1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "method_verifier-inl.h"
18 
19 #include <iostream>
20 
21 #include "android-base/stringprintf.h"
22 
23 #include "art_field-inl.h"
24 #include "art_method-inl.h"
25 #include "base/enums.h"
26 #include "base/logging.h"
27 #include "base/mutex-inl.h"
28 #include "base/stl_util.h"
29 #include "base/systrace.h"
30 #include "base/time_utils.h"
31 #include "class_linker.h"
32 #include "compiler_callbacks.h"
33 #include "dex_file-inl.h"
34 #include "dex_instruction-inl.h"
35 #include "dex_instruction_utils.h"
36 #include "dex_instruction_visitor.h"
37 #include "experimental_flags.h"
38 #include "gc/accounting/card_table-inl.h"
39 #include "handle_scope-inl.h"
40 #include "indenter.h"
41 #include "intern_table.h"
42 #include "leb128.h"
43 #include "method_resolution_kind.h"
44 #include "mirror/class.h"
45 #include "mirror/class-inl.h"
46 #include "mirror/dex_cache-inl.h"
47 #include "mirror/method_handle_impl.h"
48 #include "mirror/object-inl.h"
49 #include "mirror/object_array-inl.h"
50 #include "reg_type-inl.h"
51 #include "register_line-inl.h"
52 #include "runtime.h"
53 #include "scoped_thread_state_change-inl.h"
54 #include "utils.h"
55 #include "verifier_deps.h"
56 #include "verifier_compiler_binding.h"
57 
58 namespace art {
59 namespace verifier {
60 
61 using android::base::StringPrintf;
62 
63 static constexpr bool kTimeVerifyMethod = !kIsDebugBuild;
64 static constexpr bool kDebugVerify = false;
65 // TODO: Add a constant to method_verifier to turn on verbose logging?
66 
67 // On VLOG(verifier), should we dump the whole state when we run into a hard failure?
68 static constexpr bool kDumpRegLinesOnHardFailureIfVLOG = true;
69 
70 // We print a warning blurb about "dx --no-optimize" when we find monitor-locking issues. Make
71 // sure we only print this once.
72 static bool gPrintedDxMonitorText = false;
73 
PcToRegisterLineTable(ScopedArenaAllocator & arena)74 PcToRegisterLineTable::PcToRegisterLineTable(ScopedArenaAllocator& arena)
75     : register_lines_(arena.Adapter(kArenaAllocVerifier)) {}
76 
Init(RegisterTrackingMode mode,InstructionFlags * flags,uint32_t insns_size,uint16_t registers_size,MethodVerifier * verifier)77 void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
78                                  uint32_t insns_size, uint16_t registers_size,
79                                  MethodVerifier* verifier) {
80   DCHECK_GT(insns_size, 0U);
81   register_lines_.resize(insns_size);
82   for (uint32_t i = 0; i < insns_size; i++) {
83     bool interesting = false;
84     switch (mode) {
85       case kTrackRegsAll:
86         interesting = flags[i].IsOpcode();
87         break;
88       case kTrackCompilerInterestPoints:
89         interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
90         break;
91       case kTrackRegsBranches:
92         interesting = flags[i].IsBranchTarget();
93         break;
94       default:
95         break;
96     }
97     if (interesting) {
98       register_lines_[i].reset(RegisterLine::Create(registers_size, verifier));
99     }
100   }
101 }
102 
~PcToRegisterLineTable()103 PcToRegisterLineTable::~PcToRegisterLineTable() {}
104 
105 // Note: returns true on failure.
FailOrAbort(MethodVerifier * verifier,bool condition,const char * error_msg,uint32_t work_insn_idx)106 ALWAYS_INLINE static inline bool FailOrAbort(MethodVerifier* verifier, bool condition,
107                                              const char* error_msg, uint32_t work_insn_idx) {
108   if (kIsDebugBuild) {
109     // In a debug build, abort if the error condition is wrong. Only warn if
110     // we are already aborting (as this verification is likely run to print
111     // lock information).
112     if (LIKELY(gAborting == 0)) {
113       DCHECK(condition) << error_msg << work_insn_idx;
114     } else {
115       if (!condition) {
116         LOG(ERROR) << error_msg << work_insn_idx;
117         verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << error_msg << work_insn_idx;
118         return true;
119       }
120     }
121   } else {
122     // In a non-debug build, just fail the class.
123     if (!condition) {
124       verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << error_msg << work_insn_idx;
125       return true;
126     }
127   }
128 
129   return false;
130 }
131 
SafelyMarkAllRegistersAsConflicts(MethodVerifier * verifier,RegisterLine * reg_line)132 static void SafelyMarkAllRegistersAsConflicts(MethodVerifier* verifier, RegisterLine* reg_line) {
133   if (verifier->IsInstanceConstructor()) {
134     // Before we mark all regs as conflicts, check that we don't have an uninitialized this.
135     reg_line->CheckConstructorReturn(verifier);
136   }
137   reg_line->MarkAllRegistersAsConflicts(verifier);
138 }
139 
VerifyClass(Thread * self,mirror::Class * klass,CompilerCallbacks * callbacks,bool allow_soft_failures,HardFailLogMode log_level,std::string * error)140 FailureKind MethodVerifier::VerifyClass(Thread* self,
141                                         mirror::Class* klass,
142                                         CompilerCallbacks* callbacks,
143                                         bool allow_soft_failures,
144                                         HardFailLogMode log_level,
145                                         std::string* error) {
146   if (klass->IsVerified()) {
147     return FailureKind::kNoFailure;
148   }
149   bool early_failure = false;
150   std::string failure_message;
151   const DexFile& dex_file = klass->GetDexFile();
152   const DexFile::ClassDef* class_def = klass->GetClassDef();
153   mirror::Class* super = klass->GetSuperClass();
154   std::string temp;
155   if (super == nullptr && strcmp("Ljava/lang/Object;", klass->GetDescriptor(&temp)) != 0) {
156     early_failure = true;
157     failure_message = " that has no super class";
158   } else if (super != nullptr && super->IsFinal()) {
159     early_failure = true;
160     failure_message = " that attempts to sub-class final class " + super->PrettyDescriptor();
161   } else if (class_def == nullptr) {
162     early_failure = true;
163     failure_message = " that isn't present in dex file " + dex_file.GetLocation();
164   }
165   if (early_failure) {
166     *error = "Verifier rejected class " + klass->PrettyDescriptor() + failure_message;
167     if (callbacks != nullptr) {
168       ClassReference ref(&dex_file, klass->GetDexClassDefIndex());
169       callbacks->ClassRejected(ref);
170     }
171     return FailureKind::kHardFailure;
172   }
173   StackHandleScope<2> hs(self);
174   Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache()));
175   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader()));
176   return VerifyClass(self,
177                      &dex_file,
178                      dex_cache,
179                      class_loader,
180                      *class_def,
181                      callbacks,
182                      allow_soft_failures,
183                      log_level,
184                      error);
185 }
186 
187 template <bool kDirect>
HasNextMethod(ClassDataItemIterator * it)188 static bool HasNextMethod(ClassDataItemIterator* it) {
189   return kDirect ? it->HasNextDirectMethod() : it->HasNextVirtualMethod();
190 }
191 
FailureKindMax(FailureKind fk1,FailureKind fk2)192 static FailureKind FailureKindMax(FailureKind fk1, FailureKind fk2) {
193   static_assert(FailureKind::kNoFailure < FailureKind::kSoftFailure
194                     && FailureKind::kSoftFailure < FailureKind::kHardFailure,
195                 "Unexpected FailureKind order");
196   return std::max(fk1, fk2);
197 }
198 
Merge(const MethodVerifier::FailureData & fd)199 void MethodVerifier::FailureData::Merge(const MethodVerifier::FailureData& fd) {
200   kind = FailureKindMax(kind, fd.kind);
201   types |= fd.types;
202 }
203 
204 template <bool kDirect>
VerifyMethods(Thread * self,ClassLinker * linker,const DexFile * dex_file,const DexFile::ClassDef & class_def,ClassDataItemIterator * it,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,CompilerCallbacks * callbacks,bool allow_soft_failures,HardFailLogMode log_level,bool need_precise_constants,std::string * error_string)205 MethodVerifier::FailureData MethodVerifier::VerifyMethods(Thread* self,
206                                                           ClassLinker* linker,
207                                                           const DexFile* dex_file,
208                                                           const DexFile::ClassDef& class_def,
209                                                           ClassDataItemIterator* it,
210                                                           Handle<mirror::DexCache> dex_cache,
211                                                           Handle<mirror::ClassLoader> class_loader,
212                                                           CompilerCallbacks* callbacks,
213                                                           bool allow_soft_failures,
214                                                           HardFailLogMode log_level,
215                                                           bool need_precise_constants,
216                                                           std::string* error_string) {
217   DCHECK(it != nullptr);
218 
219   MethodVerifier::FailureData failure_data;
220 
221   int64_t previous_method_idx = -1;
222   while (HasNextMethod<kDirect>(it)) {
223     self->AllowThreadSuspension();
224     uint32_t method_idx = it->GetMemberIndex();
225     if (method_idx == previous_method_idx) {
226       // smali can create dex files with two encoded_methods sharing the same method_idx
227       // http://code.google.com/p/smali/issues/detail?id=119
228       it->Next();
229       continue;
230     }
231     previous_method_idx = method_idx;
232     InvokeType type = it->GetMethodInvokeType(class_def);
233     ArtMethod* method = linker->ResolveMethod<ClassLinker::kNoICCECheckForCache>(
234         *dex_file, method_idx, dex_cache, class_loader, nullptr, type);
235     if (method == nullptr) {
236       DCHECK(self->IsExceptionPending());
237       // We couldn't resolve the method, but continue regardless.
238       self->ClearException();
239     } else {
240       DCHECK(method->GetDeclaringClassUnchecked() != nullptr) << type;
241     }
242     StackHandleScope<1> hs(self);
243     std::string hard_failure_msg;
244     MethodVerifier::FailureData result = VerifyMethod(self,
245                                                       method_idx,
246                                                       dex_file,
247                                                       dex_cache,
248                                                       class_loader,
249                                                       class_def,
250                                                       it->GetMethodCodeItem(),
251                                                       method,
252                                                       it->GetMethodAccessFlags(),
253                                                       callbacks,
254                                                       allow_soft_failures,
255                                                       log_level,
256                                                       need_precise_constants,
257                                                       &hard_failure_msg);
258     if (result.kind == FailureKind::kHardFailure) {
259       if (failure_data.kind == FailureKind::kHardFailure) {
260         // If we logged an error before, we need a newline.
261         *error_string += "\n";
262       } else {
263         // If we didn't log a hard failure before, print the header of the message.
264         *error_string += "Verifier rejected class ";
265         *error_string += PrettyDescriptor(dex_file->GetClassDescriptor(class_def));
266         *error_string += ":";
267       }
268       *error_string += " ";
269       *error_string += hard_failure_msg;
270     }
271     failure_data.Merge(result);
272     it->Next();
273   }
274 
275   return failure_data;
276 }
277 
VerifyClass(Thread * self,const DexFile * dex_file,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,const DexFile::ClassDef & class_def,CompilerCallbacks * callbacks,bool allow_soft_failures,HardFailLogMode log_level,std::string * error)278 FailureKind MethodVerifier::VerifyClass(Thread* self,
279                                         const DexFile* dex_file,
280                                         Handle<mirror::DexCache> dex_cache,
281                                         Handle<mirror::ClassLoader> class_loader,
282                                         const DexFile::ClassDef& class_def,
283                                         CompilerCallbacks* callbacks,
284                                         bool allow_soft_failures,
285                                         HardFailLogMode log_level,
286                                         std::string* error) {
287   ScopedTrace trace(__FUNCTION__);
288 
289   // A class must not be abstract and final.
290   if ((class_def.access_flags_ & (kAccAbstract | kAccFinal)) == (kAccAbstract | kAccFinal)) {
291     *error = "Verifier rejected class ";
292     *error += PrettyDescriptor(dex_file->GetClassDescriptor(class_def));
293     *error += ": class is abstract and final.";
294     return FailureKind::kHardFailure;
295   }
296 
297   const uint8_t* class_data = dex_file->GetClassData(class_def);
298   if (class_data == nullptr) {
299     // empty class, probably a marker interface
300     return FailureKind::kNoFailure;
301   }
302   ClassDataItemIterator it(*dex_file, class_data);
303   while (it.HasNextStaticField() || it.HasNextInstanceField()) {
304     it.Next();
305   }
306   ClassLinker* linker = Runtime::Current()->GetClassLinker();
307   // Direct methods.
308   MethodVerifier::FailureData data1 = VerifyMethods<true>(self,
309                                                           linker,
310                                                           dex_file,
311                                                           class_def,
312                                                           &it,
313                                                           dex_cache,
314                                                           class_loader,
315                                                           callbacks,
316                                                           allow_soft_failures,
317                                                           log_level,
318                                                           false /* need precise constants */,
319                                                           error);
320   // Virtual methods.
321   MethodVerifier::FailureData data2 = VerifyMethods<false>(self,
322                                                            linker,
323                                                            dex_file,
324                                                            class_def,
325                                                            &it,
326                                                            dex_cache,
327                                                            class_loader,
328                                                            callbacks,
329                                                            allow_soft_failures,
330                                                            log_level,
331                                                            false /* need precise constants */,
332                                                            error);
333 
334   data1.Merge(data2);
335 
336   if (data1.kind == FailureKind::kNoFailure) {
337     return FailureKind::kNoFailure;
338   } else {
339     if ((data1.types & VERIFY_ERROR_LOCKING) != 0) {
340       // Print a warning about expected slow-down. Use a string temporary to print one contiguous
341       // warning.
342       std::string tmp =
343           StringPrintf("Class %s failed lock verification and will run slower.",
344                        PrettyDescriptor(dex_file->GetClassDescriptor(class_def)).c_str());
345       if (!gPrintedDxMonitorText) {
346         tmp = tmp + "\nCommon causes for lock verification issues are non-optimized dex code\n"
347                     "and incorrect proguard optimizations.";
348         gPrintedDxMonitorText = true;
349       }
350       LOG(WARNING) << tmp;
351     }
352     return data1.kind;
353   }
354 }
355 
IsLargeMethod(const DexFile::CodeItem * const code_item)356 static bool IsLargeMethod(const DexFile::CodeItem* const code_item) {
357   if (code_item == nullptr) {
358     return false;
359   }
360 
361   uint16_t registers_size = code_item->registers_size_;
362   uint32_t insns_size = code_item->insns_size_in_code_units_;
363 
364   return registers_size * insns_size > 4*1024*1024;
365 }
366 
VerifyMethod(Thread * self,uint32_t method_idx,const DexFile * dex_file,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,const DexFile::ClassDef & class_def,const DexFile::CodeItem * code_item,ArtMethod * method,uint32_t method_access_flags,CompilerCallbacks * callbacks,bool allow_soft_failures,HardFailLogMode log_level,bool need_precise_constants,std::string * hard_failure_msg)367 MethodVerifier::FailureData MethodVerifier::VerifyMethod(Thread* self,
368                                                          uint32_t method_idx,
369                                                          const DexFile* dex_file,
370                                                          Handle<mirror::DexCache> dex_cache,
371                                                          Handle<mirror::ClassLoader> class_loader,
372                                                          const DexFile::ClassDef& class_def,
373                                                          const DexFile::CodeItem* code_item,
374                                                          ArtMethod* method,
375                                                          uint32_t method_access_flags,
376                                                          CompilerCallbacks* callbacks,
377                                                          bool allow_soft_failures,
378                                                          HardFailLogMode log_level,
379                                                          bool need_precise_constants,
380                                                          std::string* hard_failure_msg) {
381   MethodVerifier::FailureData result;
382   uint64_t start_ns = kTimeVerifyMethod ? NanoTime() : 0;
383 
384   MethodVerifier verifier(self,
385                           dex_file,
386                           dex_cache,
387                           class_loader,
388                           class_def,
389                           code_item,
390                           method_idx,
391                           method,
392                           method_access_flags,
393                           true /* can_load_classes */,
394                           allow_soft_failures,
395                           need_precise_constants,
396                           false /* verify to dump */,
397                           true /* allow_thread_suspension */);
398   if (verifier.Verify()) {
399     // Verification completed, however failures may be pending that didn't cause the verification
400     // to hard fail.
401     CHECK(!verifier.have_pending_hard_failure_);
402 
403     if (code_item != nullptr && callbacks != nullptr) {
404       // Let the interested party know that the method was verified.
405       callbacks->MethodVerified(&verifier);
406     }
407 
408     if (verifier.failures_.size() != 0) {
409       if (VLOG_IS_ON(verifier)) {
410         verifier.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
411                                                     << dex_file->PrettyMethod(method_idx) << "\n");
412       }
413       result.kind = FailureKind::kSoftFailure;
414       if (method != nullptr &&
415           !CanCompilerHandleVerificationFailure(verifier.encountered_failure_types_)) {
416         method->SetDontCompile();
417       }
418     }
419     if (method != nullptr) {
420       if (verifier.HasInstructionThatWillThrow()) {
421         method->SetDontCompile();
422         if (Runtime::Current()->IsAotCompiler() &&
423             (callbacks != nullptr) && !callbacks->IsBootImage()) {
424           // When compiling apps, make HasInstructionThatWillThrow a soft error to trigger
425           // re-verification at runtime.
426           // The dead code after the throw is not verified and might be invalid. This may cause
427           // the JIT compiler to crash since it assumes that all the code is valid.
428           //
429           // There's a strong assumption that the entire boot image is verified and all its dex
430           // code is valid (even the dead and unverified one). As such this is done only for apps.
431           // (CompilerDriver DCHECKs in VerifyClassVisitor that methods from boot image are
432           // fully verified).
433           result.kind = FailureKind::kSoftFailure;
434         }
435       }
436       if ((verifier.encountered_failure_types_ & VerifyError::VERIFY_ERROR_LOCKING) != 0) {
437         method->AddAccessFlags(kAccMustCountLocks);
438       }
439     }
440   } else {
441     // Bad method data.
442     CHECK_NE(verifier.failures_.size(), 0U);
443 
444     if (UNLIKELY(verifier.have_pending_experimental_failure_)) {
445       // Failed due to being forced into interpreter. This is ok because
446       // we just want to skip verification.
447       result.kind = FailureKind::kSoftFailure;
448     } else {
449       CHECK(verifier.have_pending_hard_failure_);
450       if (VLOG_IS_ON(verifier)) {
451         log_level = std::max(HardFailLogMode::kLogVerbose, log_level);
452       }
453       if (log_level >= HardFailLogMode::kLogVerbose) {
454         LogSeverity severity;
455         switch (log_level) {
456           case HardFailLogMode::kLogVerbose:
457             severity = LogSeverity::VERBOSE;
458             break;
459           case HardFailLogMode::kLogWarning:
460             severity = LogSeverity::WARNING;
461             break;
462           case HardFailLogMode::kLogInternalFatal:
463             severity = LogSeverity::FATAL_WITHOUT_ABORT;
464             break;
465           default:
466             LOG(FATAL) << "Unsupported log-level " << static_cast<uint32_t>(log_level);
467             UNREACHABLE();
468         }
469         verifier.DumpFailures(LOG_STREAM(severity) << "Verification error in "
470                                                    << dex_file->PrettyMethod(method_idx)
471                                                    << "\n");
472       }
473       if (hard_failure_msg != nullptr) {
474         CHECK(!verifier.failure_messages_.empty());
475         *hard_failure_msg =
476             verifier.failure_messages_[verifier.failure_messages_.size() - 1]->str();
477       }
478       result.kind = FailureKind::kHardFailure;
479 
480       if (callbacks != nullptr) {
481         // Let the interested party know that we failed the class.
482         ClassReference ref(dex_file, dex_file->GetIndexForClassDef(class_def));
483         callbacks->ClassRejected(ref);
484       }
485     }
486     if (VLOG_IS_ON(verifier)) {
487       std::cout << "\n" << verifier.info_messages_.str();
488       verifier.Dump(std::cout);
489     }
490   }
491   if (kTimeVerifyMethod) {
492     uint64_t duration_ns = NanoTime() - start_ns;
493     if (duration_ns > MsToNs(100)) {
494       LOG(WARNING) << "Verification of " << dex_file->PrettyMethod(method_idx)
495                    << " took " << PrettyDuration(duration_ns)
496                    << (IsLargeMethod(code_item) ? " (large method)" : "");
497     }
498   }
499   result.types = verifier.encountered_failure_types_;
500   return result;
501 }
502 
VerifyMethodAndDump(Thread * self,VariableIndentationOutputStream * vios,uint32_t dex_method_idx,const DexFile * dex_file,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,const DexFile::ClassDef & class_def,const DexFile::CodeItem * code_item,ArtMethod * method,uint32_t method_access_flags)503 MethodVerifier* MethodVerifier::VerifyMethodAndDump(Thread* self,
504                                                     VariableIndentationOutputStream* vios,
505                                                     uint32_t dex_method_idx,
506                                                     const DexFile* dex_file,
507                                                     Handle<mirror::DexCache> dex_cache,
508                                                     Handle<mirror::ClassLoader> class_loader,
509                                                     const DexFile::ClassDef& class_def,
510                                                     const DexFile::CodeItem* code_item,
511                                                     ArtMethod* method,
512                                                     uint32_t method_access_flags) {
513   MethodVerifier* verifier = new MethodVerifier(self,
514                                                 dex_file,
515                                                 dex_cache,
516                                                 class_loader,
517                                                 class_def,
518                                                 code_item,
519                                                 dex_method_idx,
520                                                 method,
521                                                 method_access_flags,
522                                                 true /* can_load_classes */,
523                                                 true /* allow_soft_failures */,
524                                                 true /* need_precise_constants */,
525                                                 true /* verify_to_dump */,
526                                                 true /* allow_thread_suspension */);
527   verifier->Verify();
528   verifier->DumpFailures(vios->Stream());
529   vios->Stream() << verifier->info_messages_.str();
530   // Only dump and return if no hard failures. Otherwise the verifier may be not fully initialized
531   // and querying any info is dangerous/can abort.
532   if (verifier->have_pending_hard_failure_) {
533     delete verifier;
534     return nullptr;
535   } else {
536     verifier->Dump(vios);
537     return verifier;
538   }
539 }
540 
MethodVerifier(Thread * self,const DexFile * dex_file,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,const DexFile::ClassDef & class_def,const DexFile::CodeItem * code_item,uint32_t dex_method_idx,ArtMethod * method,uint32_t method_access_flags,bool can_load_classes,bool allow_soft_failures,bool need_precise_constants,bool verify_to_dump,bool allow_thread_suspension)541 MethodVerifier::MethodVerifier(Thread* self,
542                                const DexFile* dex_file,
543                                Handle<mirror::DexCache> dex_cache,
544                                Handle<mirror::ClassLoader> class_loader,
545                                const DexFile::ClassDef& class_def,
546                                const DexFile::CodeItem* code_item,
547                                uint32_t dex_method_idx,
548                                ArtMethod* method,
549                                uint32_t method_access_flags,
550                                bool can_load_classes,
551                                bool allow_soft_failures,
552                                bool need_precise_constants,
553                                bool verify_to_dump,
554                                bool allow_thread_suspension)
555     : self_(self),
556       arena_stack_(Runtime::Current()->GetArenaPool()),
557       arena_(&arena_stack_),
558       reg_types_(can_load_classes, arena_),
559       reg_table_(arena_),
560       work_insn_idx_(DexFile::kDexNoIndex),
561       dex_method_idx_(dex_method_idx),
562       mirror_method_(method),
563       method_access_flags_(method_access_flags),
564       return_type_(nullptr),
565       dex_file_(dex_file),
566       dex_cache_(dex_cache),
567       class_loader_(class_loader),
568       class_def_(class_def),
569       code_item_(code_item),
570       declaring_class_(nullptr),
571       interesting_dex_pc_(-1),
572       monitor_enter_dex_pcs_(nullptr),
573       have_pending_hard_failure_(false),
574       have_pending_runtime_throw_failure_(false),
575       have_pending_experimental_failure_(false),
576       have_any_pending_runtime_throw_failure_(false),
577       new_instance_count_(0),
578       monitor_enter_count_(0),
579       encountered_failure_types_(0),
580       can_load_classes_(can_load_classes),
581       allow_soft_failures_(allow_soft_failures),
582       need_precise_constants_(need_precise_constants),
583       has_check_casts_(false),
584       has_virtual_or_interface_invokes_(false),
585       verify_to_dump_(verify_to_dump),
586       allow_thread_suspension_(allow_thread_suspension),
587       is_constructor_(false),
588       link_(nullptr) {
589   self->PushVerifier(this);
590 }
591 
~MethodVerifier()592 MethodVerifier::~MethodVerifier() {
593   Thread::Current()->PopVerifier(this);
594   STLDeleteElements(&failure_messages_);
595 }
596 
FindLocksAtDexPc(ArtMethod * m,uint32_t dex_pc,std::vector<uint32_t> * monitor_enter_dex_pcs)597 void MethodVerifier::FindLocksAtDexPc(ArtMethod* m, uint32_t dex_pc,
598                                       std::vector<uint32_t>* monitor_enter_dex_pcs) {
599   StackHandleScope<2> hs(Thread::Current());
600   Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
601   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
602   MethodVerifier verifier(hs.Self(),
603                           m->GetDexFile(),
604                           dex_cache,
605                           class_loader,
606                           m->GetClassDef(),
607                           m->GetCodeItem(),
608                           m->GetDexMethodIndex(),
609                           m,
610                           m->GetAccessFlags(),
611                           false /* can_load_classes */,
612                           true  /* allow_soft_failures */,
613                           false /* need_precise_constants */,
614                           false /* verify_to_dump */,
615                           false /* allow_thread_suspension */);
616   verifier.interesting_dex_pc_ = dex_pc;
617   verifier.monitor_enter_dex_pcs_ = monitor_enter_dex_pcs;
618   verifier.FindLocksAtDexPc();
619 }
620 
HasMonitorEnterInstructions(const DexFile::CodeItem * const code_item)621 static bool HasMonitorEnterInstructions(const DexFile::CodeItem* const code_item) {
622   const Instruction* inst = Instruction::At(code_item->insns_);
623 
624   uint32_t insns_size = code_item->insns_size_in_code_units_;
625   for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
626     if (inst->Opcode() == Instruction::MONITOR_ENTER) {
627       return true;
628     }
629 
630     dex_pc += inst->SizeInCodeUnits();
631     inst = inst->Next();
632   }
633 
634   return false;
635 }
636 
FindLocksAtDexPc()637 void MethodVerifier::FindLocksAtDexPc() {
638   CHECK(monitor_enter_dex_pcs_ != nullptr);
639   CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
640 
641   // Quick check whether there are any monitor_enter instructions at all.
642   if (!HasMonitorEnterInstructions(code_item_)) {
643     return;
644   }
645 
646   // Strictly speaking, we ought to be able to get away with doing a subset of the full method
647   // verification. In practice, the phase we want relies on data structures set up by all the
648   // earlier passes, so we just run the full method verification and bail out early when we've
649   // got what we wanted.
650   Verify();
651 }
652 
FindAccessedFieldAtDexPc(ArtMethod * m,uint32_t dex_pc)653 ArtField* MethodVerifier::FindAccessedFieldAtDexPc(ArtMethod* m, uint32_t dex_pc) {
654   StackHandleScope<2> hs(Thread::Current());
655   Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
656   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
657   MethodVerifier verifier(hs.Self(),
658                           m->GetDexFile(),
659                           dex_cache,
660                           class_loader,
661                           m->GetClassDef(),
662                           m->GetCodeItem(),
663                           m->GetDexMethodIndex(),
664                           m,
665                           m->GetAccessFlags(),
666                           true  /* can_load_classes */,
667                           true  /* allow_soft_failures */,
668                           false /* need_precise_constants */,
669                           false /* verify_to_dump */,
670                           true  /* allow_thread_suspension */);
671   return verifier.FindAccessedFieldAtDexPc(dex_pc);
672 }
673 
FindAccessedFieldAtDexPc(uint32_t dex_pc)674 ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) {
675   CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
676 
677   // Strictly speaking, we ought to be able to get away with doing a subset of the full method
678   // verification. In practice, the phase we want relies on data structures set up by all the
679   // earlier passes, so we just run the full method verification and bail out early when we've
680   // got what we wanted.
681   bool success = Verify();
682   if (!success) {
683     return nullptr;
684   }
685   RegisterLine* register_line = reg_table_.GetLine(dex_pc);
686   if (register_line == nullptr) {
687     return nullptr;
688   }
689   const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
690   return GetQuickFieldAccess(inst, register_line);
691 }
692 
FindInvokedMethodAtDexPc(ArtMethod * m,uint32_t dex_pc)693 ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(ArtMethod* m, uint32_t dex_pc) {
694   StackHandleScope<2> hs(Thread::Current());
695   Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
696   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
697   MethodVerifier verifier(hs.Self(),
698                           m->GetDexFile(),
699                           dex_cache,
700                           class_loader,
701                           m->GetClassDef(),
702                           m->GetCodeItem(),
703                           m->GetDexMethodIndex(),
704                           m,
705                           m->GetAccessFlags(),
706                           true  /* can_load_classes */,
707                           true  /* allow_soft_failures */,
708                           false /* need_precise_constants */,
709                           false /* verify_to_dump */,
710                           true  /* allow_thread_suspension */);
711   return verifier.FindInvokedMethodAtDexPc(dex_pc);
712 }
713 
FindInvokedMethodAtDexPc(uint32_t dex_pc)714 ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) {
715   CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
716 
717   // Strictly speaking, we ought to be able to get away with doing a subset of the full method
718   // verification. In practice, the phase we want relies on data structures set up by all the
719   // earlier passes, so we just run the full method verification and bail out early when we've
720   // got what we wanted.
721   bool success = Verify();
722   if (!success) {
723     return nullptr;
724   }
725   RegisterLine* register_line = reg_table_.GetLine(dex_pc);
726   if (register_line == nullptr) {
727     return nullptr;
728   }
729   const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
730   const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
731   return GetQuickInvokedMethod(inst, register_line, is_range, false);
732 }
733 
Verify()734 bool MethodVerifier::Verify() {
735   // Some older code doesn't correctly mark constructors as such. Test for this case by looking at
736   // the name.
737   const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
738   const char* method_name = dex_file_->StringDataByIdx(method_id.name_idx_);
739   bool instance_constructor_by_name = strcmp("<init>", method_name) == 0;
740   bool static_constructor_by_name = strcmp("<clinit>", method_name) == 0;
741   bool constructor_by_name = instance_constructor_by_name || static_constructor_by_name;
742   // Check that only constructors are tagged, and check for bad code that doesn't tag constructors.
743   if ((method_access_flags_ & kAccConstructor) != 0) {
744     if (!constructor_by_name) {
745       Fail(VERIFY_ERROR_BAD_CLASS_HARD)
746             << "method is marked as constructor, but not named accordingly";
747       return false;
748     }
749     is_constructor_ = true;
750   } else if (constructor_by_name) {
751     LOG(WARNING) << "Method " << dex_file_->PrettyMethod(dex_method_idx_)
752                  << " not marked as constructor.";
753     is_constructor_ = true;
754   }
755   // If it's a constructor, check whether IsStatic() matches the name.
756   // This should have been rejected by the dex file verifier. Only do in debug build.
757   if (kIsDebugBuild) {
758     if (IsConstructor()) {
759       if (IsStatic() ^ static_constructor_by_name) {
760         Fail(VERIFY_ERROR_BAD_CLASS_HARD)
761               << "constructor name doesn't match static flag";
762         return false;
763       }
764     }
765   }
766 
767   // Methods may only have one of public/protected/private.
768   // This should have been rejected by the dex file verifier. Only do in debug build.
769   if (kIsDebugBuild) {
770     size_t access_mod_count =
771         (((method_access_flags_ & kAccPublic) == 0) ? 0 : 1) +
772         (((method_access_flags_ & kAccProtected) == 0) ? 0 : 1) +
773         (((method_access_flags_ & kAccPrivate) == 0) ? 0 : 1);
774     if (access_mod_count > 1) {
775       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "method has more than one of public/protected/private";
776       return false;
777     }
778   }
779 
780   // If there aren't any instructions, make sure that's expected, then exit successfully.
781   if (code_item_ == nullptr) {
782     // Only native or abstract methods may not have code.
783     if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
784       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
785       return false;
786     }
787 
788     // This should have been rejected by the dex file verifier. Only do in debug build.
789     // Note: the above will also be rejected in the dex file verifier, starting in dex version 37.
790     if (kIsDebugBuild) {
791       if ((method_access_flags_ & kAccAbstract) != 0) {
792         // Abstract methods are not allowed to have the following flags.
793         static constexpr uint32_t kForbidden =
794             kAccPrivate |
795             kAccStatic |
796             kAccFinal |
797             kAccNative |
798             kAccStrict |
799             kAccSynchronized;
800         if ((method_access_flags_ & kForbidden) != 0) {
801           Fail(VERIFY_ERROR_BAD_CLASS_HARD)
802                 << "method can't be abstract and private/static/final/native/strict/synchronized";
803           return false;
804         }
805       }
806       if ((class_def_.GetJavaAccessFlags() & kAccInterface) != 0) {
807         // Interface methods must be public and abstract (if default methods are disabled).
808         uint32_t kRequired = kAccPublic;
809         if ((method_access_flags_ & kRequired) != kRequired) {
810           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface methods must be public";
811           return false;
812         }
813         // In addition to the above, interface methods must not be protected.
814         static constexpr uint32_t kForbidden = kAccProtected;
815         if ((method_access_flags_ & kForbidden) != 0) {
816           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface methods can't be protected";
817           return false;
818         }
819       }
820       // We also don't allow constructors to be abstract or native.
821       if (IsConstructor()) {
822         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "constructors can't be abstract or native";
823         return false;
824       }
825     }
826     return true;
827   }
828 
829   // This should have been rejected by the dex file verifier. Only do in debug build.
830   if (kIsDebugBuild) {
831     // When there's code, the method must not be native or abstract.
832     if ((method_access_flags_ & (kAccNative | kAccAbstract)) != 0) {
833       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "non-zero-length code in abstract or native method";
834       return false;
835     }
836 
837     if ((class_def_.GetJavaAccessFlags() & kAccInterface) != 0) {
838       // Interfaces may always have static initializers for their fields. If we are running with
839       // default methods enabled we also allow other public, static, non-final methods to have code.
840       // Otherwise that is the only type of method allowed.
841       if (!(IsConstructor() && IsStatic())) {
842         if (IsInstanceConstructor()) {
843           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interfaces may not have non-static constructor";
844           return false;
845         } else if (method_access_flags_ & kAccFinal) {
846           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interfaces may not have final methods";
847           return false;
848         } else {
849           uint32_t access_flag_options = kAccPublic;
850           if (dex_file_->GetVersion() >= DexFile::kDefaultMethodsVersion) {
851             access_flag_options |= kAccPrivate;
852           }
853           if (!(method_access_flags_ & access_flag_options)) {
854             Fail(VERIFY_ERROR_BAD_CLASS_HARD)
855                 << "interfaces may not have protected or package-private members";
856             return false;
857           }
858         }
859       }
860     }
861 
862     // Instance constructors must not be synchronized.
863     if (IsInstanceConstructor()) {
864       static constexpr uint32_t kForbidden = kAccSynchronized;
865       if ((method_access_flags_ & kForbidden) != 0) {
866         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "constructors can't be synchronized";
867         return false;
868       }
869     }
870   }
871 
872   // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
873   if (code_item_->ins_size_ > code_item_->registers_size_) {
874     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_
875                                       << " regs=" << code_item_->registers_size_;
876     return false;
877   }
878 
879   // Allocate and initialize an array to hold instruction data.
880   insn_flags_.reset(arena_.AllocArray<InstructionFlags>(code_item_->insns_size_in_code_units_));
881   DCHECK(insn_flags_ != nullptr);
882   std::uninitialized_fill_n(insn_flags_.get(),
883                             code_item_->insns_size_in_code_units_,
884                             InstructionFlags());
885   // Run through the instructions and see if the width checks out.
886   bool result = ComputeWidthsAndCountOps();
887   // Flag instructions guarded by a "try" block and check exception handlers.
888   result = result && ScanTryCatchBlocks();
889   // Perform static instruction verification.
890   result = result && VerifyInstructions();
891   // Perform code-flow analysis and return.
892   result = result && VerifyCodeFlow();
893 
894   return result;
895 }
896 
Fail(VerifyError error)897 std::ostream& MethodVerifier::Fail(VerifyError error) {
898   // Mark the error type as encountered.
899   encountered_failure_types_ |= static_cast<uint32_t>(error);
900 
901   switch (error) {
902     case VERIFY_ERROR_NO_CLASS:
903     case VERIFY_ERROR_NO_FIELD:
904     case VERIFY_ERROR_NO_METHOD:
905     case VERIFY_ERROR_ACCESS_CLASS:
906     case VERIFY_ERROR_ACCESS_FIELD:
907     case VERIFY_ERROR_ACCESS_METHOD:
908     case VERIFY_ERROR_INSTANTIATION:
909     case VERIFY_ERROR_CLASS_CHANGE:
910     case VERIFY_ERROR_FORCE_INTERPRETER:
911     case VERIFY_ERROR_LOCKING:
912       if (Runtime::Current()->IsAotCompiler() || !can_load_classes_) {
913         // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
914         // class change and instantiation errors into soft verification errors so that we re-verify
915         // at runtime. We may fail to find or to agree on access because of not yet available class
916         // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
917         // affect the soundness of the code being compiled. Instead, the generated code runs "slow
918         // paths" that dynamically perform the verification and cause the behavior to be that akin
919         // to an interpreter.
920         error = VERIFY_ERROR_BAD_CLASS_SOFT;
921       } else {
922         // If we fail again at runtime, mark that this instruction would throw and force this
923         // method to be executed using the interpreter with checks.
924         have_pending_runtime_throw_failure_ = true;
925 
926         // We need to save the work_line if the instruction wasn't throwing before. Otherwise we'll
927         // try to merge garbage.
928         // Note: this assumes that Fail is called before we do any work_line modifications.
929         // Note: this can fail before we touch any instruction, for the signature of a method. So
930         //       add a check.
931         if (work_insn_idx_ < DexFile::kDexNoIndex) {
932           const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
933           const Instruction* inst = Instruction::At(insns);
934           int opcode_flags = Instruction::FlagsOf(inst->Opcode());
935 
936           if ((opcode_flags & Instruction::kThrow) == 0 && CurrentInsnFlags()->IsInTry()) {
937             saved_line_->CopyFromLine(work_line_.get());
938           }
939         }
940       }
941       break;
942 
943       // Indication that verification should be retried at runtime.
944     case VERIFY_ERROR_BAD_CLASS_SOFT:
945       if (!allow_soft_failures_) {
946         have_pending_hard_failure_ = true;
947       }
948       break;
949 
950       // Hard verification failures at compile time will still fail at runtime, so the class is
951       // marked as rejected to prevent it from being compiled.
952     case VERIFY_ERROR_BAD_CLASS_HARD: {
953       have_pending_hard_failure_ = true;
954       if (VLOG_IS_ON(verifier) && kDumpRegLinesOnHardFailureIfVLOG) {
955         ScopedObjectAccess soa(Thread::Current());
956         std::ostringstream oss;
957         Dump(oss);
958         LOG(ERROR) << oss.str();
959       }
960       break;
961     }
962   }
963   failures_.push_back(error);
964   std::string location(StringPrintf("%s: [0x%X] ", dex_file_->PrettyMethod(dex_method_idx_).c_str(),
965                                     work_insn_idx_));
966   std::ostringstream* failure_message = new std::ostringstream(location, std::ostringstream::ate);
967   failure_messages_.push_back(failure_message);
968   return *failure_message;
969 }
970 
LogVerifyInfo()971 std::ostream& MethodVerifier::LogVerifyInfo() {
972   return info_messages_ << "VFY: " << dex_file_->PrettyMethod(dex_method_idx_)
973                         << '[' << reinterpret_cast<void*>(work_insn_idx_) << "] : ";
974 }
975 
PrependToLastFailMessage(std::string prepend)976 void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
977   size_t failure_num = failure_messages_.size();
978   DCHECK_NE(failure_num, 0U);
979   std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
980   prepend += last_fail_message->str();
981   failure_messages_[failure_num - 1] = new std::ostringstream(prepend, std::ostringstream::ate);
982   delete last_fail_message;
983 }
984 
AppendToLastFailMessage(const std::string & append)985 void MethodVerifier::AppendToLastFailMessage(const std::string& append) {
986   size_t failure_num = failure_messages_.size();
987   DCHECK_NE(failure_num, 0U);
988   std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
989   (*last_fail_message) << append;
990 }
991 
ComputeWidthsAndCountOps()992 bool MethodVerifier::ComputeWidthsAndCountOps() {
993   const uint16_t* insns = code_item_->insns_;
994   size_t insns_size = code_item_->insns_size_in_code_units_;
995   const Instruction* inst = Instruction::At(insns);
996   size_t new_instance_count = 0;
997   size_t monitor_enter_count = 0;
998   size_t dex_pc = 0;
999 
1000   while (dex_pc < insns_size) {
1001     Instruction::Code opcode = inst->Opcode();
1002     switch (opcode) {
1003       case Instruction::APUT_OBJECT:
1004       case Instruction::CHECK_CAST:
1005         has_check_casts_ = true;
1006         break;
1007       case Instruction::INVOKE_VIRTUAL:
1008       case Instruction::INVOKE_VIRTUAL_RANGE:
1009       case Instruction::INVOKE_INTERFACE:
1010       case Instruction::INVOKE_INTERFACE_RANGE:
1011         has_virtual_or_interface_invokes_ = true;
1012         break;
1013       case Instruction::MONITOR_ENTER:
1014         monitor_enter_count++;
1015         break;
1016       case Instruction::NEW_INSTANCE:
1017         new_instance_count++;
1018         break;
1019       default:
1020         break;
1021     }
1022     size_t inst_size = inst->SizeInCodeUnits();
1023     GetInstructionFlags(dex_pc).SetIsOpcode();
1024     dex_pc += inst_size;
1025     inst = inst->RelativeAt(inst_size);
1026   }
1027 
1028   if (dex_pc != insns_size) {
1029     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
1030                                       << dex_pc << " vs. " << insns_size << ")";
1031     return false;
1032   }
1033 
1034   new_instance_count_ = new_instance_count;
1035   monitor_enter_count_ = monitor_enter_count;
1036   return true;
1037 }
1038 
ScanTryCatchBlocks()1039 bool MethodVerifier::ScanTryCatchBlocks() {
1040   uint32_t tries_size = code_item_->tries_size_;
1041   if (tries_size == 0) {
1042     return true;
1043   }
1044   uint32_t insns_size = code_item_->insns_size_in_code_units_;
1045   const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0);
1046 
1047   for (uint32_t idx = 0; idx < tries_size; idx++) {
1048     const DexFile::TryItem* try_item = &tries[idx];
1049     uint32_t start = try_item->start_addr_;
1050     uint32_t end = start + try_item->insn_count_;
1051     if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
1052       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
1053                                         << " endAddr=" << end << " (size=" << insns_size << ")";
1054       return false;
1055     }
1056     if (!GetInstructionFlags(start).IsOpcode()) {
1057       Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1058           << "'try' block starts inside an instruction (" << start << ")";
1059       return false;
1060     }
1061     uint32_t dex_pc = start;
1062     const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
1063     while (dex_pc < end) {
1064       GetInstructionFlags(dex_pc).SetInTry();
1065       size_t insn_size = inst->SizeInCodeUnits();
1066       dex_pc += insn_size;
1067       inst = inst->RelativeAt(insn_size);
1068     }
1069   }
1070   // Iterate over each of the handlers to verify target addresses.
1071   const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
1072   uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
1073   ClassLinker* linker = Runtime::Current()->GetClassLinker();
1074   for (uint32_t idx = 0; idx < handlers_size; idx++) {
1075     CatchHandlerIterator iterator(handlers_ptr);
1076     for (; iterator.HasNext(); iterator.Next()) {
1077       uint32_t dex_pc= iterator.GetHandlerAddress();
1078       if (!GetInstructionFlags(dex_pc).IsOpcode()) {
1079         Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1080             << "exception handler starts at bad address (" << dex_pc << ")";
1081         return false;
1082       }
1083       if (!CheckNotMoveResult(code_item_->insns_, dex_pc)) {
1084         Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1085             << "exception handler begins with move-result* (" << dex_pc << ")";
1086         return false;
1087       }
1088       GetInstructionFlags(dex_pc).SetBranchTarget();
1089       // Ensure exception types are resolved so that they don't need resolution to be delivered,
1090       // unresolved exception types will be ignored by exception delivery
1091       if (iterator.GetHandlerTypeIndex().IsValid()) {
1092         mirror::Class* exception_type = linker->ResolveType(*dex_file_,
1093                                                             iterator.GetHandlerTypeIndex(),
1094                                                             dex_cache_, class_loader_);
1095         if (exception_type == nullptr) {
1096           DCHECK(self_->IsExceptionPending());
1097           self_->ClearException();
1098         }
1099       }
1100     }
1101     handlers_ptr = iterator.EndDataPointer();
1102   }
1103   return true;
1104 }
1105 
VerifyInstructions()1106 bool MethodVerifier::VerifyInstructions() {
1107   const Instruction* inst = Instruction::At(code_item_->insns_);
1108 
1109   /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
1110   GetInstructionFlags(0).SetBranchTarget();
1111   GetInstructionFlags(0).SetCompileTimeInfoPoint();
1112 
1113   uint32_t insns_size = code_item_->insns_size_in_code_units_;
1114   for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
1115     if (!VerifyInstruction(inst, dex_pc)) {
1116       DCHECK_NE(failures_.size(), 0U);
1117       return false;
1118     }
1119     /* Flag instructions that are garbage collection points */
1120     // All invoke points are marked as "Throw" points already.
1121     // We are relying on this to also count all the invokes as interesting.
1122     if (inst->IsBranch()) {
1123       GetInstructionFlags(dex_pc).SetCompileTimeInfoPoint();
1124       // The compiler also needs safepoints for fall-through to loop heads.
1125       // Such a loop head must be a target of a branch.
1126       int32_t offset = 0;
1127       bool cond, self_ok;
1128       bool target_ok = GetBranchOffset(dex_pc, &offset, &cond, &self_ok);
1129       DCHECK(target_ok);
1130       GetInstructionFlags(dex_pc + offset).SetCompileTimeInfoPoint();
1131     } else if (inst->IsSwitch() || inst->IsThrow()) {
1132       GetInstructionFlags(dex_pc).SetCompileTimeInfoPoint();
1133     } else if (inst->IsReturn()) {
1134       GetInstructionFlags(dex_pc).SetCompileTimeInfoPointAndReturn();
1135     }
1136     dex_pc += inst->SizeInCodeUnits();
1137     inst = inst->Next();
1138   }
1139   return true;
1140 }
1141 
VerifyInstruction(const Instruction * inst,uint32_t code_offset)1142 bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
1143   if (UNLIKELY(inst->IsExperimental())) {
1144     // Experimental instructions don't yet have verifier support implementation.
1145     // While it is possible to use them by themselves, when we try to use stable instructions
1146     // with a virtual register that was created by an experimental instruction,
1147     // the data flow analysis will fail.
1148     Fail(VERIFY_ERROR_FORCE_INTERPRETER)
1149         << "experimental instruction is not supported by verifier; skipping verification";
1150     have_pending_experimental_failure_ = true;
1151     return false;
1152   }
1153 
1154   bool result = true;
1155   switch (inst->GetVerifyTypeArgumentA()) {
1156     case Instruction::kVerifyRegA:
1157       result = result && CheckRegisterIndex(inst->VRegA());
1158       break;
1159     case Instruction::kVerifyRegAWide:
1160       result = result && CheckWideRegisterIndex(inst->VRegA());
1161       break;
1162   }
1163   switch (inst->GetVerifyTypeArgumentB()) {
1164     case Instruction::kVerifyRegB:
1165       result = result && CheckRegisterIndex(inst->VRegB());
1166       break;
1167     case Instruction::kVerifyRegBField:
1168       result = result && CheckFieldIndex(inst->VRegB());
1169       break;
1170     case Instruction::kVerifyRegBMethod:
1171       result = result && CheckMethodIndex(inst->VRegB());
1172       break;
1173     case Instruction::kVerifyRegBNewInstance:
1174       result = result && CheckNewInstance(dex::TypeIndex(inst->VRegB()));
1175       break;
1176     case Instruction::kVerifyRegBString:
1177       result = result && CheckStringIndex(inst->VRegB());
1178       break;
1179     case Instruction::kVerifyRegBType:
1180       result = result && CheckTypeIndex(dex::TypeIndex(inst->VRegB()));
1181       break;
1182     case Instruction::kVerifyRegBWide:
1183       result = result && CheckWideRegisterIndex(inst->VRegB());
1184       break;
1185   }
1186   switch (inst->GetVerifyTypeArgumentC()) {
1187     case Instruction::kVerifyRegC:
1188       result = result && CheckRegisterIndex(inst->VRegC());
1189       break;
1190     case Instruction::kVerifyRegCField:
1191       result = result && CheckFieldIndex(inst->VRegC());
1192       break;
1193     case Instruction::kVerifyRegCNewArray:
1194       result = result && CheckNewArray(dex::TypeIndex(inst->VRegC()));
1195       break;
1196     case Instruction::kVerifyRegCType:
1197       result = result && CheckTypeIndex(dex::TypeIndex(inst->VRegC()));
1198       break;
1199     case Instruction::kVerifyRegCWide:
1200       result = result && CheckWideRegisterIndex(inst->VRegC());
1201       break;
1202   }
1203   switch (inst->GetVerifyTypeArgumentH()) {
1204     case Instruction::kVerifyRegHPrototype:
1205       result = result && CheckPrototypeIndex(inst->VRegH());
1206       break;
1207   }
1208   switch (inst->GetVerifyExtraFlags()) {
1209     case Instruction::kVerifyArrayData:
1210       result = result && CheckArrayData(code_offset);
1211       break;
1212     case Instruction::kVerifyBranchTarget:
1213       result = result && CheckBranchTarget(code_offset);
1214       break;
1215     case Instruction::kVerifySwitchTargets:
1216       result = result && CheckSwitchTargets(code_offset);
1217       break;
1218     case Instruction::kVerifyVarArgNonZero:
1219       // Fall-through.
1220     case Instruction::kVerifyVarArg: {
1221       // Instructions that can actually return a negative value shouldn't have this flag.
1222       uint32_t v_a = dchecked_integral_cast<uint32_t>(inst->VRegA());
1223       if ((inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgNonZero && v_a == 0) ||
1224           v_a > Instruction::kMaxVarArgRegs) {
1225         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << v_a << ") in "
1226                                              "non-range invoke";
1227         return false;
1228       }
1229 
1230       uint32_t args[Instruction::kMaxVarArgRegs];
1231       inst->GetVarArgs(args);
1232       result = result && CheckVarArgRegs(v_a, args);
1233       break;
1234     }
1235     case Instruction::kVerifyVarArgRangeNonZero:
1236       // Fall-through.
1237     case Instruction::kVerifyVarArgRange:
1238       if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgRangeNonZero &&
1239           inst->VRegA() <= 0) {
1240         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
1241                                              "range invoke";
1242         return false;
1243       }
1244       result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC());
1245       break;
1246     case Instruction::kVerifyError:
1247       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
1248       result = false;
1249       break;
1250   }
1251   if (inst->GetVerifyIsRuntimeOnly() && Runtime::Current()->IsAotCompiler() && !verify_to_dump_) {
1252     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "opcode only expected at runtime " << inst->Name();
1253     result = false;
1254   }
1255   return result;
1256 }
1257 
CheckRegisterIndex(uint32_t idx)1258 inline bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
1259   if (idx >= code_item_->registers_size_) {
1260     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
1261                                       << code_item_->registers_size_ << ")";
1262     return false;
1263   }
1264   return true;
1265 }
1266 
CheckWideRegisterIndex(uint32_t idx)1267 inline bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
1268   if (idx + 1 >= code_item_->registers_size_) {
1269     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
1270                                       << "+1 >= " << code_item_->registers_size_ << ")";
1271     return false;
1272   }
1273   return true;
1274 }
1275 
CheckFieldIndex(uint32_t idx)1276 inline bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
1277   if (idx >= dex_file_->GetHeader().field_ids_size_) {
1278     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
1279                                       << dex_file_->GetHeader().field_ids_size_ << ")";
1280     return false;
1281   }
1282   return true;
1283 }
1284 
CheckMethodIndex(uint32_t idx)1285 inline bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
1286   if (idx >= dex_file_->GetHeader().method_ids_size_) {
1287     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
1288                                       << dex_file_->GetHeader().method_ids_size_ << ")";
1289     return false;
1290   }
1291   return true;
1292 }
1293 
CheckNewInstance(dex::TypeIndex idx)1294 inline bool MethodVerifier::CheckNewInstance(dex::TypeIndex idx) {
1295   if (idx.index_ >= dex_file_->GetHeader().type_ids_size_) {
1296     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx.index_ << " (max "
1297                                       << dex_file_->GetHeader().type_ids_size_ << ")";
1298     return false;
1299   }
1300   // We don't need the actual class, just a pointer to the class name.
1301   const char* descriptor = dex_file_->StringByTypeIdx(idx);
1302   if (descriptor[0] != 'L') {
1303     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
1304     return false;
1305   } else if (strcmp(descriptor, "Ljava/lang/Class;") == 0) {
1306     // An unlikely new instance on Class is not allowed. Fall back to interpreter to ensure an
1307     // exception is thrown when this statement is executed (compiled code would not do that).
1308     Fail(VERIFY_ERROR_INSTANTIATION);
1309   }
1310   return true;
1311 }
1312 
CheckPrototypeIndex(uint32_t idx)1313 inline bool MethodVerifier::CheckPrototypeIndex(uint32_t idx) {
1314   if (idx >= dex_file_->GetHeader().proto_ids_size_) {
1315     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad prototype index " << idx << " (max "
1316                                       << dex_file_->GetHeader().proto_ids_size_ << ")";
1317     return false;
1318   }
1319   return true;
1320 }
1321 
CheckStringIndex(uint32_t idx)1322 inline bool MethodVerifier::CheckStringIndex(uint32_t idx) {
1323   if (idx >= dex_file_->GetHeader().string_ids_size_) {
1324     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
1325                                       << dex_file_->GetHeader().string_ids_size_ << ")";
1326     return false;
1327   }
1328   return true;
1329 }
1330 
CheckTypeIndex(dex::TypeIndex idx)1331 inline bool MethodVerifier::CheckTypeIndex(dex::TypeIndex idx) {
1332   if (idx.index_ >= dex_file_->GetHeader().type_ids_size_) {
1333     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx.index_ << " (max "
1334                                       << dex_file_->GetHeader().type_ids_size_ << ")";
1335     return false;
1336   }
1337   return true;
1338 }
1339 
CheckNewArray(dex::TypeIndex idx)1340 bool MethodVerifier::CheckNewArray(dex::TypeIndex idx) {
1341   if (idx.index_ >= dex_file_->GetHeader().type_ids_size_) {
1342     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx.index_ << " (max "
1343                                       << dex_file_->GetHeader().type_ids_size_ << ")";
1344     return false;
1345   }
1346   int bracket_count = 0;
1347   const char* descriptor = dex_file_->StringByTypeIdx(idx);
1348   const char* cp = descriptor;
1349   while (*cp++ == '[') {
1350     bracket_count++;
1351   }
1352   if (bracket_count == 0) {
1353     /* The given class must be an array type. */
1354     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1355         << "can't new-array class '" << descriptor << "' (not an array)";
1356     return false;
1357   } else if (bracket_count > 255) {
1358     /* It is illegal to create an array of more than 255 dimensions. */
1359     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1360         << "can't new-array class '" << descriptor << "' (exceeds limit)";
1361     return false;
1362   }
1363   return true;
1364 }
1365 
CheckArrayData(uint32_t cur_offset)1366 bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
1367   const uint32_t insn_count = code_item_->insns_size_in_code_units_;
1368   const uint16_t* insns = code_item_->insns_ + cur_offset;
1369   const uint16_t* array_data;
1370   int32_t array_data_offset;
1371 
1372   DCHECK_LT(cur_offset, insn_count);
1373   /* make sure the start of the array data table is in range */
1374   array_data_offset = insns[1] | (static_cast<int32_t>(insns[2]) << 16);
1375   if (static_cast<int32_t>(cur_offset) + array_data_offset < 0 ||
1376       cur_offset + array_data_offset + 2 >= insn_count) {
1377     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
1378                                       << ", data offset " << array_data_offset
1379                                       << ", count " << insn_count;
1380     return false;
1381   }
1382   /* offset to array data table is a relative branch-style offset */
1383   array_data = insns + array_data_offset;
1384   // Make sure the table is at an even dex pc, that is, 32-bit aligned.
1385   if (!IsAligned<4>(array_data)) {
1386     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
1387                                       << ", data offset " << array_data_offset;
1388     return false;
1389   }
1390   // Make sure the array-data is marked as an opcode. This ensures that it was reached when
1391   // traversing the code item linearly. It is an approximation for a by-spec padding value.
1392   if (!GetInstructionFlags(cur_offset + array_data_offset).IsOpcode()) {
1393     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array data table at " << cur_offset
1394                                       << ", data offset " << array_data_offset
1395                                       << " not correctly visited, probably bad padding.";
1396     return false;
1397   }
1398 
1399   uint32_t value_width = array_data[1];
1400   uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
1401   uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
1402   /* make sure the end of the switch is in range */
1403   if (cur_offset + array_data_offset + table_size > insn_count) {
1404     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
1405                                       << ", data offset " << array_data_offset << ", end "
1406                                       << cur_offset + array_data_offset + table_size
1407                                       << ", count " << insn_count;
1408     return false;
1409   }
1410   return true;
1411 }
1412 
CheckBranchTarget(uint32_t cur_offset)1413 bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
1414   int32_t offset;
1415   bool isConditional, selfOkay;
1416   if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
1417     return false;
1418   }
1419   if (!selfOkay && offset == 0) {
1420     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
1421                                       << reinterpret_cast<void*>(cur_offset);
1422     return false;
1423   }
1424   // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
1425   // to have identical "wrap-around" behavior, but it's unwise to depend on that.
1426   if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) {
1427     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
1428                                       << reinterpret_cast<void*>(cur_offset) << " +" << offset;
1429     return false;
1430   }
1431   const uint32_t insn_count = code_item_->insns_size_in_code_units_;
1432   int32_t abs_offset = cur_offset + offset;
1433   if (abs_offset < 0 ||
1434       (uint32_t) abs_offset >= insn_count ||
1435       !GetInstructionFlags(abs_offset).IsOpcode()) {
1436     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
1437                                       << reinterpret_cast<void*>(abs_offset) << ") at "
1438                                       << reinterpret_cast<void*>(cur_offset);
1439     return false;
1440   }
1441   GetInstructionFlags(abs_offset).SetBranchTarget();
1442   return true;
1443 }
1444 
GetBranchOffset(uint32_t cur_offset,int32_t * pOffset,bool * pConditional,bool * selfOkay)1445 bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
1446                                   bool* selfOkay) {
1447   const uint16_t* insns = code_item_->insns_ + cur_offset;
1448   *pConditional = false;
1449   *selfOkay = false;
1450   switch (*insns & 0xff) {
1451     case Instruction::GOTO:
1452       *pOffset = ((int16_t) *insns) >> 8;
1453       break;
1454     case Instruction::GOTO_32:
1455       *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
1456       *selfOkay = true;
1457       break;
1458     case Instruction::GOTO_16:
1459       *pOffset = (int16_t) insns[1];
1460       break;
1461     case Instruction::IF_EQ:
1462     case Instruction::IF_NE:
1463     case Instruction::IF_LT:
1464     case Instruction::IF_GE:
1465     case Instruction::IF_GT:
1466     case Instruction::IF_LE:
1467     case Instruction::IF_EQZ:
1468     case Instruction::IF_NEZ:
1469     case Instruction::IF_LTZ:
1470     case Instruction::IF_GEZ:
1471     case Instruction::IF_GTZ:
1472     case Instruction::IF_LEZ:
1473       *pOffset = (int16_t) insns[1];
1474       *pConditional = true;
1475       break;
1476     default:
1477       return false;
1478   }
1479   return true;
1480 }
1481 
CheckSwitchTargets(uint32_t cur_offset)1482 bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
1483   const uint32_t insn_count = code_item_->insns_size_in_code_units_;
1484   DCHECK_LT(cur_offset, insn_count);
1485   const uint16_t* insns = code_item_->insns_ + cur_offset;
1486   /* make sure the start of the switch is in range */
1487   int32_t switch_offset = insns[1] | (static_cast<int32_t>(insns[2]) << 16);
1488   if (static_cast<int32_t>(cur_offset) + switch_offset < 0 ||
1489       cur_offset + switch_offset + 2 > insn_count) {
1490     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
1491                                       << ", switch offset " << switch_offset
1492                                       << ", count " << insn_count;
1493     return false;
1494   }
1495   /* offset to switch table is a relative branch-style offset */
1496   const uint16_t* switch_insns = insns + switch_offset;
1497   // Make sure the table is at an even dex pc, that is, 32-bit aligned.
1498   if (!IsAligned<4>(switch_insns)) {
1499     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
1500                                       << ", switch offset " << switch_offset;
1501     return false;
1502   }
1503   // Make sure the switch data is marked as an opcode. This ensures that it was reached when
1504   // traversing the code item linearly. It is an approximation for a by-spec padding value.
1505   if (!GetInstructionFlags(cur_offset + switch_offset).IsOpcode()) {
1506     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "switch table at " << cur_offset
1507                                       << ", switch offset " << switch_offset
1508                                       << " not correctly visited, probably bad padding.";
1509     return false;
1510   }
1511 
1512   bool is_packed_switch = (*insns & 0xff) == Instruction::PACKED_SWITCH;
1513 
1514   uint32_t switch_count = switch_insns[1];
1515   int32_t targets_offset;
1516   uint16_t expected_signature;
1517   if (is_packed_switch) {
1518     /* 0=sig, 1=count, 2/3=firstKey */
1519     targets_offset = 4;
1520     expected_signature = Instruction::kPackedSwitchSignature;
1521   } else {
1522     /* 0=sig, 1=count, 2..count*2 = keys */
1523     targets_offset = 2 + 2 * switch_count;
1524     expected_signature = Instruction::kSparseSwitchSignature;
1525   }
1526   uint32_t table_size = targets_offset + switch_count * 2;
1527   if (switch_insns[0] != expected_signature) {
1528     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1529         << StringPrintf("wrong signature for switch table (%x, wanted %x)",
1530                         switch_insns[0], expected_signature);
1531     return false;
1532   }
1533   /* make sure the end of the switch is in range */
1534   if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) {
1535     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
1536                                       << ", switch offset " << switch_offset
1537                                       << ", end " << (cur_offset + switch_offset + table_size)
1538                                       << ", count " << insn_count;
1539     return false;
1540   }
1541 
1542   constexpr int32_t keys_offset = 2;
1543   if (switch_count > 1) {
1544     if (is_packed_switch) {
1545       /* for a packed switch, verify that keys do not overflow int32 */
1546       int32_t first_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
1547       int32_t max_first_key =
1548           std::numeric_limits<int32_t>::max() - (static_cast<int32_t>(switch_count) - 1);
1549       if (first_key > max_first_key) {
1550         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: first_key=" << first_key
1551                                           << ", switch_count=" << switch_count;
1552         return false;
1553       }
1554     } else {
1555       /* for a sparse switch, verify the keys are in ascending order */
1556       int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
1557       for (uint32_t targ = 1; targ < switch_count; targ++) {
1558         int32_t key =
1559             static_cast<int32_t>(switch_insns[keys_offset + targ * 2]) |
1560             static_cast<int32_t>(switch_insns[keys_offset + targ * 2 + 1] << 16);
1561         if (key <= last_key) {
1562           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid sparse switch: last key=" << last_key
1563                                             << ", this=" << key;
1564           return false;
1565         }
1566         last_key = key;
1567       }
1568     }
1569   }
1570   /* verify each switch target */
1571   for (uint32_t targ = 0; targ < switch_count; targ++) {
1572     int32_t offset = static_cast<int32_t>(switch_insns[targets_offset + targ * 2]) |
1573                      static_cast<int32_t>(switch_insns[targets_offset + targ * 2 + 1] << 16);
1574     int32_t abs_offset = cur_offset + offset;
1575     if (abs_offset < 0 ||
1576         abs_offset >= static_cast<int32_t>(insn_count) ||
1577         !GetInstructionFlags(abs_offset).IsOpcode()) {
1578       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
1579                                         << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
1580                                         << reinterpret_cast<void*>(cur_offset)
1581                                         << "[" << targ << "]";
1582       return false;
1583     }
1584     GetInstructionFlags(abs_offset).SetBranchTarget();
1585   }
1586   return true;
1587 }
1588 
CheckVarArgRegs(uint32_t vA,uint32_t arg[])1589 bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
1590   uint16_t registers_size = code_item_->registers_size_;
1591   for (uint32_t idx = 0; idx < vA; idx++) {
1592     if (arg[idx] >= registers_size) {
1593       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
1594                                         << ") in non-range invoke (>= " << registers_size << ")";
1595       return false;
1596     }
1597   }
1598 
1599   return true;
1600 }
1601 
CheckVarArgRangeRegs(uint32_t vA,uint32_t vC)1602 bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
1603   uint16_t registers_size = code_item_->registers_size_;
1604   // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
1605   // integer overflow when adding them here.
1606   if (vA + vC > registers_size) {
1607     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
1608                                       << " in range invoke (> " << registers_size << ")";
1609     return false;
1610   }
1611   return true;
1612 }
1613 
VerifyCodeFlow()1614 bool MethodVerifier::VerifyCodeFlow() {
1615   uint16_t registers_size = code_item_->registers_size_;
1616   uint32_t insns_size = code_item_->insns_size_in_code_units_;
1617 
1618   /* Create and initialize table holding register status */
1619   reg_table_.Init(kTrackCompilerInterestPoints,
1620                   insn_flags_.get(),
1621                   insns_size,
1622                   registers_size,
1623                   this);
1624 
1625   work_line_.reset(RegisterLine::Create(registers_size, this));
1626   saved_line_.reset(RegisterLine::Create(registers_size, this));
1627 
1628   /* Initialize register types of method arguments. */
1629   if (!SetTypesFromSignature()) {
1630     DCHECK_NE(failures_.size(), 0U);
1631     std::string prepend("Bad signature in ");
1632     prepend += dex_file_->PrettyMethod(dex_method_idx_);
1633     PrependToLastFailMessage(prepend);
1634     return false;
1635   }
1636   // We may have a runtime failure here, clear.
1637   have_pending_runtime_throw_failure_ = false;
1638 
1639   /* Perform code flow verification. */
1640   if (!CodeFlowVerifyMethod()) {
1641     DCHECK_NE(failures_.size(), 0U);
1642     return false;
1643   }
1644   return true;
1645 }
1646 
DumpFailures(std::ostream & os)1647 std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
1648   DCHECK_EQ(failures_.size(), failure_messages_.size());
1649   for (size_t i = 0; i < failures_.size(); ++i) {
1650       os << failure_messages_[i]->str() << "\n";
1651   }
1652   return os;
1653 }
1654 
Dump(std::ostream & os)1655 void MethodVerifier::Dump(std::ostream& os) {
1656   VariableIndentationOutputStream vios(&os);
1657   Dump(&vios);
1658 }
1659 
Dump(VariableIndentationOutputStream * vios)1660 void MethodVerifier::Dump(VariableIndentationOutputStream* vios) {
1661   if (code_item_ == nullptr) {
1662     vios->Stream() << "Native method\n";
1663     return;
1664   }
1665   {
1666     vios->Stream() << "Register Types:\n";
1667     ScopedIndentation indent1(vios);
1668     reg_types_.Dump(vios->Stream());
1669   }
1670   vios->Stream() << "Dumping instructions and register lines:\n";
1671   ScopedIndentation indent1(vios);
1672   const Instruction* inst = Instruction::At(code_item_->insns_);
1673   for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_;
1674       dex_pc += inst->SizeInCodeUnits(), inst = inst->Next()) {
1675     RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1676     if (reg_line != nullptr) {
1677       vios->Stream() << reg_line->Dump(this) << "\n";
1678     }
1679     vios->Stream()
1680         << StringPrintf("0x%04zx", dex_pc) << ": " << GetInstructionFlags(dex_pc).ToString() << " ";
1681     const bool kDumpHexOfInstruction = false;
1682     if (kDumpHexOfInstruction) {
1683       vios->Stream() << inst->DumpHex(5) << " ";
1684     }
1685     vios->Stream() << inst->DumpString(dex_file_) << "\n";
1686   }
1687 }
1688 
IsPrimitiveDescriptor(char descriptor)1689 static bool IsPrimitiveDescriptor(char descriptor) {
1690   switch (descriptor) {
1691     case 'I':
1692     case 'C':
1693     case 'S':
1694     case 'B':
1695     case 'Z':
1696     case 'F':
1697     case 'D':
1698     case 'J':
1699       return true;
1700     default:
1701       return false;
1702   }
1703 }
1704 
SetTypesFromSignature()1705 bool MethodVerifier::SetTypesFromSignature() {
1706   RegisterLine* reg_line = reg_table_.GetLine(0);
1707 
1708   // Should have been verified earlier.
1709   DCHECK_GE(code_item_->registers_size_, code_item_->ins_size_);
1710 
1711   uint32_t arg_start = code_item_->registers_size_ - code_item_->ins_size_;
1712   size_t expected_args = code_item_->ins_size_;   /* long/double count as two */
1713 
1714   // Include the "this" pointer.
1715   size_t cur_arg = 0;
1716   if (!IsStatic()) {
1717     if (expected_args == 0) {
1718       // Expect at least a receiver.
1719       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected 0 args, but method is not static";
1720       return false;
1721     }
1722 
1723     // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1724     // argument as uninitialized. This restricts field access until the superclass constructor is
1725     // called.
1726     const RegType& declaring_class = GetDeclaringClass();
1727     if (IsConstructor()) {
1728       if (declaring_class.IsJavaLangObject()) {
1729         // "this" is implicitly initialized.
1730         reg_line->SetThisInitialized();
1731         reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, declaring_class);
1732       } else {
1733         reg_line->SetRegisterType<LockOp::kClear>(
1734             this,
1735             arg_start + cur_arg,
1736             reg_types_.UninitializedThisArgument(declaring_class));
1737       }
1738     } else {
1739       reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, declaring_class);
1740     }
1741     cur_arg++;
1742   }
1743 
1744   const DexFile::ProtoId& proto_id =
1745       dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1746   DexFileParameterIterator iterator(*dex_file_, proto_id);
1747 
1748   for (; iterator.HasNext(); iterator.Next()) {
1749     const char* descriptor = iterator.GetDescriptor();
1750     if (descriptor == nullptr) {
1751       LOG(FATAL) << "Null descriptor";
1752     }
1753     if (cur_arg >= expected_args) {
1754       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1755                                         << " args, found more (" << descriptor << ")";
1756       return false;
1757     }
1758     switch (descriptor[0]) {
1759       case 'L':
1760       case '[':
1761         // We assume that reference arguments are initialized. The only way it could be otherwise
1762         // (assuming the caller was verified) is if the current method is <init>, but in that case
1763         // it's effectively considered initialized the instant we reach here (in the sense that we
1764         // can return without doing anything or call virtual methods).
1765         {
1766           const RegType& reg_type = ResolveClassAndCheckAccess(iterator.GetTypeIdx());
1767           if (!reg_type.IsNonZeroReferenceTypes()) {
1768             DCHECK(HasFailures());
1769             return false;
1770           }
1771           reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_type);
1772         }
1773         break;
1774       case 'Z':
1775         reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Boolean());
1776         break;
1777       case 'C':
1778         reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Char());
1779         break;
1780       case 'B':
1781         reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Byte());
1782         break;
1783       case 'I':
1784         reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Integer());
1785         break;
1786       case 'S':
1787         reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Short());
1788         break;
1789       case 'F':
1790         reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Float());
1791         break;
1792       case 'J':
1793       case 'D': {
1794         if (cur_arg + 1 >= expected_args) {
1795           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1796               << " args, found more (" << descriptor << ")";
1797           return false;
1798         }
1799 
1800         const RegType* lo_half;
1801         const RegType* hi_half;
1802         if (descriptor[0] == 'J') {
1803           lo_half = &reg_types_.LongLo();
1804           hi_half = &reg_types_.LongHi();
1805         } else {
1806           lo_half = &reg_types_.DoubleLo();
1807           hi_half = &reg_types_.DoubleHi();
1808         }
1809         reg_line->SetRegisterTypeWide(this, arg_start + cur_arg, *lo_half, *hi_half);
1810         cur_arg++;
1811         break;
1812       }
1813       default:
1814         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1815                                           << descriptor << "'";
1816         return false;
1817     }
1818     cur_arg++;
1819   }
1820   if (cur_arg != expected_args) {
1821     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1822                                       << " arguments, found " << cur_arg;
1823     return false;
1824   }
1825   const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1826   // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1827   // format. Only major difference from the method argument format is that 'V' is supported.
1828   bool result;
1829   if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1830     result = descriptor[1] == '\0';
1831   } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
1832     size_t i = 0;
1833     do {
1834       i++;
1835     } while (descriptor[i] == '[');  // process leading [
1836     if (descriptor[i] == 'L') {  // object array
1837       do {
1838         i++;  // find closing ;
1839       } while (descriptor[i] != ';' && descriptor[i] != '\0');
1840       result = descriptor[i] == ';';
1841     } else {  // primitive array
1842       result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1843     }
1844   } else if (descriptor[0] == 'L') {
1845     // could be more thorough here, but shouldn't be required
1846     size_t i = 0;
1847     do {
1848       i++;
1849     } while (descriptor[i] != ';' && descriptor[i] != '\0');
1850     result = descriptor[i] == ';';
1851   } else {
1852     result = false;
1853   }
1854   if (!result) {
1855     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1856                                       << descriptor << "'";
1857   }
1858   return result;
1859 }
1860 
CodeFlowVerifyMethod()1861 bool MethodVerifier::CodeFlowVerifyMethod() {
1862   const uint16_t* insns = code_item_->insns_;
1863   const uint32_t insns_size = code_item_->insns_size_in_code_units_;
1864 
1865   /* Begin by marking the first instruction as "changed". */
1866   GetInstructionFlags(0).SetChanged();
1867   uint32_t start_guess = 0;
1868 
1869   /* Continue until no instructions are marked "changed". */
1870   while (true) {
1871     if (allow_thread_suspension_) {
1872       self_->AllowThreadSuspension();
1873     }
1874     // Find the first marked one. Use "start_guess" as a way to find one quickly.
1875     uint32_t insn_idx = start_guess;
1876     for (; insn_idx < insns_size; insn_idx++) {
1877       if (GetInstructionFlags(insn_idx).IsChanged())
1878         break;
1879     }
1880     if (insn_idx == insns_size) {
1881       if (start_guess != 0) {
1882         /* try again, starting from the top */
1883         start_guess = 0;
1884         continue;
1885       } else {
1886         /* all flags are clear */
1887         break;
1888       }
1889     }
1890     // We carry the working set of registers from instruction to instruction. If this address can
1891     // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1892     // "changed" flags, we need to load the set of registers from the table.
1893     // Because we always prefer to continue on to the next instruction, we should never have a
1894     // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1895     // target.
1896     work_insn_idx_ = insn_idx;
1897     if (GetInstructionFlags(insn_idx).IsBranchTarget()) {
1898       work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1899     } else if (kIsDebugBuild) {
1900       /*
1901        * Sanity check: retrieve the stored register line (assuming
1902        * a full table) and make sure it actually matches.
1903        */
1904       RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1905       if (register_line != nullptr) {
1906         if (work_line_->CompareLine(register_line) != 0) {
1907           Dump(std::cout);
1908           std::cout << info_messages_.str();
1909           LOG(FATAL) << "work_line diverged in " << dex_file_->PrettyMethod(dex_method_idx_)
1910                      << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1911                      << " work_line=" << work_line_->Dump(this) << "\n"
1912                      << "  expected=" << register_line->Dump(this);
1913         }
1914       }
1915     }
1916     if (!CodeFlowVerifyInstruction(&start_guess)) {
1917       std::string prepend(dex_file_->PrettyMethod(dex_method_idx_));
1918       prepend += " failed to verify: ";
1919       PrependToLastFailMessage(prepend);
1920       return false;
1921     }
1922     /* Clear "changed" and mark as visited. */
1923     GetInstructionFlags(insn_idx).SetVisited();
1924     GetInstructionFlags(insn_idx).ClearChanged();
1925   }
1926 
1927   if (kDebugVerify) {
1928     /*
1929      * Scan for dead code. There's nothing "evil" about dead code
1930      * (besides the wasted space), but it indicates a flaw somewhere
1931      * down the line, possibly in the verifier.
1932      *
1933      * If we've substituted "always throw" instructions into the stream,
1934      * we are almost certainly going to have some dead code.
1935      */
1936     int dead_start = -1;
1937     uint32_t insn_idx = 0;
1938     for (; insn_idx < insns_size;
1939          insn_idx += Instruction::At(code_item_->insns_ + insn_idx)->SizeInCodeUnits()) {
1940       /*
1941        * Switch-statement data doesn't get "visited" by scanner. It
1942        * may or may not be preceded by a padding NOP (for alignment).
1943        */
1944       if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1945           insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1946           insns[insn_idx] == Instruction::kArrayDataSignature ||
1947           (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1948            (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1949             insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1950             insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1951         GetInstructionFlags(insn_idx).SetVisited();
1952       }
1953 
1954       if (!GetInstructionFlags(insn_idx).IsVisited()) {
1955         if (dead_start < 0)
1956           dead_start = insn_idx;
1957       } else if (dead_start >= 0) {
1958         LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1959                         << "-" << reinterpret_cast<void*>(insn_idx - 1);
1960         dead_start = -1;
1961       }
1962     }
1963     if (dead_start >= 0) {
1964       LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1965                       << "-" << reinterpret_cast<void*>(insn_idx - 1);
1966     }
1967     // To dump the state of the verify after a method, do something like:
1968     // if (dex_file_->PrettyMethod(dex_method_idx_) ==
1969     //     "boolean java.lang.String.equals(java.lang.Object)") {
1970     //   LOG(INFO) << info_messages_.str();
1971     // }
1972   }
1973   return true;
1974 }
1975 
1976 // Returns the index of the first final instance field of the given class, or kDexNoIndex if there
1977 // is no such field.
GetFirstFinalInstanceFieldIndex(const DexFile & dex_file,dex::TypeIndex type_idx)1978 static uint32_t GetFirstFinalInstanceFieldIndex(const DexFile& dex_file, dex::TypeIndex type_idx) {
1979   const DexFile::ClassDef* class_def = dex_file.FindClassDef(type_idx);
1980   DCHECK(class_def != nullptr);
1981   const uint8_t* class_data = dex_file.GetClassData(*class_def);
1982   DCHECK(class_data != nullptr);
1983   ClassDataItemIterator it(dex_file, class_data);
1984   // Skip static fields.
1985   while (it.HasNextStaticField()) {
1986     it.Next();
1987   }
1988   while (it.HasNextInstanceField()) {
1989     if ((it.GetFieldAccessFlags() & kAccFinal) != 0) {
1990       return it.GetMemberIndex();
1991     }
1992     it.Next();
1993   }
1994   return DexFile::kDexNoIndex;
1995 }
1996 
1997 // Setup a register line for the given return instruction.
AdjustReturnLine(MethodVerifier * verifier,const Instruction * ret_inst,RegisterLine * line)1998 static void AdjustReturnLine(MethodVerifier* verifier,
1999                              const Instruction* ret_inst,
2000                              RegisterLine* line) {
2001   Instruction::Code opcode = ret_inst->Opcode();
2002 
2003   switch (opcode) {
2004     case Instruction::RETURN_VOID:
2005     case Instruction::RETURN_VOID_NO_BARRIER:
2006       SafelyMarkAllRegistersAsConflicts(verifier, line);
2007       break;
2008 
2009     case Instruction::RETURN:
2010     case Instruction::RETURN_OBJECT:
2011       line->MarkAllRegistersAsConflictsExcept(verifier, ret_inst->VRegA_11x());
2012       break;
2013 
2014     case Instruction::RETURN_WIDE:
2015       line->MarkAllRegistersAsConflictsExceptWide(verifier, ret_inst->VRegA_11x());
2016       break;
2017 
2018     default:
2019       LOG(FATAL) << "Unknown return opcode " << opcode;
2020       UNREACHABLE();
2021   }
2022 }
2023 
CodeFlowVerifyInstruction(uint32_t * start_guess)2024 bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
2025   // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
2026   // We want the state _before_ the instruction, for the case where the dex pc we're
2027   // interested in is itself a monitor-enter instruction (which is a likely place
2028   // for a thread to be suspended).
2029   if (monitor_enter_dex_pcs_ != nullptr && work_insn_idx_ == interesting_dex_pc_) {
2030     monitor_enter_dex_pcs_->clear();  // The new work line is more accurate than the previous one.
2031     for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) {
2032       monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i));
2033     }
2034   }
2035 
2036   /*
2037    * Once we finish decoding the instruction, we need to figure out where
2038    * we can go from here. There are three possible ways to transfer
2039    * control to another statement:
2040    *
2041    * (1) Continue to the next instruction. Applies to all but
2042    *     unconditional branches, method returns, and exception throws.
2043    * (2) Branch to one or more possible locations. Applies to branches
2044    *     and switch statements.
2045    * (3) Exception handlers. Applies to any instruction that can
2046    *     throw an exception that is handled by an encompassing "try"
2047    *     block.
2048    *
2049    * We can also return, in which case there is no successor instruction
2050    * from this point.
2051    *
2052    * The behavior can be determined from the opcode flags.
2053    */
2054   const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
2055   const Instruction* inst = Instruction::At(insns);
2056   int opcode_flags = Instruction::FlagsOf(inst->Opcode());
2057 
2058   int32_t branch_target = 0;
2059   bool just_set_result = false;
2060   if (kDebugVerify) {
2061     // Generate processing back trace to debug verifier
2062     LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
2063                     << work_line_->Dump(this) << "\n";
2064   }
2065 
2066   /*
2067    * Make a copy of the previous register state. If the instruction
2068    * can throw an exception, we will copy/merge this into the "catch"
2069    * address rather than work_line, because we don't want the result
2070    * from the "successful" code path (e.g. a check-cast that "improves"
2071    * a type) to be visible to the exception handler.
2072    */
2073   if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
2074     saved_line_->CopyFromLine(work_line_.get());
2075   } else if (kIsDebugBuild) {
2076     saved_line_->FillWithGarbage();
2077   }
2078   DCHECK(!have_pending_runtime_throw_failure_);  // Per-instruction flag, should not be set here.
2079 
2080 
2081   // We need to ensure the work line is consistent while performing validation. When we spot a
2082   // peephole pattern we compute a new line for either the fallthrough instruction or the
2083   // branch target.
2084   RegisterLineArenaUniquePtr branch_line;
2085   RegisterLineArenaUniquePtr fallthrough_line;
2086 
2087   switch (inst->Opcode()) {
2088     case Instruction::NOP:
2089       /*
2090        * A "pure" NOP has no effect on anything. Data tables start with
2091        * a signature that looks like a NOP; if we see one of these in
2092        * the course of executing code then we have a problem.
2093        */
2094       if (inst->VRegA_10x() != 0) {
2095         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
2096       }
2097       break;
2098 
2099     case Instruction::MOVE:
2100       work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
2101       break;
2102     case Instruction::MOVE_FROM16:
2103       work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
2104       break;
2105     case Instruction::MOVE_16:
2106       work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
2107       break;
2108     case Instruction::MOVE_WIDE:
2109       work_line_->CopyRegister2(this, inst->VRegA_12x(), inst->VRegB_12x());
2110       break;
2111     case Instruction::MOVE_WIDE_FROM16:
2112       work_line_->CopyRegister2(this, inst->VRegA_22x(), inst->VRegB_22x());
2113       break;
2114     case Instruction::MOVE_WIDE_16:
2115       work_line_->CopyRegister2(this, inst->VRegA_32x(), inst->VRegB_32x());
2116       break;
2117     case Instruction::MOVE_OBJECT:
2118       work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
2119       break;
2120     case Instruction::MOVE_OBJECT_FROM16:
2121       work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
2122       break;
2123     case Instruction::MOVE_OBJECT_16:
2124       work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
2125       break;
2126 
2127     /*
2128      * The move-result instructions copy data out of a "pseudo-register"
2129      * with the results from the last method invocation. In practice we
2130      * might want to hold the result in an actual CPU register, so the
2131      * Dalvik spec requires that these only appear immediately after an
2132      * invoke or filled-new-array.
2133      *
2134      * These calls invalidate the "result" register. (This is now
2135      * redundant with the reset done below, but it can make the debug info
2136      * easier to read in some cases.)
2137      */
2138     case Instruction::MOVE_RESULT:
2139       work_line_->CopyResultRegister1(this, inst->VRegA_11x(), false);
2140       break;
2141     case Instruction::MOVE_RESULT_WIDE:
2142       work_line_->CopyResultRegister2(this, inst->VRegA_11x());
2143       break;
2144     case Instruction::MOVE_RESULT_OBJECT:
2145       work_line_->CopyResultRegister1(this, inst->VRegA_11x(), true);
2146       break;
2147 
2148     case Instruction::MOVE_EXCEPTION: {
2149       // We do not allow MOVE_EXCEPTION as the first instruction in a method. This is a simple case
2150       // where one entrypoint to the catch block is not actually an exception path.
2151       if (work_insn_idx_ == 0) {
2152         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "move-exception at pc 0x0";
2153         break;
2154       }
2155       /*
2156        * This statement can only appear as the first instruction in an exception handler. We verify
2157        * that as part of extracting the exception type from the catch block list.
2158        */
2159       const RegType& res_type = GetCaughtExceptionType();
2160       work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_11x(), res_type);
2161       break;
2162     }
2163     case Instruction::RETURN_VOID:
2164       if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
2165         if (!GetMethodReturnType().IsConflict()) {
2166           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
2167         }
2168       }
2169       break;
2170     case Instruction::RETURN:
2171       if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
2172         /* check the method signature */
2173         const RegType& return_type = GetMethodReturnType();
2174         if (!return_type.IsCategory1Types()) {
2175           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
2176                                             << return_type;
2177         } else {
2178           // Compilers may generate synthetic functions that write byte values into boolean fields.
2179           // Also, it may use integer values for boolean, byte, short, and character return types.
2180           const uint32_t vregA = inst->VRegA_11x();
2181           const RegType& src_type = work_line_->GetRegisterType(this, vregA);
2182           bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
2183                           ((return_type.IsBoolean() || return_type.IsByte() ||
2184                            return_type.IsShort() || return_type.IsChar()) &&
2185                            src_type.IsInteger()));
2186           /* check the register contents */
2187           bool success =
2188               work_line_->VerifyRegisterType(this, vregA, use_src ? src_type : return_type);
2189           if (!success) {
2190             AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
2191           }
2192         }
2193       }
2194       break;
2195     case Instruction::RETURN_WIDE:
2196       if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
2197         /* check the method signature */
2198         const RegType& return_type = GetMethodReturnType();
2199         if (!return_type.IsCategory2Types()) {
2200           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
2201         } else {
2202           /* check the register contents */
2203           const uint32_t vregA = inst->VRegA_11x();
2204           bool success = work_line_->VerifyRegisterType(this, vregA, return_type);
2205           if (!success) {
2206             AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
2207           }
2208         }
2209       }
2210       break;
2211     case Instruction::RETURN_OBJECT:
2212       if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
2213         const RegType& return_type = GetMethodReturnType();
2214         if (!return_type.IsReferenceTypes()) {
2215           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
2216         } else {
2217           /* return_type is the *expected* return type, not register value */
2218           DCHECK(!return_type.IsZero());
2219           DCHECK(!return_type.IsUninitializedReference());
2220           const uint32_t vregA = inst->VRegA_11x();
2221           const RegType& reg_type = work_line_->GetRegisterType(this, vregA);
2222           // Disallow returning undefined, conflict & uninitialized values and verify that the
2223           // reference in vAA is an instance of the "return_type."
2224           if (reg_type.IsUndefined()) {
2225             Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning undefined register";
2226           } else if (reg_type.IsConflict()) {
2227             Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning register with conflict";
2228           } else if (reg_type.IsUninitializedTypes()) {
2229             Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning uninitialized object '"
2230                                               << reg_type << "'";
2231           } else if (!reg_type.IsReferenceTypes()) {
2232             // We really do expect a reference here.
2233             Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object returns a non-reference type "
2234                                               << reg_type;
2235           } else if (!return_type.IsAssignableFrom(reg_type, this)) {
2236             if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
2237               Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type
2238                   << "' or '" << reg_type << "'";
2239             } else {
2240               bool soft_error = false;
2241               // Check whether arrays are involved. They will show a valid class status, even
2242               // if their components are erroneous.
2243               if (reg_type.IsArrayTypes() && return_type.IsArrayTypes()) {
2244                 return_type.CanAssignArray(reg_type, reg_types_, class_loader_, this, &soft_error);
2245                 if (soft_error) {
2246                   Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "array with erroneous component type: "
2247                         << reg_type << " vs " << return_type;
2248                 }
2249               }
2250 
2251               if (!soft_error) {
2252                 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
2253                     << "', but expected from declaration '" << return_type << "'";
2254               }
2255             }
2256           }
2257         }
2258       }
2259       break;
2260 
2261       /* could be boolean, int, float, or a null reference */
2262     case Instruction::CONST_4: {
2263       int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
2264       work_line_->SetRegisterType<LockOp::kClear>(
2265           this, inst->VRegA_11n(), DetermineCat1Constant(val, need_precise_constants_));
2266       break;
2267     }
2268     case Instruction::CONST_16: {
2269       int16_t val = static_cast<int16_t>(inst->VRegB_21s());
2270       work_line_->SetRegisterType<LockOp::kClear>(
2271           this, inst->VRegA_21s(), DetermineCat1Constant(val, need_precise_constants_));
2272       break;
2273     }
2274     case Instruction::CONST: {
2275       int32_t val = inst->VRegB_31i();
2276       work_line_->SetRegisterType<LockOp::kClear>(
2277           this, inst->VRegA_31i(), DetermineCat1Constant(val, need_precise_constants_));
2278       break;
2279     }
2280     case Instruction::CONST_HIGH16: {
2281       int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
2282       work_line_->SetRegisterType<LockOp::kClear>(
2283           this, inst->VRegA_21h(), DetermineCat1Constant(val, need_precise_constants_));
2284       break;
2285     }
2286       /* could be long or double; resolved upon use */
2287     case Instruction::CONST_WIDE_16: {
2288       int64_t val = static_cast<int16_t>(inst->VRegB_21s());
2289       const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
2290       const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
2291       work_line_->SetRegisterTypeWide(this, inst->VRegA_21s(), lo, hi);
2292       break;
2293     }
2294     case Instruction::CONST_WIDE_32: {
2295       int64_t val = static_cast<int32_t>(inst->VRegB_31i());
2296       const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
2297       const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
2298       work_line_->SetRegisterTypeWide(this, inst->VRegA_31i(), lo, hi);
2299       break;
2300     }
2301     case Instruction::CONST_WIDE: {
2302       int64_t val = inst->VRegB_51l();
2303       const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
2304       const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
2305       work_line_->SetRegisterTypeWide(this, inst->VRegA_51l(), lo, hi);
2306       break;
2307     }
2308     case Instruction::CONST_WIDE_HIGH16: {
2309       int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
2310       const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
2311       const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
2312       work_line_->SetRegisterTypeWide(this, inst->VRegA_21h(), lo, hi);
2313       break;
2314     }
2315     case Instruction::CONST_STRING:
2316       work_line_->SetRegisterType<LockOp::kClear>(
2317           this, inst->VRegA_21c(), reg_types_.JavaLangString());
2318       break;
2319     case Instruction::CONST_STRING_JUMBO:
2320       work_line_->SetRegisterType<LockOp::kClear>(
2321           this, inst->VRegA_31c(), reg_types_.JavaLangString());
2322       break;
2323     case Instruction::CONST_CLASS: {
2324       // Get type from instruction if unresolved then we need an access check
2325       // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
2326       const RegType& res_type = ResolveClassAndCheckAccess(dex::TypeIndex(inst->VRegB_21c()));
2327       // Register holds class, ie its type is class, on error it will hold Conflict.
2328       work_line_->SetRegisterType<LockOp::kClear>(
2329           this, inst->VRegA_21c(), res_type.IsConflict() ? res_type
2330                                                          : reg_types_.JavaLangClass());
2331       break;
2332     }
2333     case Instruction::MONITOR_ENTER:
2334       work_line_->PushMonitor(this, inst->VRegA_11x(), work_insn_idx_);
2335       // Check whether the previous instruction is a move-object with vAA as a source, creating
2336       // untracked lock aliasing.
2337       if (0 != work_insn_idx_ && !GetInstructionFlags(work_insn_idx_).IsBranchTarget()) {
2338         uint32_t prev_idx = work_insn_idx_ - 1;
2339         while (0 != prev_idx && !GetInstructionFlags(prev_idx).IsOpcode()) {
2340           prev_idx--;
2341         }
2342         const Instruction* prev_inst = Instruction::At(code_item_->insns_ + prev_idx);
2343         switch (prev_inst->Opcode()) {
2344           case Instruction::MOVE_OBJECT:
2345           case Instruction::MOVE_OBJECT_16:
2346           case Instruction::MOVE_OBJECT_FROM16:
2347             if (prev_inst->VRegB() == inst->VRegA_11x()) {
2348               // Redo the copy. This won't change the register types, but update the lock status
2349               // for the aliased register.
2350               work_line_->CopyRegister1(this,
2351                                         prev_inst->VRegA(),
2352                                         prev_inst->VRegB(),
2353                                         kTypeCategoryRef);
2354             }
2355             break;
2356 
2357           default:  // Other instruction types ignored.
2358             break;
2359         }
2360       }
2361       break;
2362     case Instruction::MONITOR_EXIT:
2363       /*
2364        * monitor-exit instructions are odd. They can throw exceptions,
2365        * but when they do they act as if they succeeded and the PC is
2366        * pointing to the following instruction. (This behavior goes back
2367        * to the need to handle asynchronous exceptions, a now-deprecated
2368        * feature that Dalvik doesn't support.)
2369        *
2370        * In practice we don't need to worry about this. The only
2371        * exceptions that can be thrown from monitor-exit are for a
2372        * null reference and -exit without a matching -enter. If the
2373        * structured locking checks are working, the former would have
2374        * failed on the -enter instruction, and the latter is impossible.
2375        *
2376        * This is fortunate, because issue 3221411 prevents us from
2377        * chasing the "can throw" path when monitor verification is
2378        * enabled. If we can fully verify the locking we can ignore
2379        * some catch blocks (which will show up as "dead" code when
2380        * we skip them here); if we can't, then the code path could be
2381        * "live" so we still need to check it.
2382        */
2383       opcode_flags &= ~Instruction::kThrow;
2384       work_line_->PopMonitor(this, inst->VRegA_11x());
2385       break;
2386     case Instruction::CHECK_CAST:
2387     case Instruction::INSTANCE_OF: {
2388       /*
2389        * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
2390        * could be a "upcast" -- not expected, so we don't try to address it.)
2391        *
2392        * If it fails, an exception is thrown, which we deal with later by ignoring the update to
2393        * dec_insn.vA when branching to a handler.
2394        */
2395       const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
2396       const dex::TypeIndex type_idx((is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c());
2397       const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
2398       if (res_type.IsConflict()) {
2399         // If this is a primitive type, fail HARD.
2400         ObjPtr<mirror::Class> klass =
2401             ClassLinker::LookupResolvedType(type_idx, dex_cache_.Get(), class_loader_.Get());
2402         if (klass != nullptr && klass->IsPrimitive()) {
2403           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "using primitive type "
2404               << dex_file_->StringByTypeIdx(type_idx) << " in instanceof in "
2405               << GetDeclaringClass();
2406           break;
2407         }
2408 
2409         DCHECK_NE(failures_.size(), 0U);
2410         if (!is_checkcast) {
2411           work_line_->SetRegisterType<LockOp::kClear>(this,
2412                                                       inst->VRegA_22c(),
2413                                                       reg_types_.Boolean());
2414         }
2415         break;  // bad class
2416       }
2417       // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
2418       uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
2419       const RegType& orig_type = work_line_->GetRegisterType(this, orig_type_reg);
2420       if (!res_type.IsNonZeroReferenceTypes()) {
2421         if (is_checkcast) {
2422           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
2423         } else {
2424           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
2425         }
2426       } else if (!orig_type.IsReferenceTypes()) {
2427         if (is_checkcast) {
2428           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
2429         } else {
2430           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
2431         }
2432       } else if (orig_type.IsUninitializedTypes()) {
2433         if (is_checkcast) {
2434           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on uninitialized reference in v"
2435                                             << orig_type_reg;
2436         } else {
2437           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on uninitialized reference in v"
2438                                             << orig_type_reg;
2439         }
2440       } else {
2441         if (is_checkcast) {
2442           work_line_->SetRegisterType<LockOp::kKeep>(this, inst->VRegA_21c(), res_type);
2443         } else {
2444           work_line_->SetRegisterType<LockOp::kClear>(this,
2445                                                       inst->VRegA_22c(),
2446                                                       reg_types_.Boolean());
2447         }
2448       }
2449       break;
2450     }
2451     case Instruction::ARRAY_LENGTH: {
2452       const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegB_12x());
2453       if (res_type.IsReferenceTypes()) {
2454         if (!res_type.IsArrayTypes() && !res_type.IsZero()) {  // ie not an array or null
2455           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
2456         } else {
2457           work_line_->SetRegisterType<LockOp::kClear>(this,
2458                                                       inst->VRegA_12x(),
2459                                                       reg_types_.Integer());
2460         }
2461       } else {
2462         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
2463       }
2464       break;
2465     }
2466     case Instruction::NEW_INSTANCE: {
2467       const RegType& res_type = ResolveClassAndCheckAccess(dex::TypeIndex(inst->VRegB_21c()));
2468       if (res_type.IsConflict()) {
2469         DCHECK_NE(failures_.size(), 0U);
2470         break;  // bad class
2471       }
2472       // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
2473       // can't create an instance of an interface or abstract class */
2474       if (!res_type.IsInstantiableTypes()) {
2475         Fail(VERIFY_ERROR_INSTANTIATION)
2476             << "new-instance on primitive, interface or abstract class" << res_type;
2477         // Soft failure so carry on to set register type.
2478       }
2479       const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
2480       // Any registers holding previous allocations from this address that have not yet been
2481       // initialized must be marked invalid.
2482       work_line_->MarkUninitRefsAsInvalid(this, uninit_type);
2483       // add the new uninitialized reference to the register state
2484       work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_21c(), uninit_type);
2485       break;
2486     }
2487     case Instruction::NEW_ARRAY:
2488       VerifyNewArray(inst, false, false);
2489       break;
2490     case Instruction::FILLED_NEW_ARRAY:
2491       VerifyNewArray(inst, true, false);
2492       just_set_result = true;  // Filled new array sets result register
2493       break;
2494     case Instruction::FILLED_NEW_ARRAY_RANGE:
2495       VerifyNewArray(inst, true, true);
2496       just_set_result = true;  // Filled new array range sets result register
2497       break;
2498     case Instruction::CMPL_FLOAT:
2499     case Instruction::CMPG_FLOAT:
2500       if (!work_line_->VerifyRegisterType(this, inst->VRegB_23x(), reg_types_.Float())) {
2501         break;
2502       }
2503       if (!work_line_->VerifyRegisterType(this, inst->VRegC_23x(), reg_types_.Float())) {
2504         break;
2505       }
2506       work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), reg_types_.Integer());
2507       break;
2508     case Instruction::CMPL_DOUBLE:
2509     case Instruction::CMPG_DOUBLE:
2510       if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.DoubleLo(),
2511                                               reg_types_.DoubleHi())) {
2512         break;
2513       }
2514       if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.DoubleLo(),
2515                                               reg_types_.DoubleHi())) {
2516         break;
2517       }
2518       work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), reg_types_.Integer());
2519       break;
2520     case Instruction::CMP_LONG:
2521       if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.LongLo(),
2522                                               reg_types_.LongHi())) {
2523         break;
2524       }
2525       if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.LongLo(),
2526                                               reg_types_.LongHi())) {
2527         break;
2528       }
2529       work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), reg_types_.Integer());
2530       break;
2531     case Instruction::THROW: {
2532       const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegA_11x());
2533       if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type, this)) {
2534         if (res_type.IsUninitializedTypes()) {
2535           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "thrown exception not initialized";
2536         } else if (!res_type.IsReferenceTypes()) {
2537           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "thrown value of non-reference type " << res_type;
2538         } else {
2539           Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
2540                 << "thrown class " << res_type << " not instanceof Throwable";
2541         }
2542       }
2543       break;
2544     }
2545     case Instruction::GOTO:
2546     case Instruction::GOTO_16:
2547     case Instruction::GOTO_32:
2548       /* no effect on or use of registers */
2549       break;
2550 
2551     case Instruction::PACKED_SWITCH:
2552     case Instruction::SPARSE_SWITCH:
2553       /* verify that vAA is an integer, or can be converted to one */
2554       work_line_->VerifyRegisterType(this, inst->VRegA_31t(), reg_types_.Integer());
2555       break;
2556 
2557     case Instruction::FILL_ARRAY_DATA: {
2558       /* Similar to the verification done for APUT */
2559       const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegA_31t());
2560       /* array_type can be null if the reg type is Zero */
2561       if (!array_type.IsZero()) {
2562         if (!array_type.IsArrayTypes()) {
2563           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
2564                                             << array_type;
2565         } else if (array_type.IsUnresolvedTypes()) {
2566           // If it's an unresolved array type, it must be non-primitive.
2567           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data for array of type "
2568                                             << array_type;
2569         } else {
2570           const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
2571           DCHECK(!component_type.IsConflict());
2572           if (component_type.IsNonZeroReferenceTypes()) {
2573             Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
2574                                               << component_type;
2575           } else {
2576             // Now verify if the element width in the table matches the element width declared in
2577             // the array
2578             const uint16_t* array_data =
2579                 insns + (insns[1] | (static_cast<int32_t>(insns[2]) << 16));
2580             if (array_data[0] != Instruction::kArrayDataSignature) {
2581               Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
2582             } else {
2583               size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
2584               // Since we don't compress the data in Dex, expect to see equal width of data stored
2585               // in the table and expected from the array class.
2586               if (array_data[1] != elem_width) {
2587                 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
2588                                                   << " vs " << elem_width << ")";
2589               }
2590             }
2591           }
2592         }
2593       }
2594       break;
2595     }
2596     case Instruction::IF_EQ:
2597     case Instruction::IF_NE: {
2598       const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
2599       const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
2600       bool mismatch = false;
2601       if (reg_type1.IsZero()) {  // zero then integral or reference expected
2602         mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
2603       } else if (reg_type1.IsReferenceTypes()) {  // both references?
2604         mismatch = !reg_type2.IsReferenceTypes();
2605       } else {  // both integral?
2606         mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
2607       }
2608       if (mismatch) {
2609         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
2610                                           << reg_type2 << ") must both be references or integral";
2611       }
2612       break;
2613     }
2614     case Instruction::IF_LT:
2615     case Instruction::IF_GE:
2616     case Instruction::IF_GT:
2617     case Instruction::IF_LE: {
2618       const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
2619       const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
2620       if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
2621         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
2622                                           << reg_type2 << ") must be integral";
2623       }
2624       break;
2625     }
2626     case Instruction::IF_EQZ:
2627     case Instruction::IF_NEZ: {
2628       const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2629       if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
2630         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2631                                           << " unexpected as arg to if-eqz/if-nez";
2632       }
2633 
2634       // Find previous instruction - its existence is a precondition to peephole optimization.
2635       uint32_t instance_of_idx = 0;
2636       if (0 != work_insn_idx_) {
2637         instance_of_idx = work_insn_idx_ - 1;
2638         while (0 != instance_of_idx && !GetInstructionFlags(instance_of_idx).IsOpcode()) {
2639           instance_of_idx--;
2640         }
2641         if (FailOrAbort(this, GetInstructionFlags(instance_of_idx).IsOpcode(),
2642                         "Unable to get previous instruction of if-eqz/if-nez for work index ",
2643                         work_insn_idx_)) {
2644           break;
2645         }
2646       } else {
2647         break;
2648       }
2649 
2650       const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx);
2651 
2652       /* Check for peep-hole pattern of:
2653        *    ...;
2654        *    instance-of vX, vY, T;
2655        *    ifXXX vX, label ;
2656        *    ...;
2657        * label:
2658        *    ...;
2659        * and sharpen the type of vY to be type T.
2660        * Note, this pattern can't be if:
2661        *  - if there are other branches to this branch,
2662        *  - when vX == vY.
2663        */
2664       if (!CurrentInsnFlags()->IsBranchTarget() &&
2665           (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) &&
2666           (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) &&
2667           (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) {
2668         // Check the type of the instance-of is different than that of registers type, as if they
2669         // are the same there is no work to be done here. Check that the conversion is not to or
2670         // from an unresolved type as type information is imprecise. If the instance-of is to an
2671         // interface then ignore the type information as interfaces can only be treated as Objects
2672         // and we don't want to disallow field and other operations on the object. If the value
2673         // being instance-of checked against is known null (zero) then allow the optimization as
2674         // we didn't have type information. If the merge of the instance-of type with the original
2675         // type is assignable to the original then allow optimization. This check is performed to
2676         // ensure that subsequent merges don't lose type information - such as becoming an
2677         // interface from a class that would lose information relevant to field checks.
2678         const RegType& orig_type = work_line_->GetRegisterType(this, instance_of_inst->VRegB_22c());
2679         const RegType& cast_type = ResolveClassAndCheckAccess(
2680             dex::TypeIndex(instance_of_inst->VRegC_22c()));
2681 
2682         if (!orig_type.Equals(cast_type) &&
2683             !cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
2684             cast_type.HasClass() &&             // Could be conflict type, make sure it has a class.
2685             !cast_type.GetClass()->IsInterface() &&
2686             (orig_type.IsZero() ||
2687                 orig_type.IsStrictlyAssignableFrom(
2688                     cast_type.Merge(orig_type, &reg_types_, this), this))) {
2689           RegisterLine* update_line = RegisterLine::Create(code_item_->registers_size_, this);
2690           if (inst->Opcode() == Instruction::IF_EQZ) {
2691             fallthrough_line.reset(update_line);
2692           } else {
2693             branch_line.reset(update_line);
2694           }
2695           update_line->CopyFromLine(work_line_.get());
2696           update_line->SetRegisterType<LockOp::kKeep>(this,
2697                                                       instance_of_inst->VRegB_22c(),
2698                                                       cast_type);
2699           if (!GetInstructionFlags(instance_of_idx).IsBranchTarget() && 0 != instance_of_idx) {
2700             // See if instance-of was preceded by a move-object operation, common due to the small
2701             // register encoding space of instance-of, and propagate type information to the source
2702             // of the move-object.
2703             uint32_t move_idx = instance_of_idx - 1;
2704             while (0 != move_idx && !GetInstructionFlags(move_idx).IsOpcode()) {
2705               move_idx--;
2706             }
2707             if (FailOrAbort(this, GetInstructionFlags(move_idx).IsOpcode(),
2708                             "Unable to get previous instruction of if-eqz/if-nez for work index ",
2709                             work_insn_idx_)) {
2710               break;
2711             }
2712             const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx);
2713             switch (move_inst->Opcode()) {
2714               case Instruction::MOVE_OBJECT:
2715                 if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) {
2716                   update_line->SetRegisterType<LockOp::kKeep>(this,
2717                                                               move_inst->VRegB_12x(),
2718                                                               cast_type);
2719                 }
2720                 break;
2721               case Instruction::MOVE_OBJECT_FROM16:
2722                 if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) {
2723                   update_line->SetRegisterType<LockOp::kKeep>(this,
2724                                                               move_inst->VRegB_22x(),
2725                                                               cast_type);
2726                 }
2727                 break;
2728               case Instruction::MOVE_OBJECT_16:
2729                 if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) {
2730                   update_line->SetRegisterType<LockOp::kKeep>(this,
2731                                                               move_inst->VRegB_32x(),
2732                                                               cast_type);
2733                 }
2734                 break;
2735               default:
2736                 break;
2737             }
2738           }
2739         }
2740       }
2741 
2742       break;
2743     }
2744     case Instruction::IF_LTZ:
2745     case Instruction::IF_GEZ:
2746     case Instruction::IF_GTZ:
2747     case Instruction::IF_LEZ: {
2748       const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2749       if (!reg_type.IsIntegralTypes()) {
2750         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2751                                           << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
2752       }
2753       break;
2754     }
2755     case Instruction::AGET_BOOLEAN:
2756       VerifyAGet(inst, reg_types_.Boolean(), true);
2757       break;
2758     case Instruction::AGET_BYTE:
2759       VerifyAGet(inst, reg_types_.Byte(), true);
2760       break;
2761     case Instruction::AGET_CHAR:
2762       VerifyAGet(inst, reg_types_.Char(), true);
2763       break;
2764     case Instruction::AGET_SHORT:
2765       VerifyAGet(inst, reg_types_.Short(), true);
2766       break;
2767     case Instruction::AGET:
2768       VerifyAGet(inst, reg_types_.Integer(), true);
2769       break;
2770     case Instruction::AGET_WIDE:
2771       VerifyAGet(inst, reg_types_.LongLo(), true);
2772       break;
2773     case Instruction::AGET_OBJECT:
2774       VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2775       break;
2776 
2777     case Instruction::APUT_BOOLEAN:
2778       VerifyAPut(inst, reg_types_.Boolean(), true);
2779       break;
2780     case Instruction::APUT_BYTE:
2781       VerifyAPut(inst, reg_types_.Byte(), true);
2782       break;
2783     case Instruction::APUT_CHAR:
2784       VerifyAPut(inst, reg_types_.Char(), true);
2785       break;
2786     case Instruction::APUT_SHORT:
2787       VerifyAPut(inst, reg_types_.Short(), true);
2788       break;
2789     case Instruction::APUT:
2790       VerifyAPut(inst, reg_types_.Integer(), true);
2791       break;
2792     case Instruction::APUT_WIDE:
2793       VerifyAPut(inst, reg_types_.LongLo(), true);
2794       break;
2795     case Instruction::APUT_OBJECT:
2796       VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2797       break;
2798 
2799     case Instruction::IGET_BOOLEAN:
2800       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, false);
2801       break;
2802     case Instruction::IGET_BYTE:
2803       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, false);
2804       break;
2805     case Instruction::IGET_CHAR:
2806       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, false);
2807       break;
2808     case Instruction::IGET_SHORT:
2809       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, false);
2810       break;
2811     case Instruction::IGET:
2812       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, false);
2813       break;
2814     case Instruction::IGET_WIDE:
2815       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, false);
2816       break;
2817     case Instruction::IGET_OBJECT:
2818       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
2819                                                     false);
2820       break;
2821 
2822     case Instruction::IPUT_BOOLEAN:
2823       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, false);
2824       break;
2825     case Instruction::IPUT_BYTE:
2826       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, false);
2827       break;
2828     case Instruction::IPUT_CHAR:
2829       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, false);
2830       break;
2831     case Instruction::IPUT_SHORT:
2832       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, false);
2833       break;
2834     case Instruction::IPUT:
2835       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, false);
2836       break;
2837     case Instruction::IPUT_WIDE:
2838       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, false);
2839       break;
2840     case Instruction::IPUT_OBJECT:
2841       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
2842                                                     false);
2843       break;
2844 
2845     case Instruction::SGET_BOOLEAN:
2846       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, true);
2847       break;
2848     case Instruction::SGET_BYTE:
2849       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, true);
2850       break;
2851     case Instruction::SGET_CHAR:
2852       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, true);
2853       break;
2854     case Instruction::SGET_SHORT:
2855       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, true);
2856       break;
2857     case Instruction::SGET:
2858       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, true);
2859       break;
2860     case Instruction::SGET_WIDE:
2861       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, true);
2862       break;
2863     case Instruction::SGET_OBJECT:
2864       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
2865                                                     true);
2866       break;
2867 
2868     case Instruction::SPUT_BOOLEAN:
2869       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, true);
2870       break;
2871     case Instruction::SPUT_BYTE:
2872       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, true);
2873       break;
2874     case Instruction::SPUT_CHAR:
2875       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, true);
2876       break;
2877     case Instruction::SPUT_SHORT:
2878       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, true);
2879       break;
2880     case Instruction::SPUT:
2881       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, true);
2882       break;
2883     case Instruction::SPUT_WIDE:
2884       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, true);
2885       break;
2886     case Instruction::SPUT_OBJECT:
2887       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
2888                                                     true);
2889       break;
2890 
2891     case Instruction::INVOKE_VIRTUAL:
2892     case Instruction::INVOKE_VIRTUAL_RANGE:
2893     case Instruction::INVOKE_SUPER:
2894     case Instruction::INVOKE_SUPER_RANGE: {
2895       bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2896                        inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2897       bool is_super = (inst->Opcode() == Instruction::INVOKE_SUPER ||
2898                        inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2899       MethodType type = is_super ? METHOD_SUPER : METHOD_VIRTUAL;
2900       ArtMethod* called_method = VerifyInvocationArgs(inst, type, is_range);
2901       const RegType* return_type = nullptr;
2902       if (called_method != nullptr) {
2903         mirror::Class* return_type_class = called_method->GetReturnType(can_load_classes_);
2904         if (return_type_class != nullptr) {
2905           return_type = &FromClass(called_method->GetReturnTypeDescriptor(),
2906                                    return_type_class,
2907                                    return_type_class->CannotBeAssignedFromOtherTypes());
2908         } else {
2909           DCHECK(!can_load_classes_ || self_->IsExceptionPending());
2910           self_->ClearException();
2911         }
2912       }
2913       if (return_type == nullptr) {
2914         uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2915         const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2916         dex::TypeIndex return_type_idx =
2917             dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2918         const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2919         return_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2920       }
2921       if (!return_type->IsLowHalf()) {
2922         work_line_->SetResultRegisterType(this, *return_type);
2923       } else {
2924         work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2925       }
2926       just_set_result = true;
2927       break;
2928     }
2929     case Instruction::INVOKE_DIRECT:
2930     case Instruction::INVOKE_DIRECT_RANGE: {
2931       bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2932       ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT, is_range);
2933       const char* return_type_descriptor;
2934       bool is_constructor;
2935       const RegType* return_type = nullptr;
2936       if (called_method == nullptr) {
2937         uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2938         const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2939         is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
2940         dex::TypeIndex return_type_idx =
2941             dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2942         return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2943       } else {
2944         is_constructor = called_method->IsConstructor();
2945         return_type_descriptor = called_method->GetReturnTypeDescriptor();
2946         mirror::Class* return_type_class = called_method->GetReturnType(can_load_classes_);
2947         if (return_type_class != nullptr) {
2948           return_type = &FromClass(return_type_descriptor,
2949                                    return_type_class,
2950                                    return_type_class->CannotBeAssignedFromOtherTypes());
2951         } else {
2952           DCHECK(!can_load_classes_ || self_->IsExceptionPending());
2953           self_->ClearException();
2954         }
2955       }
2956       if (is_constructor) {
2957         /*
2958          * Some additional checks when calling a constructor. We know from the invocation arg check
2959          * that the "this" argument is an instance of called_method->klass. Now we further restrict
2960          * that to require that called_method->klass is the same as this->klass or this->super,
2961          * allowing the latter only if the "this" argument is the same as the "this" argument to
2962          * this method (which implies that we're in a constructor ourselves).
2963          */
2964         const RegType& this_type = work_line_->GetInvocationThis(this, inst);
2965         if (this_type.IsConflict())  // failure.
2966           break;
2967 
2968         /* no null refs allowed (?) */
2969         if (this_type.IsZero()) {
2970           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
2971           break;
2972         }
2973 
2974         /* must be in same class or in superclass */
2975         // const RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
2976         // TODO: re-enable constructor type verification
2977         // if (this_super_klass.IsConflict()) {
2978           // Unknown super class, fail so we re-check at runtime.
2979           // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
2980           // break;
2981         // }
2982 
2983         /* arg must be an uninitialized reference */
2984         if (!this_type.IsUninitializedTypes()) {
2985           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
2986               << this_type;
2987           break;
2988         }
2989 
2990         /*
2991          * Replace the uninitialized reference with an initialized one. We need to do this for all
2992          * registers that have the same object instance in them, not just the "this" register.
2993          */
2994         work_line_->MarkRefsAsInitialized(this, this_type);
2995       }
2996       if (return_type == nullptr) {
2997         return_type = &reg_types_.FromDescriptor(GetClassLoader(), return_type_descriptor, false);
2998       }
2999       if (!return_type->IsLowHalf()) {
3000         work_line_->SetResultRegisterType(this, *return_type);
3001       } else {
3002         work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
3003       }
3004       just_set_result = true;
3005       break;
3006     }
3007     case Instruction::INVOKE_STATIC:
3008     case Instruction::INVOKE_STATIC_RANGE: {
3009         bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
3010         ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_STATIC, is_range);
3011         const char* descriptor;
3012         if (called_method == nullptr) {
3013           uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3014           const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
3015           dex::TypeIndex return_type_idx =
3016               dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
3017           descriptor = dex_file_->StringByTypeIdx(return_type_idx);
3018         } else {
3019           descriptor = called_method->GetReturnTypeDescriptor();
3020         }
3021         const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3022         if (!return_type.IsLowHalf()) {
3023           work_line_->SetResultRegisterType(this, return_type);
3024         } else {
3025           work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
3026         }
3027         just_set_result = true;
3028       }
3029       break;
3030     case Instruction::INVOKE_INTERFACE:
3031     case Instruction::INVOKE_INTERFACE_RANGE: {
3032       bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
3033       ArtMethod* abs_method = VerifyInvocationArgs(inst, METHOD_INTERFACE, is_range);
3034       if (abs_method != nullptr) {
3035         mirror::Class* called_interface = abs_method->GetDeclaringClass();
3036         if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
3037           Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
3038               << abs_method->PrettyMethod() << "'";
3039           break;
3040         }
3041       }
3042       /* Get the type of the "this" arg, which should either be a sub-interface of called
3043        * interface or Object (see comments in RegType::JoinClass).
3044        */
3045       const RegType& this_type = work_line_->GetInvocationThis(this, inst);
3046       if (this_type.IsZero()) {
3047         /* null pointer always passes (and always fails at runtime) */
3048       } else {
3049         if (this_type.IsUninitializedTypes()) {
3050           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
3051               << this_type;
3052           break;
3053         }
3054         // In the past we have tried to assert that "called_interface" is assignable
3055         // from "this_type.GetClass()", however, as we do an imprecise Join
3056         // (RegType::JoinClass) we don't have full information on what interfaces are
3057         // implemented by "this_type". For example, two classes may implement the same
3058         // interfaces and have a common parent that doesn't implement the interface. The
3059         // join will set "this_type" to the parent class and a test that this implements
3060         // the interface will incorrectly fail.
3061       }
3062       /*
3063        * We don't have an object instance, so we can't find the concrete method. However, all of
3064        * the type information is in the abstract method, so we're good.
3065        */
3066       const char* descriptor;
3067       if (abs_method == nullptr) {
3068         uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3069         const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
3070         dex::TypeIndex return_type_idx =
3071             dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
3072         descriptor = dex_file_->StringByTypeIdx(return_type_idx);
3073       } else {
3074         descriptor = abs_method->GetReturnTypeDescriptor();
3075       }
3076       const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3077       if (!return_type.IsLowHalf()) {
3078         work_line_->SetResultRegisterType(this, return_type);
3079       } else {
3080         work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
3081       }
3082       just_set_result = true;
3083       break;
3084     }
3085     case Instruction::INVOKE_POLYMORPHIC:
3086     case Instruction::INVOKE_POLYMORPHIC_RANGE: {
3087       bool is_range = (inst->Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
3088       ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_POLYMORPHIC, is_range);
3089       if (called_method == nullptr) {
3090         // Convert potential soft failures in VerifyInvocationArgs() to hard errors.
3091         if (failure_messages_.size() > 0) {
3092           std::string message = failure_messages_.back()->str();
3093           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << message;
3094         } else {
3095           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-polymorphic verification failure.";
3096         }
3097         break;
3098       }
3099       if (!CheckSignaturePolymorphicMethod(called_method) ||
3100           !CheckSignaturePolymorphicReceiver(inst)) {
3101         break;
3102       }
3103       const uint32_t proto_idx = (is_range) ? inst->VRegH_4rcc() : inst->VRegH_45cc();
3104       const char* return_descriptor =
3105           dex_file_->GetReturnTypeDescriptor(dex_file_->GetProtoId(proto_idx));
3106       const RegType& return_type =
3107           reg_types_.FromDescriptor(GetClassLoader(), return_descriptor, false);
3108       if (!return_type.IsLowHalf()) {
3109         work_line_->SetResultRegisterType(this, return_type);
3110       } else {
3111         work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
3112       }
3113       just_set_result = true;
3114       break;
3115     }
3116     case Instruction::INVOKE_CUSTOM:
3117     case Instruction::INVOKE_CUSTOM_RANGE: {
3118       // Verify registers based on method_type in the call site.
3119       bool is_range = (inst->Opcode() == Instruction::INVOKE_CUSTOM_RANGE);
3120 
3121       // Step 1. Check the call site that produces the method handle for invocation
3122       const uint32_t call_site_idx = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3123       if (!CheckCallSite(call_site_idx)) {
3124         DCHECK(HasFailures());
3125         break;
3126       }
3127 
3128       // Step 2. Check the register arguments correspond to the expected arguments for the
3129       // method handle produced by step 1. The dex file verifier has checked ranges for
3130       // the first three arguments and CheckCallSite has checked the method handle type.
3131       CallSiteArrayValueIterator it(*dex_file_, dex_file_->GetCallSiteId(call_site_idx));
3132       it.Next();  // Skip to name.
3133       it.Next();  // Skip to method type of the method handle
3134       const uint32_t proto_idx = static_cast<uint32_t>(it.GetJavaValue().i);
3135       const DexFile::ProtoId& proto_id = dex_file_->GetProtoId(proto_idx);
3136       DexFileParameterIterator param_it(*dex_file_, proto_id);
3137       // Treat method as static as it has yet to be determined.
3138       VerifyInvocationArgsFromIterator(&param_it, inst, METHOD_STATIC, is_range, nullptr);
3139       const char* return_descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
3140 
3141       // Step 3. Propagate return type information
3142       const RegType& return_type =
3143           reg_types_.FromDescriptor(GetClassLoader(), return_descriptor, false);
3144       if (!return_type.IsLowHalf()) {
3145         work_line_->SetResultRegisterType(this, return_type);
3146       } else {
3147         work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
3148       }
3149       just_set_result = true;
3150       // TODO: Add compiler support for invoke-custom (b/35337872).
3151       Fail(VERIFY_ERROR_FORCE_INTERPRETER);
3152       break;
3153     }
3154     case Instruction::NEG_INT:
3155     case Instruction::NOT_INT:
3156       work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer());
3157       break;
3158     case Instruction::NEG_LONG:
3159     case Instruction::NOT_LONG:
3160       work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3161                                    reg_types_.LongLo(), reg_types_.LongHi());
3162       break;
3163     case Instruction::NEG_FLOAT:
3164       work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Float());
3165       break;
3166     case Instruction::NEG_DOUBLE:
3167       work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3168                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
3169       break;
3170     case Instruction::INT_TO_LONG:
3171       work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3172                                      reg_types_.Integer());
3173       break;
3174     case Instruction::INT_TO_FLOAT:
3175       work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Integer());
3176       break;
3177     case Instruction::INT_TO_DOUBLE:
3178       work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3179                                      reg_types_.Integer());
3180       break;
3181     case Instruction::LONG_TO_INT:
3182       work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
3183                                        reg_types_.LongLo(), reg_types_.LongHi());
3184       break;
3185     case Instruction::LONG_TO_FLOAT:
3186       work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
3187                                        reg_types_.LongLo(), reg_types_.LongHi());
3188       break;
3189     case Instruction::LONG_TO_DOUBLE:
3190       work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3191                                    reg_types_.LongLo(), reg_types_.LongHi());
3192       break;
3193     case Instruction::FLOAT_TO_INT:
3194       work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Float());
3195       break;
3196     case Instruction::FLOAT_TO_LONG:
3197       work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3198                                      reg_types_.Float());
3199       break;
3200     case Instruction::FLOAT_TO_DOUBLE:
3201       work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3202                                      reg_types_.Float());
3203       break;
3204     case Instruction::DOUBLE_TO_INT:
3205       work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
3206                                        reg_types_.DoubleLo(), reg_types_.DoubleHi());
3207       break;
3208     case Instruction::DOUBLE_TO_LONG:
3209       work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3210                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
3211       break;
3212     case Instruction::DOUBLE_TO_FLOAT:
3213       work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
3214                                        reg_types_.DoubleLo(), reg_types_.DoubleHi());
3215       break;
3216     case Instruction::INT_TO_BYTE:
3217       work_line_->CheckUnaryOp(this, inst, reg_types_.Byte(), reg_types_.Integer());
3218       break;
3219     case Instruction::INT_TO_CHAR:
3220       work_line_->CheckUnaryOp(this, inst, reg_types_.Char(), reg_types_.Integer());
3221       break;
3222     case Instruction::INT_TO_SHORT:
3223       work_line_->CheckUnaryOp(this, inst, reg_types_.Short(), reg_types_.Integer());
3224       break;
3225 
3226     case Instruction::ADD_INT:
3227     case Instruction::SUB_INT:
3228     case Instruction::MUL_INT:
3229     case Instruction::REM_INT:
3230     case Instruction::DIV_INT:
3231     case Instruction::SHL_INT:
3232     case Instruction::SHR_INT:
3233     case Instruction::USHR_INT:
3234       work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
3235                                 reg_types_.Integer(), false);
3236       break;
3237     case Instruction::AND_INT:
3238     case Instruction::OR_INT:
3239     case Instruction::XOR_INT:
3240       work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
3241                                 reg_types_.Integer(), true);
3242       break;
3243     case Instruction::ADD_LONG:
3244     case Instruction::SUB_LONG:
3245     case Instruction::MUL_LONG:
3246     case Instruction::DIV_LONG:
3247     case Instruction::REM_LONG:
3248     case Instruction::AND_LONG:
3249     case Instruction::OR_LONG:
3250     case Instruction::XOR_LONG:
3251       work_line_->CheckBinaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3252                                     reg_types_.LongLo(), reg_types_.LongHi(),
3253                                     reg_types_.LongLo(), reg_types_.LongHi());
3254       break;
3255     case Instruction::SHL_LONG:
3256     case Instruction::SHR_LONG:
3257     case Instruction::USHR_LONG:
3258       /* shift distance is Int, making these different from other binary operations */
3259       work_line_->CheckBinaryOpWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3260                                          reg_types_.Integer());
3261       break;
3262     case Instruction::ADD_FLOAT:
3263     case Instruction::SUB_FLOAT:
3264     case Instruction::MUL_FLOAT:
3265     case Instruction::DIV_FLOAT:
3266     case Instruction::REM_FLOAT:
3267       work_line_->CheckBinaryOp(this, inst, reg_types_.Float(), reg_types_.Float(),
3268                                 reg_types_.Float(), false);
3269       break;
3270     case Instruction::ADD_DOUBLE:
3271     case Instruction::SUB_DOUBLE:
3272     case Instruction::MUL_DOUBLE:
3273     case Instruction::DIV_DOUBLE:
3274     case Instruction::REM_DOUBLE:
3275       work_line_->CheckBinaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3276                                     reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3277                                     reg_types_.DoubleLo(), reg_types_.DoubleHi());
3278       break;
3279     case Instruction::ADD_INT_2ADDR:
3280     case Instruction::SUB_INT_2ADDR:
3281     case Instruction::MUL_INT_2ADDR:
3282     case Instruction::REM_INT_2ADDR:
3283     case Instruction::SHL_INT_2ADDR:
3284     case Instruction::SHR_INT_2ADDR:
3285     case Instruction::USHR_INT_2ADDR:
3286       work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
3287                                      reg_types_.Integer(), false);
3288       break;
3289     case Instruction::AND_INT_2ADDR:
3290     case Instruction::OR_INT_2ADDR:
3291     case Instruction::XOR_INT_2ADDR:
3292       work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
3293                                      reg_types_.Integer(), true);
3294       break;
3295     case Instruction::DIV_INT_2ADDR:
3296       work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
3297                                      reg_types_.Integer(), false);
3298       break;
3299     case Instruction::ADD_LONG_2ADDR:
3300     case Instruction::SUB_LONG_2ADDR:
3301     case Instruction::MUL_LONG_2ADDR:
3302     case Instruction::DIV_LONG_2ADDR:
3303     case Instruction::REM_LONG_2ADDR:
3304     case Instruction::AND_LONG_2ADDR:
3305     case Instruction::OR_LONG_2ADDR:
3306     case Instruction::XOR_LONG_2ADDR:
3307       work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3308                                          reg_types_.LongLo(), reg_types_.LongHi(),
3309                                          reg_types_.LongLo(), reg_types_.LongHi());
3310       break;
3311     case Instruction::SHL_LONG_2ADDR:
3312     case Instruction::SHR_LONG_2ADDR:
3313     case Instruction::USHR_LONG_2ADDR:
3314       work_line_->CheckBinaryOp2addrWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3315                                               reg_types_.Integer());
3316       break;
3317     case Instruction::ADD_FLOAT_2ADDR:
3318     case Instruction::SUB_FLOAT_2ADDR:
3319     case Instruction::MUL_FLOAT_2ADDR:
3320     case Instruction::DIV_FLOAT_2ADDR:
3321     case Instruction::REM_FLOAT_2ADDR:
3322       work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Float(), reg_types_.Float(),
3323                                      reg_types_.Float(), false);
3324       break;
3325     case Instruction::ADD_DOUBLE_2ADDR:
3326     case Instruction::SUB_DOUBLE_2ADDR:
3327     case Instruction::MUL_DOUBLE_2ADDR:
3328     case Instruction::DIV_DOUBLE_2ADDR:
3329     case Instruction::REM_DOUBLE_2ADDR:
3330       work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3331                                          reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
3332                                          reg_types_.DoubleLo(), reg_types_.DoubleHi());
3333       break;
3334     case Instruction::ADD_INT_LIT16:
3335     case Instruction::RSUB_INT_LIT16:
3336     case Instruction::MUL_INT_LIT16:
3337     case Instruction::DIV_INT_LIT16:
3338     case Instruction::REM_INT_LIT16:
3339       work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
3340                                  true);
3341       break;
3342     case Instruction::AND_INT_LIT16:
3343     case Instruction::OR_INT_LIT16:
3344     case Instruction::XOR_INT_LIT16:
3345       work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
3346                                  true);
3347       break;
3348     case Instruction::ADD_INT_LIT8:
3349     case Instruction::RSUB_INT_LIT8:
3350     case Instruction::MUL_INT_LIT8:
3351     case Instruction::DIV_INT_LIT8:
3352     case Instruction::REM_INT_LIT8:
3353     case Instruction::SHL_INT_LIT8:
3354     case Instruction::SHR_INT_LIT8:
3355     case Instruction::USHR_INT_LIT8:
3356       work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
3357                                  false);
3358       break;
3359     case Instruction::AND_INT_LIT8:
3360     case Instruction::OR_INT_LIT8:
3361     case Instruction::XOR_INT_LIT8:
3362       work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
3363                                  false);
3364       break;
3365 
3366     // Special instructions.
3367     case Instruction::RETURN_VOID_NO_BARRIER:
3368       if (IsConstructor() && !IsStatic()) {
3369         auto& declaring_class = GetDeclaringClass();
3370         if (declaring_class.IsUnresolvedReference()) {
3371           // We must iterate over the fields, even if we cannot use mirror classes to do so. Do it
3372           // manually over the underlying dex file.
3373           uint32_t first_index = GetFirstFinalInstanceFieldIndex(*dex_file_,
3374               dex_file_->GetMethodId(dex_method_idx_).class_idx_);
3375           if (first_index != DexFile::kDexNoIndex) {
3376             Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-no-barrier not expected for field "
3377                               << first_index;
3378           }
3379           break;
3380         }
3381         auto* klass = declaring_class.GetClass();
3382         for (uint32_t i = 0, num_fields = klass->NumInstanceFields(); i < num_fields; ++i) {
3383           if (klass->GetInstanceField(i)->IsFinal()) {
3384             Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-no-barrier not expected for "
3385                 << klass->GetInstanceField(i)->PrettyField();
3386             break;
3387           }
3388         }
3389       }
3390       // Handle this like a RETURN_VOID now. Code is duplicated to separate standard from
3391       // quickened opcodes (otherwise this could be a fall-through).
3392       if (!IsConstructor()) {
3393         if (!GetMethodReturnType().IsConflict()) {
3394           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
3395         }
3396       }
3397       break;
3398     // Note: the following instructions encode offsets derived from class linking.
3399     // As such they use Class*/Field*/Executable* as these offsets only have
3400     // meaning if the class linking and resolution were successful.
3401     case Instruction::IGET_QUICK:
3402       VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true);
3403       break;
3404     case Instruction::IGET_WIDE_QUICK:
3405       VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true);
3406       break;
3407     case Instruction::IGET_OBJECT_QUICK:
3408       VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false);
3409       break;
3410     case Instruction::IGET_BOOLEAN_QUICK:
3411       VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true);
3412       break;
3413     case Instruction::IGET_BYTE_QUICK:
3414       VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true);
3415       break;
3416     case Instruction::IGET_CHAR_QUICK:
3417       VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true);
3418       break;
3419     case Instruction::IGET_SHORT_QUICK:
3420       VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true);
3421       break;
3422     case Instruction::IPUT_QUICK:
3423       VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true);
3424       break;
3425     case Instruction::IPUT_BOOLEAN_QUICK:
3426       VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true);
3427       break;
3428     case Instruction::IPUT_BYTE_QUICK:
3429       VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true);
3430       break;
3431     case Instruction::IPUT_CHAR_QUICK:
3432       VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true);
3433       break;
3434     case Instruction::IPUT_SHORT_QUICK:
3435       VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true);
3436       break;
3437     case Instruction::IPUT_WIDE_QUICK:
3438       VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true);
3439       break;
3440     case Instruction::IPUT_OBJECT_QUICK:
3441       VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false);
3442       break;
3443     case Instruction::INVOKE_VIRTUAL_QUICK:
3444     case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
3445       bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
3446       ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range);
3447       if (called_method != nullptr) {
3448         const char* descriptor = called_method->GetReturnTypeDescriptor();
3449         const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3450         if (!return_type.IsLowHalf()) {
3451           work_line_->SetResultRegisterType(this, return_type);
3452         } else {
3453           work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
3454         }
3455         just_set_result = true;
3456       }
3457       break;
3458     }
3459 
3460     /* These should never appear during verification. */
3461     case Instruction::UNUSED_3E ... Instruction::UNUSED_43:
3462     case Instruction::UNUSED_F3 ... Instruction::UNUSED_F9:
3463     case Instruction::UNUSED_FE ... Instruction::UNUSED_FF:
3464     case Instruction::UNUSED_79:
3465     case Instruction::UNUSED_7A:
3466       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
3467       break;
3468 
3469     /*
3470      * DO NOT add a "default" clause here. Without it the compiler will
3471      * complain if an instruction is missing (which is desirable).
3472      */
3473   }  // end - switch (dec_insn.opcode)
3474 
3475   if (have_pending_hard_failure_) {
3476     if (Runtime::Current()->IsAotCompiler()) {
3477       /* When AOT compiling, check that the last failure is a hard failure */
3478       if (failures_[failures_.size() - 1] != VERIFY_ERROR_BAD_CLASS_HARD) {
3479         LOG(ERROR) << "Pending failures:";
3480         for (auto& error : failures_) {
3481           LOG(ERROR) << error;
3482         }
3483         for (auto& error_msg : failure_messages_) {
3484           LOG(ERROR) << error_msg->str();
3485         }
3486         LOG(FATAL) << "Pending hard failure, but last failure not hard.";
3487       }
3488     }
3489     /* immediate failure, reject class */
3490     info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
3491     return false;
3492   } else if (have_pending_runtime_throw_failure_) {
3493     /* checking interpreter will throw, mark following code as unreachable */
3494     opcode_flags = Instruction::kThrow;
3495     // Note: the flag must be reset as it is only global to decouple Fail and is semantically per
3496     //       instruction. However, RETURN checking may throw LOCKING errors, so we clear at the
3497     //       very end.
3498   }
3499   /*
3500    * If we didn't just set the result register, clear it out. This ensures that you can only use
3501    * "move-result" immediately after the result is set. (We could check this statically, but it's
3502    * not expensive and it makes our debugging output cleaner.)
3503    */
3504   if (!just_set_result) {
3505     work_line_->SetResultTypeToUnknown(this);
3506   }
3507 
3508   /*
3509    * Handle "branch". Tag the branch target.
3510    *
3511    * NOTE: instructions like Instruction::EQZ provide information about the
3512    * state of the register when the branch is taken or not taken. For example,
3513    * somebody could get a reference field, check it for zero, and if the
3514    * branch is taken immediately store that register in a boolean field
3515    * since the value is known to be zero. We do not currently account for
3516    * that, and will reject the code.
3517    *
3518    * TODO: avoid re-fetching the branch target
3519    */
3520   if ((opcode_flags & Instruction::kBranch) != 0) {
3521     bool isConditional, selfOkay;
3522     if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
3523       /* should never happen after static verification */
3524       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
3525       return false;
3526     }
3527     DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
3528     if (!CheckNotMoveExceptionOrMoveResult(code_item_->insns_, work_insn_idx_ + branch_target)) {
3529       return false;
3530     }
3531     /* update branch target, set "changed" if appropriate */
3532     if (nullptr != branch_line) {
3533       if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get(), false)) {
3534         return false;
3535       }
3536     } else {
3537       if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get(), false)) {
3538         return false;
3539       }
3540     }
3541   }
3542 
3543   /*
3544    * Handle "switch". Tag all possible branch targets.
3545    *
3546    * We've already verified that the table is structurally sound, so we
3547    * just need to walk through and tag the targets.
3548    */
3549   if ((opcode_flags & Instruction::kSwitch) != 0) {
3550     int offset_to_switch = insns[1] | (static_cast<int32_t>(insns[2]) << 16);
3551     const uint16_t* switch_insns = insns + offset_to_switch;
3552     int switch_count = switch_insns[1];
3553     int offset_to_targets, targ;
3554 
3555     if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
3556       /* 0 = sig, 1 = count, 2/3 = first key */
3557       offset_to_targets = 4;
3558     } else {
3559       /* 0 = sig, 1 = count, 2..count * 2 = keys */
3560       DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
3561       offset_to_targets = 2 + 2 * switch_count;
3562     }
3563 
3564     /* verify each switch target */
3565     for (targ = 0; targ < switch_count; targ++) {
3566       int offset;
3567       uint32_t abs_offset;
3568 
3569       /* offsets are 32-bit, and only partly endian-swapped */
3570       offset = switch_insns[offset_to_targets + targ * 2] |
3571          (static_cast<int32_t>(switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
3572       abs_offset = work_insn_idx_ + offset;
3573       DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_);
3574       if (!CheckNotMoveExceptionOrMoveResult(code_item_->insns_, abs_offset)) {
3575         return false;
3576       }
3577       if (!UpdateRegisters(abs_offset, work_line_.get(), false)) {
3578         return false;
3579       }
3580     }
3581   }
3582 
3583   /*
3584    * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
3585    * "try" block when they throw, control transfers out of the method.)
3586    */
3587   if ((opcode_flags & Instruction::kThrow) != 0 && GetInstructionFlags(work_insn_idx_).IsInTry()) {
3588     bool has_catch_all_handler = false;
3589     CatchHandlerIterator iterator(*code_item_, work_insn_idx_);
3590 
3591     // Need the linker to try and resolve the handled class to check if it's Throwable.
3592     ClassLinker* linker = Runtime::Current()->GetClassLinker();
3593 
3594     for (; iterator.HasNext(); iterator.Next()) {
3595       dex::TypeIndex handler_type_idx = iterator.GetHandlerTypeIndex();
3596       if (!handler_type_idx.IsValid()) {
3597         has_catch_all_handler = true;
3598       } else {
3599         // It is also a catch-all if it is java.lang.Throwable.
3600         mirror::Class* klass = linker->ResolveType(*dex_file_, handler_type_idx, dex_cache_,
3601                                                    class_loader_);
3602         if (klass != nullptr) {
3603           if (klass == mirror::Throwable::GetJavaLangThrowable()) {
3604             has_catch_all_handler = true;
3605           }
3606         } else {
3607           // Clear exception.
3608           DCHECK(self_->IsExceptionPending());
3609           self_->ClearException();
3610         }
3611       }
3612       /*
3613        * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
3614        * "work_regs", because at runtime the exception will be thrown before the instruction
3615        * modifies any registers.
3616        */
3617       if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get(), false)) {
3618         return false;
3619       }
3620     }
3621 
3622     /*
3623      * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
3624      * instruction. This does apply to monitor-exit because of async exception handling.
3625      */
3626     if (work_line_->MonitorStackDepth() > 0 && !has_catch_all_handler) {
3627       /*
3628        * The state in work_line reflects the post-execution state. If the current instruction is a
3629        * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
3630        * it will do so before grabbing the lock).
3631        */
3632       if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
3633         Fail(VERIFY_ERROR_BAD_CLASS_HARD)
3634             << "expected to be within a catch-all for an instruction where a monitor is held";
3635         return false;
3636       }
3637     }
3638   }
3639 
3640   /* Handle "continue". Tag the next consecutive instruction.
3641    *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
3642    *        because it changes work_line_ when performing peephole optimization
3643    *        and this change should not be used in those cases.
3644    */
3645   if ((opcode_flags & Instruction::kContinue) != 0) {
3646     DCHECK_EQ(Instruction::At(code_item_->insns_ + work_insn_idx_), inst);
3647     uint32_t next_insn_idx = work_insn_idx_ + inst->SizeInCodeUnits();
3648     if (next_insn_idx >= code_item_->insns_size_in_code_units_) {
3649       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
3650       return false;
3651     }
3652     // The only way to get to a move-exception instruction is to get thrown there. Make sure the
3653     // next instruction isn't one.
3654     if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) {
3655       return false;
3656     }
3657     if (nullptr != fallthrough_line) {
3658       // Make workline consistent with fallthrough computed from peephole optimization.
3659       work_line_->CopyFromLine(fallthrough_line.get());
3660     }
3661     if (GetInstructionFlags(next_insn_idx).IsReturn()) {
3662       // For returns we only care about the operand to the return, all other registers are dead.
3663       const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn_idx);
3664       AdjustReturnLine(this, ret_inst, work_line_.get());
3665     }
3666     RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
3667     if (next_line != nullptr) {
3668       // Merge registers into what we have for the next instruction, and set the "changed" flag if
3669       // needed. If the merge changes the state of the registers then the work line will be
3670       // updated.
3671       if (!UpdateRegisters(next_insn_idx, work_line_.get(), true)) {
3672         return false;
3673       }
3674     } else {
3675       /*
3676        * We're not recording register data for the next instruction, so we don't know what the
3677        * prior state was. We have to assume that something has changed and re-evaluate it.
3678        */
3679       GetInstructionFlags(next_insn_idx).SetChanged();
3680     }
3681   }
3682 
3683   /* If we're returning from the method, make sure monitor stack is empty. */
3684   if ((opcode_flags & Instruction::kReturn) != 0) {
3685     work_line_->VerifyMonitorStackEmpty(this);
3686   }
3687 
3688   /*
3689    * Update start_guess. Advance to the next instruction of that's
3690    * possible, otherwise use the branch target if one was found. If
3691    * neither of those exists we're in a return or throw; leave start_guess
3692    * alone and let the caller sort it out.
3693    */
3694   if ((opcode_flags & Instruction::kContinue) != 0) {
3695     DCHECK_EQ(Instruction::At(code_item_->insns_ + work_insn_idx_), inst);
3696     *start_guess = work_insn_idx_ + inst->SizeInCodeUnits();
3697   } else if ((opcode_flags & Instruction::kBranch) != 0) {
3698     /* we're still okay if branch_target is zero */
3699     *start_guess = work_insn_idx_ + branch_target;
3700   }
3701 
3702   DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_);
3703   DCHECK(GetInstructionFlags(*start_guess).IsOpcode());
3704 
3705   if (have_pending_runtime_throw_failure_) {
3706     have_any_pending_runtime_throw_failure_ = true;
3707     // Reset the pending_runtime_throw flag now.
3708     have_pending_runtime_throw_failure_ = false;
3709   }
3710 
3711   return true;
3712 }  // NOLINT(readability/fn_size)
3713 
UninstantiableError(const char * descriptor)3714 void MethodVerifier::UninstantiableError(const char* descriptor) {
3715   Fail(VerifyError::VERIFY_ERROR_NO_CLASS) << "Could not create precise reference for "
3716                                            << "non-instantiable klass " << descriptor;
3717 }
3718 
IsInstantiableOrPrimitive(mirror::Class * klass)3719 inline bool MethodVerifier::IsInstantiableOrPrimitive(mirror::Class* klass) {
3720   return klass->IsInstantiable() || klass->IsPrimitive();
3721 }
3722 
ResolveClassAndCheckAccess(dex::TypeIndex class_idx)3723 const RegType& MethodVerifier::ResolveClassAndCheckAccess(dex::TypeIndex class_idx) {
3724   mirror::Class* klass = can_load_classes_
3725       ? Runtime::Current()->GetClassLinker()->ResolveType(
3726           *dex_file_, class_idx, dex_cache_, class_loader_)
3727       : ClassLinker::LookupResolvedType(class_idx, dex_cache_.Get(), class_loader_.Get()).Ptr();
3728   if (can_load_classes_ && klass == nullptr) {
3729     DCHECK(self_->IsExceptionPending());
3730     self_->ClearException();
3731   }
3732   const RegType* result = nullptr;
3733   if (klass != nullptr) {
3734     bool precise = klass->CannotBeAssignedFromOtherTypes();
3735     if (precise && !IsInstantiableOrPrimitive(klass)) {
3736       const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
3737       UninstantiableError(descriptor);
3738       precise = false;
3739     }
3740     result = reg_types_.FindClass(klass, precise);
3741     if (result == nullptr) {
3742       const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
3743       result = reg_types_.InsertClass(descriptor, klass, precise);
3744     }
3745   } else {
3746     const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
3747     result = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3748   }
3749   DCHECK(result != nullptr);
3750   if (result->IsConflict()) {
3751     const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
3752     Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
3753         << "' in " << GetDeclaringClass();
3754     return *result;
3755   }
3756 
3757   // Record result of class resolution attempt.
3758   VerifierDeps::MaybeRecordClassResolution(*dex_file_, class_idx, klass);
3759 
3760   // Check if access is allowed. Unresolved types use xxxWithAccessCheck to
3761   // check at runtime if access is allowed and so pass here. If result is
3762   // primitive, skip the access check.
3763   if (result->IsNonZeroReferenceTypes() && !result->IsUnresolvedTypes()) {
3764     const RegType& referrer = GetDeclaringClass();
3765     if (!referrer.IsUnresolvedTypes() && !referrer.CanAccess(*result)) {
3766       Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '"
3767                                       << referrer << "' -> '" << *result << "'";
3768     }
3769   }
3770   return *result;
3771 }
3772 
GetCaughtExceptionType()3773 const RegType& MethodVerifier::GetCaughtExceptionType() {
3774   const RegType* common_super = nullptr;
3775   if (code_item_->tries_size_ != 0) {
3776     const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
3777     uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
3778     for (uint32_t i = 0; i < handlers_size; i++) {
3779       CatchHandlerIterator iterator(handlers_ptr);
3780       for (; iterator.HasNext(); iterator.Next()) {
3781         if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
3782           if (!iterator.GetHandlerTypeIndex().IsValid()) {
3783             common_super = &reg_types_.JavaLangThrowable(false);
3784           } else {
3785             const RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex());
3786             if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception, this)) {
3787               DCHECK(!exception.IsUninitializedTypes());  // Comes from dex, shouldn't be uninit.
3788               if (exception.IsUnresolvedTypes()) {
3789                 // We don't know enough about the type. Fail here and let runtime handle it.
3790                 Fail(VERIFY_ERROR_NO_CLASS) << "unresolved exception class " << exception;
3791                 return exception;
3792               } else {
3793                 Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
3794                 return reg_types_.Conflict();
3795               }
3796             } else if (common_super == nullptr) {
3797               common_super = &exception;
3798             } else if (common_super->Equals(exception)) {
3799               // odd case, but nothing to do
3800             } else {
3801               common_super = &common_super->Merge(exception, &reg_types_, this);
3802               if (FailOrAbort(this,
3803                               reg_types_.JavaLangThrowable(false).IsAssignableFrom(
3804                                   *common_super, this),
3805                               "java.lang.Throwable is not assignable-from common_super at ",
3806                               work_insn_idx_)) {
3807                 break;
3808               }
3809             }
3810           }
3811         }
3812       }
3813       handlers_ptr = iterator.EndDataPointer();
3814     }
3815   }
3816   if (common_super == nullptr) {
3817     /* no catch blocks, or no catches with classes we can find */
3818     Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
3819     return reg_types_.Conflict();
3820   }
3821   return *common_super;
3822 }
3823 
GetMethodResolutionKind(MethodType method_type,bool is_interface)3824 inline static MethodResolutionKind GetMethodResolutionKind(
3825     MethodType method_type, bool is_interface) {
3826   if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) {
3827     return kDirectMethodResolution;
3828   } else if (method_type == METHOD_INTERFACE) {
3829     return kInterfaceMethodResolution;
3830   } else if (method_type == METHOD_SUPER && is_interface) {
3831     return kInterfaceMethodResolution;
3832   } else {
3833     DCHECK(method_type == METHOD_VIRTUAL || method_type == METHOD_SUPER
3834            || method_type == METHOD_POLYMORPHIC);
3835     return kVirtualMethodResolution;
3836   }
3837 }
3838 
ResolveMethodAndCheckAccess(uint32_t dex_method_idx,MethodType method_type)3839 ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(
3840     uint32_t dex_method_idx, MethodType method_type) {
3841   const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
3842   const RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_);
3843   if (klass_type.IsConflict()) {
3844     std::string append(" in attempt to access method ");
3845     append += dex_file_->GetMethodName(method_id);
3846     AppendToLastFailMessage(append);
3847     return nullptr;
3848   }
3849   if (klass_type.IsUnresolvedTypes()) {
3850     return nullptr;  // Can't resolve Class so no more to do here
3851   }
3852   mirror::Class* klass = klass_type.GetClass();
3853   const RegType& referrer = GetDeclaringClass();
3854   auto* cl = Runtime::Current()->GetClassLinker();
3855   auto pointer_size = cl->GetImagePointerSize();
3856   MethodResolutionKind res_kind = GetMethodResolutionKind(method_type, klass->IsInterface());
3857 
3858   ArtMethod* res_method = dex_cache_->GetResolvedMethod(dex_method_idx, pointer_size);
3859   bool stash_method = false;
3860   if (res_method == nullptr) {
3861     const char* name = dex_file_->GetMethodName(method_id);
3862     const Signature signature = dex_file_->GetMethodSignature(method_id);
3863 
3864     if (res_kind == kDirectMethodResolution) {
3865       res_method = klass->FindDirectMethod(name, signature, pointer_size);
3866     } else if (res_kind == kVirtualMethodResolution) {
3867       res_method = klass->FindVirtualMethod(name, signature, pointer_size);
3868     } else {
3869       DCHECK_EQ(res_kind, kInterfaceMethodResolution);
3870       res_method = klass->FindInterfaceMethod(name, signature, pointer_size);
3871     }
3872 
3873     if (res_method != nullptr) {
3874       stash_method = true;
3875     } else {
3876       // If a virtual or interface method wasn't found with the expected type, look in
3877       // the direct methods. This can happen when the wrong invoke type is used or when
3878       // a class has changed, and will be flagged as an error in later checks.
3879       // Note that in this case, we do not put the resolved method in the Dex cache
3880       // because it was not discovered using the expected type of method resolution.
3881       if (res_kind != kDirectMethodResolution) {
3882         // Record result of the initial resolution attempt.
3883         VerifierDeps::MaybeRecordMethodResolution(*dex_file_, dex_method_idx, res_kind, nullptr);
3884         // Change resolution type to 'direct' and try to resolve again.
3885         res_kind = kDirectMethodResolution;
3886         res_method = klass->FindDirectMethod(name, signature, pointer_size);
3887       }
3888     }
3889   }
3890 
3891   // Record result of method resolution attempt.
3892   VerifierDeps::MaybeRecordMethodResolution(*dex_file_, dex_method_idx, res_kind, res_method);
3893 
3894   if (res_method == nullptr) {
3895     Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
3896                                  << klass->PrettyDescriptor() << "."
3897                                  << dex_file_->GetMethodName(method_id) << " "
3898                                  << dex_file_->GetMethodSignature(method_id);
3899     return nullptr;
3900   }
3901 
3902   // Make sure calls to constructors are "direct". There are additional restrictions but we don't
3903   // enforce them here.
3904   if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
3905     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
3906                                       << res_method->PrettyMethod();
3907     return nullptr;
3908   }
3909   // Disallow any calls to class initializers.
3910   if (res_method->IsClassInitializer()) {
3911     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
3912                                       << res_method->PrettyMethod();
3913     return nullptr;
3914   }
3915 
3916   // Check that interface methods are static or match interface classes.
3917   // We only allow statics if we don't have default methods enabled.
3918   //
3919   // Note: this check must be after the initializer check, as those are required to fail a class,
3920   //       while this check implies an IncompatibleClassChangeError.
3921   if (klass->IsInterface()) {
3922     // methods called on interfaces should be invoke-interface, invoke-super, invoke-direct (if
3923     // dex file version is 37 or greater), or invoke-static.
3924     if (method_type != METHOD_INTERFACE &&
3925         method_type != METHOD_STATIC &&
3926         ((dex_file_->GetVersion() < DexFile::kDefaultMethodsVersion) ||
3927          method_type != METHOD_DIRECT) &&
3928         method_type != METHOD_SUPER) {
3929       Fail(VERIFY_ERROR_CLASS_CHANGE)
3930           << "non-interface method " << dex_file_->PrettyMethod(dex_method_idx)
3931           << " is in an interface class " << klass->PrettyClass();
3932       return nullptr;
3933     }
3934   } else {
3935     if (method_type == METHOD_INTERFACE) {
3936       Fail(VERIFY_ERROR_CLASS_CHANGE)
3937           << "interface method " << dex_file_->PrettyMethod(dex_method_idx)
3938           << " is in a non-interface class " << klass->PrettyClass();
3939       return nullptr;
3940     }
3941   }
3942 
3943   // Only stash after the above passed. Otherwise the method wasn't guaranteed to be correct.
3944   if (stash_method) {
3945     dex_cache_->SetResolvedMethod(dex_method_idx, res_method, pointer_size);
3946   }
3947 
3948   // Check if access is allowed.
3949   if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
3950     Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call "
3951                                      << res_method->PrettyMethod()
3952                                      << " from " << referrer << ")";
3953     return res_method;
3954   }
3955   // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
3956   if (res_method->IsPrivate() && (method_type == METHOD_VIRTUAL || method_type == METHOD_SUPER)) {
3957     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
3958                                       << res_method->PrettyMethod();
3959     return nullptr;
3960   }
3961   // See if the method type implied by the invoke instruction matches the access flags for the
3962   // target method. The flags for METHOD_POLYMORPHIC are based on there being precisely two
3963   // signature polymorphic methods supported by the run-time which are native methods with variable
3964   // arguments.
3965   if ((method_type == METHOD_DIRECT && (!res_method->IsDirect() || res_method->IsStatic())) ||
3966       (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
3967       ((method_type == METHOD_SUPER ||
3968         method_type == METHOD_VIRTUAL ||
3969         method_type == METHOD_INTERFACE) && res_method->IsDirect()) ||
3970       ((method_type == METHOD_POLYMORPHIC) &&
3971        (!res_method->IsNative() || !res_method->IsVarargs()))) {
3972     Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
3973                                        "type of " << res_method->PrettyMethod();
3974     return nullptr;
3975   }
3976   return res_method;
3977 }
3978 
3979 template <class T>
VerifyInvocationArgsFromIterator(T * it,const Instruction * inst,MethodType method_type,bool is_range,ArtMethod * res_method)3980 ArtMethod* MethodVerifier::VerifyInvocationArgsFromIterator(
3981     T* it, const Instruction* inst, MethodType method_type, bool is_range, ArtMethod* res_method) {
3982   // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3983   // match the call to the signature. Also, we might be calling through an abstract method
3984   // definition (which doesn't have register count values).
3985   const size_t expected_args = inst->VRegA();
3986   /* caught by static verifier */
3987   DCHECK(is_range || expected_args <= 5);
3988 
3989   // TODO(oth): Enable this path for invoke-polymorphic when b/33099829 is resolved.
3990   if (method_type != METHOD_POLYMORPHIC) {
3991     if (expected_args > code_item_->outs_size_) {
3992       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3993                                         << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3994       return nullptr;
3995     }
3996   }
3997 
3998   /*
3999    * Check the "this" argument, which must be an instance of the class that declared the method.
4000    * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
4001    * rigorous check here (which is okay since we have to do it at runtime).
4002    */
4003   if (method_type != METHOD_STATIC) {
4004     const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst);
4005     if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
4006       CHECK(have_pending_hard_failure_);
4007       return nullptr;
4008     }
4009     bool is_init = false;
4010     if (actual_arg_type.IsUninitializedTypes()) {
4011       if (res_method) {
4012         if (!res_method->IsConstructor()) {
4013           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
4014           return nullptr;
4015         }
4016       } else {
4017         // Check whether the name of the called method is "<init>"
4018         const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
4019         if (strcmp(dex_file_->GetMethodName(dex_file_->GetMethodId(method_idx)), "<init>") != 0) {
4020           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
4021           return nullptr;
4022         }
4023       }
4024       is_init = true;
4025     }
4026     const RegType& adjusted_type = is_init
4027                                        ? GetRegTypeCache()->FromUninitialized(actual_arg_type)
4028                                        : actual_arg_type;
4029     if (method_type != METHOD_INTERFACE && !adjusted_type.IsZero()) {
4030       const RegType* res_method_class;
4031       // Miranda methods have the declaring interface as their declaring class, not the abstract
4032       // class. It would be wrong to use this for the type check (interface type checks are
4033       // postponed to runtime).
4034       if (res_method != nullptr && !res_method->IsMiranda()) {
4035         mirror::Class* klass = res_method->GetDeclaringClass();
4036         std::string temp;
4037         res_method_class = &FromClass(klass->GetDescriptor(&temp), klass,
4038                                       klass->CannotBeAssignedFromOtherTypes());
4039       } else {
4040         const uint32_t method_idx = inst->VRegB();
4041         const dex::TypeIndex class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
4042         res_method_class = &reg_types_.FromDescriptor(
4043             GetClassLoader(),
4044             dex_file_->StringByTypeIdx(class_idx),
4045             false);
4046       }
4047       if (!res_method_class->IsAssignableFrom(adjusted_type, this)) {
4048         Fail(adjusted_type.IsUnresolvedTypes()
4049                  ? VERIFY_ERROR_NO_CLASS
4050                  : VERIFY_ERROR_BAD_CLASS_SOFT)
4051             << "'this' argument '" << actual_arg_type << "' not instance of '"
4052             << *res_method_class << "'";
4053         // Continue on soft failures. We need to find possible hard failures to avoid problems in
4054         // the compiler.
4055         if (have_pending_hard_failure_) {
4056           return nullptr;
4057         }
4058       }
4059     }
4060   }
4061 
4062   uint32_t arg[5];
4063   if (!is_range) {
4064     inst->GetVarArgs(arg);
4065   }
4066   uint32_t sig_registers = (method_type == METHOD_STATIC) ? 0 : 1;
4067   for ( ; it->HasNext(); it->Next()) {
4068     if (sig_registers >= expected_args) {
4069       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << inst->VRegA() <<
4070           " argument registers, method signature has " << sig_registers + 1 << " or more";
4071       return nullptr;
4072     }
4073 
4074     const char* param_descriptor = it->GetDescriptor();
4075 
4076     if (param_descriptor == nullptr) {
4077       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation because of missing signature "
4078           "component";
4079       return nullptr;
4080     }
4081 
4082     const RegType& reg_type = reg_types_.FromDescriptor(GetClassLoader(), param_descriptor, false);
4083     uint32_t get_reg = is_range ? inst->VRegC() + static_cast<uint32_t>(sig_registers) :
4084         arg[sig_registers];
4085     if (reg_type.IsIntegralTypes()) {
4086       const RegType& src_type = work_line_->GetRegisterType(this, get_reg);
4087       if (!src_type.IsIntegralTypes()) {
4088         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
4089             << " but expected " << reg_type;
4090         return nullptr;
4091       }
4092     } else {
4093       if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
4094         // Continue on soft failures. We need to find possible hard failures to avoid problems in
4095         // the compiler.
4096         if (have_pending_hard_failure_) {
4097           return nullptr;
4098         }
4099       } else if (reg_type.IsLongOrDoubleTypes()) {
4100         // Check that registers are consecutive (for non-range invokes). Invokes are the only
4101         // instructions not specifying register pairs by the first component, but require them
4102         // nonetheless. Only check when there's an actual register in the parameters. If there's
4103         // none, this will fail below.
4104         if (!is_range && sig_registers + 1 < expected_args) {
4105           uint32_t second_reg = arg[sig_registers + 1];
4106           if (second_reg != get_reg + 1) {
4107             Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, long or double parameter "
4108                 "at index " << sig_registers << " is not a pair: " << get_reg << " + "
4109                 << second_reg << ".";
4110             return nullptr;
4111           }
4112         }
4113       }
4114     }
4115     sig_registers += reg_type.IsLongOrDoubleTypes() ?  2 : 1;
4116   }
4117   if (expected_args != sig_registers) {
4118     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << expected_args <<
4119         " argument registers, method signature has " << sig_registers;
4120     return nullptr;
4121   }
4122   return res_method;
4123 }
4124 
VerifyInvocationArgsUnresolvedMethod(const Instruction * inst,MethodType method_type,bool is_range)4125 void MethodVerifier::VerifyInvocationArgsUnresolvedMethod(const Instruction* inst,
4126                                                           MethodType method_type,
4127                                                           bool is_range) {
4128   // As the method may not have been resolved, make this static check against what we expect.
4129   // The main reason for this code block is to fail hard when we find an illegal use, e.g.,
4130   // wrong number of arguments or wrong primitive types, even if the method could not be resolved.
4131   const uint32_t method_idx = inst->VRegB();
4132   DexFileParameterIterator it(*dex_file_,
4133                               dex_file_->GetProtoId(dex_file_->GetMethodId(method_idx).proto_idx_));
4134   VerifyInvocationArgsFromIterator(&it, inst, method_type, is_range, nullptr);
4135 }
4136 
CheckCallSite(uint32_t call_site_idx)4137 bool MethodVerifier::CheckCallSite(uint32_t call_site_idx) {
4138   if (call_site_idx >= dex_file_->NumCallSiteIds()) {
4139     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Bad call site id #" << call_site_idx
4140                                       << " >= " << dex_file_->NumCallSiteIds();
4141     return false;
4142   }
4143 
4144   CallSiteArrayValueIterator it(*dex_file_, dex_file_->GetCallSiteId(call_site_idx));
4145   // Check essential arguments are provided. The dex file verifier has verified indicies of the
4146   // main values (method handle, name, method_type).
4147   if (it.Size() < 3) {
4148     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site #" << call_site_idx
4149                                       << " has too few arguments: "
4150                                       << it.Size() << "< 3";
4151     return false;
4152   }
4153 
4154   // Get and check the first argument: the method handle (index range
4155   // checked by the dex file verifier).
4156   uint32_t method_handle_idx = static_cast<uint32_t>(it.GetJavaValue().i);
4157   it.Next();
4158 
4159   const DexFile::MethodHandleItem& mh = dex_file_->GetMethodHandle(method_handle_idx);
4160   if (mh.method_handle_type_ != static_cast<uint16_t>(DexFile::MethodHandleType::kInvokeStatic)) {
4161     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site #" << call_site_idx
4162                                       << " argument 0 method handle type is not InvokeStatic";
4163     return false;
4164   }
4165 
4166   // Skip the second argument, the name to resolve, as checked by the
4167   // dex file verifier.
4168   it.Next();
4169 
4170   // Skip the third argument, the method type expected, as checked by
4171   // the dex file verifier.
4172   it.Next();
4173 
4174   // Check the bootstrap method handle and remaining arguments.
4175   const DexFile::MethodId& method_id = dex_file_->GetMethodId(mh.field_or_method_idx_);
4176   uint32_t length;
4177   const char* shorty = dex_file_->GetMethodShorty(method_id, &length);
4178 
4179   if (it.Size() < length - 1) {
4180     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site #" << call_site_idx
4181                                       << " too few arguments for bootstrap method: "
4182                                       << it.Size() << " < " << (length - 1);
4183     return false;
4184   }
4185 
4186   // Check the return type and first 3 arguments are references
4187   // (CallSite, Lookup, String, MethodType). If they are not of the
4188   // expected types (or subtypes), it will trigger a
4189   // WrongMethodTypeException during execution.
4190   if (shorty[0] != 'L') {
4191     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site #" << call_site_idx
4192                                       << " bootstrap return type is not a reference";
4193     return false;
4194   }
4195 
4196   for (uint32_t i = 1; i < 4; ++i) {
4197     if (shorty[i] != 'L') {
4198       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site #" << call_site_idx
4199                                         << " bootstrap method argument " << (i - 1)
4200                                         << " is not a reference";
4201       return false;
4202     }
4203   }
4204 
4205   // Check the optional arguments.
4206   for (uint32_t i = 4; i < length; ++i, it.Next()) {
4207     bool match = false;
4208     switch (it.GetValueType()) {
4209       case EncodedArrayValueIterator::ValueType::kBoolean:
4210       case EncodedArrayValueIterator::ValueType::kByte:
4211       case EncodedArrayValueIterator::ValueType::kShort:
4212       case EncodedArrayValueIterator::ValueType::kChar:
4213       case EncodedArrayValueIterator::ValueType::kInt:
4214         // These all fit within one register and encoders do not seem
4215         // too exacting on the encoding type they use (ie using
4216         // integer for all of these).
4217         match = (strchr("ZBCSI", shorty[i]) != nullptr);
4218         break;
4219       case EncodedArrayValueIterator::ValueType::kLong:
4220         match = ('J' == shorty[i]);
4221         break;
4222       case EncodedArrayValueIterator::ValueType::kFloat:
4223         match = ('F' == shorty[i]);
4224         break;
4225       case EncodedArrayValueIterator::ValueType::kDouble:
4226         match = ('D' == shorty[i]);
4227         break;
4228       case EncodedArrayValueIterator::ValueType::kMethodType:
4229       case EncodedArrayValueIterator::ValueType::kMethodHandle:
4230       case EncodedArrayValueIterator::ValueType::kString:
4231       case EncodedArrayValueIterator::ValueType::kType:
4232       case EncodedArrayValueIterator::ValueType::kNull:
4233         match = ('L' == shorty[i]);
4234         break;
4235       case EncodedArrayValueIterator::ValueType::kField:
4236       case EncodedArrayValueIterator::ValueType::kMethod:
4237       case EncodedArrayValueIterator::ValueType::kEnum:
4238       case EncodedArrayValueIterator::ValueType::kArray:
4239       case EncodedArrayValueIterator::ValueType::kAnnotation:
4240         // Unreachable based on current EncodedArrayValueIterator::Next().
4241         UNREACHABLE();
4242     }
4243 
4244     if (!match) {
4245       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site #" << call_site_idx
4246                                         << " bootstrap method argument " << (i - 1)
4247                                         << " expected " << shorty[i]
4248                                         << " got value type: " << it.GetValueType();
4249       return false;
4250     }
4251   }
4252   return true;
4253 }
4254 
4255 class MethodParamListDescriptorIterator {
4256  public:
MethodParamListDescriptorIterator(ArtMethod * res_method)4257   explicit MethodParamListDescriptorIterator(ArtMethod* res_method) :
4258       res_method_(res_method), pos_(0), params_(res_method->GetParameterTypeList()),
4259       params_size_(params_ == nullptr ? 0 : params_->Size()) {
4260   }
4261 
HasNext()4262   bool HasNext() {
4263     return pos_ < params_size_;
4264   }
4265 
Next()4266   void Next() {
4267     ++pos_;
4268   }
4269 
GetDescriptor()4270   const char* GetDescriptor() REQUIRES_SHARED(Locks::mutator_lock_) {
4271     return res_method_->GetTypeDescriptorFromTypeIdx(params_->GetTypeItem(pos_).type_idx_);
4272   }
4273 
4274  private:
4275   ArtMethod* res_method_;
4276   size_t pos_;
4277   const DexFile::TypeList* params_;
4278   const size_t params_size_;
4279 };
4280 
VerifyInvocationArgs(const Instruction * inst,MethodType method_type,bool is_range)4281 ArtMethod* MethodVerifier::VerifyInvocationArgs(
4282     const Instruction* inst, MethodType method_type, bool is_range) {
4283   // Resolve the method. This could be an abstract or concrete method depending on what sort of call
4284   // we're making.
4285   const uint32_t method_idx = inst->VRegB();
4286   ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
4287   if (res_method == nullptr) {  // error or class is unresolved
4288     // Check what we can statically.
4289     if (!have_pending_hard_failure_) {
4290       VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range);
4291     }
4292     return nullptr;
4293   }
4294 
4295   // If we're using invoke-super(method), make sure that the executing method's class' superclass
4296   // has a vtable entry for the target method. Or the target is on a interface.
4297   if (method_type == METHOD_SUPER) {
4298     dex::TypeIndex class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
4299     const RegType& reference_type = reg_types_.FromDescriptor(
4300         GetClassLoader(),
4301         dex_file_->StringByTypeIdx(class_idx),
4302         false);
4303     if (reference_type.IsUnresolvedTypes()) {
4304       Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "Unable to find referenced class from invoke-super";
4305       return nullptr;
4306     }
4307     if (reference_type.GetClass()->IsInterface()) {
4308       // TODO Can we verify anything else.
4309       if (class_idx == class_def_.class_idx_) {
4310         Fail(VERIFY_ERROR_CLASS_CHANGE) << "Cannot invoke-super on self as interface";
4311         return nullptr;
4312       }
4313       // TODO Revisit whether we want to allow invoke-super on direct interfaces only like the JLS
4314       // does.
4315       if (!GetDeclaringClass().HasClass()) {
4316         Fail(VERIFY_ERROR_NO_CLASS) << "Unable to resolve the full class of 'this' used in an"
4317                                     << "interface invoke-super";
4318         return nullptr;
4319       } else if (!reference_type.IsStrictlyAssignableFrom(GetDeclaringClass(), this)) {
4320         Fail(VERIFY_ERROR_CLASS_CHANGE)
4321             << "invoke-super in " << mirror::Class::PrettyClass(GetDeclaringClass().GetClass())
4322             << " in method "
4323             << dex_file_->PrettyMethod(dex_method_idx_) << " to method "
4324             << dex_file_->PrettyMethod(method_idx) << " references "
4325             << "non-super-interface type " << mirror::Class::PrettyClass(reference_type.GetClass());
4326         return nullptr;
4327       }
4328     } else {
4329       const RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
4330       if (super.IsUnresolvedTypes()) {
4331         Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
4332                                     << dex_file_->PrettyMethod(dex_method_idx_)
4333                                     << " to super " << res_method->PrettyMethod();
4334         return nullptr;
4335       }
4336       if (!reference_type.IsStrictlyAssignableFrom(GetDeclaringClass(), this) ||
4337           (res_method->GetMethodIndex() >= super.GetClass()->GetVTableLength())) {
4338         Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
4339                                     << dex_file_->PrettyMethod(dex_method_idx_)
4340                                     << " to super " << super
4341                                     << "." << res_method->GetName()
4342                                     << res_method->GetSignature();
4343         return nullptr;
4344       }
4345     }
4346   }
4347 
4348   if (method_type == METHOD_POLYMORPHIC) {
4349     // Process the signature of the calling site that is invoking the method handle.
4350     DexFileParameterIterator it(*dex_file_, dex_file_->GetProtoId(inst->VRegH()));
4351     return VerifyInvocationArgsFromIterator(&it, inst, method_type, is_range, res_method);
4352   } else {
4353     // Process the target method's signature.
4354     MethodParamListDescriptorIterator it(res_method);
4355     return VerifyInvocationArgsFromIterator(&it, inst, method_type, is_range, res_method);
4356   }
4357 }
4358 
CheckSignaturePolymorphicMethod(ArtMethod * method)4359 bool MethodVerifier::CheckSignaturePolymorphicMethod(ArtMethod* method) {
4360   mirror::Class* klass = method->GetDeclaringClass();
4361   if (klass != mirror::MethodHandle::StaticClass()) {
4362     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4363         << "Signature polymorphic method must be declared in java.lang.invoke.MethodClass";
4364     return false;
4365   }
4366 
4367   const char* method_name = method->GetName();
4368   if (strcmp(method_name, "invoke") != 0 && strcmp(method_name, "invokeExact") != 0) {
4369     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4370         << "Signature polymorphic method name invalid: " << method_name;
4371     return false;
4372   }
4373 
4374   const DexFile::TypeList* types = method->GetParameterTypeList();
4375   if (types->Size() != 1) {
4376     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4377         << "Signature polymorphic method has too many arguments " << types->Size() << " != 1";
4378     return false;
4379   }
4380 
4381   const dex::TypeIndex argument_type_index = types->GetTypeItem(0).type_idx_;
4382   const char* argument_descriptor = method->GetTypeDescriptorFromTypeIdx(argument_type_index);
4383   if (strcmp(argument_descriptor, "[Ljava/lang/Object;") != 0) {
4384     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4385         << "Signature polymorphic method has unexpected argument type: " << argument_descriptor;
4386     return false;
4387   }
4388 
4389   const char* return_descriptor = method->GetReturnTypeDescriptor();
4390   if (strcmp(return_descriptor, "Ljava/lang/Object;") != 0) {
4391     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4392         << "Signature polymorphic method has unexpected return type: " << return_descriptor;
4393     return false;
4394   }
4395 
4396   return true;
4397 }
4398 
CheckSignaturePolymorphicReceiver(const Instruction * inst)4399 bool MethodVerifier::CheckSignaturePolymorphicReceiver(const Instruction* inst) {
4400   const RegType& this_type = work_line_->GetInvocationThis(this, inst);
4401   if (this_type.IsZero()) {
4402     /* null pointer always passes (and always fails at run time) */
4403     return true;
4404   } else if (!this_type.IsNonZeroReferenceTypes()) {
4405     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4406         << "invoke-polymorphic receiver is not a reference: "
4407         << this_type;
4408     return false;
4409   } else if (this_type.IsUninitializedReference()) {
4410     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4411         << "invoke-polymorphic receiver is uninitialized: "
4412         << this_type;
4413     return false;
4414   } else if (!this_type.HasClass()) {
4415     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4416         << "invoke-polymorphic receiver has no class: "
4417         << this_type;
4418     return false;
4419   } else if (!this_type.GetClass()->IsSubClass(mirror::MethodHandle::StaticClass())) {
4420     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4421         << "invoke-polymorphic receiver is not a subclass of MethodHandle: "
4422         << this_type;
4423     return false;
4424   }
4425   return true;
4426 }
4427 
GetQuickInvokedMethod(const Instruction * inst,RegisterLine * reg_line,bool is_range,bool allow_failure)4428 ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst, RegisterLine* reg_line,
4429                                                  bool is_range, bool allow_failure) {
4430   if (is_range) {
4431     DCHECK_EQ(inst->Opcode(), Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
4432   } else {
4433     DCHECK_EQ(inst->Opcode(), Instruction::INVOKE_VIRTUAL_QUICK);
4434   }
4435   const RegType& actual_arg_type = reg_line->GetInvocationThis(this, inst, allow_failure);
4436   if (!actual_arg_type.HasClass()) {
4437     VLOG(verifier) << "Failed to get mirror::Class* from '" << actual_arg_type << "'";
4438     return nullptr;
4439   }
4440   mirror::Class* klass = actual_arg_type.GetClass();
4441   mirror::Class* dispatch_class;
4442   if (klass->IsInterface()) {
4443     // Derive Object.class from Class.class.getSuperclass().
4444     mirror::Class* object_klass = klass->GetClass()->GetSuperClass();
4445     if (FailOrAbort(this, object_klass->IsObjectClass(),
4446                     "Failed to find Object class in quickened invoke receiver", work_insn_idx_)) {
4447       return nullptr;
4448     }
4449     dispatch_class = object_klass;
4450   } else {
4451     dispatch_class = klass;
4452   }
4453   if (!dispatch_class->HasVTable()) {
4454     FailOrAbort(this, allow_failure, "Receiver class has no vtable for quickened invoke at ",
4455                 work_insn_idx_);
4456     return nullptr;
4457   }
4458   uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
4459   auto* cl = Runtime::Current()->GetClassLinker();
4460   auto pointer_size = cl->GetImagePointerSize();
4461   if (static_cast<int32_t>(vtable_index) >= dispatch_class->GetVTableLength()) {
4462     FailOrAbort(this, allow_failure,
4463                 "Receiver class has not enough vtable slots for quickened invoke at ",
4464                 work_insn_idx_);
4465     return nullptr;
4466   }
4467   ArtMethod* res_method = dispatch_class->GetVTableEntry(vtable_index, pointer_size);
4468   if (self_->IsExceptionPending()) {
4469     FailOrAbort(this, allow_failure, "Unexpected exception pending for quickened invoke at ",
4470                 work_insn_idx_);
4471     return nullptr;
4472   }
4473   return res_method;
4474 }
4475 
VerifyInvokeVirtualQuickArgs(const Instruction * inst,bool is_range)4476 ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst, bool is_range) {
4477   DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_)
4478       << dex_file_->PrettyMethod(dex_method_idx_, true) << "@" << work_insn_idx_;
4479 
4480   ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(), is_range, false);
4481   if (res_method == nullptr) {
4482     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name();
4483     return nullptr;
4484   }
4485   if (FailOrAbort(this, !res_method->IsDirect(), "Quick-invoked method is direct at ",
4486                   work_insn_idx_)) {
4487     return nullptr;
4488   }
4489   if (FailOrAbort(this, !res_method->IsStatic(), "Quick-invoked method is static at ",
4490                   work_insn_idx_)) {
4491     return nullptr;
4492   }
4493 
4494   // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
4495   // match the call to the signature. Also, we might be calling through an abstract method
4496   // definition (which doesn't have register count values).
4497   const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst);
4498   if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
4499     return nullptr;
4500   }
4501   const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
4502   /* caught by static verifier */
4503   DCHECK(is_range || expected_args <= 5);
4504   if (expected_args > code_item_->outs_size_) {
4505     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
4506         << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
4507     return nullptr;
4508   }
4509 
4510   /*
4511    * Check the "this" argument, which must be an instance of the class that declared the method.
4512    * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
4513    * rigorous check here (which is okay since we have to do it at runtime).
4514    */
4515   // Note: given an uninitialized type, this should always fail. Constructors aren't virtual.
4516   if (actual_arg_type.IsUninitializedTypes() && !res_method->IsConstructor()) {
4517     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
4518     return nullptr;
4519   }
4520   if (!actual_arg_type.IsZero()) {
4521     mirror::Class* klass = res_method->GetDeclaringClass();
4522     std::string temp;
4523     const RegType& res_method_class =
4524         FromClass(klass->GetDescriptor(&temp), klass, klass->CannotBeAssignedFromOtherTypes());
4525     if (!res_method_class.IsAssignableFrom(actual_arg_type, this)) {
4526       Fail(actual_arg_type.IsUninitializedTypes()    // Just overcautious - should have never
4527                ? VERIFY_ERROR_BAD_CLASS_HARD         // quickened this.
4528                : actual_arg_type.IsUnresolvedTypes()
4529                      ? VERIFY_ERROR_NO_CLASS
4530                      : VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
4531           << "' not instance of '" << res_method_class << "'";
4532       return nullptr;
4533     }
4534   }
4535   /*
4536    * Process the target method's signature. This signature may or may not
4537    * have been verified, so we can't assume it's properly formed.
4538    */
4539   const DexFile::TypeList* params = res_method->GetParameterTypeList();
4540   size_t params_size = params == nullptr ? 0 : params->Size();
4541   uint32_t arg[5];
4542   if (!is_range) {
4543     inst->GetVarArgs(arg);
4544   }
4545   size_t actual_args = 1;
4546   for (size_t param_index = 0; param_index < params_size; param_index++) {
4547     if (actual_args >= expected_args) {
4548       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '"
4549                                         << res_method->PrettyMethod()
4550                                         << "'. Expected " << expected_args
4551                                          << " arguments, processing argument " << actual_args
4552                                         << " (where longs/doubles count twice).";
4553       return nullptr;
4554     }
4555     const char* descriptor =
4556         res_method->GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
4557     if (descriptor == nullptr) {
4558       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of "
4559                                         << res_method->PrettyMethod()
4560                                         << " missing signature component";
4561       return nullptr;
4562     }
4563     const RegType& reg_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
4564     uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
4565     if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
4566       return res_method;
4567     }
4568     actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
4569   }
4570   if (actual_args != expected_args) {
4571     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of "
4572                                       << res_method->PrettyMethod() << " expected "
4573                                       << expected_args << " arguments, found " << actual_args;
4574     return nullptr;
4575   } else {
4576     return res_method;
4577   }
4578 }
4579 
VerifyNewArray(const Instruction * inst,bool is_filled,bool is_range)4580 void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
4581   dex::TypeIndex type_idx;
4582   if (!is_filled) {
4583     DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
4584     type_idx = dex::TypeIndex(inst->VRegC_22c());
4585   } else if (!is_range) {
4586     DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
4587     type_idx = dex::TypeIndex(inst->VRegB_35c());
4588   } else {
4589     DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
4590     type_idx = dex::TypeIndex(inst->VRegB_3rc());
4591   }
4592   const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
4593   if (res_type.IsConflict()) {  // bad class
4594     DCHECK_NE(failures_.size(), 0U);
4595   } else {
4596     // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
4597     if (!res_type.IsArrayTypes()) {
4598       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
4599     } else if (!is_filled) {
4600       /* make sure "size" register is valid type */
4601       work_line_->VerifyRegisterType(this, inst->VRegB_22c(), reg_types_.Integer());
4602       /* set register type to array class */
4603       const RegType& precise_type = reg_types_.FromUninitialized(res_type);
4604       work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_22c(), precise_type);
4605     } else {
4606       DCHECK(!res_type.IsUnresolvedMergedReference());
4607       // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
4608       // the list and fail. It's legal, if silly, for arg_count to be zero.
4609       const RegType& expected_type = reg_types_.GetComponentType(res_type, GetClassLoader());
4610       uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
4611       uint32_t arg[5];
4612       if (!is_range) {
4613         inst->GetVarArgs(arg);
4614       }
4615       for (size_t ui = 0; ui < arg_count; ui++) {
4616         uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
4617         if (!work_line_->VerifyRegisterType(this, get_reg, expected_type)) {
4618           work_line_->SetResultRegisterType(this, reg_types_.Conflict());
4619           return;
4620         }
4621       }
4622       // filled-array result goes into "result" register
4623       const RegType& precise_type = reg_types_.FromUninitialized(res_type);
4624       work_line_->SetResultRegisterType(this, precise_type);
4625     }
4626   }
4627 }
4628 
VerifyAGet(const Instruction * inst,const RegType & insn_type,bool is_primitive)4629 void MethodVerifier::VerifyAGet(const Instruction* inst,
4630                                 const RegType& insn_type, bool is_primitive) {
4631   const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
4632   if (!index_type.IsArrayIndexTypes()) {
4633     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
4634   } else {
4635     const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
4636     if (array_type.IsZero()) {
4637       have_pending_runtime_throw_failure_ = true;
4638       // Null array class; this code path will fail at runtime. Infer a merge-able type from the
4639       // instruction type. TODO: have a proper notion of bottom here.
4640       if (!is_primitive || insn_type.IsCategory1Types()) {
4641         // Reference or category 1
4642         work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), reg_types_.Zero());
4643       } else {
4644         // Category 2
4645         work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(),
4646                                         reg_types_.FromCat2ConstLo(0, false),
4647                                         reg_types_.FromCat2ConstHi(0, false));
4648       }
4649     } else if (!array_type.IsArrayTypes()) {
4650       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
4651     } else if (array_type.IsUnresolvedMergedReference()) {
4652       // Unresolved array types must be reference array types.
4653       if (is_primitive) {
4654         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
4655                     << " source for category 1 aget";
4656       } else {
4657         Fail(VERIFY_ERROR_NO_CLASS) << "cannot verify aget for " << array_type
4658             << " because of missing class";
4659         // Approximate with java.lang.Object[].
4660         work_line_->SetRegisterType<LockOp::kClear>(this,
4661                                                     inst->VRegA_23x(),
4662                                                     reg_types_.JavaLangObject(false));
4663       }
4664     } else {
4665       /* verify the class */
4666       const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
4667       if (!component_type.IsReferenceTypes() && !is_primitive) {
4668         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
4669             << " source for aget-object";
4670       } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
4671         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
4672             << " source for category 1 aget";
4673       } else if (is_primitive && !insn_type.Equals(component_type) &&
4674                  !((insn_type.IsInteger() && component_type.IsFloat()) ||
4675                  (insn_type.IsLong() && component_type.IsDouble()))) {
4676         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
4677             << " incompatible with aget of type " << insn_type;
4678       } else {
4679         // Use knowledge of the field type which is stronger than the type inferred from the
4680         // instruction, which can't differentiate object types and ints from floats, longs from
4681         // doubles.
4682         if (!component_type.IsLowHalf()) {
4683           work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), component_type);
4684         } else {
4685           work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(), component_type,
4686                                           component_type.HighHalf(&reg_types_));
4687         }
4688       }
4689     }
4690   }
4691 }
4692 
VerifyPrimitivePut(const RegType & target_type,const RegType & insn_type,const uint32_t vregA)4693 void MethodVerifier::VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
4694                                         const uint32_t vregA) {
4695   // Primitive assignability rules are weaker than regular assignability rules.
4696   bool instruction_compatible;
4697   bool value_compatible;
4698   const RegType& value_type = work_line_->GetRegisterType(this, vregA);
4699   if (target_type.IsIntegralTypes()) {
4700     instruction_compatible = target_type.Equals(insn_type);
4701     value_compatible = value_type.IsIntegralTypes();
4702   } else if (target_type.IsFloat()) {
4703     instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
4704     value_compatible = value_type.IsFloatTypes();
4705   } else if (target_type.IsLong()) {
4706     instruction_compatible = insn_type.IsLong();
4707     // Additional register check: this is not checked statically (as part of VerifyInstructions),
4708     // as target_type depends on the resolved type of the field.
4709     if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
4710       const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
4711       value_compatible = value_type.IsLongTypes() && value_type.CheckWidePair(value_type_hi);
4712     } else {
4713       value_compatible = false;
4714     }
4715   } else if (target_type.IsDouble()) {
4716     instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
4717     // Additional register check: this is not checked statically (as part of VerifyInstructions),
4718     // as target_type depends on the resolved type of the field.
4719     if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
4720       const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
4721       value_compatible = value_type.IsDoubleTypes() && value_type.CheckWidePair(value_type_hi);
4722     } else {
4723       value_compatible = false;
4724     }
4725   } else {
4726     instruction_compatible = false;  // reference with primitive store
4727     value_compatible = false;  // unused
4728   }
4729   if (!instruction_compatible) {
4730     // This is a global failure rather than a class change failure as the instructions and
4731     // the descriptors for the type should have been consistent within the same file at
4732     // compile time.
4733     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
4734         << "' but expected type '" << target_type << "'";
4735     return;
4736   }
4737   if (!value_compatible) {
4738     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
4739         << " of type " << value_type << " but expected " << target_type << " for put";
4740     return;
4741   }
4742 }
4743 
VerifyAPut(const Instruction * inst,const RegType & insn_type,bool is_primitive)4744 void MethodVerifier::VerifyAPut(const Instruction* inst,
4745                                 const RegType& insn_type, bool is_primitive) {
4746   const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
4747   if (!index_type.IsArrayIndexTypes()) {
4748     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
4749   } else {
4750     const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
4751     if (array_type.IsZero()) {
4752       // Null array type; this code path will fail at runtime.
4753       // Still check that the given value matches the instruction's type.
4754       // Note: this is, as usual, complicated by the fact the the instruction isn't fully typed
4755       //       and fits multiple register types.
4756       const RegType* modified_reg_type = &insn_type;
4757       if ((modified_reg_type == &reg_types_.Integer()) ||
4758           (modified_reg_type == &reg_types_.LongLo())) {
4759         // May be integer or float | long or double. Overwrite insn_type accordingly.
4760         const RegType& value_type = work_line_->GetRegisterType(this, inst->VRegA_23x());
4761         if (modified_reg_type == &reg_types_.Integer()) {
4762           if (&value_type == &reg_types_.Float()) {
4763             modified_reg_type = &value_type;
4764           }
4765         } else {
4766           if (&value_type == &reg_types_.DoubleLo()) {
4767             modified_reg_type = &value_type;
4768           }
4769         }
4770       }
4771       work_line_->VerifyRegisterType(this, inst->VRegA_23x(), *modified_reg_type);
4772     } else if (!array_type.IsArrayTypes()) {
4773       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
4774     } else if (array_type.IsUnresolvedMergedReference()) {
4775       // Unresolved array types must be reference array types.
4776       if (is_primitive) {
4777         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
4778                                           << "' but unresolved type '" << array_type << "'";
4779       } else {
4780         Fail(VERIFY_ERROR_NO_CLASS) << "cannot verify aput for " << array_type
4781                                     << " because of missing class";
4782       }
4783     } else {
4784       const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
4785       const uint32_t vregA = inst->VRegA_23x();
4786       if (is_primitive) {
4787         VerifyPrimitivePut(component_type, insn_type, vregA);
4788       } else {
4789         if (!component_type.IsReferenceTypes()) {
4790           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
4791               << " source for aput-object";
4792         } else {
4793           // The instruction agrees with the type of array, confirm the value to be stored does too
4794           // Note: we use the instruction type (rather than the component type) for aput-object as
4795           // incompatible classes will be caught at runtime as an array store exception
4796           work_line_->VerifyRegisterType(this, vregA, insn_type);
4797         }
4798       }
4799     }
4800   }
4801 }
4802 
GetStaticField(int field_idx)4803 ArtField* MethodVerifier::GetStaticField(int field_idx) {
4804   const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
4805   // Check access to class
4806   const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
4807   if (klass_type.IsConflict()) {  // bad class
4808     AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
4809                                          field_idx, dex_file_->GetFieldName(field_id),
4810                                          dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
4811     return nullptr;
4812   }
4813   if (klass_type.IsUnresolvedTypes()) {
4814     return nullptr;  // Can't resolve Class so no more to do here, will do checking at runtime.
4815   }
4816   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
4817   ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, dex_cache_, class_loader_);
4818 
4819   // Record result of the field resolution attempt.
4820   VerifierDeps::MaybeRecordFieldResolution(*dex_file_, field_idx, field);
4821 
4822   if (field == nullptr) {
4823     VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
4824               << dex_file_->GetFieldName(field_id) << ") in "
4825               << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
4826     DCHECK(self_->IsExceptionPending());
4827     self_->ClearException();
4828     return nullptr;
4829   } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
4830                                                   field->GetAccessFlags())) {
4831     Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << field->PrettyField()
4832                                     << " from " << GetDeclaringClass();
4833     return nullptr;
4834   } else if (!field->IsStatic()) {
4835     Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << field->PrettyField() << " to be static";
4836     return nullptr;
4837   }
4838   return field;
4839 }
4840 
GetInstanceField(const RegType & obj_type,int field_idx)4841 ArtField* MethodVerifier::GetInstanceField(const RegType& obj_type, int field_idx) {
4842   const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
4843   // Check access to class.
4844   const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
4845   if (klass_type.IsConflict()) {
4846     AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
4847                                          field_idx, dex_file_->GetFieldName(field_id),
4848                                          dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
4849     return nullptr;
4850   }
4851   if (klass_type.IsUnresolvedTypes()) {
4852     return nullptr;  // Can't resolve Class so no more to do here
4853   }
4854   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
4855   ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, dex_cache_, class_loader_);
4856 
4857   // Record result of the field resolution attempt.
4858   VerifierDeps::MaybeRecordFieldResolution(*dex_file_, field_idx, field);
4859 
4860   if (field == nullptr) {
4861     VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
4862               << dex_file_->GetFieldName(field_id) << ") in "
4863               << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
4864     DCHECK(self_->IsExceptionPending());
4865     self_->ClearException();
4866     return nullptr;
4867   } else if (obj_type.IsZero()) {
4868     // Cannot infer and check type, however, access will cause null pointer exception.
4869     // Fall through into a few last soft failure checks below.
4870   } else if (!obj_type.IsReferenceTypes()) {
4871     // Trying to read a field from something that isn't a reference.
4872     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance field access on object that has "
4873                                       << "non-reference type " << obj_type;
4874     return nullptr;
4875   } else {
4876     std::string temp;
4877     ObjPtr<mirror::Class> klass = field->GetDeclaringClass();
4878     const RegType& field_klass =
4879         FromClass(klass->GetDescriptor(&temp),
4880                   klass.Ptr(),
4881                   klass->CannotBeAssignedFromOtherTypes());
4882     if (obj_type.IsUninitializedTypes()) {
4883       // Field accesses through uninitialized references are only allowable for constructors where
4884       // the field is declared in this class.
4885       // Note: this IsConstructor check is technically redundant, as UninitializedThis should only
4886       //       appear in constructors.
4887       if (!obj_type.IsUninitializedThisReference() ||
4888           !IsConstructor() ||
4889           !field_klass.Equals(GetDeclaringClass())) {
4890         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << field->PrettyField()
4891                                           << " of a not fully initialized object within the context"
4892                                           << " of " << dex_file_->PrettyMethod(dex_method_idx_);
4893         return nullptr;
4894       }
4895     } else if (!field_klass.IsAssignableFrom(obj_type, this)) {
4896       // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
4897       // of C1. For resolution to occur the declared class of the field must be compatible with
4898       // obj_type, we've discovered this wasn't so, so report the field didn't exist.
4899       VerifyError type;
4900       bool is_aot = Runtime::Current()->IsAotCompiler();
4901       if (is_aot && (field_klass.IsUnresolvedTypes() || obj_type.IsUnresolvedTypes())) {
4902         // Compiler & unresolved types involved, retry at runtime.
4903         type = VerifyError::VERIFY_ERROR_NO_CLASS;
4904       } else {
4905         // Classes known (resolved; and thus assignability check is precise), or we are at runtime
4906         // and still missing classes. This is a hard failure.
4907         type = VerifyError::VERIFY_ERROR_BAD_CLASS_HARD;
4908       }
4909       Fail(type) << "cannot access instance field " << field->PrettyField()
4910                  << " from object of type " << obj_type;
4911       return nullptr;
4912     }
4913   }
4914 
4915   // Few last soft failure checks.
4916   if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
4917                                            field->GetAccessFlags())) {
4918     Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << field->PrettyField()
4919                                     << " from " << GetDeclaringClass();
4920     return nullptr;
4921   } else if (field->IsStatic()) {
4922     Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << field->PrettyField()
4923                                     << " to not be static";
4924     return nullptr;
4925   }
4926 
4927   return field;
4928 }
4929 
4930 template <MethodVerifier::FieldAccessType kAccType>
VerifyISFieldAccess(const Instruction * inst,const RegType & insn_type,bool is_primitive,bool is_static)4931 void MethodVerifier::VerifyISFieldAccess(const Instruction* inst, const RegType& insn_type,
4932                                          bool is_primitive, bool is_static) {
4933   uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
4934   ArtField* field;
4935   if (is_static) {
4936     field = GetStaticField(field_idx);
4937   } else {
4938     const RegType& object_type = work_line_->GetRegisterType(this, inst->VRegB_22c());
4939 
4940     // One is not allowed to access fields on uninitialized references, except to write to
4941     // fields in the constructor (before calling another constructor).
4942     // GetInstanceField does an assignability check which will fail for uninitialized types.
4943     // We thus modify the type if the uninitialized reference is a "this" reference (this also
4944     // checks at the same time that we're verifying a constructor).
4945     bool should_adjust = (kAccType == FieldAccessType::kAccPut) &&
4946                          object_type.IsUninitializedThisReference();
4947     const RegType& adjusted_type = should_adjust
4948                                        ? GetRegTypeCache()->FromUninitialized(object_type)
4949                                        : object_type;
4950     field = GetInstanceField(adjusted_type, field_idx);
4951     if (UNLIKELY(have_pending_hard_failure_)) {
4952       return;
4953     }
4954     if (should_adjust) {
4955       if (field == nullptr) {
4956         Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "Might be accessing a superclass instance field prior "
4957                                           << "to the superclass being initialized in "
4958                                           << dex_file_->PrettyMethod(dex_method_idx_);
4959       } else if (field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
4960         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access superclass instance field "
4961                                           << field->PrettyField() << " of a not fully initialized "
4962                                           << "object within the context of "
4963                                           << dex_file_->PrettyMethod(dex_method_idx_);
4964         return;
4965       }
4966     }
4967   }
4968   const RegType* field_type = nullptr;
4969   if (field != nullptr) {
4970     if (kAccType == FieldAccessType::kAccPut) {
4971       if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
4972         Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << field->PrettyField()
4973                                         << " from other class " << GetDeclaringClass();
4974         // Keep hunting for possible hard fails.
4975       }
4976     }
4977 
4978     ObjPtr<mirror::Class> field_type_class =
4979         can_load_classes_ ? field->GetType<true>() : field->GetType<false>();
4980     if (field_type_class != nullptr) {
4981       field_type = &FromClass(field->GetTypeDescriptor(),
4982                               field_type_class.Ptr(),
4983                               field_type_class->CannotBeAssignedFromOtherTypes());
4984     } else {
4985       DCHECK(!can_load_classes_ || self_->IsExceptionPending());
4986       self_->ClearException();
4987     }
4988   }
4989   if (field_type == nullptr) {
4990     const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
4991     const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
4992     field_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
4993   }
4994   DCHECK(field_type != nullptr);
4995   const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
4996   static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
4997                 "Unexpected third access type");
4998   if (kAccType == FieldAccessType::kAccPut) {
4999     // sput or iput.
5000     if (is_primitive) {
5001       VerifyPrimitivePut(*field_type, insn_type, vregA);
5002     } else {
5003       if (!insn_type.IsAssignableFrom(*field_type, this)) {
5004         // If the field type is not a reference, this is a global failure rather than
5005         // a class change failure as the instructions and the descriptors for the type
5006         // should have been consistent within the same file at compile time.
5007         VerifyError error = field_type->IsReferenceTypes() ? VERIFY_ERROR_BAD_CLASS_SOFT
5008                                                            : VERIFY_ERROR_BAD_CLASS_HARD;
5009         Fail(error) << "expected field " << ArtField::PrettyField(field)
5010                     << " to be compatible with type '" << insn_type
5011                     << "' but found type '" << *field_type
5012                     << "' in put-object";
5013         return;
5014       }
5015       work_line_->VerifyRegisterType(this, vregA, *field_type);
5016     }
5017   } else if (kAccType == FieldAccessType::kAccGet) {
5018     // sget or iget.
5019     if (is_primitive) {
5020       if (field_type->Equals(insn_type) ||
5021           (field_type->IsFloat() && insn_type.IsInteger()) ||
5022           (field_type->IsDouble() && insn_type.IsLong())) {
5023         // expected that read is of the correct primitive type or that int reads are reading
5024         // floats or long reads are reading doubles
5025       } else {
5026         // This is a global failure rather than a class change failure as the instructions and
5027         // the descriptors for the type should have been consistent within the same file at
5028         // compile time
5029         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << ArtField::PrettyField(field)
5030                                           << " to be of type '" << insn_type
5031                                           << "' but found type '" << *field_type << "' in get";
5032         return;
5033       }
5034     } else {
5035       if (!insn_type.IsAssignableFrom(*field_type, this)) {
5036         // If the field type is not a reference, this is a global failure rather than
5037         // a class change failure as the instructions and the descriptors for the type
5038         // should have been consistent within the same file at compile time.
5039         VerifyError error = field_type->IsReferenceTypes() ? VERIFY_ERROR_BAD_CLASS_SOFT
5040                                                            : VERIFY_ERROR_BAD_CLASS_HARD;
5041         Fail(error) << "expected field " << ArtField::PrettyField(field)
5042                     << " to be compatible with type '" << insn_type
5043                     << "' but found type '" << *field_type
5044                     << "' in get-object";
5045         if (error != VERIFY_ERROR_BAD_CLASS_HARD) {
5046           work_line_->SetRegisterType<LockOp::kClear>(this, vregA, reg_types_.Conflict());
5047         }
5048         return;
5049       }
5050     }
5051     if (!field_type->IsLowHalf()) {
5052       work_line_->SetRegisterType<LockOp::kClear>(this, vregA, *field_type);
5053     } else {
5054       work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(&reg_types_));
5055     }
5056   } else {
5057     LOG(FATAL) << "Unexpected case.";
5058   }
5059 }
5060 
GetQuickFieldAccess(const Instruction * inst,RegisterLine * reg_line)5061 ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst,
5062                                                       RegisterLine* reg_line) {
5063   DCHECK(IsInstructionIGetQuickOrIPutQuick(inst->Opcode())) << inst->Opcode();
5064   const RegType& object_type = reg_line->GetRegisterType(this, inst->VRegB_22c());
5065   if (!object_type.HasClass()) {
5066     VLOG(verifier) << "Failed to get mirror::Class* from '" << object_type << "'";
5067     return nullptr;
5068   }
5069   uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c());
5070   ArtField* const f = ArtField::FindInstanceFieldWithOffset(object_type.GetClass(), field_offset);
5071   DCHECK_EQ(f->GetOffset().Uint32Value(), field_offset);
5072   if (f == nullptr) {
5073     VLOG(verifier) << "Failed to find instance field at offset '" << field_offset
5074                    << "' from '" << mirror::Class::PrettyDescriptor(object_type.GetClass()) << "'";
5075   }
5076   return f;
5077 }
5078 
5079 template <MethodVerifier::FieldAccessType kAccType>
VerifyQuickFieldAccess(const Instruction * inst,const RegType & insn_type,bool is_primitive)5080 void MethodVerifier::VerifyQuickFieldAccess(const Instruction* inst, const RegType& insn_type,
5081                                             bool is_primitive) {
5082   DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_);
5083 
5084   ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
5085   if (field == nullptr) {
5086     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
5087     return;
5088   }
5089 
5090   // For an IPUT_QUICK, we now test for final flag of the field.
5091   if (kAccType == FieldAccessType::kAccPut) {
5092     if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
5093       Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << field->PrettyField()
5094                                       << " from other class " << GetDeclaringClass();
5095       return;
5096     }
5097   }
5098 
5099   // Get the field type.
5100   const RegType* field_type;
5101   {
5102     ObjPtr<mirror::Class> field_type_class = can_load_classes_ ? field->GetType<true>() :
5103         field->GetType<false>();
5104 
5105     if (field_type_class != nullptr) {
5106       field_type = &FromClass(field->GetTypeDescriptor(),
5107                               field_type_class.Ptr(),
5108                               field_type_class->CannotBeAssignedFromOtherTypes());
5109     } else {
5110       Thread* self = Thread::Current();
5111       DCHECK(!can_load_classes_ || self->IsExceptionPending());
5112       self->ClearException();
5113       field_type = &reg_types_.FromDescriptor(field->GetDeclaringClass()->GetClassLoader(),
5114                                               field->GetTypeDescriptor(),
5115                                               false);
5116     }
5117     if (field_type == nullptr) {
5118       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field type from " << inst->Name();
5119       return;
5120     }
5121   }
5122 
5123   const uint32_t vregA = inst->VRegA_22c();
5124   static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
5125                 "Unexpected third access type");
5126   if (kAccType == FieldAccessType::kAccPut) {
5127     if (is_primitive) {
5128       // Primitive field assignability rules are weaker than regular assignability rules
5129       bool instruction_compatible;
5130       bool value_compatible;
5131       const RegType& value_type = work_line_->GetRegisterType(this, vregA);
5132       if (field_type->IsIntegralTypes()) {
5133         instruction_compatible = insn_type.IsIntegralTypes();
5134         value_compatible = value_type.IsIntegralTypes();
5135       } else if (field_type->IsFloat()) {
5136         instruction_compatible = insn_type.IsInteger();  // no [is]put-float, so expect [is]put-int
5137         value_compatible = value_type.IsFloatTypes();
5138       } else if (field_type->IsLong()) {
5139         instruction_compatible = insn_type.IsLong();
5140         value_compatible = value_type.IsLongTypes();
5141       } else if (field_type->IsDouble()) {
5142         instruction_compatible = insn_type.IsLong();  // no [is]put-double, so expect [is]put-long
5143         value_compatible = value_type.IsDoubleTypes();
5144       } else {
5145         instruction_compatible = false;  // reference field with primitive store
5146         value_compatible = false;  // unused
5147       }
5148       if (!instruction_compatible) {
5149         // This is a global failure rather than a class change failure as the instructions and
5150         // the descriptors for the type should have been consistent within the same file at
5151         // compile time
5152         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << ArtField::PrettyField(field)
5153                                           << " to be of type '" << insn_type
5154                                           << "' but found type '" << *field_type
5155                                           << "' in put";
5156         return;
5157       }
5158       if (!value_compatible) {
5159         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
5160             << " of type " << value_type
5161             << " but expected " << *field_type
5162             << " for store to " << ArtField::PrettyField(field) << " in put";
5163         return;
5164       }
5165     } else {
5166       if (!insn_type.IsAssignableFrom(*field_type, this)) {
5167         Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << ArtField::PrettyField(field)
5168                                           << " to be compatible with type '" << insn_type
5169                                           << "' but found type '" << *field_type
5170                                           << "' in put-object";
5171         return;
5172       }
5173       work_line_->VerifyRegisterType(this, vregA, *field_type);
5174     }
5175   } else if (kAccType == FieldAccessType::kAccGet) {
5176     if (is_primitive) {
5177       if (field_type->Equals(insn_type) ||
5178           (field_type->IsFloat() && insn_type.IsIntegralTypes()) ||
5179           (field_type->IsDouble() && insn_type.IsLongTypes())) {
5180         // expected that read is of the correct primitive type or that int reads are reading
5181         // floats or long reads are reading doubles
5182       } else {
5183         // This is a global failure rather than a class change failure as the instructions and
5184         // the descriptors for the type should have been consistent within the same file at
5185         // compile time
5186         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << ArtField::PrettyField(field)
5187                                           << " to be of type '" << insn_type
5188                                           << "' but found type '" << *field_type << "' in Get";
5189         return;
5190       }
5191     } else {
5192       if (!insn_type.IsAssignableFrom(*field_type, this)) {
5193         Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << ArtField::PrettyField(field)
5194                                           << " to be compatible with type '" << insn_type
5195                                           << "' but found type '" << *field_type
5196                                           << "' in get-object";
5197         work_line_->SetRegisterType<LockOp::kClear>(this, vregA, reg_types_.Conflict());
5198         return;
5199       }
5200     }
5201     if (!field_type->IsLowHalf()) {
5202       work_line_->SetRegisterType<LockOp::kClear>(this, vregA, *field_type);
5203     } else {
5204       work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(&reg_types_));
5205     }
5206   } else {
5207     LOG(FATAL) << "Unexpected case.";
5208   }
5209 }
5210 
CheckNotMoveException(const uint16_t * insns,int insn_idx)5211 bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
5212   if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
5213     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
5214     return false;
5215   }
5216   return true;
5217 }
5218 
CheckNotMoveResult(const uint16_t * insns,int insn_idx)5219 bool MethodVerifier::CheckNotMoveResult(const uint16_t* insns, int insn_idx) {
5220   if (((insns[insn_idx] & 0xff) >= Instruction::MOVE_RESULT) &&
5221       ((insns[insn_idx] & 0xff) <= Instruction::MOVE_RESULT_OBJECT)) {
5222     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-result*";
5223     return false;
5224   }
5225   return true;
5226 }
5227 
CheckNotMoveExceptionOrMoveResult(const uint16_t * insns,int insn_idx)5228 bool MethodVerifier::CheckNotMoveExceptionOrMoveResult(const uint16_t* insns, int insn_idx) {
5229   return (CheckNotMoveException(insns, insn_idx) && CheckNotMoveResult(insns, insn_idx));
5230 }
5231 
UpdateRegisters(uint32_t next_insn,RegisterLine * merge_line,bool update_merge_line)5232 bool MethodVerifier::UpdateRegisters(uint32_t next_insn, RegisterLine* merge_line,
5233                                      bool update_merge_line) {
5234   bool changed = true;
5235   RegisterLine* target_line = reg_table_.GetLine(next_insn);
5236   if (!GetInstructionFlags(next_insn).IsVisitedOrChanged()) {
5237     /*
5238      * We haven't processed this instruction before, and we haven't touched the registers here, so
5239      * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
5240      * only way a register can transition out of "unknown", so this is not just an optimization.)
5241      */
5242     target_line->CopyFromLine(merge_line);
5243     if (GetInstructionFlags(next_insn).IsReturn()) {
5244       // Verify that the monitor stack is empty on return.
5245       merge_line->VerifyMonitorStackEmpty(this);
5246 
5247       // For returns we only care about the operand to the return, all other registers are dead.
5248       // Initialize them as conflicts so they don't add to GC and deoptimization information.
5249       const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn);
5250       AdjustReturnLine(this, ret_inst, target_line);
5251       // Directly bail if a hard failure was found.
5252       if (have_pending_hard_failure_) {
5253         return false;
5254       }
5255     }
5256   } else {
5257     RegisterLineArenaUniquePtr copy;
5258     if (kDebugVerify) {
5259       copy.reset(RegisterLine::Create(target_line->NumRegs(), this));
5260       copy->CopyFromLine(target_line);
5261     }
5262     changed = target_line->MergeRegisters(this, merge_line);
5263     if (have_pending_hard_failure_) {
5264       return false;
5265     }
5266     if (kDebugVerify && changed) {
5267       LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
5268                       << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
5269                       << copy->Dump(this) << "  MERGE\n"
5270                       << merge_line->Dump(this) << "  ==\n"
5271                       << target_line->Dump(this) << "\n";
5272     }
5273     if (update_merge_line && changed) {
5274       merge_line->CopyFromLine(target_line);
5275     }
5276   }
5277   if (changed) {
5278     GetInstructionFlags(next_insn).SetChanged();
5279   }
5280   return true;
5281 }
5282 
CurrentInsnFlags()5283 InstructionFlags* MethodVerifier::CurrentInsnFlags() {
5284   return &GetInstructionFlags(work_insn_idx_);
5285 }
5286 
GetMethodReturnType()5287 const RegType& MethodVerifier::GetMethodReturnType() {
5288   if (return_type_ == nullptr) {
5289     if (mirror_method_ != nullptr) {
5290       mirror::Class* return_type_class = mirror_method_->GetReturnType(can_load_classes_);
5291       if (return_type_class != nullptr) {
5292         return_type_ = &FromClass(mirror_method_->GetReturnTypeDescriptor(),
5293                                   return_type_class,
5294                                   return_type_class->CannotBeAssignedFromOtherTypes());
5295       } else {
5296         DCHECK(!can_load_classes_ || self_->IsExceptionPending());
5297         self_->ClearException();
5298       }
5299     }
5300     if (return_type_ == nullptr) {
5301       const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
5302       const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
5303       dex::TypeIndex return_type_idx = proto_id.return_type_idx_;
5304       const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
5305       return_type_ = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
5306     }
5307   }
5308   return *return_type_;
5309 }
5310 
GetDeclaringClass()5311 const RegType& MethodVerifier::GetDeclaringClass() {
5312   if (declaring_class_ == nullptr) {
5313     const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
5314     const char* descriptor
5315         = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
5316     if (mirror_method_ != nullptr) {
5317       mirror::Class* klass = mirror_method_->GetDeclaringClass();
5318       declaring_class_ = &FromClass(descriptor, klass, klass->CannotBeAssignedFromOtherTypes());
5319     } else {
5320       declaring_class_ = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
5321     }
5322   }
5323   return *declaring_class_;
5324 }
5325 
DescribeVRegs(uint32_t dex_pc)5326 std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
5327   RegisterLine* line = reg_table_.GetLine(dex_pc);
5328   DCHECK(line != nullptr) << "No register line at DEX pc " << StringPrintf("0x%x", dex_pc);
5329   std::vector<int32_t> result;
5330   for (size_t i = 0; i < line->NumRegs(); ++i) {
5331     const RegType& type = line->GetRegisterType(this, i);
5332     if (type.IsConstant()) {
5333       result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
5334       const ConstantType* const_val = down_cast<const ConstantType*>(&type);
5335       result.push_back(const_val->ConstantValue());
5336     } else if (type.IsConstantLo()) {
5337       result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
5338       const ConstantType* const_val = down_cast<const ConstantType*>(&type);
5339       result.push_back(const_val->ConstantValueLo());
5340     } else if (type.IsConstantHi()) {
5341       result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
5342       const ConstantType* const_val = down_cast<const ConstantType*>(&type);
5343       result.push_back(const_val->ConstantValueHi());
5344     } else if (type.IsIntegralTypes()) {
5345       result.push_back(kIntVReg);
5346       result.push_back(0);
5347     } else if (type.IsFloat()) {
5348       result.push_back(kFloatVReg);
5349       result.push_back(0);
5350     } else if (type.IsLong()) {
5351       result.push_back(kLongLoVReg);
5352       result.push_back(0);
5353       result.push_back(kLongHiVReg);
5354       result.push_back(0);
5355       ++i;
5356     } else if (type.IsDouble()) {
5357       result.push_back(kDoubleLoVReg);
5358       result.push_back(0);
5359       result.push_back(kDoubleHiVReg);
5360       result.push_back(0);
5361       ++i;
5362     } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
5363       result.push_back(kUndefined);
5364       result.push_back(0);
5365     } else {
5366       CHECK(type.IsNonZeroReferenceTypes());
5367       result.push_back(kReferenceVReg);
5368       result.push_back(0);
5369     }
5370   }
5371   return result;
5372 }
5373 
DetermineCat1Constant(int32_t value,bool precise)5374 const RegType& MethodVerifier::DetermineCat1Constant(int32_t value, bool precise) {
5375   if (precise) {
5376     // Precise constant type.
5377     return reg_types_.FromCat1Const(value, true);
5378   } else {
5379     // Imprecise constant type.
5380     if (value < -32768) {
5381       return reg_types_.IntConstant();
5382     } else if (value < -128) {
5383       return reg_types_.ShortConstant();
5384     } else if (value < 0) {
5385       return reg_types_.ByteConstant();
5386     } else if (value == 0) {
5387       return reg_types_.Zero();
5388     } else if (value == 1) {
5389       return reg_types_.One();
5390     } else if (value < 128) {
5391       return reg_types_.PosByteConstant();
5392     } else if (value < 32768) {
5393       return reg_types_.PosShortConstant();
5394     } else if (value < 65536) {
5395       return reg_types_.CharConstant();
5396     } else {
5397       return reg_types_.IntConstant();
5398     }
5399   }
5400 }
5401 
Init()5402 void MethodVerifier::Init() {
5403   art::verifier::RegTypeCache::Init();
5404 }
5405 
Shutdown()5406 void MethodVerifier::Shutdown() {
5407   verifier::RegTypeCache::ShutDown();
5408 }
5409 
VisitStaticRoots(RootVisitor * visitor)5410 void MethodVerifier::VisitStaticRoots(RootVisitor* visitor) {
5411   RegTypeCache::VisitStaticRoots(visitor);
5412 }
5413 
VisitRoots(RootVisitor * visitor,const RootInfo & root_info)5414 void MethodVerifier::VisitRoots(RootVisitor* visitor, const RootInfo& root_info) {
5415   reg_types_.VisitRoots(visitor, root_info);
5416 }
5417 
FromClass(const char * descriptor,mirror::Class * klass,bool precise)5418 const RegType& MethodVerifier::FromClass(const char* descriptor,
5419                                          mirror::Class* klass,
5420                                          bool precise) {
5421   DCHECK(klass != nullptr);
5422   if (precise && !klass->IsInstantiable() && !klass->IsPrimitive()) {
5423     Fail(VerifyError::VERIFY_ERROR_NO_CLASS) << "Could not create precise reference for "
5424         << "non-instantiable klass " << descriptor;
5425     precise = false;
5426   }
5427   return reg_types_.FromClass(descriptor, klass, precise);
5428 }
5429 
5430 }  // namespace verifier
5431 }  // namespace art
5432