U>& other);
376     template<typename U> wp& operator = (const sp<U>& other);
377 
378     void set_object_and_refs(T* other, weakref_type* refs);
379 
380     // promotion to sp
381 
382     sp<T> promote() const;
383 
384     // Reset
385 
386     void clear();
387 
388     // Accessors
389 
get_refs()390     inline  weakref_type* get_refs() const { return m_refs; }
391 
unsafe_get()392     inline  T* unsafe_get() const { return m_ptr; }
393 
394     // Operators
395 
396     COMPARE_WEAK(==)
397     COMPARE_WEAK(!=)
398     COMPARE_WEAK(>)
399     COMPARE_WEAK(<)
400     COMPARE_WEAK(<=)
401     COMPARE_WEAK(>=)
402 
403     inline bool operator == (const wp<T>& o) const {
404         return (m_ptr == o.m_ptr) && (m_refs == o.m_refs);
405     }
406     template<typename U>
407     inline bool operator == (const wp<U>& o) const {
408         return m_ptr == o.m_ptr;
409     }
410 
411     inline bool operator > (const wp<T>& o) const {
412         return (m_ptr == o.m_ptr) ? (m_refs > o.m_refs) : (m_ptr > o.m_ptr);
413     }
414     template<typename U>
415     inline bool operator > (const wp<U>& o) const {
416         return (m_ptr == o.m_ptr) ? (m_refs > o.m_refs) : (m_ptr > o.m_ptr);
417     }
418 
419     inline bool operator < (const wp<T>& o) const {
420         return (m_ptr == o.m_ptr) ? (m_refs < o.m_refs) : (m_ptr < o.m_ptr);
421     }
422     template<typename U>
423     inline bool operator < (const wp<U>& o) const {
424         return (m_ptr == o.m_ptr) ? (m_refs < o.m_refs) : (m_ptr < o.m_ptr);
425     }
426                          inline bool operator != (const wp<T>& o) const { return m_refs != o.m_refs; }
427     template<typename U> inline bool operator != (const wp<U>& o) const { return !operator == (o); }
428                          inline bool operator <= (const wp<T>& o) const { return !operator > (o); }
429     template<typename U> inline bool operator <= (const wp<U>& o) const { return !operator > (o); }
430                          inline bool operator >= (const wp<T>& o) const { return !operator < (o); }
431     template<typename U> inline bool operator >= (const wp<U>& o) const { return !operator < (o); }
432 
433 private:
434     template<typename Y> friend class sp;
435     template<typename Y> friend class wp;
436 
437     T*              m_ptr;
438     weakref_type*   m_refs;
439 };
440 
441 template <typename T>
442 TextOutput& operator<<(TextOutput& to, const wp<T>& val);
443 
444 #undef COMPARE_WEAK
445 
446 // ---------------------------------------------------------------------------
447 // No user serviceable parts below here.
448 
449 template<typename T>
wp(T * other)450 wp<T>::wp(T* other)
451     : m_ptr(other)
452 {
453     if (other) m_refs = other->createWeak(this);
454 }
455 
456 template<typename T>
wp(const wp<T> & other)457 wp<T>::wp(const wp<T>& other)
458     : m_ptr(other.m_ptr), m_refs(other.m_refs)
459 {
460     if (m_ptr) m_refs->incWeak(this);
461 }
462 
463 template<typename T>
wp(const sp<T> & other)464 wp<T>::wp(const sp<T>& other)
465     : m_ptr(other.m_ptr)
466 {
467     if (m_ptr) {
468         m_refs = m_ptr->createWeak(this);
469     }
470 }
471 
472 template<typename T> template<typename U>
wp(U * other)473 wp<T>::wp(U* other)
474     : m_ptr(other)
475 {
476     if (other) m_refs = other->createWeak(this);
477 }
478 
479 template<typename T> template<typename U>
wp(const wp<U> & other)480 wp<T>::wp(const wp<U>& other)
481     : m_ptr(other.m_ptr)
482 {
483     if (m_ptr) {
484         m_refs = other.m_refs;
485         m_refs->incWeak(this);
486     }
487 }
488 
489 template<typename T> template<typename U>
wp(const sp<U> & other)490 wp<T>::wp(const sp<U>& other)
491     : m_ptr(other.m_ptr)
492 {
493     if (m_ptr) {
494         m_refs = m_ptr->createWeak(this);
495     }
496 }
497 
498 template<typename T>
~wp()499 wp<T>::~wp()
500 {
501     if (m_ptr) m_refs->decWeak(this);
502 }
503 
504 template<typename T>
505 wp<T>& wp<T>::operator = (T* other)
506 {
507     weakref_type* newRefs =
508         other ? other->createWeak(this) : 0;
509     if (m_ptr) m_refs->decWeak(this);
510     m_ptr = other;
511     m_refs = newRefs;
512     return *this;
513 }
514 
515 template<typename T>
516 wp<T>& wp<T>::operator = (const wp<T>& other)
517 {
518     weakref_type* otherRefs(other.m_refs);
519     T* otherPtr(other.m_ptr);
520     if (otherPtr) otherRefs->incWeak(this);
521     if (m_ptr) m_refs->decWeak(this);
522     m_ptr = otherPtr;
523     m_refs = otherRefs;
524     return *this;
525 }
526 
527 template<typename T>
528 wp<T>& wp<T>::operator = (const sp<T>& other)
529 {
530     weakref_type* newRefs =
531         other != NULL ? other->createWeak(this) : 0;
532     T* otherPtr(other.m_ptr);
533     if (m_ptr) m_refs->decWeak(this);
534     m_ptr = otherPtr;
535     m_refs = newRefs;
536     return *this;
537 }
538 
539 template<typename T> template<typename U>
540 wp<T>& wp<T>::operator = (U* other)
541 {
542     weakref_type* newRefs =
543         other ? other->createWeak(this) : 0;
544     if (m_ptr) m_refs->decWeak(this);
545     m_ptr = other;
546     m_refs = newRefs;
547     return *this;
548 }
549 
550 template<typename T> template<typename U>
551 wp<T>& wp<T>::operator = (const wp<U>& other)
552 {
553     weakref_type* otherRefs(other.m_refs);
554     U* otherPtr(other.m_ptr);
555     if (otherPtr) otherRefs->incWeak(this);
556     if (m_ptr) m_refs->decWeak(this);
557     m_ptr = otherPtr;
558     m_refs = otherRefs;
559     return *this;
560 }
561 
562 template<typename T> template<typename U>
563 wp<T>& wp<T>::operator = (const sp<U>& other)
564 {
565     weakref_type* newRefs =
566         other != NULL ? other->createWeak(this) : 0;
567     U* otherPtr(other.m_ptr);
568     if (m_ptr) m_refs->decWeak(this);
569     m_ptr = otherPtr;
570     m_refs = newRefs;
571     return *this;
572 }
573 
574 template<typename T>
set_object_and_refs(T * other,weakref_type * refs)575 void wp<T>::set_object_and_refs(T* other, weakref_type* refs)
576 {
577     if (other) refs->incWeak(this);
578     if (m_ptr) m_refs->decWeak(this);
579     m_ptr = other;
580     m_refs = refs;
581 }
582 
583 template<typename T>
promote()584 sp<T> wp<T>::promote() const
585 {
586     sp<T> result;
587     if (m_ptr && m_refs->attemptIncStrong(&result)) {
588         result.set_pointer(m_ptr);
589     }
590     return result;
591 }
592 
593 template<typename T>
clear()594 void wp<T>::clear()
595 {
596     if (m_ptr) {
597         m_refs->decWeak(this);
598         m_ptr = 0;
599     }
600 }
601 
602 template <typename T>
603 inline TextOutput& operator<<(TextOutput& to, const wp<T>& val)
604 {
605     return printWeakPointer(to, val.unsafe_get());
606 }
607 
608 // ---------------------------------------------------------------------------
609 
610 // this class just serves as a namespace so TYPE::moveReferences can stay
611 // private.
612 class ReferenceMover {
613 public:
614     // it would be nice if we could make sure no extra code is generated
615     // for sp<TYPE> or wp<TYPE> when TYPE is a descendant of RefBase:
616     // Using a sp<RefBase> override doesn't work; it's a bit like we wanted
617     // a template<typename TYPE inherits RefBase> template...
618 
619     template<typename TYPE> static inline
move_references(sp<TYPE> * dest,sp<TYPE> const * src,size_t n)620     void move_references(sp<TYPE>* dest, sp<TYPE> const* src, size_t n) {
621 
622         class Renamer : public ReferenceRenamer {
623             sp<TYPE>* d_;
624             sp<TYPE> const* s_;
625             virtual void operator()(size_t i) const {
626                 // The id are known to be the sp<>'s this pointer
627                 TYPE::renameRefId(d_[i].get(), &s_[i], &d_[i]);
628             }
629         public:
630             Renamer(sp<TYPE>* d, sp<TYPE> const* s) : d_(d), s_(s) { }
631             virtual ~Renamer() { }
632         };
633 
634         memmove(dest, src, n*sizeof(sp<TYPE>));
635         TYPE::renameRefs(n, Renamer(dest, src));
636     }
637 
638 
639     template<typename TYPE> static inline
move_references(wp<TYPE> * dest,wp<TYPE> const * src,size_t n)640     void move_references(wp<TYPE>* dest, wp<TYPE> const* src, size_t n) {
641 
642         class Renamer : public ReferenceRenamer {
643             wp<TYPE>* d_;
644             wp<TYPE> const* s_;
645             virtual void operator()(size_t i) const {
646                 // The id are known to be the wp<>'s this pointer
647                 TYPE::renameRefId(d_[i].get_refs(), &s_[i], &d_[i]);
648             }
649         public:
650             Renamer(wp<TYPE>* rd, wp<TYPE> const* rs) : d_(rd), s_(rs) { }
651             virtual ~Renamer() { }
652         };
653 
654         memmove(dest, src, n*sizeof(wp<TYPE>));
655         TYPE::renameRefs(n, Renamer(dest, src));
656     }
657 };
658 
659 // specialization for moving sp<> and wp<> types.
660 // these are used by the [Sorted|Keyed]Vector<> implementations
661 // sp<> and wp<> need to be handled specially, because they do not
662 // have trivial copy operation in the general case (see RefBase.cpp
663 // when DEBUG ops are enabled), but can be implemented very
664 // efficiently in most cases.
665 
666 template<typename TYPE> inline
move_forward_type(sp<TYPE> * d,sp<TYPE> const * s,size_t n)667 void move_forward_type(sp<TYPE>* d, sp<TYPE> const* s, size_t n) {
668     ReferenceMover::move_references(d, s, n);
669 }
670 
671 template<typename TYPE> inline
move_backward_type(sp<TYPE> * d,sp<TYPE> const * s,size_t n)672 void move_backward_type(sp<TYPE>* d, sp<TYPE> const* s, size_t n) {
673     ReferenceMover::move_references(d, s, n);
674 }
675 
676 template<typename TYPE> inline
move_forward_type(wp<TYPE> * d,wp<TYPE> const * s,size_t n)677 void move_forward_type(wp<TYPE>* d, wp<TYPE> const* s, size_t n) {
678     ReferenceMover::move_references(d, s, n);
679 }
680 
681 template<typename TYPE> inline
move_backward_type(wp<TYPE> * d,wp<TYPE> const * s,size_t n)682 void move_backward_type(wp<TYPE>* d, wp<TYPE> const* s, size_t n) {
683     ReferenceMover::move_references(d, s, n);
684 }
685 
686 }; // namespace android
687 
688 // ---------------------------------------------------------------------------
689 
690 #endif // ANDROID_REF_BASE_H
691