1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17
18 // SOME COMMENTS ABOUT USAGE:
19
20 // This provides primarily wp<> weak pointer types and RefBase, which work
21 // together with sp<> from <StrongPointer.h>.
22
23 // sp<> (and wp<>) are a type of smart pointer that use a well defined protocol
24 // to operate. As long as the object they are templated with implements that
25 // protocol, these smart pointers work. In several places the platform
26 // instantiates sp<> with non-RefBase objects; the two are not tied to each
27 // other.
28
29 // RefBase is such an implementation and it supports strong pointers, weak
30 // pointers and some magic features for the binder.
31
32 // So, when using RefBase objects, you have the ability to use strong and weak
33 // pointers through sp<> and wp<>.
34
35 // Normally, when the last strong pointer goes away, the object is destroyed,
36 // i.e. it's destructor is called. HOWEVER, parts of its associated memory is not
37 // freed until the last weak pointer is released.
38
39 // Weak pointers are essentially "safe" pointers. They are always safe to
40 // access through promote(). They may return nullptr if the object was
41 // destroyed because it ran out of strong pointers. This makes them good candidates
42 // for keys in a cache for instance.
43
44 // Weak pointers remain valid for comparison purposes even after the underlying
45 // object has been destroyed. Even if object A is destroyed and its memory reused
46 // for B, A remaining weak pointer to A will not compare equal to one to B.
47 // This again makes them attractive for use as keys.
48
49 // How is this supposed / intended to be used?
50
51 // Our recommendation is to use strong references (sp<>) when there is an
52 // ownership relation. e.g. when an object "owns" another one, use a strong
53 // ref. And of course use strong refs as arguments of functions (it's extremely
54 // rare that a function will take a wp<>).
55
56 // Typically a newly allocated object will immediately be used to initialize
57 // a strong pointer, which may then be used to construct or assign to other
58 // strong and weak pointers.
59
60 // Use weak references when there are no ownership relation. e.g. the keys in a
61 // cache (you cannot use plain pointers because there is no safe way to acquire
62 // a strong reference from a vanilla pointer).
63
64 // This implies that two objects should never (or very rarely) have sp<> on
65 // each other, because they can't both own each other.
66
67
68 // Caveats with reference counting
69
70 // Obviously, circular strong references are a big problem; this creates leaks
71 // and it's hard to debug -- except it's in fact really easy because RefBase has
72 // tons of debugging code for that. It can basically tell you exactly where the
73 // leak is.
74
75 // Another problem has to do with destructors with side effects. You must
76 // assume that the destructor of reference counted objects can be called AT ANY
77 // TIME. For instance code as simple as this:
78
79 // void setStuff(const sp<Stuff>& stuff) {
80 // std::lock_guard<std::mutex> lock(mMutex);
81 // mStuff = stuff;
82 // }
83
84 // is very dangerous. This code WILL deadlock one day or another.
85
86 // What isn't obvious is that ~Stuff() can be called as a result of the
87 // assignment. And it gets called with the lock held. First of all, the lock is
88 // protecting mStuff, not ~Stuff(). Secondly, if ~Stuff() uses its own internal
89 // mutex, now you have mutex ordering issues. Even worse, if ~Stuff() is
90 // virtual, now you're calling into "user" code (potentially), by that, I mean,
91 // code you didn't even write.
92
93 // A correct way to write this code is something like:
94
95 // void setStuff(const sp<Stuff>& stuff) {
96 // std::unique_lock<std::mutex> lock(mMutex);
97 // sp<Stuff> hold = mStuff;
98 // mStuff = stuff;
99 // lock.unlock();
100 // }
101
102 // More importantly, reference counted objects should do as little work as
103 // possible in their destructor, or at least be mindful that their destructor
104 // could be called from very weird and unintended places.
105
106 // Other more specific restrictions for wp<> and sp<>:
107
108 // Do not construct a strong pointer to "this" in an object's constructor.
109 // The onFirstRef() callback would be made on an incompletely constructed
110 // object.
111 // Construction of a weak pointer to "this" in an object's constructor is also
112 // discouraged. But the implementation was recently changed so that, in the
113 // absence of extendObjectLifetime() calls, weak pointers no longer impact
114 // object lifetime, and hence this no longer risks premature deallocation,
115 // and hence usually works correctly.
116
117 // Such strong or weak pointers can be safely created in the RefBase onFirstRef()
118 // callback.
119
120 // Use of wp::unsafe_get() for any purpose other than debugging is almost
121 // always wrong. Unless you somehow know that there is a longer-lived sp<> to
122 // the same object, it may well return a pointer to a deallocated object that
123 // has since been reallocated for a different purpose. (And if you know there
124 // is a longer-lived sp<>, why not use an sp<> directly?) A wp<> should only be
125 // dereferenced by using promote().
126
127 // Any object inheriting from RefBase should always be destroyed as the result
128 // of a reference count decrement, not via any other means. Such objects
129 // should never be stack allocated, or appear directly as data members in other
130 // objects. Objects inheriting from RefBase should have their strong reference
131 // count incremented as soon as possible after construction. Usually this
132 // will be done via construction of an sp<> to the object, but may instead
133 // involve other means of calling RefBase::incStrong().
134 // Explicitly deleting or otherwise destroying a RefBase object with outstanding
135 // wp<> or sp<> pointers to it will result in an abort or heap corruption.
136
137 // It is particularly important not to mix sp<> and direct storage management
138 // since the sp from raw pointer constructor is implicit. Thus if a RefBase-
139 // -derived object of type T is managed without ever incrementing its strong
140 // count, and accidentally passed to f(sp<T>), a strong pointer to the object
141 // will be temporarily constructed and destroyed, prematurely deallocating the
142 // object, and resulting in heap corruption. None of this would be easily
143 // visible in the source.
144
145 // Extra Features:
146
147 // RefBase::extendObjectLifetime() can be used to prevent destruction of the
148 // object while there are still weak references. This is really special purpose
149 // functionality to support Binder.
150
151 // Wp::promote(), implemented via the attemptIncStrong() member function, is
152 // used to try to convert a weak pointer back to a strong pointer. It's the
153 // normal way to try to access the fields of an object referenced only through
154 // a wp<>. Binder code also sometimes uses attemptIncStrong() directly.
155
156 // RefBase provides a number of additional callbacks for certain reference count
157 // events, as well as some debugging facilities.
158
159 // Debugging support can be enabled by turning on DEBUG_REFS in RefBase.cpp.
160 // Otherwise little checking is provided.
161
162 // Thread safety:
163
164 // Like std::shared_ptr, sp<> and wp<> allow concurrent accesses to DIFFERENT
165 // sp<> and wp<> instances that happen to refer to the same underlying object.
166 // They do NOT support concurrent access (where at least one access is a write)
167 // to THE SAME sp<> or wp<>. In effect, their thread-safety properties are
168 // exactly like those of T*, NOT atomic<T*>.
169
170 #ifndef ANDROID_REF_BASE_H
171 #define ANDROID_REF_BASE_H
172
173 #include <atomic>
174
175 #include <stdint.h>
176 #include <sys/types.h>
177 #include <stdlib.h>
178 #include <string.h>
179
180 // LightRefBase used to be declared in this header, so we have to include it
181 #include <utils/LightRefBase.h>
182
183 #include <utils/StrongPointer.h>
184 #include <utils/TypeHelpers.h>
185
186 // ---------------------------------------------------------------------------
187 namespace android {
188
189 class TextOutput;
190 TextOutput& printWeakPointer(TextOutput& to, const void* val);
191
192 // ---------------------------------------------------------------------------
193
194 #define COMPARE_WEAK(_op_) \
195 inline bool operator _op_ (const sp<T>& o) const { \
196 return m_ptr _op_ o.m_ptr; \
197 } \
198 inline bool operator _op_ (const T* o) const { \
199 return m_ptr _op_ o; \
200 } \
201 template<typename U> \
202 inline bool operator _op_ (const sp<U>& o) const { \
203 return m_ptr _op_ o.m_ptr; \
204 } \
205 template<typename U> \
206 inline bool operator _op_ (const U* o) const { \
207 return m_ptr _op_ o; \
208 }
209
210 // ---------------------------------------------------------------------------
211
212 // RefererenceRenamer is pure abstract, there is no virtual method
213 // implementation to put in a translation unit in order to silence the
214 // weak vtables warning.
215 #if defined(__clang__)
216 #pragma clang diagnostic push
217 #pragma clang diagnostic ignored "-Wweak-vtables"
218 #endif
219
220 class ReferenceRenamer {
221 protected:
222 // destructor is purposely not virtual so we avoid code overhead from
223 // subclasses; we have to make it protected to guarantee that it
224 // cannot be called from this base class (and to make strict compilers
225 // happy).
~ReferenceRenamer()226 ~ReferenceRenamer() { }
227 public:
228 virtual void operator()(size_t i) const = 0;
229 };
230
231 #if defined(__clang__)
232 #pragma clang diagnostic pop
233 #endif
234
235 // ---------------------------------------------------------------------------
236
237 class RefBase
238 {
239 public:
240 void incStrong(const void* id) const;
241 void decStrong(const void* id) const;
242
243 void forceIncStrong(const void* id) const;
244
245 //! DEBUGGING ONLY: Get current strong ref count.
246 int32_t getStrongCount() const;
247
248 class weakref_type
249 {
250 public:
251 RefBase* refBase() const;
252
253 void incWeak(const void* id);
254 void decWeak(const void* id);
255
256 // acquires a strong reference if there is already one.
257 bool attemptIncStrong(const void* id);
258
259 // acquires a weak reference if there is already one.
260 // This is not always safe. see ProcessState.cpp and BpBinder.cpp
261 // for proper use.
262 bool attemptIncWeak(const void* id);
263
264 //! DEBUGGING ONLY: Get current weak ref count.
265 int32_t getWeakCount() const;
266
267 //! DEBUGGING ONLY: Print references held on object.
268 void printRefs() const;
269
270 //! DEBUGGING ONLY: Enable tracking for this object.
271 // enable -- enable/disable tracking
272 // retain -- when tracking is enable, if true, then we save a stack trace
273 // for each reference and dereference; when retain == false, we
274 // match up references and dereferences and keep only the
275 // outstanding ones.
276
277 void trackMe(bool enable, bool retain);
278 };
279
280 weakref_type* createWeak(const void* id) const;
281
282 weakref_type* getWeakRefs() const;
283
284 //! DEBUGGING ONLY: Print references held on object.
printRefs()285 inline void printRefs() const { getWeakRefs()->printRefs(); }
286
287 //! DEBUGGING ONLY: Enable tracking of object.
trackMe(bool enable,bool retain)288 inline void trackMe(bool enable, bool retain)
289 {
290 getWeakRefs()->trackMe(enable, retain);
291 }
292
293 typedef RefBase basetype;
294
295 protected:
296 RefBase();
297 virtual ~RefBase();
298
299 //! Flags for extendObjectLifetime()
300 enum {
301 OBJECT_LIFETIME_STRONG = 0x0000,
302 OBJECT_LIFETIME_WEAK = 0x0001,
303 OBJECT_LIFETIME_MASK = 0x0001
304 };
305
306 void extendObjectLifetime(int32_t mode);
307
308 //! Flags for onIncStrongAttempted()
309 enum {
310 FIRST_INC_STRONG = 0x0001
311 };
312
313 // Invoked after creation of initial strong pointer/reference.
314 virtual void onFirstRef();
315 // Invoked when either the last strong reference goes away, or we need to undo
316 // the effect of an unnecessary onIncStrongAttempted.
317 virtual void onLastStrongRef(const void* id);
318 // Only called in OBJECT_LIFETIME_WEAK case. Returns true if OK to promote to
319 // strong reference. May have side effects if it returns true.
320 // The first flags argument is always FIRST_INC_STRONG.
321 // TODO: Remove initial flag argument.
322 virtual bool onIncStrongAttempted(uint32_t flags, const void* id);
323 // Invoked in the OBJECT_LIFETIME_WEAK case when the last reference of either
324 // kind goes away. Unused.
325 // TODO: Remove.
326 virtual void onLastWeakRef(const void* id);
327
328 private:
329 friend class weakref_type;
330 class weakref_impl;
331
332 RefBase(const RefBase& o);
333 RefBase& operator=(const RefBase& o);
334
335 private:
336 friend class ReferenceMover;
337
338 static void renameRefs(size_t n, const ReferenceRenamer& renamer);
339
340 static void renameRefId(weakref_type* ref,
341 const void* old_id, const void* new_id);
342
343 static void renameRefId(RefBase* ref,
344 const void* old_id, const void* new_id);
345
346 weakref_impl* const mRefs;
347 };
348
349 // ---------------------------------------------------------------------------
350
351 template <typename T>
352 class wp
353 {
354 public:
355 typedef typename RefBase::weakref_type weakref_type;
356
wp()357 inline wp() : m_ptr(0) { }
358
359 wp(T* other); // NOLINT(implicit)
360 wp(const wp<T>& other);
361 explicit wp(const sp<T>& other);
362 template<typename U> wp(U* other); // NOLINT(implicit)
363 template<typename U> wp(const sp<U>& other); // NOLINT(implicit)
364 template<typename U> wp(const wp<U>& other); // NOLINT(implicit)
365
366 ~wp();
367
368 // Assignment
369
370 wp& operator = (T* other);
371 wp& operator = (const wp<T>& other);
372 wp& operator = (const sp<T>& other);
373
374 template<typename U> wp& operator = (U* other);
375 template<typename U> wp& operator = (const wp<U>& other);
376 template<typename U> wp& operator = (const sp<U>& other);
377
378 void set_object_and_refs(T* other, weakref_type* refs);
379
380 // promotion to sp
381
382 sp<T> promote() const;
383
384 // Reset
385
386 void clear();
387
388 // Accessors
389
get_refs()390 inline weakref_type* get_refs() const { return m_refs; }
391
unsafe_get()392 inline T* unsafe_get() const { return m_ptr; }
393
394 // Operators
395
396 COMPARE_WEAK(==)
397 COMPARE_WEAK(!=)
398 COMPARE_WEAK(>)
399 COMPARE_WEAK(<)
400 COMPARE_WEAK(<=)
401 COMPARE_WEAK(>=)
402
403 inline bool operator == (const wp<T>& o) const {
404 return (m_ptr == o.m_ptr) && (m_refs == o.m_refs);
405 }
406 template<typename U>
407 inline bool operator == (const wp<U>& o) const {
408 return m_ptr == o.m_ptr;
409 }
410
411 inline bool operator > (const wp<T>& o) const {
412 return (m_ptr == o.m_ptr) ? (m_refs > o.m_refs) : (m_ptr > o.m_ptr);
413 }
414 template<typename U>
415 inline bool operator > (const wp<U>& o) const {
416 return (m_ptr == o.m_ptr) ? (m_refs > o.m_refs) : (m_ptr > o.m_ptr);
417 }
418
419 inline bool operator < (const wp<T>& o) const {
420 return (m_ptr == o.m_ptr) ? (m_refs < o.m_refs) : (m_ptr < o.m_ptr);
421 }
422 template<typename U>
423 inline bool operator < (const wp<U>& o) const {
424 return (m_ptr == o.m_ptr) ? (m_refs < o.m_refs) : (m_ptr < o.m_ptr);
425 }
426 inline bool operator != (const wp<T>& o) const { return m_refs != o.m_refs; }
427 template<typename U> inline bool operator != (const wp<U>& o) const { return !operator == (o); }
428 inline bool operator <= (const wp<T>& o) const { return !operator > (o); }
429 template<typename U> inline bool operator <= (const wp<U>& o) const { return !operator > (o); }
430 inline bool operator >= (const wp<T>& o) const { return !operator < (o); }
431 template<typename U> inline bool operator >= (const wp<U>& o) const { return !operator < (o); }
432
433 private:
434 template<typename Y> friend class sp;
435 template<typename Y> friend class wp;
436
437 T* m_ptr;
438 weakref_type* m_refs;
439 };
440
441 template <typename T>
442 TextOutput& operator<<(TextOutput& to, const wp<T>& val);
443
444 #undef COMPARE_WEAK
445
446 // ---------------------------------------------------------------------------
447 // No user serviceable parts below here.
448
449 template<typename T>
wp(T * other)450 wp<T>::wp(T* other)
451 : m_ptr(other)
452 {
453 if (other) m_refs = other->createWeak(this);
454 }
455
456 template<typename T>
wp(const wp<T> & other)457 wp<T>::wp(const wp<T>& other)
458 : m_ptr(other.m_ptr), m_refs(other.m_refs)
459 {
460 if (m_ptr) m_refs->incWeak(this);
461 }
462
463 template<typename T>
wp(const sp<T> & other)464 wp<T>::wp(const sp<T>& other)
465 : m_ptr(other.m_ptr)
466 {
467 if (m_ptr) {
468 m_refs = m_ptr->createWeak(this);
469 }
470 }
471
472 template<typename T> template<typename U>
wp(U * other)473 wp<T>::wp(U* other)
474 : m_ptr(other)
475 {
476 if (other) m_refs = other->createWeak(this);
477 }
478
479 template<typename T> template<typename U>
wp(const wp<U> & other)480 wp<T>::wp(const wp<U>& other)
481 : m_ptr(other.m_ptr)
482 {
483 if (m_ptr) {
484 m_refs = other.m_refs;
485 m_refs->incWeak(this);
486 }
487 }
488
489 template<typename T> template<typename U>
wp(const sp<U> & other)490 wp<T>::wp(const sp<U>& other)
491 : m_ptr(other.m_ptr)
492 {
493 if (m_ptr) {
494 m_refs = m_ptr->createWeak(this);
495 }
496 }
497
498 template<typename T>
~wp()499 wp<T>::~wp()
500 {
501 if (m_ptr) m_refs->decWeak(this);
502 }
503
504 template<typename T>
505 wp<T>& wp<T>::operator = (T* other)
506 {
507 weakref_type* newRefs =
508 other ? other->createWeak(this) : 0;
509 if (m_ptr) m_refs->decWeak(this);
510 m_ptr = other;
511 m_refs = newRefs;
512 return *this;
513 }
514
515 template<typename T>
516 wp<T>& wp<T>::operator = (const wp<T>& other)
517 {
518 weakref_type* otherRefs(other.m_refs);
519 T* otherPtr(other.m_ptr);
520 if (otherPtr) otherRefs->incWeak(this);
521 if (m_ptr) m_refs->decWeak(this);
522 m_ptr = otherPtr;
523 m_refs = otherRefs;
524 return *this;
525 }
526
527 template<typename T>
528 wp<T>& wp<T>::operator = (const sp<T>& other)
529 {
530 weakref_type* newRefs =
531 other != NULL ? other->createWeak(this) : 0;
532 T* otherPtr(other.m_ptr);
533 if (m_ptr) m_refs->decWeak(this);
534 m_ptr = otherPtr;
535 m_refs = newRefs;
536 return *this;
537 }
538
539 template<typename T> template<typename U>
540 wp<T>& wp<T>::operator = (U* other)
541 {
542 weakref_type* newRefs =
543 other ? other->createWeak(this) : 0;
544 if (m_ptr) m_refs->decWeak(this);
545 m_ptr = other;
546 m_refs = newRefs;
547 return *this;
548 }
549
550 template<typename T> template<typename U>
551 wp<T>& wp<T>::operator = (const wp<U>& other)
552 {
553 weakref_type* otherRefs(other.m_refs);
554 U* otherPtr(other.m_ptr);
555 if (otherPtr) otherRefs->incWeak(this);
556 if (m_ptr) m_refs->decWeak(this);
557 m_ptr = otherPtr;
558 m_refs = otherRefs;
559 return *this;
560 }
561
562 template<typename T> template<typename U>
563 wp<T>& wp<T>::operator = (const sp<U>& other)
564 {
565 weakref_type* newRefs =
566 other != NULL ? other->createWeak(this) : 0;
567 U* otherPtr(other.m_ptr);
568 if (m_ptr) m_refs->decWeak(this);
569 m_ptr = otherPtr;
570 m_refs = newRefs;
571 return *this;
572 }
573
574 template<typename T>
set_object_and_refs(T * other,weakref_type * refs)575 void wp<T>::set_object_and_refs(T* other, weakref_type* refs)
576 {
577 if (other) refs->incWeak(this);
578 if (m_ptr) m_refs->decWeak(this);
579 m_ptr = other;
580 m_refs = refs;
581 }
582
583 template<typename T>
promote()584 sp<T> wp<T>::promote() const
585 {
586 sp<T> result;
587 if (m_ptr && m_refs->attemptIncStrong(&result)) {
588 result.set_pointer(m_ptr);
589 }
590 return result;
591 }
592
593 template<typename T>
clear()594 void wp<T>::clear()
595 {
596 if (m_ptr) {
597 m_refs->decWeak(this);
598 m_ptr = 0;
599 }
600 }
601
602 template <typename T>
603 inline TextOutput& operator<<(TextOutput& to, const wp<T>& val)
604 {
605 return printWeakPointer(to, val.unsafe_get());
606 }
607
608 // ---------------------------------------------------------------------------
609
610 // this class just serves as a namespace so TYPE::moveReferences can stay
611 // private.
612 class ReferenceMover {
613 public:
614 // it would be nice if we could make sure no extra code is generated
615 // for sp<TYPE> or wp<TYPE> when TYPE is a descendant of RefBase:
616 // Using a sp<RefBase> override doesn't work; it's a bit like we wanted
617 // a template<typename TYPE inherits RefBase> template...
618
619 template<typename TYPE> static inline
move_references(sp<TYPE> * dest,sp<TYPE> const * src,size_t n)620 void move_references(sp<TYPE>* dest, sp<TYPE> const* src, size_t n) {
621
622 class Renamer : public ReferenceRenamer {
623 sp<TYPE>* d_;
624 sp<TYPE> const* s_;
625 virtual void operator()(size_t i) const {
626 // The id are known to be the sp<>'s this pointer
627 TYPE::renameRefId(d_[i].get(), &s_[i], &d_[i]);
628 }
629 public:
630 Renamer(sp<TYPE>* d, sp<TYPE> const* s) : d_(d), s_(s) { }
631 virtual ~Renamer() { }
632 };
633
634 memmove(dest, src, n*sizeof(sp<TYPE>));
635 TYPE::renameRefs(n, Renamer(dest, src));
636 }
637
638
639 template<typename TYPE> static inline
move_references(wp<TYPE> * dest,wp<TYPE> const * src,size_t n)640 void move_references(wp<TYPE>* dest, wp<TYPE> const* src, size_t n) {
641
642 class Renamer : public ReferenceRenamer {
643 wp<TYPE>* d_;
644 wp<TYPE> const* s_;
645 virtual void operator()(size_t i) const {
646 // The id are known to be the wp<>'s this pointer
647 TYPE::renameRefId(d_[i].get_refs(), &s_[i], &d_[i]);
648 }
649 public:
650 Renamer(wp<TYPE>* rd, wp<TYPE> const* rs) : d_(rd), s_(rs) { }
651 virtual ~Renamer() { }
652 };
653
654 memmove(dest, src, n*sizeof(wp<TYPE>));
655 TYPE::renameRefs(n, Renamer(dest, src));
656 }
657 };
658
659 // specialization for moving sp<> and wp<> types.
660 // these are used by the [Sorted|Keyed]Vector<> implementations
661 // sp<> and wp<> need to be handled specially, because they do not
662 // have trivial copy operation in the general case (see RefBase.cpp
663 // when DEBUG ops are enabled), but can be implemented very
664 // efficiently in most cases.
665
666 template<typename TYPE> inline
move_forward_type(sp<TYPE> * d,sp<TYPE> const * s,size_t n)667 void move_forward_type(sp<TYPE>* d, sp<TYPE> const* s, size_t n) {
668 ReferenceMover::move_references(d, s, n);
669 }
670
671 template<typename TYPE> inline
move_backward_type(sp<TYPE> * d,sp<TYPE> const * s,size_t n)672 void move_backward_type(sp<TYPE>* d, sp<TYPE> const* s, size_t n) {
673 ReferenceMover::move_references(d, s, n);
674 }
675
676 template<typename TYPE> inline
move_forward_type(wp<TYPE> * d,wp<TYPE> const * s,size_t n)677 void move_forward_type(wp<TYPE>* d, wp<TYPE> const* s, size_t n) {
678 ReferenceMover::move_references(d, s, n);
679 }
680
681 template<typename TYPE> inline
move_backward_type(wp<TYPE> * d,wp<TYPE> const * s,size_t n)682 void move_backward_type(wp<TYPE>* d, wp<TYPE> const* s, size_t n) {
683 ReferenceMover::move_references(d, s, n);
684 }
685
686 }; // namespace android
687
688 // ---------------------------------------------------------------------------
689
690 #endif // ANDROID_REF_BASE_H
691