1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "class_linker.h"
18
19 #include <algorithm>
20 #include <deque>
21 #include <iostream>
22 #include <map>
23 #include <memory>
24 #include <queue>
25 #include <string>
26 #include <tuple>
27 #include <unistd.h>
28 #include <unordered_map>
29 #include <utility>
30 #include <vector>
31
32 #include "android-base/stringprintf.h"
33
34 #include "art_field-inl.h"
35 #include "art_method-inl.h"
36 #include "base/arena_allocator.h"
37 #include "base/casts.h"
38 #include "base/logging.h"
39 #include "base/scoped_arena_containers.h"
40 #include "base/scoped_flock.h"
41 #include "base/stl_util.h"
42 #include "base/systrace.h"
43 #include "base/time_utils.h"
44 #include "base/unix_file/fd_file.h"
45 #include "base/value_object.h"
46 #include "cha.h"
47 #include "class_linker-inl.h"
48 #include "class_table-inl.h"
49 #include "compiler_callbacks.h"
50 #include "debugger.h"
51 #include "dex_file-inl.h"
52 #include "entrypoints/entrypoint_utils.h"
53 #include "entrypoints/runtime_asm_entrypoints.h"
54 #include "experimental_flags.h"
55 #include "gc_root-inl.h"
56 #include "gc/accounting/card_table-inl.h"
57 #include "gc/accounting/heap_bitmap-inl.h"
58 #include "gc/heap.h"
59 #include "gc/scoped_gc_critical_section.h"
60 #include "gc/space/image_space.h"
61 #include "gc/space/space-inl.h"
62 #include "handle_scope-inl.h"
63 #include "image-inl.h"
64 #include "imt_conflict_table.h"
65 #include "imtable-inl.h"
66 #include "intern_table.h"
67 #include "interpreter/interpreter.h"
68 #include "java_vm_ext.h"
69 #include "jit/jit.h"
70 #include "jit/jit_code_cache.h"
71 #include "jit/profile_compilation_info.h"
72 #include "jni_internal.h"
73 #include "leb128.h"
74 #include "linear_alloc.h"
75 #include "mirror/call_site.h"
76 #include "mirror/class.h"
77 #include "mirror/class-inl.h"
78 #include "mirror/class_ext.h"
79 #include "mirror/class_loader.h"
80 #include "mirror/dex_cache.h"
81 #include "mirror/dex_cache-inl.h"
82 #include "mirror/emulated_stack_frame.h"
83 #include "mirror/field.h"
84 #include "mirror/iftable-inl.h"
85 #include "mirror/method.h"
86 #include "mirror/method_type.h"
87 #include "mirror/method_handle_impl.h"
88 #include "mirror/method_handles_lookup.h"
89 #include "mirror/object-inl.h"
90 #include "mirror/object_array-inl.h"
91 #include "mirror/proxy.h"
92 #include "mirror/reference-inl.h"
93 #include "mirror/stack_trace_element.h"
94 #include "mirror/string-inl.h"
95 #include "native/dalvik_system_DexFile.h"
96 #include "oat.h"
97 #include "oat_file.h"
98 #include "oat_file-inl.h"
99 #include "oat_file_assistant.h"
100 #include "oat_file_manager.h"
101 #include "object_lock.h"
102 #include "os.h"
103 #include "runtime.h"
104 #include "runtime_callbacks.h"
105 #include "ScopedLocalRef.h"
106 #include "scoped_thread_state_change-inl.h"
107 #include "thread-inl.h"
108 #include "thread_list.h"
109 #include "trace.h"
110 #include "utils.h"
111 #include "utils/dex_cache_arrays_layout-inl.h"
112 #include "verifier/method_verifier.h"
113 #include "well_known_classes.h"
114
115 namespace art {
116
117 using android::base::StringPrintf;
118
119 static constexpr bool kSanityCheckObjects = kIsDebugBuild;
120 static constexpr bool kVerifyArtMethodDeclaringClasses = kIsDebugBuild;
121
122 static void ThrowNoClassDefFoundError(const char* fmt, ...)
123 __attribute__((__format__(__printf__, 1, 2)))
124 REQUIRES_SHARED(Locks::mutator_lock_);
ThrowNoClassDefFoundError(const char * fmt,...)125 static void ThrowNoClassDefFoundError(const char* fmt, ...) {
126 va_list args;
127 va_start(args, fmt);
128 Thread* self = Thread::Current();
129 self->ThrowNewExceptionV("Ljava/lang/NoClassDefFoundError;", fmt, args);
130 va_end(args);
131 }
132
HasInitWithString(Thread * self,ClassLinker * class_linker,const char * descriptor)133 static bool HasInitWithString(Thread* self, ClassLinker* class_linker, const char* descriptor)
134 REQUIRES_SHARED(Locks::mutator_lock_) {
135 ArtMethod* method = self->GetCurrentMethod(nullptr);
136 StackHandleScope<1> hs(self);
137 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(method != nullptr ?
138 method->GetDeclaringClass()->GetClassLoader() : nullptr));
139 ObjPtr<mirror::Class> exception_class = class_linker->FindClass(self, descriptor, class_loader);
140
141 if (exception_class == nullptr) {
142 // No exc class ~ no <init>-with-string.
143 CHECK(self->IsExceptionPending());
144 self->ClearException();
145 return false;
146 }
147
148 ArtMethod* exception_init_method = exception_class->FindDeclaredDirectMethod(
149 "<init>", "(Ljava/lang/String;)V", class_linker->GetImagePointerSize());
150 return exception_init_method != nullptr;
151 }
152
GetVerifyError(ObjPtr<mirror::Class> c)153 static mirror::Object* GetVerifyError(ObjPtr<mirror::Class> c)
154 REQUIRES_SHARED(Locks::mutator_lock_) {
155 ObjPtr<mirror::ClassExt> ext(c->GetExtData());
156 if (ext == nullptr) {
157 return nullptr;
158 } else {
159 return ext->GetVerifyError();
160 }
161 }
162
163 // Helper for ThrowEarlierClassFailure. Throws the stored error.
HandleEarlierVerifyError(Thread * self,ClassLinker * class_linker,ObjPtr<mirror::Class> c)164 static void HandleEarlierVerifyError(Thread* self,
165 ClassLinker* class_linker,
166 ObjPtr<mirror::Class> c)
167 REQUIRES_SHARED(Locks::mutator_lock_) {
168 ObjPtr<mirror::Object> obj = GetVerifyError(c);
169 DCHECK(obj != nullptr);
170 self->AssertNoPendingException();
171 if (obj->IsClass()) {
172 // Previous error has been stored as class. Create a new exception of that type.
173
174 // It's possible the exception doesn't have a <init>(String).
175 std::string temp;
176 const char* descriptor = obj->AsClass()->GetDescriptor(&temp);
177
178 if (HasInitWithString(self, class_linker, descriptor)) {
179 self->ThrowNewException(descriptor, c->PrettyDescriptor().c_str());
180 } else {
181 self->ThrowNewException(descriptor, nullptr);
182 }
183 } else {
184 // Previous error has been stored as an instance. Just rethrow.
185 ObjPtr<mirror::Class> throwable_class =
186 self->DecodeJObject(WellKnownClasses::java_lang_Throwable)->AsClass();
187 ObjPtr<mirror::Class> error_class = obj->GetClass();
188 CHECK(throwable_class->IsAssignableFrom(error_class));
189 self->SetException(obj->AsThrowable());
190 }
191 self->AssertPendingException();
192 }
193
ThrowEarlierClassFailure(ObjPtr<mirror::Class> c,bool wrap_in_no_class_def)194 void ClassLinker::ThrowEarlierClassFailure(ObjPtr<mirror::Class> c, bool wrap_in_no_class_def) {
195 // The class failed to initialize on a previous attempt, so we want to throw
196 // a NoClassDefFoundError (v2 2.17.5). The exception to this rule is if we
197 // failed in verification, in which case v2 5.4.1 says we need to re-throw
198 // the previous error.
199 Runtime* const runtime = Runtime::Current();
200 if (!runtime->IsAotCompiler()) { // Give info if this occurs at runtime.
201 std::string extra;
202 if (GetVerifyError(c) != nullptr) {
203 ObjPtr<mirror::Object> verify_error = GetVerifyError(c);
204 if (verify_error->IsClass()) {
205 extra = mirror::Class::PrettyDescriptor(verify_error->AsClass());
206 } else {
207 extra = verify_error->AsThrowable()->Dump();
208 }
209 }
210 LOG(INFO) << "Rejecting re-init on previously-failed class " << c->PrettyClass()
211 << ": " << extra;
212 }
213
214 CHECK(c->IsErroneous()) << c->PrettyClass() << " " << c->GetStatus();
215 Thread* self = Thread::Current();
216 if (runtime->IsAotCompiler()) {
217 // At compile time, accurate errors and NCDFE are disabled to speed compilation.
218 ObjPtr<mirror::Throwable> pre_allocated = runtime->GetPreAllocatedNoClassDefFoundError();
219 self->SetException(pre_allocated);
220 } else {
221 if (GetVerifyError(c) != nullptr) {
222 // Rethrow stored error.
223 HandleEarlierVerifyError(self, this, c);
224 }
225 // TODO This might be wrong if we hit an OOME while allocating the ClassExt. In that case we
226 // might have meant to go down the earlier if statement with the original error but it got
227 // swallowed by the OOM so we end up here.
228 if (GetVerifyError(c) == nullptr || wrap_in_no_class_def) {
229 // If there isn't a recorded earlier error, or this is a repeat throw from initialization,
230 // the top-level exception must be a NoClassDefFoundError. The potentially already pending
231 // exception will be a cause.
232 self->ThrowNewWrappedException("Ljava/lang/NoClassDefFoundError;",
233 c->PrettyDescriptor().c_str());
234 }
235 }
236 }
237
VlogClassInitializationFailure(Handle<mirror::Class> klass)238 static void VlogClassInitializationFailure(Handle<mirror::Class> klass)
239 REQUIRES_SHARED(Locks::mutator_lock_) {
240 if (VLOG_IS_ON(class_linker)) {
241 std::string temp;
242 LOG(INFO) << "Failed to initialize class " << klass->GetDescriptor(&temp) << " from "
243 << klass->GetLocation() << "\n" << Thread::Current()->GetException()->Dump();
244 }
245 }
246
WrapExceptionInInitializer(Handle<mirror::Class> klass)247 static void WrapExceptionInInitializer(Handle<mirror::Class> klass)
248 REQUIRES_SHARED(Locks::mutator_lock_) {
249 Thread* self = Thread::Current();
250 JNIEnv* env = self->GetJniEnv();
251
252 ScopedLocalRef<jthrowable> cause(env, env->ExceptionOccurred());
253 CHECK(cause.get() != nullptr);
254
255 // Boot classpath classes should not fail initialization. This is a sanity debug check. This
256 // cannot in general be guaranteed, but in all likelihood leads to breakage down the line.
257 if (klass->GetClassLoader() == nullptr && !Runtime::Current()->IsAotCompiler()) {
258 std::string tmp;
259 LOG(kIsDebugBuild ? FATAL : WARNING) << klass->GetDescriptor(&tmp) << " failed initialization";
260 }
261
262 env->ExceptionClear();
263 bool is_error = env->IsInstanceOf(cause.get(), WellKnownClasses::java_lang_Error);
264 env->Throw(cause.get());
265
266 // We only wrap non-Error exceptions; an Error can just be used as-is.
267 if (!is_error) {
268 self->ThrowNewWrappedException("Ljava/lang/ExceptionInInitializerError;", nullptr);
269 }
270 VlogClassInitializationFailure(klass);
271 }
272
273 // Gap between two fields in object layout.
274 struct FieldGap {
275 uint32_t start_offset; // The offset from the start of the object.
276 uint32_t size; // The gap size of 1, 2, or 4 bytes.
277 };
278 struct FieldGapsComparator {
FieldGapsComparatorart::FieldGapsComparator279 explicit FieldGapsComparator() {
280 }
operator ()art::FieldGapsComparator281 bool operator() (const FieldGap& lhs, const FieldGap& rhs)
282 NO_THREAD_SAFETY_ANALYSIS {
283 // Sort by gap size, largest first. Secondary sort by starting offset.
284 // Note that the priority queue returns the largest element, so operator()
285 // should return true if lhs is less than rhs.
286 return lhs.size < rhs.size || (lhs.size == rhs.size && lhs.start_offset > rhs.start_offset);
287 }
288 };
289 typedef std::priority_queue<FieldGap, std::vector<FieldGap>, FieldGapsComparator> FieldGaps;
290
291 // Adds largest aligned gaps to queue of gaps.
AddFieldGap(uint32_t gap_start,uint32_t gap_end,FieldGaps * gaps)292 static void AddFieldGap(uint32_t gap_start, uint32_t gap_end, FieldGaps* gaps) {
293 DCHECK(gaps != nullptr);
294
295 uint32_t current_offset = gap_start;
296 while (current_offset != gap_end) {
297 size_t remaining = gap_end - current_offset;
298 if (remaining >= sizeof(uint32_t) && IsAligned<4>(current_offset)) {
299 gaps->push(FieldGap {current_offset, sizeof(uint32_t)});
300 current_offset += sizeof(uint32_t);
301 } else if (remaining >= sizeof(uint16_t) && IsAligned<2>(current_offset)) {
302 gaps->push(FieldGap {current_offset, sizeof(uint16_t)});
303 current_offset += sizeof(uint16_t);
304 } else {
305 gaps->push(FieldGap {current_offset, sizeof(uint8_t)});
306 current_offset += sizeof(uint8_t);
307 }
308 DCHECK_LE(current_offset, gap_end) << "Overran gap";
309 }
310 }
311 // Shuffle fields forward, making use of gaps whenever possible.
312 template<int n>
ShuffleForward(size_t * current_field_idx,MemberOffset * field_offset,std::deque<ArtField * > * grouped_and_sorted_fields,FieldGaps * gaps)313 static void ShuffleForward(size_t* current_field_idx,
314 MemberOffset* field_offset,
315 std::deque<ArtField*>* grouped_and_sorted_fields,
316 FieldGaps* gaps)
317 REQUIRES_SHARED(Locks::mutator_lock_) {
318 DCHECK(current_field_idx != nullptr);
319 DCHECK(grouped_and_sorted_fields != nullptr);
320 DCHECK(gaps != nullptr);
321 DCHECK(field_offset != nullptr);
322
323 DCHECK(IsPowerOfTwo(n));
324 while (!grouped_and_sorted_fields->empty()) {
325 ArtField* field = grouped_and_sorted_fields->front();
326 Primitive::Type type = field->GetTypeAsPrimitiveType();
327 if (Primitive::ComponentSize(type) < n) {
328 break;
329 }
330 if (!IsAligned<n>(field_offset->Uint32Value())) {
331 MemberOffset old_offset = *field_offset;
332 *field_offset = MemberOffset(RoundUp(field_offset->Uint32Value(), n));
333 AddFieldGap(old_offset.Uint32Value(), field_offset->Uint32Value(), gaps);
334 }
335 CHECK(type != Primitive::kPrimNot) << field->PrettyField(); // should be primitive types
336 grouped_and_sorted_fields->pop_front();
337 if (!gaps->empty() && gaps->top().size >= n) {
338 FieldGap gap = gaps->top();
339 gaps->pop();
340 DCHECK_ALIGNED(gap.start_offset, n);
341 field->SetOffset(MemberOffset(gap.start_offset));
342 if (gap.size > n) {
343 AddFieldGap(gap.start_offset + n, gap.start_offset + gap.size, gaps);
344 }
345 } else {
346 DCHECK_ALIGNED(field_offset->Uint32Value(), n);
347 field->SetOffset(*field_offset);
348 *field_offset = MemberOffset(field_offset->Uint32Value() + n);
349 }
350 ++(*current_field_idx);
351 }
352 }
353
ClassLinker(InternTable * intern_table)354 ClassLinker::ClassLinker(InternTable* intern_table)
355 : failed_dex_cache_class_lookups_(0),
356 class_roots_(nullptr),
357 array_iftable_(nullptr),
358 find_array_class_cache_next_victim_(0),
359 init_done_(false),
360 log_new_roots_(false),
361 intern_table_(intern_table),
362 quick_resolution_trampoline_(nullptr),
363 quick_imt_conflict_trampoline_(nullptr),
364 quick_generic_jni_trampoline_(nullptr),
365 quick_to_interpreter_bridge_trampoline_(nullptr),
366 image_pointer_size_(kRuntimePointerSize) {
367 CHECK(intern_table_ != nullptr);
368 static_assert(kFindArrayCacheSize == arraysize(find_array_class_cache_),
369 "Array cache size wrong.");
370 std::fill_n(find_array_class_cache_, kFindArrayCacheSize, GcRoot<mirror::Class>(nullptr));
371 }
372
CheckSystemClass(Thread * self,Handle<mirror::Class> c1,const char * descriptor)373 void ClassLinker::CheckSystemClass(Thread* self, Handle<mirror::Class> c1, const char* descriptor) {
374 ObjPtr<mirror::Class> c2 = FindSystemClass(self, descriptor);
375 if (c2 == nullptr) {
376 LOG(FATAL) << "Could not find class " << descriptor;
377 UNREACHABLE();
378 }
379 if (c1.Get() != c2) {
380 std::ostringstream os1, os2;
381 c1->DumpClass(os1, mirror::Class::kDumpClassFullDetail);
382 c2->DumpClass(os2, mirror::Class::kDumpClassFullDetail);
383 LOG(FATAL) << "InitWithoutImage: Class mismatch for " << descriptor
384 << ". This is most likely the result of a broken build. Make sure that "
385 << "libcore and art projects match.\n\n"
386 << os1.str() << "\n\n" << os2.str();
387 UNREACHABLE();
388 }
389 }
390
InitWithoutImage(std::vector<std::unique_ptr<const DexFile>> boot_class_path,std::string * error_msg)391 bool ClassLinker::InitWithoutImage(std::vector<std::unique_ptr<const DexFile>> boot_class_path,
392 std::string* error_msg) {
393 VLOG(startup) << "ClassLinker::Init";
394
395 Thread* const self = Thread::Current();
396 Runtime* const runtime = Runtime::Current();
397 gc::Heap* const heap = runtime->GetHeap();
398
399 CHECK(!heap->HasBootImageSpace()) << "Runtime has image. We should use it.";
400 CHECK(!init_done_);
401
402 // Use the pointer size from the runtime since we are probably creating the image.
403 image_pointer_size_ = InstructionSetPointerSize(runtime->GetInstructionSet());
404
405 // java_lang_Class comes first, it's needed for AllocClass
406 // The GC can't handle an object with a null class since we can't get the size of this object.
407 heap->IncrementDisableMovingGC(self);
408 StackHandleScope<64> hs(self); // 64 is picked arbitrarily.
409 auto class_class_size = mirror::Class::ClassClassSize(image_pointer_size_);
410 Handle<mirror::Class> java_lang_Class(hs.NewHandle(down_cast<mirror::Class*>(
411 heap->AllocNonMovableObject<true>(self, nullptr, class_class_size, VoidFunctor()))));
412 CHECK(java_lang_Class != nullptr);
413 mirror::Class::SetClassClass(java_lang_Class.Get());
414 java_lang_Class->SetClass(java_lang_Class.Get());
415 if (kUseBakerReadBarrier) {
416 java_lang_Class->AssertReadBarrierState();
417 }
418 java_lang_Class->SetClassSize(class_class_size);
419 java_lang_Class->SetPrimitiveType(Primitive::kPrimNot);
420 heap->DecrementDisableMovingGC(self);
421 // AllocClass(ObjPtr<mirror::Class>) can now be used
422
423 // Class[] is used for reflection support.
424 auto class_array_class_size = mirror::ObjectArray<mirror::Class>::ClassSize(image_pointer_size_);
425 Handle<mirror::Class> class_array_class(hs.NewHandle(
426 AllocClass(self, java_lang_Class.Get(), class_array_class_size)));
427 class_array_class->SetComponentType(java_lang_Class.Get());
428
429 // java_lang_Object comes next so that object_array_class can be created.
430 Handle<mirror::Class> java_lang_Object(hs.NewHandle(
431 AllocClass(self, java_lang_Class.Get(), mirror::Object::ClassSize(image_pointer_size_))));
432 CHECK(java_lang_Object != nullptr);
433 // backfill Object as the super class of Class.
434 java_lang_Class->SetSuperClass(java_lang_Object.Get());
435 mirror::Class::SetStatus(java_lang_Object, mirror::Class::kStatusLoaded, self);
436
437 java_lang_Object->SetObjectSize(sizeof(mirror::Object));
438 // Allocate in non-movable so that it's possible to check if a JNI weak global ref has been
439 // cleared without triggering the read barrier and unintentionally mark the sentinel alive.
440 runtime->SetSentinel(heap->AllocNonMovableObject<true>(self,
441 java_lang_Object.Get(),
442 java_lang_Object->GetObjectSize(),
443 VoidFunctor()));
444
445 // Object[] next to hold class roots.
446 Handle<mirror::Class> object_array_class(hs.NewHandle(
447 AllocClass(self, java_lang_Class.Get(),
448 mirror::ObjectArray<mirror::Object>::ClassSize(image_pointer_size_))));
449 object_array_class->SetComponentType(java_lang_Object.Get());
450
451 // Setup the char (primitive) class to be used for char[].
452 Handle<mirror::Class> char_class(hs.NewHandle(
453 AllocClass(self, java_lang_Class.Get(),
454 mirror::Class::PrimitiveClassSize(image_pointer_size_))));
455 // The primitive char class won't be initialized by
456 // InitializePrimitiveClass until line 459, but strings (and
457 // internal char arrays) will be allocated before that and the
458 // component size, which is computed from the primitive type, needs
459 // to be set here.
460 char_class->SetPrimitiveType(Primitive::kPrimChar);
461
462 // Setup the char[] class to be used for String.
463 Handle<mirror::Class> char_array_class(hs.NewHandle(
464 AllocClass(self, java_lang_Class.Get(), mirror::Array::ClassSize(image_pointer_size_))));
465 char_array_class->SetComponentType(char_class.Get());
466 mirror::CharArray::SetArrayClass(char_array_class.Get());
467
468 // Setup String.
469 Handle<mirror::Class> java_lang_String(hs.NewHandle(
470 AllocClass(self, java_lang_Class.Get(), mirror::String::ClassSize(image_pointer_size_))));
471 java_lang_String->SetStringClass();
472 mirror::String::SetClass(java_lang_String.Get());
473 mirror::Class::SetStatus(java_lang_String, mirror::Class::kStatusResolved, self);
474
475 // Setup java.lang.ref.Reference.
476 Handle<mirror::Class> java_lang_ref_Reference(hs.NewHandle(
477 AllocClass(self, java_lang_Class.Get(), mirror::Reference::ClassSize(image_pointer_size_))));
478 mirror::Reference::SetClass(java_lang_ref_Reference.Get());
479 java_lang_ref_Reference->SetObjectSize(mirror::Reference::InstanceSize());
480 mirror::Class::SetStatus(java_lang_ref_Reference, mirror::Class::kStatusResolved, self);
481
482 // Create storage for root classes, save away our work so far (requires descriptors).
483 class_roots_ = GcRoot<mirror::ObjectArray<mirror::Class>>(
484 mirror::ObjectArray<mirror::Class>::Alloc(self, object_array_class.Get(),
485 kClassRootsMax));
486 CHECK(!class_roots_.IsNull());
487 SetClassRoot(kJavaLangClass, java_lang_Class.Get());
488 SetClassRoot(kJavaLangObject, java_lang_Object.Get());
489 SetClassRoot(kClassArrayClass, class_array_class.Get());
490 SetClassRoot(kObjectArrayClass, object_array_class.Get());
491 SetClassRoot(kCharArrayClass, char_array_class.Get());
492 SetClassRoot(kJavaLangString, java_lang_String.Get());
493 SetClassRoot(kJavaLangRefReference, java_lang_ref_Reference.Get());
494
495 // Fill in the empty iftable. Needs to be done after the kObjectArrayClass root is set.
496 java_lang_Object->SetIfTable(AllocIfTable(self, 0));
497
498 // Setup the primitive type classes.
499 SetClassRoot(kPrimitiveBoolean, CreatePrimitiveClass(self, Primitive::kPrimBoolean));
500 SetClassRoot(kPrimitiveByte, CreatePrimitiveClass(self, Primitive::kPrimByte));
501 SetClassRoot(kPrimitiveShort, CreatePrimitiveClass(self, Primitive::kPrimShort));
502 SetClassRoot(kPrimitiveInt, CreatePrimitiveClass(self, Primitive::kPrimInt));
503 SetClassRoot(kPrimitiveLong, CreatePrimitiveClass(self, Primitive::kPrimLong));
504 SetClassRoot(kPrimitiveFloat, CreatePrimitiveClass(self, Primitive::kPrimFloat));
505 SetClassRoot(kPrimitiveDouble, CreatePrimitiveClass(self, Primitive::kPrimDouble));
506 SetClassRoot(kPrimitiveVoid, CreatePrimitiveClass(self, Primitive::kPrimVoid));
507
508 // Create array interface entries to populate once we can load system classes.
509 array_iftable_ = GcRoot<mirror::IfTable>(AllocIfTable(self, 2));
510
511 // Create int array type for AllocDexCache (done in AppendToBootClassPath).
512 Handle<mirror::Class> int_array_class(hs.NewHandle(
513 AllocClass(self, java_lang_Class.Get(), mirror::Array::ClassSize(image_pointer_size_))));
514 int_array_class->SetComponentType(GetClassRoot(kPrimitiveInt));
515 mirror::IntArray::SetArrayClass(int_array_class.Get());
516 SetClassRoot(kIntArrayClass, int_array_class.Get());
517
518 // Create long array type for AllocDexCache (done in AppendToBootClassPath).
519 Handle<mirror::Class> long_array_class(hs.NewHandle(
520 AllocClass(self, java_lang_Class.Get(), mirror::Array::ClassSize(image_pointer_size_))));
521 long_array_class->SetComponentType(GetClassRoot(kPrimitiveLong));
522 mirror::LongArray::SetArrayClass(long_array_class.Get());
523 SetClassRoot(kLongArrayClass, long_array_class.Get());
524
525 // now that these are registered, we can use AllocClass() and AllocObjectArray
526
527 // Set up DexCache. This cannot be done later since AppendToBootClassPath calls AllocDexCache.
528 Handle<mirror::Class> java_lang_DexCache(hs.NewHandle(
529 AllocClass(self, java_lang_Class.Get(), mirror::DexCache::ClassSize(image_pointer_size_))));
530 SetClassRoot(kJavaLangDexCache, java_lang_DexCache.Get());
531 java_lang_DexCache->SetDexCacheClass();
532 java_lang_DexCache->SetObjectSize(mirror::DexCache::InstanceSize());
533 mirror::Class::SetStatus(java_lang_DexCache, mirror::Class::kStatusResolved, self);
534
535
536 // Setup dalvik.system.ClassExt
537 Handle<mirror::Class> dalvik_system_ClassExt(hs.NewHandle(
538 AllocClass(self, java_lang_Class.Get(), mirror::ClassExt::ClassSize(image_pointer_size_))));
539 SetClassRoot(kDalvikSystemClassExt, dalvik_system_ClassExt.Get());
540 mirror::ClassExt::SetClass(dalvik_system_ClassExt.Get());
541 mirror::Class::SetStatus(dalvik_system_ClassExt, mirror::Class::kStatusResolved, self);
542
543 // Set up array classes for string, field, method
544 Handle<mirror::Class> object_array_string(hs.NewHandle(
545 AllocClass(self, java_lang_Class.Get(),
546 mirror::ObjectArray<mirror::String>::ClassSize(image_pointer_size_))));
547 object_array_string->SetComponentType(java_lang_String.Get());
548 SetClassRoot(kJavaLangStringArrayClass, object_array_string.Get());
549
550 LinearAlloc* linear_alloc = runtime->GetLinearAlloc();
551 // Create runtime resolution and imt conflict methods.
552 runtime->SetResolutionMethod(runtime->CreateResolutionMethod());
553 runtime->SetImtConflictMethod(runtime->CreateImtConflictMethod(linear_alloc));
554 runtime->SetImtUnimplementedMethod(runtime->CreateImtConflictMethod(linear_alloc));
555
556 // Setup boot_class_path_ and register class_path now that we can use AllocObjectArray to create
557 // DexCache instances. Needs to be after String, Field, Method arrays since AllocDexCache uses
558 // these roots.
559 if (boot_class_path.empty()) {
560 *error_msg = "Boot classpath is empty.";
561 return false;
562 }
563 for (auto& dex_file : boot_class_path) {
564 if (dex_file.get() == nullptr) {
565 *error_msg = "Null dex file.";
566 return false;
567 }
568 AppendToBootClassPath(self, *dex_file);
569 boot_dex_files_.push_back(std::move(dex_file));
570 }
571
572 // now we can use FindSystemClass
573
574 // run char class through InitializePrimitiveClass to finish init
575 InitializePrimitiveClass(char_class.Get(), Primitive::kPrimChar);
576 SetClassRoot(kPrimitiveChar, char_class.Get()); // needs descriptor
577
578 // Set up GenericJNI entrypoint. That is mainly a hack for common_compiler_test.h so that
579 // we do not need friend classes or a publicly exposed setter.
580 quick_generic_jni_trampoline_ = GetQuickGenericJniStub();
581 if (!runtime->IsAotCompiler()) {
582 // We need to set up the generic trampolines since we don't have an image.
583 quick_resolution_trampoline_ = GetQuickResolutionStub();
584 quick_imt_conflict_trampoline_ = GetQuickImtConflictStub();
585 quick_to_interpreter_bridge_trampoline_ = GetQuickToInterpreterBridge();
586 }
587
588 // Object, String, ClassExt and DexCache need to be rerun through FindSystemClass to finish init
589 mirror::Class::SetStatus(java_lang_Object, mirror::Class::kStatusNotReady, self);
590 CheckSystemClass(self, java_lang_Object, "Ljava/lang/Object;");
591 CHECK_EQ(java_lang_Object->GetObjectSize(), mirror::Object::InstanceSize());
592 mirror::Class::SetStatus(java_lang_String, mirror::Class::kStatusNotReady, self);
593 CheckSystemClass(self, java_lang_String, "Ljava/lang/String;");
594 mirror::Class::SetStatus(java_lang_DexCache, mirror::Class::kStatusNotReady, self);
595 CheckSystemClass(self, java_lang_DexCache, "Ljava/lang/DexCache;");
596 CHECK_EQ(java_lang_DexCache->GetObjectSize(), mirror::DexCache::InstanceSize());
597 mirror::Class::SetStatus(dalvik_system_ClassExt, mirror::Class::kStatusNotReady, self);
598 CheckSystemClass(self, dalvik_system_ClassExt, "Ldalvik/system/ClassExt;");
599 CHECK_EQ(dalvik_system_ClassExt->GetObjectSize(), mirror::ClassExt::InstanceSize());
600
601 // Setup the primitive array type classes - can't be done until Object has a vtable.
602 SetClassRoot(kBooleanArrayClass, FindSystemClass(self, "[Z"));
603 mirror::BooleanArray::SetArrayClass(GetClassRoot(kBooleanArrayClass));
604
605 SetClassRoot(kByteArrayClass, FindSystemClass(self, "[B"));
606 mirror::ByteArray::SetArrayClass(GetClassRoot(kByteArrayClass));
607
608 CheckSystemClass(self, char_array_class, "[C");
609
610 SetClassRoot(kShortArrayClass, FindSystemClass(self, "[S"));
611 mirror::ShortArray::SetArrayClass(GetClassRoot(kShortArrayClass));
612
613 CheckSystemClass(self, int_array_class, "[I");
614 CheckSystemClass(self, long_array_class, "[J");
615
616 SetClassRoot(kFloatArrayClass, FindSystemClass(self, "[F"));
617 mirror::FloatArray::SetArrayClass(GetClassRoot(kFloatArrayClass));
618
619 SetClassRoot(kDoubleArrayClass, FindSystemClass(self, "[D"));
620 mirror::DoubleArray::SetArrayClass(GetClassRoot(kDoubleArrayClass));
621
622 // Run Class through FindSystemClass. This initializes the dex_cache_ fields and register it
623 // in class_table_.
624 CheckSystemClass(self, java_lang_Class, "Ljava/lang/Class;");
625
626 CheckSystemClass(self, class_array_class, "[Ljava/lang/Class;");
627 CheckSystemClass(self, object_array_class, "[Ljava/lang/Object;");
628
629 // Setup the single, global copy of "iftable".
630 auto java_lang_Cloneable = hs.NewHandle(FindSystemClass(self, "Ljava/lang/Cloneable;"));
631 CHECK(java_lang_Cloneable != nullptr);
632 auto java_io_Serializable = hs.NewHandle(FindSystemClass(self, "Ljava/io/Serializable;"));
633 CHECK(java_io_Serializable != nullptr);
634 // We assume that Cloneable/Serializable don't have superinterfaces -- normally we'd have to
635 // crawl up and explicitly list all of the supers as well.
636 array_iftable_.Read()->SetInterface(0, java_lang_Cloneable.Get());
637 array_iftable_.Read()->SetInterface(1, java_io_Serializable.Get());
638
639 // Sanity check Class[] and Object[]'s interfaces. GetDirectInterface may cause thread
640 // suspension.
641 CHECK_EQ(java_lang_Cloneable.Get(),
642 mirror::Class::GetDirectInterface(self, class_array_class.Get(), 0));
643 CHECK_EQ(java_io_Serializable.Get(),
644 mirror::Class::GetDirectInterface(self, class_array_class.Get(), 1));
645 CHECK_EQ(java_lang_Cloneable.Get(),
646 mirror::Class::GetDirectInterface(self, object_array_class.Get(), 0));
647 CHECK_EQ(java_io_Serializable.Get(),
648 mirror::Class::GetDirectInterface(self, object_array_class.Get(), 1));
649
650 CHECK_EQ(object_array_string.Get(),
651 FindSystemClass(self, GetClassRootDescriptor(kJavaLangStringArrayClass)));
652
653 // End of special init trickery, all subsequent classes may be loaded via FindSystemClass.
654
655 // Create java.lang.reflect.Proxy root.
656 SetClassRoot(kJavaLangReflectProxy, FindSystemClass(self, "Ljava/lang/reflect/Proxy;"));
657
658 // Create java.lang.reflect.Field.class root.
659 auto* class_root = FindSystemClass(self, "Ljava/lang/reflect/Field;");
660 CHECK(class_root != nullptr);
661 SetClassRoot(kJavaLangReflectField, class_root);
662 mirror::Field::SetClass(class_root);
663
664 // Create java.lang.reflect.Field array root.
665 class_root = FindSystemClass(self, "[Ljava/lang/reflect/Field;");
666 CHECK(class_root != nullptr);
667 SetClassRoot(kJavaLangReflectFieldArrayClass, class_root);
668 mirror::Field::SetArrayClass(class_root);
669
670 // Create java.lang.reflect.Constructor.class root and array root.
671 class_root = FindSystemClass(self, "Ljava/lang/reflect/Constructor;");
672 CHECK(class_root != nullptr);
673 SetClassRoot(kJavaLangReflectConstructor, class_root);
674 mirror::Constructor::SetClass(class_root);
675 class_root = FindSystemClass(self, "[Ljava/lang/reflect/Constructor;");
676 CHECK(class_root != nullptr);
677 SetClassRoot(kJavaLangReflectConstructorArrayClass, class_root);
678 mirror::Constructor::SetArrayClass(class_root);
679
680 // Create java.lang.reflect.Method.class root and array root.
681 class_root = FindSystemClass(self, "Ljava/lang/reflect/Method;");
682 CHECK(class_root != nullptr);
683 SetClassRoot(kJavaLangReflectMethod, class_root);
684 mirror::Method::SetClass(class_root);
685 class_root = FindSystemClass(self, "[Ljava/lang/reflect/Method;");
686 CHECK(class_root != nullptr);
687 SetClassRoot(kJavaLangReflectMethodArrayClass, class_root);
688 mirror::Method::SetArrayClass(class_root);
689
690 // Create java.lang.invoke.MethodType.class root
691 class_root = FindSystemClass(self, "Ljava/lang/invoke/MethodType;");
692 CHECK(class_root != nullptr);
693 SetClassRoot(kJavaLangInvokeMethodType, class_root);
694 mirror::MethodType::SetClass(class_root);
695
696 // Create java.lang.invoke.MethodHandleImpl.class root
697 class_root = FindSystemClass(self, "Ljava/lang/invoke/MethodHandleImpl;");
698 CHECK(class_root != nullptr);
699 SetClassRoot(kJavaLangInvokeMethodHandleImpl, class_root);
700 mirror::MethodHandleImpl::SetClass(class_root);
701
702 // Create java.lang.invoke.MethodHandles.Lookup.class root
703 class_root = FindSystemClass(self, "Ljava/lang/invoke/MethodHandles$Lookup;");
704 CHECK(class_root != nullptr);
705 SetClassRoot(kJavaLangInvokeMethodHandlesLookup, class_root);
706 mirror::MethodHandlesLookup::SetClass(class_root);
707
708 // Create java.lang.invoke.CallSite.class root
709 class_root = FindSystemClass(self, "Ljava/lang/invoke/CallSite;");
710 CHECK(class_root != nullptr);
711 SetClassRoot(kJavaLangInvokeCallSite, class_root);
712 mirror::CallSite::SetClass(class_root);
713
714 class_root = FindSystemClass(self, "Ldalvik/system/EmulatedStackFrame;");
715 CHECK(class_root != nullptr);
716 SetClassRoot(kDalvikSystemEmulatedStackFrame, class_root);
717 mirror::EmulatedStackFrame::SetClass(class_root);
718
719 // java.lang.ref classes need to be specially flagged, but otherwise are normal classes
720 // finish initializing Reference class
721 mirror::Class::SetStatus(java_lang_ref_Reference, mirror::Class::kStatusNotReady, self);
722 CheckSystemClass(self, java_lang_ref_Reference, "Ljava/lang/ref/Reference;");
723 CHECK_EQ(java_lang_ref_Reference->GetObjectSize(), mirror::Reference::InstanceSize());
724 CHECK_EQ(java_lang_ref_Reference->GetClassSize(),
725 mirror::Reference::ClassSize(image_pointer_size_));
726 class_root = FindSystemClass(self, "Ljava/lang/ref/FinalizerReference;");
727 CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal);
728 class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagFinalizerReference);
729 class_root = FindSystemClass(self, "Ljava/lang/ref/PhantomReference;");
730 CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal);
731 class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagPhantomReference);
732 class_root = FindSystemClass(self, "Ljava/lang/ref/SoftReference;");
733 CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal);
734 class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagSoftReference);
735 class_root = FindSystemClass(self, "Ljava/lang/ref/WeakReference;");
736 CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal);
737 class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagWeakReference);
738
739 // Setup the ClassLoader, verifying the object_size_.
740 class_root = FindSystemClass(self, "Ljava/lang/ClassLoader;");
741 class_root->SetClassLoaderClass();
742 CHECK_EQ(class_root->GetObjectSize(), mirror::ClassLoader::InstanceSize());
743 SetClassRoot(kJavaLangClassLoader, class_root);
744
745 // Set up java.lang.Throwable, java.lang.ClassNotFoundException, and
746 // java.lang.StackTraceElement as a convenience.
747 SetClassRoot(kJavaLangThrowable, FindSystemClass(self, "Ljava/lang/Throwable;"));
748 mirror::Throwable::SetClass(GetClassRoot(kJavaLangThrowable));
749 SetClassRoot(kJavaLangClassNotFoundException,
750 FindSystemClass(self, "Ljava/lang/ClassNotFoundException;"));
751 SetClassRoot(kJavaLangStackTraceElement, FindSystemClass(self, "Ljava/lang/StackTraceElement;"));
752 SetClassRoot(kJavaLangStackTraceElementArrayClass,
753 FindSystemClass(self, "[Ljava/lang/StackTraceElement;"));
754 mirror::StackTraceElement::SetClass(GetClassRoot(kJavaLangStackTraceElement));
755
756 // Create conflict tables that depend on the class linker.
757 runtime->FixupConflictTables();
758
759 FinishInit(self);
760
761 VLOG(startup) << "ClassLinker::InitFromCompiler exiting";
762
763 return true;
764 }
765
FinishInit(Thread * self)766 void ClassLinker::FinishInit(Thread* self) {
767 VLOG(startup) << "ClassLinker::FinishInit entering";
768
769 // Let the heap know some key offsets into java.lang.ref instances
770 // Note: we hard code the field indexes here rather than using FindInstanceField
771 // as the types of the field can't be resolved prior to the runtime being
772 // fully initialized
773 StackHandleScope<2> hs(self);
774 Handle<mirror::Class> java_lang_ref_Reference = hs.NewHandle(GetClassRoot(kJavaLangRefReference));
775 Handle<mirror::Class> java_lang_ref_FinalizerReference =
776 hs.NewHandle(FindSystemClass(self, "Ljava/lang/ref/FinalizerReference;"));
777
778 ArtField* pendingNext = java_lang_ref_Reference->GetInstanceField(0);
779 CHECK_STREQ(pendingNext->GetName(), "pendingNext");
780 CHECK_STREQ(pendingNext->GetTypeDescriptor(), "Ljava/lang/ref/Reference;");
781
782 ArtField* queue = java_lang_ref_Reference->GetInstanceField(1);
783 CHECK_STREQ(queue->GetName(), "queue");
784 CHECK_STREQ(queue->GetTypeDescriptor(), "Ljava/lang/ref/ReferenceQueue;");
785
786 ArtField* queueNext = java_lang_ref_Reference->GetInstanceField(2);
787 CHECK_STREQ(queueNext->GetName(), "queueNext");
788 CHECK_STREQ(queueNext->GetTypeDescriptor(), "Ljava/lang/ref/Reference;");
789
790 ArtField* referent = java_lang_ref_Reference->GetInstanceField(3);
791 CHECK_STREQ(referent->GetName(), "referent");
792 CHECK_STREQ(referent->GetTypeDescriptor(), "Ljava/lang/Object;");
793
794 ArtField* zombie = java_lang_ref_FinalizerReference->GetInstanceField(2);
795 CHECK_STREQ(zombie->GetName(), "zombie");
796 CHECK_STREQ(zombie->GetTypeDescriptor(), "Ljava/lang/Object;");
797
798 // ensure all class_roots_ are initialized
799 for (size_t i = 0; i < kClassRootsMax; i++) {
800 ClassRoot class_root = static_cast<ClassRoot>(i);
801 ObjPtr<mirror::Class> klass = GetClassRoot(class_root);
802 CHECK(klass != nullptr);
803 DCHECK(klass->IsArrayClass() || klass->IsPrimitive() || klass->GetDexCache() != nullptr);
804 // note SetClassRoot does additional validation.
805 // if possible add new checks there to catch errors early
806 }
807
808 CHECK(!array_iftable_.IsNull());
809
810 // disable the slow paths in FindClass and CreatePrimitiveClass now
811 // that Object, Class, and Object[] are setup
812 init_done_ = true;
813
814 VLOG(startup) << "ClassLinker::FinishInit exiting";
815 }
816
RunRootClinits()817 void ClassLinker::RunRootClinits() {
818 Thread* self = Thread::Current();
819 for (size_t i = 0; i < ClassLinker::kClassRootsMax; ++i) {
820 ObjPtr<mirror::Class> c = GetClassRoot(ClassRoot(i));
821 if (!c->IsArrayClass() && !c->IsPrimitive()) {
822 StackHandleScope<1> hs(self);
823 Handle<mirror::Class> h_class(hs.NewHandle(GetClassRoot(ClassRoot(i))));
824 EnsureInitialized(self, h_class, true, true);
825 self->AssertNoPendingException();
826 }
827 }
828 }
829
830 // Set image methods' entry point to interpreter.
831 class SetInterpreterEntrypointArtMethodVisitor : public ArtMethodVisitor {
832 public:
SetInterpreterEntrypointArtMethodVisitor(PointerSize image_pointer_size)833 explicit SetInterpreterEntrypointArtMethodVisitor(PointerSize image_pointer_size)
834 : image_pointer_size_(image_pointer_size) {}
835
Visit(ArtMethod * method)836 void Visit(ArtMethod* method) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
837 if (kIsDebugBuild && !method->IsRuntimeMethod()) {
838 CHECK(method->GetDeclaringClass() != nullptr);
839 }
840 if (!method->IsNative() && !method->IsRuntimeMethod() && !method->IsResolutionMethod()) {
841 method->SetEntryPointFromQuickCompiledCodePtrSize(GetQuickToInterpreterBridge(),
842 image_pointer_size_);
843 }
844 }
845
846 private:
847 const PointerSize image_pointer_size_;
848
849 DISALLOW_COPY_AND_ASSIGN(SetInterpreterEntrypointArtMethodVisitor);
850 };
851
852 struct TrampolineCheckData {
853 const void* quick_resolution_trampoline;
854 const void* quick_imt_conflict_trampoline;
855 const void* quick_generic_jni_trampoline;
856 const void* quick_to_interpreter_bridge_trampoline;
857 PointerSize pointer_size;
858 ArtMethod* m;
859 bool error;
860 };
861
CheckTrampolines(mirror::Object * obj,void * arg)862 static void CheckTrampolines(mirror::Object* obj, void* arg) NO_THREAD_SAFETY_ANALYSIS {
863 if (obj->IsClass()) {
864 ObjPtr<mirror::Class> klass = obj->AsClass();
865 TrampolineCheckData* d = reinterpret_cast<TrampolineCheckData*>(arg);
866 for (ArtMethod& m : klass->GetMethods(d->pointer_size)) {
867 const void* entrypoint = m.GetEntryPointFromQuickCompiledCodePtrSize(d->pointer_size);
868 if (entrypoint == d->quick_resolution_trampoline ||
869 entrypoint == d->quick_imt_conflict_trampoline ||
870 entrypoint == d->quick_generic_jni_trampoline ||
871 entrypoint == d->quick_to_interpreter_bridge_trampoline) {
872 d->m = &m;
873 d->error = true;
874 return;
875 }
876 }
877 }
878 }
879
InitFromBootImage(std::string * error_msg)880 bool ClassLinker::InitFromBootImage(std::string* error_msg) {
881 VLOG(startup) << __FUNCTION__ << " entering";
882 CHECK(!init_done_);
883
884 Runtime* const runtime = Runtime::Current();
885 Thread* const self = Thread::Current();
886 gc::Heap* const heap = runtime->GetHeap();
887 std::vector<gc::space::ImageSpace*> spaces = heap->GetBootImageSpaces();
888 CHECK(!spaces.empty());
889 uint32_t pointer_size_unchecked = spaces[0]->GetImageHeader().GetPointerSizeUnchecked();
890 if (!ValidPointerSize(pointer_size_unchecked)) {
891 *error_msg = StringPrintf("Invalid image pointer size: %u", pointer_size_unchecked);
892 return false;
893 }
894 image_pointer_size_ = spaces[0]->GetImageHeader().GetPointerSize();
895 if (!runtime->IsAotCompiler()) {
896 // Only the Aot compiler supports having an image with a different pointer size than the
897 // runtime. This happens on the host for compiling 32 bit tests since we use a 64 bit libart
898 // compiler. We may also use 32 bit dex2oat on a system with 64 bit apps.
899 if (image_pointer_size_ != kRuntimePointerSize) {
900 *error_msg = StringPrintf("Runtime must use current image pointer size: %zu vs %zu",
901 static_cast<size_t>(image_pointer_size_),
902 sizeof(void*));
903 return false;
904 }
905 }
906 std::vector<const OatFile*> oat_files =
907 runtime->GetOatFileManager().RegisterImageOatFiles(spaces);
908 DCHECK(!oat_files.empty());
909 const OatHeader& default_oat_header = oat_files[0]->GetOatHeader();
910 CHECK_EQ(default_oat_header.GetImageFileLocationOatDataBegin(), 0U);
911 const char* image_file_location = oat_files[0]->GetOatHeader().
912 GetStoreValueByKey(OatHeader::kImageLocationKey);
913 CHECK(image_file_location == nullptr || *image_file_location == 0);
914 quick_resolution_trampoline_ = default_oat_header.GetQuickResolutionTrampoline();
915 quick_imt_conflict_trampoline_ = default_oat_header.GetQuickImtConflictTrampoline();
916 quick_generic_jni_trampoline_ = default_oat_header.GetQuickGenericJniTrampoline();
917 quick_to_interpreter_bridge_trampoline_ = default_oat_header.GetQuickToInterpreterBridge();
918 if (kIsDebugBuild) {
919 // Check that the other images use the same trampoline.
920 for (size_t i = 1; i < oat_files.size(); ++i) {
921 const OatHeader& ith_oat_header = oat_files[i]->GetOatHeader();
922 const void* ith_quick_resolution_trampoline =
923 ith_oat_header.GetQuickResolutionTrampoline();
924 const void* ith_quick_imt_conflict_trampoline =
925 ith_oat_header.GetQuickImtConflictTrampoline();
926 const void* ith_quick_generic_jni_trampoline =
927 ith_oat_header.GetQuickGenericJniTrampoline();
928 const void* ith_quick_to_interpreter_bridge_trampoline =
929 ith_oat_header.GetQuickToInterpreterBridge();
930 if (ith_quick_resolution_trampoline != quick_resolution_trampoline_ ||
931 ith_quick_imt_conflict_trampoline != quick_imt_conflict_trampoline_ ||
932 ith_quick_generic_jni_trampoline != quick_generic_jni_trampoline_ ||
933 ith_quick_to_interpreter_bridge_trampoline != quick_to_interpreter_bridge_trampoline_) {
934 // Make sure that all methods in this image do not contain those trampolines as
935 // entrypoints. Otherwise the class-linker won't be able to work with a single set.
936 TrampolineCheckData data;
937 data.error = false;
938 data.pointer_size = GetImagePointerSize();
939 data.quick_resolution_trampoline = ith_quick_resolution_trampoline;
940 data.quick_imt_conflict_trampoline = ith_quick_imt_conflict_trampoline;
941 data.quick_generic_jni_trampoline = ith_quick_generic_jni_trampoline;
942 data.quick_to_interpreter_bridge_trampoline = ith_quick_to_interpreter_bridge_trampoline;
943 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
944 spaces[i]->GetLiveBitmap()->Walk(CheckTrampolines, &data);
945 if (data.error) {
946 ArtMethod* m = data.m;
947 LOG(ERROR) << "Found a broken ArtMethod: " << ArtMethod::PrettyMethod(m);
948 *error_msg = "Found an ArtMethod with a bad entrypoint";
949 return false;
950 }
951 }
952 }
953 }
954
955 class_roots_ = GcRoot<mirror::ObjectArray<mirror::Class>>(
956 down_cast<mirror::ObjectArray<mirror::Class>*>(
957 spaces[0]->GetImageHeader().GetImageRoot(ImageHeader::kClassRoots)));
958 mirror::Class::SetClassClass(class_roots_.Read()->Get(kJavaLangClass));
959
960 // Special case of setting up the String class early so that we can test arbitrary objects
961 // as being Strings or not
962 mirror::String::SetClass(GetClassRoot(kJavaLangString));
963
964 ObjPtr<mirror::Class> java_lang_Object = GetClassRoot(kJavaLangObject);
965 java_lang_Object->SetObjectSize(sizeof(mirror::Object));
966 // Allocate in non-movable so that it's possible to check if a JNI weak global ref has been
967 // cleared without triggering the read barrier and unintentionally mark the sentinel alive.
968 runtime->SetSentinel(heap->AllocNonMovableObject<true>(
969 self, java_lang_Object, java_lang_Object->GetObjectSize(), VoidFunctor()));
970
971 // reinit array_iftable_ from any array class instance, they should be ==
972 array_iftable_ = GcRoot<mirror::IfTable>(GetClassRoot(kObjectArrayClass)->GetIfTable());
973 DCHECK_EQ(array_iftable_.Read(), GetClassRoot(kBooleanArrayClass)->GetIfTable());
974 // String class root was set above
975 mirror::Field::SetClass(GetClassRoot(kJavaLangReflectField));
976 mirror::Field::SetArrayClass(GetClassRoot(kJavaLangReflectFieldArrayClass));
977 mirror::Constructor::SetClass(GetClassRoot(kJavaLangReflectConstructor));
978 mirror::Constructor::SetArrayClass(GetClassRoot(kJavaLangReflectConstructorArrayClass));
979 mirror::Method::SetClass(GetClassRoot(kJavaLangReflectMethod));
980 mirror::Method::SetArrayClass(GetClassRoot(kJavaLangReflectMethodArrayClass));
981 mirror::MethodType::SetClass(GetClassRoot(kJavaLangInvokeMethodType));
982 mirror::MethodHandleImpl::SetClass(GetClassRoot(kJavaLangInvokeMethodHandleImpl));
983 mirror::MethodHandlesLookup::SetClass(GetClassRoot(kJavaLangInvokeMethodHandlesLookup));
984 mirror::CallSite::SetClass(GetClassRoot(kJavaLangInvokeCallSite));
985 mirror::Reference::SetClass(GetClassRoot(kJavaLangRefReference));
986 mirror::BooleanArray::SetArrayClass(GetClassRoot(kBooleanArrayClass));
987 mirror::ByteArray::SetArrayClass(GetClassRoot(kByteArrayClass));
988 mirror::CharArray::SetArrayClass(GetClassRoot(kCharArrayClass));
989 mirror::DoubleArray::SetArrayClass(GetClassRoot(kDoubleArrayClass));
990 mirror::FloatArray::SetArrayClass(GetClassRoot(kFloatArrayClass));
991 mirror::IntArray::SetArrayClass(GetClassRoot(kIntArrayClass));
992 mirror::LongArray::SetArrayClass(GetClassRoot(kLongArrayClass));
993 mirror::ShortArray::SetArrayClass(GetClassRoot(kShortArrayClass));
994 mirror::Throwable::SetClass(GetClassRoot(kJavaLangThrowable));
995 mirror::StackTraceElement::SetClass(GetClassRoot(kJavaLangStackTraceElement));
996 mirror::EmulatedStackFrame::SetClass(GetClassRoot(kDalvikSystemEmulatedStackFrame));
997 mirror::ClassExt::SetClass(GetClassRoot(kDalvikSystemClassExt));
998
999 for (gc::space::ImageSpace* image_space : spaces) {
1000 // Boot class loader, use a null handle.
1001 std::vector<std::unique_ptr<const DexFile>> dex_files;
1002 if (!AddImageSpace(image_space,
1003 ScopedNullHandle<mirror::ClassLoader>(),
1004 /*dex_elements*/nullptr,
1005 /*dex_location*/nullptr,
1006 /*out*/&dex_files,
1007 error_msg)) {
1008 return false;
1009 }
1010 // Append opened dex files at the end.
1011 boot_dex_files_.insert(boot_dex_files_.end(),
1012 std::make_move_iterator(dex_files.begin()),
1013 std::make_move_iterator(dex_files.end()));
1014 }
1015 FinishInit(self);
1016
1017 VLOG(startup) << __FUNCTION__ << " exiting";
1018 return true;
1019 }
1020
IsBootClassLoader(ScopedObjectAccessAlreadyRunnable & soa,ObjPtr<mirror::ClassLoader> class_loader)1021 bool ClassLinker::IsBootClassLoader(ScopedObjectAccessAlreadyRunnable& soa,
1022 ObjPtr<mirror::ClassLoader> class_loader) {
1023 return class_loader == nullptr ||
1024 soa.Decode<mirror::Class>(WellKnownClasses::java_lang_BootClassLoader) ==
1025 class_loader->GetClass();
1026 }
1027
GetDexPathListElementName(ObjPtr<mirror::Object> element,ObjPtr<mirror::String> * out_name)1028 static bool GetDexPathListElementName(ObjPtr<mirror::Object> element,
1029 ObjPtr<mirror::String>* out_name)
1030 REQUIRES_SHARED(Locks::mutator_lock_) {
1031 ArtField* const dex_file_field =
1032 jni::DecodeArtField(WellKnownClasses::dalvik_system_DexPathList__Element_dexFile);
1033 ArtField* const dex_file_name_field =
1034 jni::DecodeArtField(WellKnownClasses::dalvik_system_DexFile_fileName);
1035 DCHECK(dex_file_field != nullptr);
1036 DCHECK(dex_file_name_field != nullptr);
1037 DCHECK(element != nullptr);
1038 CHECK_EQ(dex_file_field->GetDeclaringClass(), element->GetClass()) << element->PrettyTypeOf();
1039 ObjPtr<mirror::Object> dex_file = dex_file_field->GetObject(element);
1040 if (dex_file == nullptr) {
1041 // Null dex file means it was probably a jar with no dex files, return a null string.
1042 *out_name = nullptr;
1043 return true;
1044 }
1045 ObjPtr<mirror::Object> name_object = dex_file_name_field->GetObject(dex_file);
1046 if (name_object != nullptr) {
1047 *out_name = name_object->AsString();
1048 return true;
1049 }
1050 return false;
1051 }
1052
FlattenPathClassLoader(ObjPtr<mirror::ClassLoader> class_loader,std::list<ObjPtr<mirror::String>> * out_dex_file_names,std::string * error_msg)1053 static bool FlattenPathClassLoader(ObjPtr<mirror::ClassLoader> class_loader,
1054 std::list<ObjPtr<mirror::String>>* out_dex_file_names,
1055 std::string* error_msg)
1056 REQUIRES_SHARED(Locks::mutator_lock_) {
1057 DCHECK(out_dex_file_names != nullptr);
1058 DCHECK(error_msg != nullptr);
1059 ScopedObjectAccessUnchecked soa(Thread::Current());
1060 ArtField* const dex_path_list_field =
1061 jni::DecodeArtField(WellKnownClasses::dalvik_system_BaseDexClassLoader_pathList);
1062 ArtField* const dex_elements_field =
1063 jni::DecodeArtField(WellKnownClasses::dalvik_system_DexPathList_dexElements);
1064 CHECK(dex_path_list_field != nullptr);
1065 CHECK(dex_elements_field != nullptr);
1066 while (!ClassLinker::IsBootClassLoader(soa, class_loader)) {
1067 if (soa.Decode<mirror::Class>(WellKnownClasses::dalvik_system_PathClassLoader) !=
1068 class_loader->GetClass()) {
1069 *error_msg = StringPrintf("Unknown class loader type %s",
1070 class_loader->PrettyTypeOf().c_str());
1071 // Unsupported class loader.
1072 return false;
1073 }
1074 ObjPtr<mirror::Object> dex_path_list = dex_path_list_field->GetObject(class_loader);
1075 if (dex_path_list != nullptr) {
1076 // DexPathList has an array dexElements of Elements[] which each contain a dex file.
1077 ObjPtr<mirror::Object> dex_elements_obj = dex_elements_field->GetObject(dex_path_list);
1078 // Loop through each dalvik.system.DexPathList$Element's dalvik.system.DexFile and look
1079 // at the mCookie which is a DexFile vector.
1080 if (dex_elements_obj != nullptr) {
1081 ObjPtr<mirror::ObjectArray<mirror::Object>> dex_elements =
1082 dex_elements_obj->AsObjectArray<mirror::Object>();
1083 // Reverse order since we insert the parent at the front.
1084 for (int32_t i = dex_elements->GetLength() - 1; i >= 0; --i) {
1085 ObjPtr<mirror::Object> element = dex_elements->GetWithoutChecks(i);
1086 if (element == nullptr) {
1087 *error_msg = StringPrintf("Null dex element at index %d", i);
1088 return false;
1089 }
1090 ObjPtr<mirror::String> name;
1091 if (!GetDexPathListElementName(element, &name)) {
1092 *error_msg = StringPrintf("Invalid dex path list element at index %d", i);
1093 return false;
1094 }
1095 if (name != nullptr) {
1096 out_dex_file_names->push_front(name.Ptr());
1097 }
1098 }
1099 }
1100 }
1101 class_loader = class_loader->GetParent();
1102 }
1103 return true;
1104 }
1105
1106 class FixupArtMethodArrayVisitor : public ArtMethodVisitor {
1107 public:
FixupArtMethodArrayVisitor(const ImageHeader & header)1108 explicit FixupArtMethodArrayVisitor(const ImageHeader& header) : header_(header) {}
1109
Visit(ArtMethod * method)1110 virtual void Visit(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) {
1111 const bool is_copied = method->IsCopied();
1112 ArtMethod** resolved_methods = method->GetDexCacheResolvedMethods(kRuntimePointerSize);
1113 if (resolved_methods != nullptr) {
1114 bool in_image_space = false;
1115 if (kIsDebugBuild || is_copied) {
1116 in_image_space = header_.GetImageSection(ImageHeader::kSectionDexCacheArrays).Contains(
1117 reinterpret_cast<const uint8_t*>(resolved_methods) - header_.GetImageBegin());
1118 }
1119 // Must be in image space for non-miranda method.
1120 DCHECK(is_copied || in_image_space)
1121 << resolved_methods << " is not in image starting at "
1122 << reinterpret_cast<void*>(header_.GetImageBegin());
1123 if (!is_copied || in_image_space) {
1124 method->SetDexCacheResolvedMethods(method->GetDexCache()->GetResolvedMethods(),
1125 kRuntimePointerSize);
1126 }
1127 }
1128 }
1129
1130 private:
1131 const ImageHeader& header_;
1132 };
1133
1134 class VerifyClassInTableArtMethodVisitor : public ArtMethodVisitor {
1135 public:
VerifyClassInTableArtMethodVisitor(ClassTable * table)1136 explicit VerifyClassInTableArtMethodVisitor(ClassTable* table) : table_(table) {}
1137
Visit(ArtMethod * method)1138 virtual void Visit(ArtMethod* method)
1139 REQUIRES_SHARED(Locks::mutator_lock_, Locks::classlinker_classes_lock_) {
1140 ObjPtr<mirror::Class> klass = method->GetDeclaringClass();
1141 if (klass != nullptr && !Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(klass)) {
1142 CHECK_EQ(table_->LookupByDescriptor(klass), klass) << mirror::Class::PrettyClass(klass);
1143 }
1144 }
1145
1146 private:
1147 ClassTable* const table_;
1148 };
1149
1150 class VerifyDirectInterfacesInTableClassVisitor {
1151 public:
VerifyDirectInterfacesInTableClassVisitor(ObjPtr<mirror::ClassLoader> class_loader)1152 explicit VerifyDirectInterfacesInTableClassVisitor(ObjPtr<mirror::ClassLoader> class_loader)
1153 : class_loader_(class_loader), self_(Thread::Current()) { }
1154
operator ()(ObjPtr<mirror::Class> klass)1155 bool operator()(ObjPtr<mirror::Class> klass) REQUIRES_SHARED(Locks::mutator_lock_) {
1156 if (!klass->IsPrimitive() && klass->GetClassLoader() == class_loader_) {
1157 classes_.push_back(klass);
1158 }
1159 return true;
1160 }
1161
Check() const1162 void Check() const REQUIRES_SHARED(Locks::mutator_lock_) {
1163 for (ObjPtr<mirror::Class> klass : classes_) {
1164 for (uint32_t i = 0, num = klass->NumDirectInterfaces(); i != num; ++i) {
1165 CHECK(klass->GetDirectInterface(self_, klass, i) != nullptr)
1166 << klass->PrettyDescriptor() << " iface #" << i;
1167 }
1168 }
1169 }
1170
1171 private:
1172 ObjPtr<mirror::ClassLoader> class_loader_;
1173 Thread* self_;
1174 std::vector<ObjPtr<mirror::Class>> classes_;
1175 };
1176
1177 class VerifyDeclaringClassVisitor : public ArtMethodVisitor {
1178 public:
REQUIRES_SHARED(Locks::mutator_lock_,Locks::heap_bitmap_lock_)1179 VerifyDeclaringClassVisitor() REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
1180 : live_bitmap_(Runtime::Current()->GetHeap()->GetLiveBitmap()) {}
1181
Visit(ArtMethod * method)1182 virtual void Visit(ArtMethod* method)
1183 REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1184 ObjPtr<mirror::Class> klass = method->GetDeclaringClassUnchecked();
1185 if (klass != nullptr) {
1186 CHECK(live_bitmap_->Test(klass.Ptr())) << "Image method has unmarked declaring class";
1187 }
1188 }
1189
1190 private:
1191 gc::accounting::HeapBitmap* const live_bitmap_;
1192 };
1193
1194 // Copies data from one array to another array at the same position
1195 // if pred returns false. If there is a page of continuous data in
1196 // the src array for which pred consistently returns true then
1197 // corresponding page in the dst array will not be touched.
1198 // This should reduce number of allocated physical pages.
1199 template <class T, class NullPred>
CopyNonNull(const T * src,size_t count,T * dst,const NullPred & pred)1200 static void CopyNonNull(const T* src, size_t count, T* dst, const NullPred& pred) {
1201 for (size_t i = 0; i < count; ++i) {
1202 if (!pred(src[i])) {
1203 dst[i] = src[i];
1204 }
1205 }
1206 }
1207
1208 template <typename T>
CopyDexCachePairs(const std::atomic<mirror::DexCachePair<T>> * src,size_t count,std::atomic<mirror::DexCachePair<T>> * dst)1209 static void CopyDexCachePairs(const std::atomic<mirror::DexCachePair<T>>* src,
1210 size_t count,
1211 std::atomic<mirror::DexCachePair<T>>* dst) {
1212 DCHECK_NE(count, 0u);
1213 DCHECK(!src[0].load(std::memory_order_relaxed).object.IsNull() ||
1214 src[0].load(std::memory_order_relaxed).index != 0u);
1215 for (size_t i = 0; i < count; ++i) {
1216 DCHECK_EQ(dst[i].load(std::memory_order_relaxed).index, 0u);
1217 DCHECK(dst[i].load(std::memory_order_relaxed).object.IsNull());
1218 mirror::DexCachePair<T> source = src[i].load(std::memory_order_relaxed);
1219 if (source.index != 0u || !source.object.IsNull()) {
1220 dst[i].store(source, std::memory_order_relaxed);
1221 }
1222 }
1223 }
1224
UpdateAppImageClassLoadersAndDexCaches(gc::space::ImageSpace * space,Handle<mirror::ClassLoader> class_loader,Handle<mirror::ObjectArray<mirror::DexCache>> dex_caches,ClassTable::ClassSet * new_class_set,bool * out_forward_dex_cache_array,std::string * out_error_msg)1225 bool ClassLinker::UpdateAppImageClassLoadersAndDexCaches(
1226 gc::space::ImageSpace* space,
1227 Handle<mirror::ClassLoader> class_loader,
1228 Handle<mirror::ObjectArray<mirror::DexCache>> dex_caches,
1229 ClassTable::ClassSet* new_class_set,
1230 bool* out_forward_dex_cache_array,
1231 std::string* out_error_msg) {
1232 DCHECK(out_forward_dex_cache_array != nullptr);
1233 DCHECK(out_error_msg != nullptr);
1234 Thread* const self = Thread::Current();
1235 gc::Heap* const heap = Runtime::Current()->GetHeap();
1236 const ImageHeader& header = space->GetImageHeader();
1237 {
1238 // Add image classes into the class table for the class loader, and fixup the dex caches and
1239 // class loader fields.
1240 WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
1241 // Dex cache array fixup is all or nothing, we must reject app images that have mixed since we
1242 // rely on clobering the dex cache arrays in the image to forward to bss.
1243 size_t num_dex_caches_with_bss_arrays = 0;
1244 const size_t num_dex_caches = dex_caches->GetLength();
1245 for (size_t i = 0; i < num_dex_caches; i++) {
1246 ObjPtr<mirror::DexCache> const dex_cache = dex_caches->Get(i);
1247 const DexFile* const dex_file = dex_cache->GetDexFile();
1248 const OatFile::OatDexFile* oat_dex_file = dex_file->GetOatDexFile();
1249 if (oat_dex_file != nullptr && oat_dex_file->GetDexCacheArrays() != nullptr) {
1250 ++num_dex_caches_with_bss_arrays;
1251 }
1252 }
1253 *out_forward_dex_cache_array = num_dex_caches_with_bss_arrays != 0;
1254 if (*out_forward_dex_cache_array) {
1255 if (num_dex_caches_with_bss_arrays != num_dex_caches) {
1256 // Reject application image since we cannot forward only some of the dex cache arrays.
1257 // TODO: We could get around this by having a dedicated forwarding slot. It should be an
1258 // uncommon case.
1259 *out_error_msg = StringPrintf("Dex caches in bss does not match total: %zu vs %zu",
1260 num_dex_caches_with_bss_arrays,
1261 num_dex_caches);
1262 return false;
1263 }
1264 }
1265 // Only add the classes to the class loader after the points where we can return false.
1266 for (size_t i = 0; i < num_dex_caches; i++) {
1267 ObjPtr<mirror::DexCache> dex_cache = dex_caches->Get(i);
1268 const DexFile* const dex_file = dex_cache->GetDexFile();
1269 const OatFile::OatDexFile* oat_dex_file = dex_file->GetOatDexFile();
1270 if (oat_dex_file != nullptr && oat_dex_file->GetDexCacheArrays() != nullptr) {
1271 // If the oat file expects the dex cache arrays to be in the BSS, then allocate there and
1272 // copy over the arrays.
1273 DCHECK(dex_file != nullptr);
1274 size_t num_strings = mirror::DexCache::kDexCacheStringCacheSize;
1275 if (dex_file->NumStringIds() < num_strings) {
1276 num_strings = dex_file->NumStringIds();
1277 }
1278 size_t num_types = mirror::DexCache::kDexCacheTypeCacheSize;
1279 if (dex_file->NumTypeIds() < num_types) {
1280 num_types = dex_file->NumTypeIds();
1281 }
1282 const size_t num_methods = dex_file->NumMethodIds();
1283 size_t num_fields = mirror::DexCache::kDexCacheFieldCacheSize;
1284 if (dex_file->NumFieldIds() < num_fields) {
1285 num_fields = dex_file->NumFieldIds();
1286 }
1287 size_t num_method_types = mirror::DexCache::kDexCacheMethodTypeCacheSize;
1288 if (dex_file->NumProtoIds() < num_method_types) {
1289 num_method_types = dex_file->NumProtoIds();
1290 }
1291 const size_t num_call_sites = dex_file->NumCallSiteIds();
1292 CHECK_EQ(num_strings, dex_cache->NumStrings());
1293 CHECK_EQ(num_types, dex_cache->NumResolvedTypes());
1294 CHECK_EQ(num_methods, dex_cache->NumResolvedMethods());
1295 CHECK_EQ(num_fields, dex_cache->NumResolvedFields());
1296 CHECK_EQ(num_method_types, dex_cache->NumResolvedMethodTypes());
1297 CHECK_EQ(num_call_sites, dex_cache->NumResolvedCallSites());
1298 DexCacheArraysLayout layout(image_pointer_size_, dex_file);
1299 uint8_t* const raw_arrays = oat_dex_file->GetDexCacheArrays();
1300 if (num_strings != 0u) {
1301 mirror::StringDexCacheType* const image_resolved_strings = dex_cache->GetStrings();
1302 mirror::StringDexCacheType* const strings =
1303 reinterpret_cast<mirror::StringDexCacheType*>(raw_arrays + layout.StringsOffset());
1304 CopyDexCachePairs(image_resolved_strings, num_strings, strings);
1305 dex_cache->SetStrings(strings);
1306 }
1307 if (num_types != 0u) {
1308 mirror::TypeDexCacheType* const image_resolved_types = dex_cache->GetResolvedTypes();
1309 mirror::TypeDexCacheType* const types =
1310 reinterpret_cast<mirror::TypeDexCacheType*>(raw_arrays + layout.TypesOffset());
1311 CopyDexCachePairs(image_resolved_types, num_types, types);
1312 dex_cache->SetResolvedTypes(types);
1313 }
1314 if (num_methods != 0u) {
1315 ArtMethod** const methods = reinterpret_cast<ArtMethod**>(
1316 raw_arrays + layout.MethodsOffset());
1317 ArtMethod** const image_resolved_methods = dex_cache->GetResolvedMethods();
1318 for (size_t j = 0; kIsDebugBuild && j < num_methods; ++j) {
1319 DCHECK(methods[j] == nullptr);
1320 }
1321 CopyNonNull(image_resolved_methods,
1322 num_methods,
1323 methods,
1324 [] (const ArtMethod* method) {
1325 return method == nullptr;
1326 });
1327 dex_cache->SetResolvedMethods(methods);
1328 }
1329 if (num_fields != 0u) {
1330 mirror::FieldDexCacheType* const image_resolved_fields = dex_cache->GetResolvedFields();
1331 mirror::FieldDexCacheType* const fields =
1332 reinterpret_cast<mirror::FieldDexCacheType*>(raw_arrays + layout.FieldsOffset());
1333 for (size_t j = 0; j < num_fields; ++j) {
1334 DCHECK_EQ(mirror::DexCache::GetNativePairPtrSize(fields, j, image_pointer_size_).index,
1335 0u);
1336 DCHECK(mirror::DexCache::GetNativePairPtrSize(fields, j, image_pointer_size_).object ==
1337 nullptr);
1338 mirror::DexCache::SetNativePairPtrSize(
1339 fields,
1340 j,
1341 mirror::DexCache::GetNativePairPtrSize(image_resolved_fields,
1342 j,
1343 image_pointer_size_),
1344 image_pointer_size_);
1345 }
1346 dex_cache->SetResolvedFields(fields);
1347 }
1348 if (num_method_types != 0u) {
1349 // NOTE: We currently (Sep 2016) do not resolve any method types at
1350 // compile time, but plan to in the future. This code exists for the
1351 // sake of completeness.
1352 mirror::MethodTypeDexCacheType* const image_resolved_method_types =
1353 dex_cache->GetResolvedMethodTypes();
1354 mirror::MethodTypeDexCacheType* const method_types =
1355 reinterpret_cast<mirror::MethodTypeDexCacheType*>(
1356 raw_arrays + layout.MethodTypesOffset());
1357 CopyDexCachePairs(image_resolved_method_types, num_method_types, method_types);
1358 dex_cache->SetResolvedMethodTypes(method_types);
1359 }
1360 if (num_call_sites != 0u) {
1361 GcRoot<mirror::CallSite>* const image_resolved_call_sites =
1362 dex_cache->GetResolvedCallSites();
1363 GcRoot<mirror::CallSite>* const call_sites =
1364 reinterpret_cast<GcRoot<mirror::CallSite>*>(raw_arrays + layout.CallSitesOffset());
1365 for (size_t j = 0; kIsDebugBuild && j < num_call_sites; ++j) {
1366 DCHECK(call_sites[j].IsNull());
1367 }
1368 CopyNonNull(image_resolved_call_sites,
1369 num_call_sites,
1370 call_sites,
1371 [](const GcRoot<mirror::CallSite>& elem) {
1372 return elem.IsNull();
1373 });
1374 dex_cache->SetResolvedCallSites(call_sites);
1375 }
1376 }
1377 {
1378 WriterMutexLock mu2(self, *Locks::dex_lock_);
1379 // Make sure to do this after we update the arrays since we store the resolved types array
1380 // in DexCacheData in RegisterDexFileLocked. We need the array pointer to be the one in the
1381 // BSS.
1382 CHECK(!FindDexCacheDataLocked(*dex_file).IsValid());
1383 RegisterDexFileLocked(*dex_file, dex_cache, class_loader.Get());
1384 }
1385 if (kIsDebugBuild) {
1386 CHECK(new_class_set != nullptr);
1387 mirror::TypeDexCacheType* const types = dex_cache->GetResolvedTypes();
1388 const size_t num_types = dex_cache->NumResolvedTypes();
1389 for (size_t j = 0; j != num_types; ++j) {
1390 // The image space is not yet added to the heap, avoid read barriers.
1391 ObjPtr<mirror::Class> klass = types[j].load(std::memory_order_relaxed).object.Read();
1392 if (space->HasAddress(klass.Ptr())) {
1393 DCHECK(!klass->IsErroneous()) << klass->GetStatus();
1394 auto it = new_class_set->Find(ClassTable::TableSlot(klass));
1395 DCHECK(it != new_class_set->end());
1396 DCHECK_EQ(it->Read(), klass);
1397 ObjPtr<mirror::Class> super_class = klass->GetSuperClass();
1398 if (super_class != nullptr && !heap->ObjectIsInBootImageSpace(super_class)) {
1399 auto it2 = new_class_set->Find(ClassTable::TableSlot(super_class));
1400 DCHECK(it2 != new_class_set->end());
1401 DCHECK_EQ(it2->Read(), super_class);
1402 }
1403 for (ArtMethod& m : klass->GetDirectMethods(kRuntimePointerSize)) {
1404 const void* code = m.GetEntryPointFromQuickCompiledCode();
1405 const void* oat_code = m.IsInvokable() ? GetQuickOatCodeFor(&m) : code;
1406 if (!IsQuickResolutionStub(code) &&
1407 !IsQuickGenericJniStub(code) &&
1408 !IsQuickToInterpreterBridge(code) &&
1409 !m.IsNative()) {
1410 DCHECK_EQ(code, oat_code) << m.PrettyMethod();
1411 }
1412 }
1413 for (ArtMethod& m : klass->GetVirtualMethods(kRuntimePointerSize)) {
1414 const void* code = m.GetEntryPointFromQuickCompiledCode();
1415 const void* oat_code = m.IsInvokable() ? GetQuickOatCodeFor(&m) : code;
1416 if (!IsQuickResolutionStub(code) &&
1417 !IsQuickGenericJniStub(code) &&
1418 !IsQuickToInterpreterBridge(code) &&
1419 !m.IsNative()) {
1420 DCHECK_EQ(code, oat_code) << m.PrettyMethod();
1421 }
1422 }
1423 }
1424 }
1425 }
1426 }
1427 }
1428 if (*out_forward_dex_cache_array) {
1429 ScopedTrace timing("Fixup ArtMethod dex cache arrays");
1430 FixupArtMethodArrayVisitor visitor(header);
1431 header.VisitPackedArtMethods(&visitor, space->Begin(), kRuntimePointerSize);
1432 Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(class_loader.Get());
1433 }
1434 if (kVerifyArtMethodDeclaringClasses) {
1435 ScopedTrace timing("Verify declaring classes");
1436 ReaderMutexLock rmu(self, *Locks::heap_bitmap_lock_);
1437 VerifyDeclaringClassVisitor visitor;
1438 header.VisitPackedArtMethods(&visitor, space->Begin(), kRuntimePointerSize);
1439 }
1440 return true;
1441 }
1442
1443 // Update the class loader. Should only be used on classes in the image space.
1444 class UpdateClassLoaderVisitor {
1445 public:
UpdateClassLoaderVisitor(gc::space::ImageSpace * space,ObjPtr<mirror::ClassLoader> class_loader)1446 UpdateClassLoaderVisitor(gc::space::ImageSpace* space, ObjPtr<mirror::ClassLoader> class_loader)
1447 : space_(space),
1448 class_loader_(class_loader) {}
1449
operator ()(ObjPtr<mirror::Class> klass) const1450 bool operator()(ObjPtr<mirror::Class> klass) const REQUIRES_SHARED(Locks::mutator_lock_) {
1451 // Do not update class loader for boot image classes where the app image
1452 // class loader is only the initiating loader but not the defining loader.
1453 if (klass->GetClassLoader() != nullptr) {
1454 klass->SetClassLoader(class_loader_);
1455 }
1456 return true;
1457 }
1458
1459 gc::space::ImageSpace* const space_;
1460 ObjPtr<mirror::ClassLoader> const class_loader_;
1461 };
1462
OpenOatDexFile(const OatFile * oat_file,const char * location,std::string * error_msg)1463 static std::unique_ptr<const DexFile> OpenOatDexFile(const OatFile* oat_file,
1464 const char* location,
1465 std::string* error_msg)
1466 REQUIRES_SHARED(Locks::mutator_lock_) {
1467 DCHECK(error_msg != nullptr);
1468 std::unique_ptr<const DexFile> dex_file;
1469 const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(location, nullptr, error_msg);
1470 if (oat_dex_file == nullptr) {
1471 return std::unique_ptr<const DexFile>();
1472 }
1473 std::string inner_error_msg;
1474 dex_file = oat_dex_file->OpenDexFile(&inner_error_msg);
1475 if (dex_file == nullptr) {
1476 *error_msg = StringPrintf("Failed to open dex file %s from within oat file %s error '%s'",
1477 location,
1478 oat_file->GetLocation().c_str(),
1479 inner_error_msg.c_str());
1480 return std::unique_ptr<const DexFile>();
1481 }
1482
1483 if (dex_file->GetLocationChecksum() != oat_dex_file->GetDexFileLocationChecksum()) {
1484 *error_msg = StringPrintf("Checksums do not match for %s: %x vs %x",
1485 location,
1486 dex_file->GetLocationChecksum(),
1487 oat_dex_file->GetDexFileLocationChecksum());
1488 return std::unique_ptr<const DexFile>();
1489 }
1490 return dex_file;
1491 }
1492
OpenImageDexFiles(gc::space::ImageSpace * space,std::vector<std::unique_ptr<const DexFile>> * out_dex_files,std::string * error_msg)1493 bool ClassLinker::OpenImageDexFiles(gc::space::ImageSpace* space,
1494 std::vector<std::unique_ptr<const DexFile>>* out_dex_files,
1495 std::string* error_msg) {
1496 ScopedAssertNoThreadSuspension nts(__FUNCTION__);
1497 const ImageHeader& header = space->GetImageHeader();
1498 ObjPtr<mirror::Object> dex_caches_object = header.GetImageRoot(ImageHeader::kDexCaches);
1499 DCHECK(dex_caches_object != nullptr);
1500 mirror::ObjectArray<mirror::DexCache>* dex_caches =
1501 dex_caches_object->AsObjectArray<mirror::DexCache>();
1502 const OatFile* oat_file = space->GetOatFile();
1503 for (int32_t i = 0; i < dex_caches->GetLength(); i++) {
1504 ObjPtr<mirror::DexCache> dex_cache = dex_caches->Get(i);
1505 std::string dex_file_location(dex_cache->GetLocation()->ToModifiedUtf8());
1506 std::unique_ptr<const DexFile> dex_file = OpenOatDexFile(oat_file,
1507 dex_file_location.c_str(),
1508 error_msg);
1509 if (dex_file == nullptr) {
1510 return false;
1511 }
1512 dex_cache->SetDexFile(dex_file.get());
1513 out_dex_files->push_back(std::move(dex_file));
1514 }
1515 return true;
1516 }
1517
1518 // Helper class for ArtMethod checks when adding an image. Keeps all required functionality
1519 // together and caches some intermediate results.
1520 class ImageSanityChecks FINAL {
1521 public:
CheckObjects(gc::Heap * heap,ClassLinker * class_linker)1522 static void CheckObjects(gc::Heap* heap, ClassLinker* class_linker)
1523 REQUIRES_SHARED(Locks::mutator_lock_) {
1524 ImageSanityChecks isc(heap, class_linker);
1525 heap->VisitObjects(ImageSanityChecks::SanityCheckObjectsCallback, &isc);
1526 }
1527
CheckPointerArray(gc::Heap * heap,ClassLinker * class_linker,ArtMethod ** arr,size_t size)1528 static void CheckPointerArray(gc::Heap* heap,
1529 ClassLinker* class_linker,
1530 ArtMethod** arr,
1531 size_t size)
1532 REQUIRES_SHARED(Locks::mutator_lock_) {
1533 ImageSanityChecks isc(heap, class_linker);
1534 isc.SanityCheckArtMethodPointerArray(arr, size);
1535 }
1536
SanityCheckObjectsCallback(mirror::Object * obj,void * arg)1537 static void SanityCheckObjectsCallback(mirror::Object* obj, void* arg)
1538 REQUIRES_SHARED(Locks::mutator_lock_) {
1539 DCHECK(obj != nullptr);
1540 CHECK(obj->GetClass() != nullptr) << "Null class in object " << obj;
1541 CHECK(obj->GetClass()->GetClass() != nullptr) << "Null class class " << obj;
1542 if (obj->IsClass()) {
1543 ImageSanityChecks* isc = reinterpret_cast<ImageSanityChecks*>(arg);
1544
1545 auto klass = obj->AsClass();
1546 for (ArtField& field : klass->GetIFields()) {
1547 CHECK_EQ(field.GetDeclaringClass(), klass);
1548 }
1549 for (ArtField& field : klass->GetSFields()) {
1550 CHECK_EQ(field.GetDeclaringClass(), klass);
1551 }
1552 const auto pointer_size = isc->pointer_size_;
1553 for (auto& m : klass->GetMethods(pointer_size)) {
1554 isc->SanityCheckArtMethod(&m, klass);
1555 }
1556 auto* vtable = klass->GetVTable();
1557 if (vtable != nullptr) {
1558 isc->SanityCheckArtMethodPointerArray(vtable, nullptr);
1559 }
1560 if (klass->ShouldHaveImt()) {
1561 ImTable* imt = klass->GetImt(pointer_size);
1562 for (size_t i = 0; i < ImTable::kSize; ++i) {
1563 isc->SanityCheckArtMethod(imt->Get(i, pointer_size), nullptr);
1564 }
1565 }
1566 if (klass->ShouldHaveEmbeddedVTable()) {
1567 for (int32_t i = 0; i < klass->GetEmbeddedVTableLength(); ++i) {
1568 isc->SanityCheckArtMethod(klass->GetEmbeddedVTableEntry(i, pointer_size), nullptr);
1569 }
1570 }
1571 mirror::IfTable* iftable = klass->GetIfTable();
1572 for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) {
1573 if (iftable->GetMethodArrayCount(i) > 0) {
1574 isc->SanityCheckArtMethodPointerArray(iftable->GetMethodArray(i), nullptr);
1575 }
1576 }
1577 }
1578 }
1579
1580 private:
ImageSanityChecks(gc::Heap * heap,ClassLinker * class_linker)1581 ImageSanityChecks(gc::Heap* heap, ClassLinker* class_linker)
1582 : spaces_(heap->GetBootImageSpaces()),
1583 pointer_size_(class_linker->GetImagePointerSize()) {
1584 space_begin_.reserve(spaces_.size());
1585 method_sections_.reserve(spaces_.size());
1586 runtime_method_sections_.reserve(spaces_.size());
1587 for (gc::space::ImageSpace* space : spaces_) {
1588 space_begin_.push_back(space->Begin());
1589 auto& header = space->GetImageHeader();
1590 method_sections_.push_back(&header.GetMethodsSection());
1591 runtime_method_sections_.push_back(&header.GetRuntimeMethodsSection());
1592 }
1593 }
1594
SanityCheckArtMethod(ArtMethod * m,ObjPtr<mirror::Class> expected_class)1595 void SanityCheckArtMethod(ArtMethod* m, ObjPtr<mirror::Class> expected_class)
1596 REQUIRES_SHARED(Locks::mutator_lock_) {
1597 if (m->IsRuntimeMethod()) {
1598 ObjPtr<mirror::Class> declaring_class = m->GetDeclaringClassUnchecked();
1599 CHECK(declaring_class == nullptr) << declaring_class << " " << m->PrettyMethod();
1600 } else if (m->IsCopied()) {
1601 CHECK(m->GetDeclaringClass() != nullptr) << m->PrettyMethod();
1602 } else if (expected_class != nullptr) {
1603 CHECK_EQ(m->GetDeclaringClassUnchecked(), expected_class) << m->PrettyMethod();
1604 }
1605 if (!spaces_.empty()) {
1606 bool contains = false;
1607 for (size_t i = 0; !contains && i != space_begin_.size(); ++i) {
1608 const size_t offset = reinterpret_cast<uint8_t*>(m) - space_begin_[i];
1609 contains = method_sections_[i]->Contains(offset) ||
1610 runtime_method_sections_[i]->Contains(offset);
1611 }
1612 CHECK(contains) << m << " not found";
1613 }
1614 }
1615
SanityCheckArtMethodPointerArray(ObjPtr<mirror::PointerArray> arr,ObjPtr<mirror::Class> expected_class)1616 void SanityCheckArtMethodPointerArray(ObjPtr<mirror::PointerArray> arr,
1617 ObjPtr<mirror::Class> expected_class)
1618 REQUIRES_SHARED(Locks::mutator_lock_) {
1619 CHECK(arr != nullptr);
1620 for (int32_t j = 0; j < arr->GetLength(); ++j) {
1621 auto* method = arr->GetElementPtrSize<ArtMethod*>(j, pointer_size_);
1622 // expected_class == null means we are a dex cache.
1623 if (expected_class != nullptr) {
1624 CHECK(method != nullptr);
1625 }
1626 if (method != nullptr) {
1627 SanityCheckArtMethod(method, expected_class);
1628 }
1629 }
1630 }
1631
SanityCheckArtMethodPointerArray(ArtMethod ** arr,size_t size)1632 void SanityCheckArtMethodPointerArray(ArtMethod** arr, size_t size)
1633 REQUIRES_SHARED(Locks::mutator_lock_) {
1634 CHECK_EQ(arr != nullptr, size != 0u);
1635 if (arr != nullptr) {
1636 bool contains = false;
1637 for (auto space : spaces_) {
1638 auto offset = reinterpret_cast<uint8_t*>(arr) - space->Begin();
1639 if (space->GetImageHeader().GetImageSection(
1640 ImageHeader::kSectionDexCacheArrays).Contains(offset)) {
1641 contains = true;
1642 break;
1643 }
1644 }
1645 CHECK(contains);
1646 }
1647 for (size_t j = 0; j < size; ++j) {
1648 ArtMethod* method = mirror::DexCache::GetElementPtrSize(arr, j, pointer_size_);
1649 // expected_class == null means we are a dex cache.
1650 if (method != nullptr) {
1651 SanityCheckArtMethod(method, nullptr);
1652 }
1653 }
1654 }
1655
1656 const std::vector<gc::space::ImageSpace*>& spaces_;
1657 const PointerSize pointer_size_;
1658
1659 // Cached sections from the spaces.
1660 std::vector<const uint8_t*> space_begin_;
1661 std::vector<const ImageSection*> method_sections_;
1662 std::vector<const ImageSection*> runtime_method_sections_;
1663 };
1664
AddImageSpace(gc::space::ImageSpace * space,Handle<mirror::ClassLoader> class_loader,jobjectArray dex_elements,const char * dex_location,std::vector<std::unique_ptr<const DexFile>> * out_dex_files,std::string * error_msg)1665 bool ClassLinker::AddImageSpace(
1666 gc::space::ImageSpace* space,
1667 Handle<mirror::ClassLoader> class_loader,
1668 jobjectArray dex_elements,
1669 const char* dex_location,
1670 std::vector<std::unique_ptr<const DexFile>>* out_dex_files,
1671 std::string* error_msg) {
1672 DCHECK(out_dex_files != nullptr);
1673 DCHECK(error_msg != nullptr);
1674 const uint64_t start_time = NanoTime();
1675 const bool app_image = class_loader != nullptr;
1676 const ImageHeader& header = space->GetImageHeader();
1677 ObjPtr<mirror::Object> dex_caches_object = header.GetImageRoot(ImageHeader::kDexCaches);
1678 DCHECK(dex_caches_object != nullptr);
1679 Runtime* const runtime = Runtime::Current();
1680 gc::Heap* const heap = runtime->GetHeap();
1681 Thread* const self = Thread::Current();
1682 // Check that the image is what we are expecting.
1683 if (image_pointer_size_ != space->GetImageHeader().GetPointerSize()) {
1684 *error_msg = StringPrintf("Application image pointer size does not match runtime: %zu vs %zu",
1685 static_cast<size_t>(space->GetImageHeader().GetPointerSize()),
1686 image_pointer_size_);
1687 return false;
1688 }
1689 size_t expected_image_roots = ImageHeader::NumberOfImageRoots(app_image);
1690 if (static_cast<size_t>(header.GetImageRoots()->GetLength()) != expected_image_roots) {
1691 *error_msg = StringPrintf("Expected %zu image roots but got %d",
1692 expected_image_roots,
1693 header.GetImageRoots()->GetLength());
1694 return false;
1695 }
1696 StackHandleScope<3> hs(self);
1697 Handle<mirror::ObjectArray<mirror::DexCache>> dex_caches(
1698 hs.NewHandle(dex_caches_object->AsObjectArray<mirror::DexCache>()));
1699 Handle<mirror::ObjectArray<mirror::Class>> class_roots(hs.NewHandle(
1700 header.GetImageRoot(ImageHeader::kClassRoots)->AsObjectArray<mirror::Class>()));
1701 static_assert(ImageHeader::kClassLoader + 1u == ImageHeader::kImageRootsMax,
1702 "Class loader should be the last image root.");
1703 MutableHandle<mirror::ClassLoader> image_class_loader(hs.NewHandle(
1704 app_image ? header.GetImageRoot(ImageHeader::kClassLoader)->AsClassLoader() : nullptr));
1705 DCHECK(class_roots != nullptr);
1706 if (class_roots->GetLength() != static_cast<int32_t>(kClassRootsMax)) {
1707 *error_msg = StringPrintf("Expected %d class roots but got %d",
1708 class_roots->GetLength(),
1709 static_cast<int32_t>(kClassRootsMax));
1710 return false;
1711 }
1712 // Check against existing class roots to make sure they match the ones in the boot image.
1713 for (size_t i = 0; i < kClassRootsMax; i++) {
1714 if (class_roots->Get(i) != GetClassRoot(static_cast<ClassRoot>(i))) {
1715 *error_msg = "App image class roots must have pointer equality with runtime ones.";
1716 return false;
1717 }
1718 }
1719 const OatFile* oat_file = space->GetOatFile();
1720 if (oat_file->GetOatHeader().GetDexFileCount() !=
1721 static_cast<uint32_t>(dex_caches->GetLength())) {
1722 *error_msg = "Dex cache count and dex file count mismatch while trying to initialize from "
1723 "image";
1724 return false;
1725 }
1726
1727 for (int32_t i = 0; i < dex_caches->GetLength(); i++) {
1728 ObjPtr<mirror::DexCache> dex_cache = dex_caches->Get(i);
1729 std::string dex_file_location(dex_cache->GetLocation()->ToModifiedUtf8());
1730 // TODO: Only store qualified paths.
1731 // If non qualified, qualify it.
1732 if (dex_file_location.find('/') == std::string::npos) {
1733 std::string dex_location_path = dex_location;
1734 const size_t pos = dex_location_path.find_last_of('/');
1735 CHECK_NE(pos, std::string::npos);
1736 dex_location_path = dex_location_path.substr(0, pos + 1); // Keep trailing '/'
1737 dex_file_location = dex_location_path + dex_file_location;
1738 }
1739 std::unique_ptr<const DexFile> dex_file = OpenOatDexFile(oat_file,
1740 dex_file_location.c_str(),
1741 error_msg);
1742 if (dex_file == nullptr) {
1743 return false;
1744 }
1745
1746 if (app_image) {
1747 // The current dex file field is bogus, overwrite it so that we can get the dex file in the
1748 // loop below.
1749 dex_cache->SetDexFile(dex_file.get());
1750 mirror::TypeDexCacheType* const types = dex_cache->GetResolvedTypes();
1751 for (int32_t j = 0, num_types = dex_cache->NumResolvedTypes(); j < num_types; j++) {
1752 ObjPtr<mirror::Class> klass = types[j].load(std::memory_order_relaxed).object.Read();
1753 if (klass != nullptr) {
1754 DCHECK(!klass->IsErroneous()) << klass->GetStatus();
1755 }
1756 }
1757 } else {
1758 if (kSanityCheckObjects) {
1759 ImageSanityChecks::CheckPointerArray(heap,
1760 this,
1761 dex_cache->GetResolvedMethods(),
1762 dex_cache->NumResolvedMethods());
1763 }
1764 // Register dex files, keep track of existing ones that are conflicts.
1765 AppendToBootClassPath(*dex_file.get(), dex_cache);
1766 }
1767 out_dex_files->push_back(std::move(dex_file));
1768 }
1769
1770 if (app_image) {
1771 ScopedObjectAccessUnchecked soa(Thread::Current());
1772 // Check that the class loader resolves the same way as the ones in the image.
1773 // Image class loader [A][B][C][image dex files]
1774 // Class loader = [???][dex_elements][image dex files]
1775 // Need to ensure that [???][dex_elements] == [A][B][C].
1776 // For each class loader, PathClassLoader, the laoder checks the parent first. Also the logic
1777 // for PathClassLoader does this by looping through the array of dex files. To ensure they
1778 // resolve the same way, simply flatten the hierarchy in the way the resolution order would be,
1779 // and check that the dex file names are the same.
1780 if (IsBootClassLoader(soa, image_class_loader.Get())) {
1781 *error_msg = "Unexpected BootClassLoader in app image";
1782 return false;
1783 }
1784 std::list<ObjPtr<mirror::String>> image_dex_file_names;
1785 std::string temp_error_msg;
1786 if (!FlattenPathClassLoader(image_class_loader.Get(), &image_dex_file_names, &temp_error_msg)) {
1787 *error_msg = StringPrintf("Failed to flatten image class loader hierarchy '%s'",
1788 temp_error_msg.c_str());
1789 return false;
1790 }
1791 std::list<ObjPtr<mirror::String>> loader_dex_file_names;
1792 if (!FlattenPathClassLoader(class_loader.Get(), &loader_dex_file_names, &temp_error_msg)) {
1793 *error_msg = StringPrintf("Failed to flatten class loader hierarchy '%s'",
1794 temp_error_msg.c_str());
1795 return false;
1796 }
1797 // Add the temporary dex path list elements at the end.
1798 auto elements = soa.Decode<mirror::ObjectArray<mirror::Object>>(dex_elements);
1799 for (size_t i = 0, num_elems = elements->GetLength(); i < num_elems; ++i) {
1800 ObjPtr<mirror::Object> element = elements->GetWithoutChecks(i);
1801 if (element != nullptr) {
1802 // If we are somewhere in the middle of the array, there may be nulls at the end.
1803 ObjPtr<mirror::String> name;
1804 if (GetDexPathListElementName(element, &name) && name != nullptr) {
1805 loader_dex_file_names.push_back(name);
1806 }
1807 }
1808 }
1809 // Ignore the number of image dex files since we are adding those to the class loader anyways.
1810 CHECK_GE(static_cast<size_t>(image_dex_file_names.size()),
1811 static_cast<size_t>(dex_caches->GetLength()));
1812 size_t image_count = image_dex_file_names.size() - dex_caches->GetLength();
1813 // Check that the dex file names match.
1814 bool equal = image_count == loader_dex_file_names.size();
1815 if (equal) {
1816 auto it1 = image_dex_file_names.begin();
1817 auto it2 = loader_dex_file_names.begin();
1818 for (size_t i = 0; equal && i < image_count; ++i, ++it1, ++it2) {
1819 equal = equal && (*it1)->Equals(*it2);
1820 }
1821 }
1822 if (!equal) {
1823 VLOG(image) << "Image dex files " << image_dex_file_names.size();
1824 for (ObjPtr<mirror::String> name : image_dex_file_names) {
1825 VLOG(image) << name->ToModifiedUtf8();
1826 }
1827 VLOG(image) << "Loader dex files " << loader_dex_file_names.size();
1828 for (ObjPtr<mirror::String> name : loader_dex_file_names) {
1829 VLOG(image) << name->ToModifiedUtf8();
1830 }
1831 *error_msg = "Rejecting application image due to class loader mismatch";
1832 // Ignore class loader mismatch for now since these would just use possibly incorrect
1833 // oat code anyways. The structural class check should be done in the parent.
1834 }
1835 }
1836
1837 if (kSanityCheckObjects) {
1838 for (int32_t i = 0; i < dex_caches->GetLength(); i++) {
1839 auto* dex_cache = dex_caches->Get(i);
1840 for (size_t j = 0; j < dex_cache->NumResolvedFields(); ++j) {
1841 auto* field = dex_cache->GetResolvedField(j, image_pointer_size_);
1842 if (field != nullptr) {
1843 CHECK(field->GetDeclaringClass()->GetClass() != nullptr);
1844 }
1845 }
1846 }
1847 if (!app_image) {
1848 ImageSanityChecks::CheckObjects(heap, this);
1849 }
1850 }
1851
1852 // Set entry point to interpreter if in InterpretOnly mode.
1853 if (!runtime->IsAotCompiler() && runtime->GetInstrumentation()->InterpretOnly()) {
1854 SetInterpreterEntrypointArtMethodVisitor visitor(image_pointer_size_);
1855 header.VisitPackedArtMethods(&visitor, space->Begin(), image_pointer_size_);
1856 }
1857
1858 ClassTable* class_table = nullptr;
1859 {
1860 WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
1861 class_table = InsertClassTableForClassLoader(class_loader.Get());
1862 }
1863 // If we have a class table section, read it and use it for verification in
1864 // UpdateAppImageClassLoadersAndDexCaches.
1865 ClassTable::ClassSet temp_set;
1866 const ImageSection& class_table_section = header.GetImageSection(ImageHeader::kSectionClassTable);
1867 const bool added_class_table = class_table_section.Size() > 0u;
1868 if (added_class_table) {
1869 const uint64_t start_time2 = NanoTime();
1870 size_t read_count = 0;
1871 temp_set = ClassTable::ClassSet(space->Begin() + class_table_section.Offset(),
1872 /*make copy*/false,
1873 &read_count);
1874 VLOG(image) << "Adding class table classes took " << PrettyDuration(NanoTime() - start_time2);
1875 }
1876 if (app_image) {
1877 bool forward_dex_cache_arrays = false;
1878 if (!UpdateAppImageClassLoadersAndDexCaches(space,
1879 class_loader,
1880 dex_caches,
1881 &temp_set,
1882 /*out*/&forward_dex_cache_arrays,
1883 /*out*/error_msg)) {
1884 return false;
1885 }
1886 // Update class loader and resolved strings. If added_class_table is false, the resolved
1887 // strings were forwarded UpdateAppImageClassLoadersAndDexCaches.
1888 UpdateClassLoaderVisitor visitor(space, class_loader.Get());
1889 for (const ClassTable::TableSlot& root : temp_set) {
1890 visitor(root.Read());
1891 }
1892 // forward_dex_cache_arrays is true iff we copied all of the dex cache arrays into the .bss.
1893 // In this case, madvise away the dex cache arrays section of the image to reduce RAM usage and
1894 // mark as PROT_NONE to catch any invalid accesses.
1895 if (forward_dex_cache_arrays) {
1896 const ImageSection& dex_cache_section = header.GetImageSection(
1897 ImageHeader::kSectionDexCacheArrays);
1898 uint8_t* section_begin = AlignUp(space->Begin() + dex_cache_section.Offset(), kPageSize);
1899 uint8_t* section_end = AlignDown(space->Begin() + dex_cache_section.End(), kPageSize);
1900 if (section_begin < section_end) {
1901 madvise(section_begin, section_end - section_begin, MADV_DONTNEED);
1902 mprotect(section_begin, section_end - section_begin, PROT_NONE);
1903 VLOG(image) << "Released and protected dex cache array image section from "
1904 << reinterpret_cast<const void*>(section_begin) << "-"
1905 << reinterpret_cast<const void*>(section_end);
1906 }
1907 }
1908 }
1909 if (!oat_file->GetBssGcRoots().empty()) {
1910 // Insert oat file to class table for visiting .bss GC roots.
1911 class_table->InsertOatFile(oat_file);
1912 }
1913 if (added_class_table) {
1914 WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
1915 class_table->AddClassSet(std::move(temp_set));
1916 }
1917 if (kIsDebugBuild && app_image) {
1918 // This verification needs to happen after the classes have been added to the class loader.
1919 // Since it ensures classes are in the class table.
1920 VerifyClassInTableArtMethodVisitor visitor2(class_table);
1921 header.VisitPackedArtMethods(&visitor2, space->Begin(), kRuntimePointerSize);
1922 // Verify that all direct interfaces of classes in the class table are also resolved.
1923 VerifyDirectInterfacesInTableClassVisitor visitor(class_loader.Get());
1924 class_table->Visit(visitor);
1925 visitor.Check();
1926 // Check that all non-primitive classes in dex caches are also in the class table.
1927 for (int32_t i = 0; i < dex_caches->GetLength(); i++) {
1928 ObjPtr<mirror::DexCache> dex_cache = dex_caches->Get(i);
1929 mirror::TypeDexCacheType* const types = dex_cache->GetResolvedTypes();
1930 for (int32_t j = 0, num_types = dex_cache->NumResolvedTypes(); j < num_types; j++) {
1931 ObjPtr<mirror::Class> klass = types[j].load(std::memory_order_relaxed).object.Read();
1932 if (klass != nullptr && !klass->IsPrimitive()) {
1933 CHECK(class_table->Contains(klass)) << klass->PrettyDescriptor()
1934 << " " << dex_cache->GetDexFile()->GetLocation();
1935 }
1936 }
1937 }
1938 }
1939 VLOG(class_linker) << "Adding image space took " << PrettyDuration(NanoTime() - start_time);
1940 return true;
1941 }
1942
ClassInClassTable(ObjPtr<mirror::Class> klass)1943 bool ClassLinker::ClassInClassTable(ObjPtr<mirror::Class> klass) {
1944 ClassTable* const class_table = ClassTableForClassLoader(klass->GetClassLoader());
1945 return class_table != nullptr && class_table->Contains(klass);
1946 }
1947
VisitClassRoots(RootVisitor * visitor,VisitRootFlags flags)1948 void ClassLinker::VisitClassRoots(RootVisitor* visitor, VisitRootFlags flags) {
1949 // Acquire tracing_enabled before locking class linker lock to prevent lock order violation. Since
1950 // enabling tracing requires the mutator lock, there are no race conditions here.
1951 const bool tracing_enabled = Trace::IsTracingEnabled();
1952 Thread* const self = Thread::Current();
1953 WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
1954 if (kUseReadBarrier) {
1955 // We do not track new roots for CC.
1956 DCHECK_EQ(0, flags & (kVisitRootFlagNewRoots |
1957 kVisitRootFlagClearRootLog |
1958 kVisitRootFlagStartLoggingNewRoots |
1959 kVisitRootFlagStopLoggingNewRoots));
1960 }
1961 if ((flags & kVisitRootFlagAllRoots) != 0) {
1962 // Argument for how root visiting deals with ArtField and ArtMethod roots.
1963 // There is 3 GC cases to handle:
1964 // Non moving concurrent:
1965 // This case is easy to handle since the reference members of ArtMethod and ArtFields are held
1966 // live by the class and class roots.
1967 //
1968 // Moving non-concurrent:
1969 // This case needs to call visit VisitNativeRoots in case the classes or dex cache arrays move.
1970 // To prevent missing roots, this case needs to ensure that there is no
1971 // suspend points between the point which we allocate ArtMethod arrays and place them in a
1972 // class which is in the class table.
1973 //
1974 // Moving concurrent:
1975 // Need to make sure to not copy ArtMethods without doing read barriers since the roots are
1976 // marked concurrently and we don't hold the classlinker_classes_lock_ when we do the copy.
1977 //
1978 // Use an unbuffered visitor since the class table uses a temporary GcRoot for holding decoded
1979 // ClassTable::TableSlot. The buffered root visiting would access a stale stack location for
1980 // these objects.
1981 UnbufferedRootVisitor root_visitor(visitor, RootInfo(kRootStickyClass));
1982 boot_class_table_.VisitRoots(root_visitor);
1983 // If tracing is enabled, then mark all the class loaders to prevent unloading.
1984 if ((flags & kVisitRootFlagClassLoader) != 0 || tracing_enabled) {
1985 for (const ClassLoaderData& data : class_loaders_) {
1986 GcRoot<mirror::Object> root(GcRoot<mirror::Object>(self->DecodeJObject(data.weak_root)));
1987 root.VisitRoot(visitor, RootInfo(kRootVMInternal));
1988 }
1989 }
1990 } else if (!kUseReadBarrier && (flags & kVisitRootFlagNewRoots) != 0) {
1991 for (auto& root : new_class_roots_) {
1992 ObjPtr<mirror::Class> old_ref = root.Read<kWithoutReadBarrier>();
1993 root.VisitRoot(visitor, RootInfo(kRootStickyClass));
1994 ObjPtr<mirror::Class> new_ref = root.Read<kWithoutReadBarrier>();
1995 // Concurrent moving GC marked new roots through the to-space invariant.
1996 CHECK_EQ(new_ref, old_ref);
1997 }
1998 for (const OatFile* oat_file : new_bss_roots_boot_oat_files_) {
1999 for (GcRoot<mirror::Object>& root : oat_file->GetBssGcRoots()) {
2000 ObjPtr<mirror::Object> old_ref = root.Read<kWithoutReadBarrier>();
2001 if (old_ref != nullptr) {
2002 DCHECK(old_ref->IsClass());
2003 root.VisitRoot(visitor, RootInfo(kRootStickyClass));
2004 ObjPtr<mirror::Object> new_ref = root.Read<kWithoutReadBarrier>();
2005 // Concurrent moving GC marked new roots through the to-space invariant.
2006 CHECK_EQ(new_ref, old_ref);
2007 }
2008 }
2009 }
2010 }
2011 if (!kUseReadBarrier && (flags & kVisitRootFlagClearRootLog) != 0) {
2012 new_class_roots_.clear();
2013 new_bss_roots_boot_oat_files_.clear();
2014 }
2015 if (!kUseReadBarrier && (flags & kVisitRootFlagStartLoggingNewRoots) != 0) {
2016 log_new_roots_ = true;
2017 } else if (!kUseReadBarrier && (flags & kVisitRootFlagStopLoggingNewRoots) != 0) {
2018 log_new_roots_ = false;
2019 }
2020 // We deliberately ignore the class roots in the image since we
2021 // handle image roots by using the MS/CMS rescanning of dirty cards.
2022 }
2023
2024 // Keep in sync with InitCallback. Anything we visit, we need to
2025 // reinit references to when reinitializing a ClassLinker from a
2026 // mapped image.
VisitRoots(RootVisitor * visitor,VisitRootFlags flags)2027 void ClassLinker::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
2028 class_roots_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2029 VisitClassRoots(visitor, flags);
2030 array_iftable_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
2031 // Instead of visiting the find_array_class_cache_ drop it so that it doesn't prevent class
2032 // unloading if we are marking roots.
2033 DropFindArrayClassCache();
2034 }
2035
2036 class VisitClassLoaderClassesVisitor : public ClassLoaderVisitor {
2037 public:
VisitClassLoaderClassesVisitor(ClassVisitor * visitor)2038 explicit VisitClassLoaderClassesVisitor(ClassVisitor* visitor)
2039 : visitor_(visitor),
2040 done_(false) {}
2041
Visit(ObjPtr<mirror::ClassLoader> class_loader)2042 void Visit(ObjPtr<mirror::ClassLoader> class_loader)
2043 REQUIRES_SHARED(Locks::classlinker_classes_lock_, Locks::mutator_lock_) OVERRIDE {
2044 ClassTable* const class_table = class_loader->GetClassTable();
2045 if (!done_ && class_table != nullptr) {
2046 DefiningClassLoaderFilterVisitor visitor(class_loader, visitor_);
2047 if (!class_table->Visit(visitor)) {
2048 // If the visitor ClassTable returns false it means that we don't need to continue.
2049 done_ = true;
2050 }
2051 }
2052 }
2053
2054 private:
2055 // Class visitor that limits the class visits from a ClassTable to the classes with
2056 // the provided defining class loader. This filter is used to avoid multiple visits
2057 // of the same class which can be recorded for multiple initiating class loaders.
2058 class DefiningClassLoaderFilterVisitor : public ClassVisitor {
2059 public:
DefiningClassLoaderFilterVisitor(ObjPtr<mirror::ClassLoader> defining_class_loader,ClassVisitor * visitor)2060 DefiningClassLoaderFilterVisitor(ObjPtr<mirror::ClassLoader> defining_class_loader,
2061 ClassVisitor* visitor)
2062 : defining_class_loader_(defining_class_loader), visitor_(visitor) { }
2063
operator ()(ObjPtr<mirror::Class> klass)2064 bool operator()(ObjPtr<mirror::Class> klass) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
2065 if (klass->GetClassLoader() != defining_class_loader_) {
2066 return true;
2067 }
2068 return (*visitor_)(klass);
2069 }
2070
2071 ObjPtr<mirror::ClassLoader> const defining_class_loader_;
2072 ClassVisitor* const visitor_;
2073 };
2074
2075 ClassVisitor* const visitor_;
2076 // If done is true then we don't need to do any more visiting.
2077 bool done_;
2078 };
2079
VisitClassesInternal(ClassVisitor * visitor)2080 void ClassLinker::VisitClassesInternal(ClassVisitor* visitor) {
2081 if (boot_class_table_.Visit(*visitor)) {
2082 VisitClassLoaderClassesVisitor loader_visitor(visitor);
2083 VisitClassLoaders(&loader_visitor);
2084 }
2085 }
2086
VisitClasses(ClassVisitor * visitor)2087 void ClassLinker::VisitClasses(ClassVisitor* visitor) {
2088 Thread* const self = Thread::Current();
2089 ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
2090 // Not safe to have thread suspension when we are holding a lock.
2091 if (self != nullptr) {
2092 ScopedAssertNoThreadSuspension nts(__FUNCTION__);
2093 VisitClassesInternal(visitor);
2094 } else {
2095 VisitClassesInternal(visitor);
2096 }
2097 }
2098
2099 class GetClassesInToVector : public ClassVisitor {
2100 public:
operator ()(ObjPtr<mirror::Class> klass)2101 bool operator()(ObjPtr<mirror::Class> klass) OVERRIDE {
2102 classes_.push_back(klass);
2103 return true;
2104 }
2105 std::vector<ObjPtr<mirror::Class>> classes_;
2106 };
2107
2108 class GetClassInToObjectArray : public ClassVisitor {
2109 public:
GetClassInToObjectArray(mirror::ObjectArray<mirror::Class> * arr)2110 explicit GetClassInToObjectArray(mirror::ObjectArray<mirror::Class>* arr)
2111 : arr_(arr), index_(0) {}
2112
operator ()(ObjPtr<mirror::Class> klass)2113 bool operator()(ObjPtr<mirror::Class> klass) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
2114 ++index_;
2115 if (index_ <= arr_->GetLength()) {
2116 arr_->Set(index_ - 1, klass);
2117 return true;
2118 }
2119 return false;
2120 }
2121
Succeeded() const2122 bool Succeeded() const REQUIRES_SHARED(Locks::mutator_lock_) {
2123 return index_ <= arr_->GetLength();
2124 }
2125
2126 private:
2127 mirror::ObjectArray<mirror::Class>* const arr_;
2128 int32_t index_;
2129 };
2130
VisitClassesWithoutClassesLock(ClassVisitor * visitor)2131 void ClassLinker::VisitClassesWithoutClassesLock(ClassVisitor* visitor) {
2132 // TODO: it may be possible to avoid secondary storage if we iterate over dex caches. The problem
2133 // is avoiding duplicates.
2134 if (!kMovingClasses) {
2135 ScopedAssertNoThreadSuspension nts(__FUNCTION__);
2136 GetClassesInToVector accumulator;
2137 VisitClasses(&accumulator);
2138 for (ObjPtr<mirror::Class> klass : accumulator.classes_) {
2139 if (!visitor->operator()(klass)) {
2140 return;
2141 }
2142 }
2143 } else {
2144 Thread* const self = Thread::Current();
2145 StackHandleScope<1> hs(self);
2146 auto classes = hs.NewHandle<mirror::ObjectArray<mirror::Class>>(nullptr);
2147 // We size the array assuming classes won't be added to the class table during the visit.
2148 // If this assumption fails we iterate again.
2149 while (true) {
2150 size_t class_table_size;
2151 {
2152 ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
2153 // Add 100 in case new classes get loaded when we are filling in the object array.
2154 class_table_size = NumZygoteClasses() + NumNonZygoteClasses() + 100;
2155 }
2156 ObjPtr<mirror::Class> class_type = mirror::Class::GetJavaLangClass();
2157 ObjPtr<mirror::Class> array_of_class = FindArrayClass(self, &class_type);
2158 classes.Assign(
2159 mirror::ObjectArray<mirror::Class>::Alloc(self, array_of_class, class_table_size));
2160 CHECK(classes != nullptr); // OOME.
2161 GetClassInToObjectArray accumulator(classes.Get());
2162 VisitClasses(&accumulator);
2163 if (accumulator.Succeeded()) {
2164 break;
2165 }
2166 }
2167 for (int32_t i = 0; i < classes->GetLength(); ++i) {
2168 // If the class table shrank during creation of the clases array we expect null elements. If
2169 // the class table grew then the loop repeats. If classes are created after the loop has
2170 // finished then we don't visit.
2171 ObjPtr<mirror::Class> klass = classes->Get(i);
2172 if (klass != nullptr && !visitor->operator()(klass)) {
2173 return;
2174 }
2175 }
2176 }
2177 }
2178
~ClassLinker()2179 ClassLinker::~ClassLinker() {
2180 mirror::Class::ResetClass();
2181 mirror::Constructor::ResetClass();
2182 mirror::Field::ResetClass();
2183 mirror::Method::ResetClass();
2184 mirror::Reference::ResetClass();
2185 mirror::StackTraceElement::ResetClass();
2186 mirror::String::ResetClass();
2187 mirror::Throwable::ResetClass();
2188 mirror::BooleanArray::ResetArrayClass();
2189 mirror::ByteArray::ResetArrayClass();
2190 mirror::CharArray::ResetArrayClass();
2191 mirror::Constructor::ResetArrayClass();
2192 mirror::DoubleArray::ResetArrayClass();
2193 mirror::Field::ResetArrayClass();
2194 mirror::FloatArray::ResetArrayClass();
2195 mirror::Method::ResetArrayClass();
2196 mirror::IntArray::ResetArrayClass();
2197 mirror::LongArray::ResetArrayClass();
2198 mirror::ShortArray::ResetArrayClass();
2199 mirror::MethodType::ResetClass();
2200 mirror::MethodHandleImpl::ResetClass();
2201 mirror::MethodHandlesLookup::ResetClass();
2202 mirror::CallSite::ResetClass();
2203 mirror::EmulatedStackFrame::ResetClass();
2204 Thread* const self = Thread::Current();
2205 for (const ClassLoaderData& data : class_loaders_) {
2206 DeleteClassLoader(self, data);
2207 }
2208 class_loaders_.clear();
2209 }
2210
DeleteClassLoader(Thread * self,const ClassLoaderData & data)2211 void ClassLinker::DeleteClassLoader(Thread* self, const ClassLoaderData& data) {
2212 Runtime* const runtime = Runtime::Current();
2213 JavaVMExt* const vm = runtime->GetJavaVM();
2214 vm->DeleteWeakGlobalRef(self, data.weak_root);
2215 // Notify the JIT that we need to remove the methods and/or profiling info.
2216 if (runtime->GetJit() != nullptr) {
2217 jit::JitCodeCache* code_cache = runtime->GetJit()->GetCodeCache();
2218 if (code_cache != nullptr) {
2219 code_cache->RemoveMethodsIn(self, *data.allocator);
2220 }
2221 }
2222 delete data.allocator;
2223 delete data.class_table;
2224 }
2225
AllocPointerArray(Thread * self,size_t length)2226 mirror::PointerArray* ClassLinker::AllocPointerArray(Thread* self, size_t length) {
2227 return down_cast<mirror::PointerArray*>(
2228 image_pointer_size_ == PointerSize::k64
2229 ? static_cast<mirror::Array*>(mirror::LongArray::Alloc(self, length))
2230 : static_cast<mirror::Array*>(mirror::IntArray::Alloc(self, length)));
2231 }
2232
AllocDexCache(ObjPtr<mirror::String> * out_location,Thread * self,const DexFile & dex_file)2233 mirror::DexCache* ClassLinker::AllocDexCache(ObjPtr<mirror::String>* out_location,
2234 Thread* self,
2235 const DexFile& dex_file) {
2236 StackHandleScope<1> hs(self);
2237 DCHECK(out_location != nullptr);
2238 auto dex_cache(hs.NewHandle(ObjPtr<mirror::DexCache>::DownCast(
2239 GetClassRoot(kJavaLangDexCache)->AllocObject(self))));
2240 if (dex_cache == nullptr) {
2241 self->AssertPendingOOMException();
2242 return nullptr;
2243 }
2244 ObjPtr<mirror::String> location = intern_table_->InternStrong(dex_file.GetLocation().c_str());
2245 if (location == nullptr) {
2246 self->AssertPendingOOMException();
2247 return nullptr;
2248 }
2249 *out_location = location;
2250 return dex_cache.Get();
2251 }
2252
AllocAndInitializeDexCache(Thread * self,const DexFile & dex_file,LinearAlloc * linear_alloc)2253 mirror::DexCache* ClassLinker::AllocAndInitializeDexCache(Thread* self,
2254 const DexFile& dex_file,
2255 LinearAlloc* linear_alloc) {
2256 ObjPtr<mirror::String> location = nullptr;
2257 ObjPtr<mirror::DexCache> dex_cache = AllocDexCache(&location, self, dex_file);
2258 if (dex_cache != nullptr) {
2259 WriterMutexLock mu(self, *Locks::dex_lock_);
2260 DCHECK(location != nullptr);
2261 mirror::DexCache::InitializeDexCache(self,
2262 dex_cache,
2263 location,
2264 &dex_file,
2265 linear_alloc,
2266 image_pointer_size_);
2267 }
2268 return dex_cache.Ptr();
2269 }
2270
AllocClass(Thread * self,ObjPtr<mirror::Class> java_lang_Class,uint32_t class_size)2271 mirror::Class* ClassLinker::AllocClass(Thread* self,
2272 ObjPtr<mirror::Class> java_lang_Class,
2273 uint32_t class_size) {
2274 DCHECK_GE(class_size, sizeof(mirror::Class));
2275 gc::Heap* heap = Runtime::Current()->GetHeap();
2276 mirror::Class::InitializeClassVisitor visitor(class_size);
2277 ObjPtr<mirror::Object> k = kMovingClasses ?
2278 heap->AllocObject<true>(self, java_lang_Class, class_size, visitor) :
2279 heap->AllocNonMovableObject<true>(self, java_lang_Class, class_size, visitor);
2280 if (UNLIKELY(k == nullptr)) {
2281 self->AssertPendingOOMException();
2282 return nullptr;
2283 }
2284 return k->AsClass();
2285 }
2286
AllocClass(Thread * self,uint32_t class_size)2287 mirror::Class* ClassLinker::AllocClass(Thread* self, uint32_t class_size) {
2288 return AllocClass(self, GetClassRoot(kJavaLangClass), class_size);
2289 }
2290
AllocStackTraceElementArray(Thread * self,size_t length)2291 mirror::ObjectArray<mirror::StackTraceElement>* ClassLinker::AllocStackTraceElementArray(
2292 Thread* self,
2293 size_t length) {
2294 return mirror::ObjectArray<mirror::StackTraceElement>::Alloc(
2295 self, GetClassRoot(kJavaLangStackTraceElementArrayClass), length);
2296 }
2297
EnsureResolved(Thread * self,const char * descriptor,ObjPtr<mirror::Class> klass)2298 mirror::Class* ClassLinker::EnsureResolved(Thread* self,
2299 const char* descriptor,
2300 ObjPtr<mirror::Class> klass) {
2301 DCHECK(klass != nullptr);
2302 if (kIsDebugBuild) {
2303 StackHandleScope<1> hs(self);
2304 HandleWrapperObjPtr<mirror::Class> h = hs.NewHandleWrapper(&klass);
2305 Thread::PoisonObjectPointersIfDebug();
2306 }
2307
2308 // For temporary classes we must wait for them to be retired.
2309 if (init_done_ && klass->IsTemp()) {
2310 CHECK(!klass->IsResolved());
2311 if (klass->IsErroneousUnresolved()) {
2312 ThrowEarlierClassFailure(klass);
2313 return nullptr;
2314 }
2315 StackHandleScope<1> hs(self);
2316 Handle<mirror::Class> h_class(hs.NewHandle(klass));
2317 ObjectLock<mirror::Class> lock(self, h_class);
2318 // Loop and wait for the resolving thread to retire this class.
2319 while (!h_class->IsRetired() && !h_class->IsErroneousUnresolved()) {
2320 lock.WaitIgnoringInterrupts();
2321 }
2322 if (h_class->IsErroneousUnresolved()) {
2323 ThrowEarlierClassFailure(h_class.Get());
2324 return nullptr;
2325 }
2326 CHECK(h_class->IsRetired());
2327 // Get the updated class from class table.
2328 klass = LookupClass(self, descriptor, h_class.Get()->GetClassLoader());
2329 }
2330
2331 // Wait for the class if it has not already been linked.
2332 size_t index = 0;
2333 // Maximum number of yield iterations until we start sleeping.
2334 static const size_t kNumYieldIterations = 1000;
2335 // How long each sleep is in us.
2336 static const size_t kSleepDurationUS = 1000; // 1 ms.
2337 while (!klass->IsResolved() && !klass->IsErroneousUnresolved()) {
2338 StackHandleScope<1> hs(self);
2339 HandleWrapperObjPtr<mirror::Class> h_class(hs.NewHandleWrapper(&klass));
2340 {
2341 ObjectTryLock<mirror::Class> lock(self, h_class);
2342 // Can not use a monitor wait here since it may block when returning and deadlock if another
2343 // thread has locked klass.
2344 if (lock.Acquired()) {
2345 // Check for circular dependencies between classes, the lock is required for SetStatus.
2346 if (!h_class->IsResolved() && h_class->GetClinitThreadId() == self->GetTid()) {
2347 ThrowClassCircularityError(h_class.Get());
2348 mirror::Class::SetStatus(h_class, mirror::Class::kStatusErrorUnresolved, self);
2349 return nullptr;
2350 }
2351 }
2352 }
2353 {
2354 // Handle wrapper deals with klass moving.
2355 ScopedThreadSuspension sts(self, kSuspended);
2356 if (index < kNumYieldIterations) {
2357 sched_yield();
2358 } else {
2359 usleep(kSleepDurationUS);
2360 }
2361 }
2362 ++index;
2363 }
2364
2365 if (klass->IsErroneousUnresolved()) {
2366 ThrowEarlierClassFailure(klass);
2367 return nullptr;
2368 }
2369 // Return the loaded class. No exceptions should be pending.
2370 CHECK(klass->IsResolved()) << klass->PrettyClass();
2371 self->AssertNoPendingException();
2372 return klass.Ptr();
2373 }
2374
2375 typedef std::pair<const DexFile*, const DexFile::ClassDef*> ClassPathEntry;
2376
2377 // Search a collection of DexFiles for a descriptor
FindInClassPath(const char * descriptor,size_t hash,const std::vector<const DexFile * > & class_path)2378 ClassPathEntry FindInClassPath(const char* descriptor,
2379 size_t hash, const std::vector<const DexFile*>& class_path) {
2380 for (const DexFile* dex_file : class_path) {
2381 const DexFile::ClassDef* dex_class_def = OatDexFile::FindClassDef(*dex_file, descriptor, hash);
2382 if (dex_class_def != nullptr) {
2383 return ClassPathEntry(dex_file, dex_class_def);
2384 }
2385 }
2386 return ClassPathEntry(nullptr, nullptr);
2387 }
2388
FindClassInBaseDexClassLoader(ScopedObjectAccessAlreadyRunnable & soa,Thread * self,const char * descriptor,size_t hash,Handle<mirror::ClassLoader> class_loader,ObjPtr<mirror::Class> * result)2389 bool ClassLinker::FindClassInBaseDexClassLoader(ScopedObjectAccessAlreadyRunnable& soa,
2390 Thread* self,
2391 const char* descriptor,
2392 size_t hash,
2393 Handle<mirror::ClassLoader> class_loader,
2394 ObjPtr<mirror::Class>* result) {
2395 // Termination case: boot class-loader.
2396 if (IsBootClassLoader(soa, class_loader.Get())) {
2397 // The boot class loader, search the boot class path.
2398 ClassPathEntry pair = FindInClassPath(descriptor, hash, boot_class_path_);
2399 if (pair.second != nullptr) {
2400 ObjPtr<mirror::Class> klass = LookupClass(self, descriptor, hash, nullptr);
2401 if (klass != nullptr) {
2402 *result = EnsureResolved(self, descriptor, klass);
2403 } else {
2404 *result = DefineClass(self,
2405 descriptor,
2406 hash,
2407 ScopedNullHandle<mirror::ClassLoader>(),
2408 *pair.first,
2409 *pair.second);
2410 }
2411 if (*result == nullptr) {
2412 CHECK(self->IsExceptionPending()) << descriptor;
2413 self->ClearException();
2414 }
2415 } else {
2416 *result = nullptr;
2417 }
2418 return true;
2419 }
2420
2421 // Unsupported class-loader?
2422 if (soa.Decode<mirror::Class>(WellKnownClasses::dalvik_system_PathClassLoader) !=
2423 class_loader->GetClass()) {
2424 // PathClassLoader is the most common case, so it's the one we check first. For secondary dex
2425 // files, we also check DexClassLoader here.
2426 if (soa.Decode<mirror::Class>(WellKnownClasses::dalvik_system_DexClassLoader) !=
2427 class_loader->GetClass()) {
2428 *result = nullptr;
2429 return false;
2430 }
2431 }
2432
2433 // Handles as RegisterDexFile may allocate dex caches (and cause thread suspension).
2434 StackHandleScope<4> hs(self);
2435 Handle<mirror::ClassLoader> h_parent(hs.NewHandle(class_loader->GetParent()));
2436 bool recursive_result = FindClassInBaseDexClassLoader(soa,
2437 self,
2438 descriptor,
2439 hash,
2440 h_parent,
2441 result);
2442
2443 if (!recursive_result) {
2444 // Something wrong up the chain.
2445 return false;
2446 }
2447
2448 if (*result != nullptr) {
2449 // Found the class up the chain.
2450 return true;
2451 }
2452
2453 // Handle this step.
2454 // Handle as if this is the child PathClassLoader.
2455 // The class loader is a PathClassLoader which inherits from BaseDexClassLoader.
2456 // We need to get the DexPathList and loop through it.
2457 ArtField* const cookie_field =
2458 jni::DecodeArtField(WellKnownClasses::dalvik_system_DexFile_cookie);
2459 ArtField* const dex_file_field =
2460 jni::DecodeArtField(WellKnownClasses::dalvik_system_DexPathList__Element_dexFile);
2461 ObjPtr<mirror::Object> dex_path_list =
2462 jni::DecodeArtField(WellKnownClasses::dalvik_system_BaseDexClassLoader_pathList)->
2463 GetObject(class_loader.Get());
2464 if (dex_path_list != nullptr && dex_file_field != nullptr && cookie_field != nullptr) {
2465 // DexPathList has an array dexElements of Elements[] which each contain a dex file.
2466 ObjPtr<mirror::Object> dex_elements_obj =
2467 jni::DecodeArtField(WellKnownClasses::dalvik_system_DexPathList_dexElements)->
2468 GetObject(dex_path_list);
2469 // Loop through each dalvik.system.DexPathList$Element's dalvik.system.DexFile and look
2470 // at the mCookie which is a DexFile vector.
2471 if (dex_elements_obj != nullptr) {
2472 Handle<mirror::ObjectArray<mirror::Object>> dex_elements =
2473 hs.NewHandle(dex_elements_obj->AsObjectArray<mirror::Object>());
2474 for (int32_t i = 0; i < dex_elements->GetLength(); ++i) {
2475 ObjPtr<mirror::Object> element = dex_elements->GetWithoutChecks(i);
2476 if (element == nullptr) {
2477 // Should never happen, fall back to java code to throw a NPE.
2478 break;
2479 }
2480 ObjPtr<mirror::Object> dex_file = dex_file_field->GetObject(element);
2481 if (dex_file != nullptr) {
2482 ObjPtr<mirror::LongArray> long_array = cookie_field->GetObject(dex_file)->AsLongArray();
2483 if (long_array == nullptr) {
2484 // This should never happen so log a warning.
2485 LOG(WARNING) << "Null DexFile::mCookie for " << descriptor;
2486 break;
2487 }
2488 int32_t long_array_size = long_array->GetLength();
2489 // First element is the oat file.
2490 for (int32_t j = kDexFileIndexStart; j < long_array_size; ++j) {
2491 const DexFile* cp_dex_file = reinterpret_cast<const DexFile*>(static_cast<uintptr_t>(
2492 long_array->GetWithoutChecks(j)));
2493 const DexFile::ClassDef* dex_class_def =
2494 OatDexFile::FindClassDef(*cp_dex_file, descriptor, hash);
2495 if (dex_class_def != nullptr) {
2496 ObjPtr<mirror::Class> klass = DefineClass(self,
2497 descriptor,
2498 hash,
2499 class_loader,
2500 *cp_dex_file,
2501 *dex_class_def);
2502 if (klass == nullptr) {
2503 CHECK(self->IsExceptionPending()) << descriptor;
2504 self->ClearException();
2505 // TODO: Is it really right to break here, and not check the other dex files?
2506 return true;
2507 }
2508 *result = klass;
2509 return true;
2510 }
2511 }
2512 }
2513 }
2514 }
2515 self->AssertNoPendingException();
2516 }
2517
2518 // Result is still null from the parent call, no need to set it again...
2519 return true;
2520 }
2521
FindClass(Thread * self,const char * descriptor,Handle<mirror::ClassLoader> class_loader)2522 mirror::Class* ClassLinker::FindClass(Thread* self,
2523 const char* descriptor,
2524 Handle<mirror::ClassLoader> class_loader) {
2525 DCHECK_NE(*descriptor, '\0') << "descriptor is empty string";
2526 DCHECK(self != nullptr);
2527 self->AssertNoPendingException();
2528 self->PoisonObjectPointers(); // For DefineClass, CreateArrayClass, etc...
2529 if (descriptor[1] == '\0') {
2530 // only the descriptors of primitive types should be 1 character long, also avoid class lookup
2531 // for primitive classes that aren't backed by dex files.
2532 return FindPrimitiveClass(descriptor[0]);
2533 }
2534 const size_t hash = ComputeModifiedUtf8Hash(descriptor);
2535 // Find the class in the loaded classes table.
2536 ObjPtr<mirror::Class> klass = LookupClass(self, descriptor, hash, class_loader.Get());
2537 if (klass != nullptr) {
2538 return EnsureResolved(self, descriptor, klass);
2539 }
2540 // Class is not yet loaded.
2541 if (descriptor[0] != '[' && class_loader == nullptr) {
2542 // Non-array class and the boot class loader, search the boot class path.
2543 ClassPathEntry pair = FindInClassPath(descriptor, hash, boot_class_path_);
2544 if (pair.second != nullptr) {
2545 return DefineClass(self,
2546 descriptor,
2547 hash,
2548 ScopedNullHandle<mirror::ClassLoader>(),
2549 *pair.first,
2550 *pair.second);
2551 } else {
2552 // The boot class loader is searched ahead of the application class loader, failures are
2553 // expected and will be wrapped in a ClassNotFoundException. Use the pre-allocated error to
2554 // trigger the chaining with a proper stack trace.
2555 ObjPtr<mirror::Throwable> pre_allocated =
2556 Runtime::Current()->GetPreAllocatedNoClassDefFoundError();
2557 self->SetException(pre_allocated);
2558 return nullptr;
2559 }
2560 }
2561 ObjPtr<mirror::Class> result_ptr;
2562 bool descriptor_equals;
2563 if (descriptor[0] == '[') {
2564 result_ptr = CreateArrayClass(self, descriptor, hash, class_loader);
2565 DCHECK_EQ(result_ptr == nullptr, self->IsExceptionPending());
2566 DCHECK(result_ptr == nullptr || result_ptr->DescriptorEquals(descriptor));
2567 descriptor_equals = true;
2568 } else {
2569 ScopedObjectAccessUnchecked soa(self);
2570 bool known_hierarchy =
2571 FindClassInBaseDexClassLoader(soa, self, descriptor, hash, class_loader, &result_ptr);
2572 if (result_ptr != nullptr) {
2573 // The chain was understood and we found the class. We still need to add the class to
2574 // the class table to protect from racy programs that can try and redefine the path list
2575 // which would change the Class<?> returned for subsequent evaluation of const-class.
2576 DCHECK(known_hierarchy);
2577 DCHECK(result_ptr->DescriptorEquals(descriptor));
2578 descriptor_equals = true;
2579 } else {
2580 // Either the chain wasn't understood or the class wasn't found.
2581 //
2582 // If the chain was understood but we did not find the class, let the Java-side
2583 // rediscover all this and throw the exception with the right stack trace. Note that
2584 // the Java-side could still succeed for racy programs if another thread is actively
2585 // modifying the class loader's path list.
2586
2587 if (!self->CanCallIntoJava()) {
2588 // Oops, we can't call into java so we can't run actual class-loader code.
2589 // This is true for e.g. for the compiler (jit or aot).
2590 ObjPtr<mirror::Throwable> pre_allocated =
2591 Runtime::Current()->GetPreAllocatedNoClassDefFoundError();
2592 self->SetException(pre_allocated);
2593 return nullptr;
2594 }
2595
2596 // Inlined DescriptorToDot(descriptor) with extra validation.
2597 //
2598 // Throw NoClassDefFoundError early rather than potentially load a class only to fail
2599 // the DescriptorEquals() check below and give a confusing error message. For example,
2600 // when native code erroneously calls JNI GetFieldId() with signature "java/lang/String"
2601 // instead of "Ljava/lang/String;", the message below using the "dot" names would be
2602 // "class loader [...] returned class java.lang.String instead of java.lang.String".
2603 size_t descriptor_length = strlen(descriptor);
2604 if (UNLIKELY(descriptor[0] != 'L') ||
2605 UNLIKELY(descriptor[descriptor_length - 1] != ';') ||
2606 UNLIKELY(memchr(descriptor + 1, '.', descriptor_length - 2) != nullptr)) {
2607 ThrowNoClassDefFoundError("Invalid descriptor: %s.", descriptor);
2608 return nullptr;
2609 }
2610 std::string class_name_string(descriptor + 1, descriptor_length - 2);
2611 std::replace(class_name_string.begin(), class_name_string.end(), '/', '.');
2612
2613 ScopedLocalRef<jobject> class_loader_object(
2614 soa.Env(), soa.AddLocalReference<jobject>(class_loader.Get()));
2615 ScopedLocalRef<jobject> result(soa.Env(), nullptr);
2616 {
2617 ScopedThreadStateChange tsc(self, kNative);
2618 ScopedLocalRef<jobject> class_name_object(
2619 soa.Env(), soa.Env()->NewStringUTF(class_name_string.c_str()));
2620 if (class_name_object.get() == nullptr) {
2621 DCHECK(self->IsExceptionPending()); // OOME.
2622 return nullptr;
2623 }
2624 CHECK(class_loader_object.get() != nullptr);
2625 result.reset(soa.Env()->CallObjectMethod(class_loader_object.get(),
2626 WellKnownClasses::java_lang_ClassLoader_loadClass,
2627 class_name_object.get()));
2628 }
2629 if (result.get() == nullptr && !self->IsExceptionPending()) {
2630 // broken loader - throw NPE to be compatible with Dalvik
2631 ThrowNullPointerException(StringPrintf("ClassLoader.loadClass returned null for %s",
2632 class_name_string.c_str()).c_str());
2633 return nullptr;
2634 }
2635 result_ptr = soa.Decode<mirror::Class>(result.get());
2636 // Check the name of the returned class.
2637 descriptor_equals = (result_ptr != nullptr) && result_ptr->DescriptorEquals(descriptor);
2638 }
2639 }
2640
2641 if (self->IsExceptionPending()) {
2642 // If the ClassLoader threw or array class allocation failed, pass that exception up.
2643 // However, to comply with the RI behavior, first check if another thread succeeded.
2644 result_ptr = LookupClass(self, descriptor, hash, class_loader.Get());
2645 if (result_ptr != nullptr && !result_ptr->IsErroneous()) {
2646 self->ClearException();
2647 return EnsureResolved(self, descriptor, result_ptr);
2648 }
2649 return nullptr;
2650 }
2651
2652 // Try to insert the class to the class table, checking for mismatch.
2653 ObjPtr<mirror::Class> old;
2654 {
2655 WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
2656 ClassTable* const class_table = InsertClassTableForClassLoader(class_loader.Get());
2657 old = class_table->Lookup(descriptor, hash);
2658 if (old == nullptr) {
2659 old = result_ptr; // For the comparison below, after releasing the lock.
2660 if (descriptor_equals) {
2661 class_table->InsertWithHash(result_ptr.Ptr(), hash);
2662 Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(class_loader.Get());
2663 } // else throw below, after releasing the lock.
2664 }
2665 }
2666 if (UNLIKELY(old != result_ptr)) {
2667 // Return `old` (even if `!descriptor_equals`) to mimic the RI behavior for parallel
2668 // capable class loaders. (All class loaders are considered parallel capable on Android.)
2669 mirror::Class* loader_class = class_loader->GetClass();
2670 const char* loader_class_name =
2671 loader_class->GetDexFile().StringByTypeIdx(loader_class->GetDexTypeIndex());
2672 LOG(WARNING) << "Initiating class loader of type " << DescriptorToDot(loader_class_name)
2673 << " is not well-behaved; it returned a different Class for racing loadClass(\""
2674 << DescriptorToDot(descriptor) << "\").";
2675 return EnsureResolved(self, descriptor, old);
2676 }
2677 if (UNLIKELY(!descriptor_equals)) {
2678 std::string result_storage;
2679 const char* result_name = result_ptr->GetDescriptor(&result_storage);
2680 std::string loader_storage;
2681 const char* loader_class_name = class_loader->GetClass()->GetDescriptor(&loader_storage);
2682 ThrowNoClassDefFoundError(
2683 "Initiating class loader of type %s returned class %s instead of %s.",
2684 DescriptorToDot(loader_class_name).c_str(),
2685 DescriptorToDot(result_name).c_str(),
2686 DescriptorToDot(descriptor).c_str());
2687 return nullptr;
2688 }
2689 // success, return mirror::Class*
2690 return result_ptr.Ptr();
2691 }
2692
DefineClass(Thread * self,const char * descriptor,size_t hash,Handle<mirror::ClassLoader> class_loader,const DexFile & dex_file,const DexFile::ClassDef & dex_class_def)2693 mirror::Class* ClassLinker::DefineClass(Thread* self,
2694 const char* descriptor,
2695 size_t hash,
2696 Handle<mirror::ClassLoader> class_loader,
2697 const DexFile& dex_file,
2698 const DexFile::ClassDef& dex_class_def) {
2699 StackHandleScope<3> hs(self);
2700 auto klass = hs.NewHandle<mirror::Class>(nullptr);
2701
2702 // Load the class from the dex file.
2703 if (UNLIKELY(!init_done_)) {
2704 // finish up init of hand crafted class_roots_
2705 if (strcmp(descriptor, "Ljava/lang/Object;") == 0) {
2706 klass.Assign(GetClassRoot(kJavaLangObject));
2707 } else if (strcmp(descriptor, "Ljava/lang/Class;") == 0) {
2708 klass.Assign(GetClassRoot(kJavaLangClass));
2709 } else if (strcmp(descriptor, "Ljava/lang/String;") == 0) {
2710 klass.Assign(GetClassRoot(kJavaLangString));
2711 } else if (strcmp(descriptor, "Ljava/lang/ref/Reference;") == 0) {
2712 klass.Assign(GetClassRoot(kJavaLangRefReference));
2713 } else if (strcmp(descriptor, "Ljava/lang/DexCache;") == 0) {
2714 klass.Assign(GetClassRoot(kJavaLangDexCache));
2715 } else if (strcmp(descriptor, "Ldalvik/system/ClassExt;") == 0) {
2716 klass.Assign(GetClassRoot(kDalvikSystemClassExt));
2717 }
2718 }
2719
2720 if (klass == nullptr) {
2721 // Allocate a class with the status of not ready.
2722 // Interface object should get the right size here. Regular class will
2723 // figure out the right size later and be replaced with one of the right
2724 // size when the class becomes resolved.
2725 klass.Assign(AllocClass(self, SizeOfClassWithoutEmbeddedTables(dex_file, dex_class_def)));
2726 }
2727 if (UNLIKELY(klass == nullptr)) {
2728 self->AssertPendingOOMException();
2729 return nullptr;
2730 }
2731 // Get the real dex file. This will return the input if there aren't any callbacks or they do
2732 // nothing.
2733 DexFile const* new_dex_file = nullptr;
2734 DexFile::ClassDef const* new_class_def = nullptr;
2735 // TODO We should ideally figure out some way to move this after we get a lock on the klass so it
2736 // will only be called once.
2737 Runtime::Current()->GetRuntimeCallbacks()->ClassPreDefine(descriptor,
2738 klass,
2739 class_loader,
2740 dex_file,
2741 dex_class_def,
2742 &new_dex_file,
2743 &new_class_def);
2744 // Check to see if an exception happened during runtime callbacks. Return if so.
2745 if (self->IsExceptionPending()) {
2746 return nullptr;
2747 }
2748 ObjPtr<mirror::DexCache> dex_cache = RegisterDexFile(*new_dex_file, class_loader.Get());
2749 if (dex_cache == nullptr) {
2750 self->AssertPendingException();
2751 return nullptr;
2752 }
2753 klass->SetDexCache(dex_cache);
2754 SetupClass(*new_dex_file, *new_class_def, klass, class_loader.Get());
2755
2756 // Mark the string class by setting its access flag.
2757 if (UNLIKELY(!init_done_)) {
2758 if (strcmp(descriptor, "Ljava/lang/String;") == 0) {
2759 klass->SetStringClass();
2760 }
2761 }
2762
2763 ObjectLock<mirror::Class> lock(self, klass);
2764 klass->SetClinitThreadId(self->GetTid());
2765 // Make sure we have a valid empty iftable even if there are errors.
2766 klass->SetIfTable(GetClassRoot(kJavaLangObject)->GetIfTable());
2767
2768 // Add the newly loaded class to the loaded classes table.
2769 ObjPtr<mirror::Class> existing = InsertClass(descriptor, klass.Get(), hash);
2770 if (existing != nullptr) {
2771 // We failed to insert because we raced with another thread. Calling EnsureResolved may cause
2772 // this thread to block.
2773 return EnsureResolved(self, descriptor, existing);
2774 }
2775
2776 // Load the fields and other things after we are inserted in the table. This is so that we don't
2777 // end up allocating unfree-able linear alloc resources and then lose the race condition. The
2778 // other reason is that the field roots are only visited from the class table. So we need to be
2779 // inserted before we allocate / fill in these fields.
2780 LoadClass(self, *new_dex_file, *new_class_def, klass);
2781 if (self->IsExceptionPending()) {
2782 VLOG(class_linker) << self->GetException()->Dump();
2783 // An exception occured during load, set status to erroneous while holding klass' lock in case
2784 // notification is necessary.
2785 if (!klass->IsErroneous()) {
2786 mirror::Class::SetStatus(klass, mirror::Class::kStatusErrorUnresolved, self);
2787 }
2788 return nullptr;
2789 }
2790
2791 // Finish loading (if necessary) by finding parents
2792 CHECK(!klass->IsLoaded());
2793 if (!LoadSuperAndInterfaces(klass, *new_dex_file)) {
2794 // Loading failed.
2795 if (!klass->IsErroneous()) {
2796 mirror::Class::SetStatus(klass, mirror::Class::kStatusErrorUnresolved, self);
2797 }
2798 return nullptr;
2799 }
2800 CHECK(klass->IsLoaded());
2801
2802 // At this point the class is loaded. Publish a ClassLoad event.
2803 // Note: this may be a temporary class. It is a listener's responsibility to handle this.
2804 Runtime::Current()->GetRuntimeCallbacks()->ClassLoad(klass);
2805
2806 // Link the class (if necessary)
2807 CHECK(!klass->IsResolved());
2808 // TODO: Use fast jobjects?
2809 auto interfaces = hs.NewHandle<mirror::ObjectArray<mirror::Class>>(nullptr);
2810
2811 MutableHandle<mirror::Class> h_new_class = hs.NewHandle<mirror::Class>(nullptr);
2812 if (!LinkClass(self, descriptor, klass, interfaces, &h_new_class)) {
2813 // Linking failed.
2814 if (!klass->IsErroneous()) {
2815 mirror::Class::SetStatus(klass, mirror::Class::kStatusErrorUnresolved, self);
2816 }
2817 return nullptr;
2818 }
2819 self->AssertNoPendingException();
2820 CHECK(h_new_class != nullptr) << descriptor;
2821 CHECK(h_new_class->IsResolved() && !h_new_class->IsErroneousResolved()) << descriptor;
2822
2823 // Instrumentation may have updated entrypoints for all methods of all
2824 // classes. However it could not update methods of this class while we
2825 // were loading it. Now the class is resolved, we can update entrypoints
2826 // as required by instrumentation.
2827 if (Runtime::Current()->GetInstrumentation()->AreExitStubsInstalled()) {
2828 // We must be in the kRunnable state to prevent instrumentation from
2829 // suspending all threads to update entrypoints while we are doing it
2830 // for this class.
2831 DCHECK_EQ(self->GetState(), kRunnable);
2832 Runtime::Current()->GetInstrumentation()->InstallStubsForClass(h_new_class.Get());
2833 }
2834
2835 /*
2836 * We send CLASS_PREPARE events to the debugger from here. The
2837 * definition of "preparation" is creating the static fields for a
2838 * class and initializing them to the standard default values, but not
2839 * executing any code (that comes later, during "initialization").
2840 *
2841 * We did the static preparation in LinkClass.
2842 *
2843 * The class has been prepared and resolved but possibly not yet verified
2844 * at this point.
2845 */
2846 Runtime::Current()->GetRuntimeCallbacks()->ClassPrepare(klass, h_new_class);
2847
2848 // Notify native debugger of the new class and its layout.
2849 jit::Jit::NewTypeLoadedIfUsingJit(h_new_class.Get());
2850
2851 return h_new_class.Get();
2852 }
2853
SizeOfClassWithoutEmbeddedTables(const DexFile & dex_file,const DexFile::ClassDef & dex_class_def)2854 uint32_t ClassLinker::SizeOfClassWithoutEmbeddedTables(const DexFile& dex_file,
2855 const DexFile::ClassDef& dex_class_def) {
2856 const uint8_t* class_data = dex_file.GetClassData(dex_class_def);
2857 size_t num_ref = 0;
2858 size_t num_8 = 0;
2859 size_t num_16 = 0;
2860 size_t num_32 = 0;
2861 size_t num_64 = 0;
2862 if (class_data != nullptr) {
2863 // We allow duplicate definitions of the same field in a class_data_item
2864 // but ignore the repeated indexes here, b/21868015.
2865 uint32_t last_field_idx = DexFile::kDexNoIndex;
2866 for (ClassDataItemIterator it(dex_file, class_data); it.HasNextStaticField(); it.Next()) {
2867 uint32_t field_idx = it.GetMemberIndex();
2868 // Ordering enforced by DexFileVerifier.
2869 DCHECK(last_field_idx == DexFile::kDexNoIndex || last_field_idx <= field_idx);
2870 if (UNLIKELY(field_idx == last_field_idx)) {
2871 continue;
2872 }
2873 last_field_idx = field_idx;
2874 const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx);
2875 const char* descriptor = dex_file.GetFieldTypeDescriptor(field_id);
2876 char c = descriptor[0];
2877 switch (c) {
2878 case 'L':
2879 case '[':
2880 num_ref++;
2881 break;
2882 case 'J':
2883 case 'D':
2884 num_64++;
2885 break;
2886 case 'I':
2887 case 'F':
2888 num_32++;
2889 break;
2890 case 'S':
2891 case 'C':
2892 num_16++;
2893 break;
2894 case 'B':
2895 case 'Z':
2896 num_8++;
2897 break;
2898 default:
2899 LOG(FATAL) << "Unknown descriptor: " << c;
2900 UNREACHABLE();
2901 }
2902 }
2903 }
2904 return mirror::Class::ComputeClassSize(false,
2905 0,
2906 num_8,
2907 num_16,
2908 num_32,
2909 num_64,
2910 num_ref,
2911 image_pointer_size_);
2912 }
2913
2914 // Special case to get oat code without overwriting a trampoline.
GetQuickOatCodeFor(ArtMethod * method)2915 const void* ClassLinker::GetQuickOatCodeFor(ArtMethod* method) {
2916 CHECK(method->IsInvokable()) << method->PrettyMethod();
2917 if (method->IsProxyMethod()) {
2918 return GetQuickProxyInvokeHandler();
2919 }
2920 auto* code = method->GetOatMethodQuickCode(GetImagePointerSize());
2921 if (code != nullptr) {
2922 return code;
2923 }
2924 if (method->IsNative()) {
2925 // No code and native? Use generic trampoline.
2926 return GetQuickGenericJniStub();
2927 }
2928 return GetQuickToInterpreterBridge();
2929 }
2930
ShouldUseInterpreterEntrypoint(ArtMethod * method,const void * quick_code)2931 bool ClassLinker::ShouldUseInterpreterEntrypoint(ArtMethod* method, const void* quick_code) {
2932 if (UNLIKELY(method->IsNative() || method->IsProxyMethod())) {
2933 return false;
2934 }
2935
2936 if (quick_code == nullptr) {
2937 return true;
2938 }
2939
2940 Runtime* runtime = Runtime::Current();
2941 instrumentation::Instrumentation* instr = runtime->GetInstrumentation();
2942 if (instr->InterpretOnly()) {
2943 return true;
2944 }
2945
2946 if (runtime->GetClassLinker()->IsQuickToInterpreterBridge(quick_code)) {
2947 // Doing this check avoids doing compiled/interpreter transitions.
2948 return true;
2949 }
2950
2951 if (Dbg::IsForcedInterpreterNeededForCalling(Thread::Current(), method)) {
2952 // Force the use of interpreter when it is required by the debugger.
2953 return true;
2954 }
2955
2956 if (runtime->IsJavaDebuggable()) {
2957 // For simplicity, we ignore precompiled code and go to the interpreter
2958 // assuming we don't already have jitted code.
2959 // We could look at the oat file where `quick_code` is being defined,
2960 // and check whether it's been compiled debuggable, but we decided to
2961 // only rely on the JIT for debuggable apps.
2962 jit::Jit* jit = Runtime::Current()->GetJit();
2963 return (jit == nullptr) || !jit->GetCodeCache()->ContainsPc(quick_code);
2964 }
2965
2966 if (runtime->IsNativeDebuggable()) {
2967 DCHECK(runtime->UseJitCompilation() && runtime->GetJit()->JitAtFirstUse());
2968 // If we are doing native debugging, ignore application's AOT code,
2969 // since we want to JIT it (at first use) with extra stackmaps for native
2970 // debugging. We keep however all AOT code from the boot image,
2971 // since the JIT-at-first-use is blocking and would result in non-negligible
2972 // startup performance impact.
2973 return !runtime->GetHeap()->IsInBootImageOatFile(quick_code);
2974 }
2975
2976 return false;
2977 }
2978
FixupStaticTrampolines(ObjPtr<mirror::Class> klass)2979 void ClassLinker::FixupStaticTrampolines(ObjPtr<mirror::Class> klass) {
2980 DCHECK(klass->IsInitialized()) << klass->PrettyDescriptor();
2981 if (klass->NumDirectMethods() == 0) {
2982 return; // No direct methods => no static methods.
2983 }
2984 Runtime* runtime = Runtime::Current();
2985 if (!runtime->IsStarted()) {
2986 if (runtime->IsAotCompiler() || runtime->GetHeap()->HasBootImageSpace()) {
2987 return; // OAT file unavailable.
2988 }
2989 }
2990
2991 const DexFile& dex_file = klass->GetDexFile();
2992 const DexFile::ClassDef* dex_class_def = klass->GetClassDef();
2993 CHECK(dex_class_def != nullptr);
2994 const uint8_t* class_data = dex_file.GetClassData(*dex_class_def);
2995 // There should always be class data if there were direct methods.
2996 CHECK(class_data != nullptr) << klass->PrettyDescriptor();
2997 ClassDataItemIterator it(dex_file, class_data);
2998 // Skip fields
2999 while (it.HasNextStaticField()) {
3000 it.Next();
3001 }
3002 while (it.HasNextInstanceField()) {
3003 it.Next();
3004 }
3005 bool has_oat_class;
3006 OatFile::OatClass oat_class = OatFile::FindOatClass(dex_file,
3007 klass->GetDexClassDefIndex(),
3008 &has_oat_class);
3009 // Link the code of methods skipped by LinkCode.
3010 for (size_t method_index = 0; it.HasNextDirectMethod(); ++method_index, it.Next()) {
3011 ArtMethod* method = klass->GetDirectMethod(method_index, image_pointer_size_);
3012 if (!method->IsStatic()) {
3013 // Only update static methods.
3014 continue;
3015 }
3016 const void* quick_code = nullptr;
3017 if (has_oat_class) {
3018 OatFile::OatMethod oat_method = oat_class.GetOatMethod(method_index);
3019 quick_code = oat_method.GetQuickCode();
3020 }
3021 // Check whether the method is native, in which case it's generic JNI.
3022 if (quick_code == nullptr && method->IsNative()) {
3023 quick_code = GetQuickGenericJniStub();
3024 } else if (ShouldUseInterpreterEntrypoint(method, quick_code)) {
3025 // Use interpreter entry point.
3026 quick_code = GetQuickToInterpreterBridge();
3027 }
3028 runtime->GetInstrumentation()->UpdateMethodsCode(method, quick_code);
3029 }
3030 // Ignore virtual methods on the iterator.
3031 }
3032
3033 // Does anything needed to make sure that the compiler will not generate a direct invoke to this
3034 // method. Should only be called on non-invokable methods.
EnsureThrowsInvocationError(ClassLinker * class_linker,ArtMethod * method)3035 inline void EnsureThrowsInvocationError(ClassLinker* class_linker, ArtMethod* method) {
3036 DCHECK(method != nullptr);
3037 DCHECK(!method->IsInvokable());
3038 method->SetEntryPointFromQuickCompiledCodePtrSize(
3039 class_linker->GetQuickToInterpreterBridgeTrampoline(),
3040 class_linker->GetImagePointerSize());
3041 }
3042
LinkCode(ClassLinker * class_linker,ArtMethod * method,const OatFile::OatClass * oat_class,uint32_t class_def_method_index)3043 static void LinkCode(ClassLinker* class_linker,
3044 ArtMethod* method,
3045 const OatFile::OatClass* oat_class,
3046 uint32_t class_def_method_index) REQUIRES_SHARED(Locks::mutator_lock_) {
3047 Runtime* const runtime = Runtime::Current();
3048 if (runtime->IsAotCompiler()) {
3049 // The following code only applies to a non-compiler runtime.
3050 return;
3051 }
3052 // Method shouldn't have already been linked.
3053 DCHECK(method->GetEntryPointFromQuickCompiledCode() == nullptr);
3054 if (oat_class != nullptr) {
3055 // Every kind of method should at least get an invoke stub from the oat_method.
3056 // non-abstract methods also get their code pointers.
3057 const OatFile::OatMethod oat_method = oat_class->GetOatMethod(class_def_method_index);
3058 oat_method.LinkMethod(method);
3059 }
3060
3061 // Install entry point from interpreter.
3062 const void* quick_code = method->GetEntryPointFromQuickCompiledCode();
3063 bool enter_interpreter = class_linker->ShouldUseInterpreterEntrypoint(method, quick_code);
3064
3065 if (!method->IsInvokable()) {
3066 EnsureThrowsInvocationError(class_linker, method);
3067 return;
3068 }
3069
3070 if (method->IsStatic() && !method->IsConstructor()) {
3071 // For static methods excluding the class initializer, install the trampoline.
3072 // It will be replaced by the proper entry point by ClassLinker::FixupStaticTrampolines
3073 // after initializing class (see ClassLinker::InitializeClass method).
3074 method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionStub());
3075 } else if (quick_code == nullptr && method->IsNative()) {
3076 method->SetEntryPointFromQuickCompiledCode(GetQuickGenericJniStub());
3077 } else if (enter_interpreter) {
3078 // Set entry point from compiled code if there's no code or in interpreter only mode.
3079 method->SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge());
3080 }
3081
3082 if (method->IsNative()) {
3083 // Unregistering restores the dlsym lookup stub.
3084 method->UnregisterNative();
3085
3086 if (enter_interpreter || quick_code == nullptr) {
3087 // We have a native method here without code. Then it should have either the generic JNI
3088 // trampoline as entrypoint (non-static), or the resolution trampoline (static).
3089 // TODO: this doesn't handle all the cases where trampolines may be installed.
3090 const void* entry_point = method->GetEntryPointFromQuickCompiledCode();
3091 DCHECK(class_linker->IsQuickGenericJniStub(entry_point) ||
3092 class_linker->IsQuickResolutionStub(entry_point));
3093 }
3094 }
3095 }
3096
SetupClass(const DexFile & dex_file,const DexFile::ClassDef & dex_class_def,Handle<mirror::Class> klass,ObjPtr<mirror::ClassLoader> class_loader)3097 void ClassLinker::SetupClass(const DexFile& dex_file,
3098 const DexFile::ClassDef& dex_class_def,
3099 Handle<mirror::Class> klass,
3100 ObjPtr<mirror::ClassLoader> class_loader) {
3101 CHECK(klass != nullptr);
3102 CHECK(klass->GetDexCache() != nullptr);
3103 CHECK_EQ(mirror::Class::kStatusNotReady, klass->GetStatus());
3104 const char* descriptor = dex_file.GetClassDescriptor(dex_class_def);
3105 CHECK(descriptor != nullptr);
3106
3107 klass->SetClass(GetClassRoot(kJavaLangClass));
3108 uint32_t access_flags = dex_class_def.GetJavaAccessFlags();
3109 CHECK_EQ(access_flags & ~kAccJavaFlagsMask, 0U);
3110 klass->SetAccessFlags(access_flags);
3111 klass->SetClassLoader(class_loader);
3112 DCHECK_EQ(klass->GetPrimitiveType(), Primitive::kPrimNot);
3113 mirror::Class::SetStatus(klass, mirror::Class::kStatusIdx, nullptr);
3114
3115 klass->SetDexClassDefIndex(dex_file.GetIndexForClassDef(dex_class_def));
3116 klass->SetDexTypeIndex(dex_class_def.class_idx_);
3117 }
3118
LoadClass(Thread * self,const DexFile & dex_file,const DexFile::ClassDef & dex_class_def,Handle<mirror::Class> klass)3119 void ClassLinker::LoadClass(Thread* self,
3120 const DexFile& dex_file,
3121 const DexFile::ClassDef& dex_class_def,
3122 Handle<mirror::Class> klass) {
3123 const uint8_t* class_data = dex_file.GetClassData(dex_class_def);
3124 if (class_data == nullptr) {
3125 return; // no fields or methods - for example a marker interface
3126 }
3127 LoadClassMembers(self, dex_file, class_data, klass);
3128 }
3129
AllocArtFieldArray(Thread * self,LinearAlloc * allocator,size_t length)3130 LengthPrefixedArray<ArtField>* ClassLinker::AllocArtFieldArray(Thread* self,
3131 LinearAlloc* allocator,
3132 size_t length) {
3133 if (length == 0) {
3134 return nullptr;
3135 }
3136 // If the ArtField alignment changes, review all uses of LengthPrefixedArray<ArtField>.
3137 static_assert(alignof(ArtField) == 4, "ArtField alignment is expected to be 4.");
3138 size_t storage_size = LengthPrefixedArray<ArtField>::ComputeSize(length);
3139 void* array_storage = allocator->Alloc(self, storage_size);
3140 auto* ret = new(array_storage) LengthPrefixedArray<ArtField>(length);
3141 CHECK(ret != nullptr);
3142 std::uninitialized_fill_n(&ret->At(0), length, ArtField());
3143 return ret;
3144 }
3145
AllocArtMethodArray(Thread * self,LinearAlloc * allocator,size_t length)3146 LengthPrefixedArray<ArtMethod>* ClassLinker::AllocArtMethodArray(Thread* self,
3147 LinearAlloc* allocator,
3148 size_t length) {
3149 if (length == 0) {
3150 return nullptr;
3151 }
3152 const size_t method_alignment = ArtMethod::Alignment(image_pointer_size_);
3153 const size_t method_size = ArtMethod::Size(image_pointer_size_);
3154 const size_t storage_size =
3155 LengthPrefixedArray<ArtMethod>::ComputeSize(length, method_size, method_alignment);
3156 void* array_storage = allocator->Alloc(self, storage_size);
3157 auto* ret = new (array_storage) LengthPrefixedArray<ArtMethod>(length);
3158 CHECK(ret != nullptr);
3159 for (size_t i = 0; i < length; ++i) {
3160 new(reinterpret_cast<void*>(&ret->At(i, method_size, method_alignment))) ArtMethod;
3161 }
3162 return ret;
3163 }
3164
GetAllocatorForClassLoader(ObjPtr<mirror::ClassLoader> class_loader)3165 LinearAlloc* ClassLinker::GetAllocatorForClassLoader(ObjPtr<mirror::ClassLoader> class_loader) {
3166 if (class_loader == nullptr) {
3167 return Runtime::Current()->GetLinearAlloc();
3168 }
3169 LinearAlloc* allocator = class_loader->GetAllocator();
3170 DCHECK(allocator != nullptr);
3171 return allocator;
3172 }
3173
GetOrCreateAllocatorForClassLoader(ObjPtr<mirror::ClassLoader> class_loader)3174 LinearAlloc* ClassLinker::GetOrCreateAllocatorForClassLoader(ObjPtr<mirror::ClassLoader> class_loader) {
3175 if (class_loader == nullptr) {
3176 return Runtime::Current()->GetLinearAlloc();
3177 }
3178 WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
3179 LinearAlloc* allocator = class_loader->GetAllocator();
3180 if (allocator == nullptr) {
3181 RegisterClassLoader(class_loader);
3182 allocator = class_loader->GetAllocator();
3183 CHECK(allocator != nullptr);
3184 }
3185 return allocator;
3186 }
3187
LoadClassMembers(Thread * self,const DexFile & dex_file,const uint8_t * class_data,Handle<mirror::Class> klass)3188 void ClassLinker::LoadClassMembers(Thread* self,
3189 const DexFile& dex_file,
3190 const uint8_t* class_data,
3191 Handle<mirror::Class> klass) {
3192 {
3193 // Note: We cannot have thread suspension until the field and method arrays are setup or else
3194 // Class::VisitFieldRoots may miss some fields or methods.
3195 ScopedAssertNoThreadSuspension nts(__FUNCTION__);
3196 // Load static fields.
3197 // We allow duplicate definitions of the same field in a class_data_item
3198 // but ignore the repeated indexes here, b/21868015.
3199 LinearAlloc* const allocator = GetAllocatorForClassLoader(klass->GetClassLoader());
3200 ClassDataItemIterator it(dex_file, class_data);
3201 LengthPrefixedArray<ArtField>* sfields = AllocArtFieldArray(self,
3202 allocator,
3203 it.NumStaticFields());
3204 size_t num_sfields = 0;
3205 uint32_t last_field_idx = 0u;
3206 for (; it.HasNextStaticField(); it.Next()) {
3207 uint32_t field_idx = it.GetMemberIndex();
3208 DCHECK_GE(field_idx, last_field_idx); // Ordering enforced by DexFileVerifier.
3209 if (num_sfields == 0 || LIKELY(field_idx > last_field_idx)) {
3210 DCHECK_LT(num_sfields, it.NumStaticFields());
3211 LoadField(it, klass, &sfields->At(num_sfields));
3212 ++num_sfields;
3213 last_field_idx = field_idx;
3214 }
3215 }
3216
3217 // Load instance fields.
3218 LengthPrefixedArray<ArtField>* ifields = AllocArtFieldArray(self,
3219 allocator,
3220 it.NumInstanceFields());
3221 size_t num_ifields = 0u;
3222 last_field_idx = 0u;
3223 for (; it.HasNextInstanceField(); it.Next()) {
3224 uint32_t field_idx = it.GetMemberIndex();
3225 DCHECK_GE(field_idx, last_field_idx); // Ordering enforced by DexFileVerifier.
3226 if (num_ifields == 0 || LIKELY(field_idx > last_field_idx)) {
3227 DCHECK_LT(num_ifields, it.NumInstanceFields());
3228 LoadField(it, klass, &ifields->At(num_ifields));
3229 ++num_ifields;
3230 last_field_idx = field_idx;
3231 }
3232 }
3233
3234 if (UNLIKELY(num_sfields != it.NumStaticFields()) ||
3235 UNLIKELY(num_ifields != it.NumInstanceFields())) {
3236 LOG(WARNING) << "Duplicate fields in class " << klass->PrettyDescriptor()
3237 << " (unique static fields: " << num_sfields << "/" << it.NumStaticFields()
3238 << ", unique instance fields: " << num_ifields << "/" << it.NumInstanceFields() << ")";
3239 // NOTE: Not shrinking the over-allocated sfields/ifields, just setting size.
3240 if (sfields != nullptr) {
3241 sfields->SetSize(num_sfields);
3242 }
3243 if (ifields != nullptr) {
3244 ifields->SetSize(num_ifields);
3245 }
3246 }
3247 // Set the field arrays.
3248 klass->SetSFieldsPtr(sfields);
3249 DCHECK_EQ(klass->NumStaticFields(), num_sfields);
3250 klass->SetIFieldsPtr(ifields);
3251 DCHECK_EQ(klass->NumInstanceFields(), num_ifields);
3252 // Load methods.
3253 bool has_oat_class = false;
3254 const OatFile::OatClass oat_class =
3255 (Runtime::Current()->IsStarted() && !Runtime::Current()->IsAotCompiler())
3256 ? OatFile::FindOatClass(dex_file, klass->GetDexClassDefIndex(), &has_oat_class)
3257 : OatFile::OatClass::Invalid();
3258 const OatFile::OatClass* oat_class_ptr = has_oat_class ? &oat_class : nullptr;
3259 klass->SetMethodsPtr(
3260 AllocArtMethodArray(self, allocator, it.NumDirectMethods() + it.NumVirtualMethods()),
3261 it.NumDirectMethods(),
3262 it.NumVirtualMethods());
3263 size_t class_def_method_index = 0;
3264 uint32_t last_dex_method_index = DexFile::kDexNoIndex;
3265 size_t last_class_def_method_index = 0;
3266 // TODO These should really use the iterators.
3267 for (size_t i = 0; it.HasNextDirectMethod(); i++, it.Next()) {
3268 ArtMethod* method = klass->GetDirectMethodUnchecked(i, image_pointer_size_);
3269 LoadMethod(dex_file, it, klass, method);
3270 LinkCode(this, method, oat_class_ptr, class_def_method_index);
3271 uint32_t it_method_index = it.GetMemberIndex();
3272 if (last_dex_method_index == it_method_index) {
3273 // duplicate case
3274 method->SetMethodIndex(last_class_def_method_index);
3275 } else {
3276 method->SetMethodIndex(class_def_method_index);
3277 last_dex_method_index = it_method_index;
3278 last_class_def_method_index = class_def_method_index;
3279 }
3280 class_def_method_index++;
3281 }
3282 for (size_t i = 0; it.HasNextVirtualMethod(); i++, it.Next()) {
3283 ArtMethod* method = klass->GetVirtualMethodUnchecked(i, image_pointer_size_);
3284 LoadMethod(dex_file, it, klass, method);
3285 DCHECK_EQ(class_def_method_index, it.NumDirectMethods() + i);
3286 LinkCode(this, method, oat_class_ptr, class_def_method_index);
3287 class_def_method_index++;
3288 }
3289 DCHECK(!it.HasNext());
3290 }
3291 // Ensure that the card is marked so that remembered sets pick up native roots.
3292 Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(klass.Get());
3293 self->AllowThreadSuspension();
3294 }
3295
LoadField(const ClassDataItemIterator & it,Handle<mirror::Class> klass,ArtField * dst)3296 void ClassLinker::LoadField(const ClassDataItemIterator& it,
3297 Handle<mirror::Class> klass,
3298 ArtField* dst) {
3299 const uint32_t field_idx = it.GetMemberIndex();
3300 dst->SetDexFieldIndex(field_idx);
3301 dst->SetDeclaringClass(klass.Get());
3302 dst->SetAccessFlags(it.GetFieldAccessFlags());
3303 }
3304
LoadMethod(const DexFile & dex_file,const ClassDataItemIterator & it,Handle<mirror::Class> klass,ArtMethod * dst)3305 void ClassLinker::LoadMethod(const DexFile& dex_file,
3306 const ClassDataItemIterator& it,
3307 Handle<mirror::Class> klass,
3308 ArtMethod* dst) {
3309 uint32_t dex_method_idx = it.GetMemberIndex();
3310 const DexFile::MethodId& method_id = dex_file.GetMethodId(dex_method_idx);
3311 const char* method_name = dex_file.StringDataByIdx(method_id.name_idx_);
3312
3313 ScopedAssertNoThreadSuspension ants("LoadMethod");
3314 dst->SetDexMethodIndex(dex_method_idx);
3315 dst->SetDeclaringClass(klass.Get());
3316 dst->SetCodeItemOffset(it.GetMethodCodeItemOffset());
3317
3318 dst->SetDexCacheResolvedMethods(klass->GetDexCache()->GetResolvedMethods(), image_pointer_size_);
3319
3320 uint32_t access_flags = it.GetMethodAccessFlags();
3321
3322 if (UNLIKELY(strcmp("finalize", method_name) == 0)) {
3323 // Set finalizable flag on declaring class.
3324 if (strcmp("V", dex_file.GetShorty(method_id.proto_idx_)) == 0) {
3325 // Void return type.
3326 if (klass->GetClassLoader() != nullptr) { // All non-boot finalizer methods are flagged.
3327 klass->SetFinalizable();
3328 } else {
3329 std::string temp;
3330 const char* klass_descriptor = klass->GetDescriptor(&temp);
3331 // The Enum class declares a "final" finalize() method to prevent subclasses from
3332 // introducing a finalizer. We don't want to set the finalizable flag for Enum or its
3333 // subclasses, so we exclude it here.
3334 // We also want to avoid setting the flag on Object, where we know that finalize() is
3335 // empty.
3336 if (strcmp(klass_descriptor, "Ljava/lang/Object;") != 0 &&
3337 strcmp(klass_descriptor, "Ljava/lang/Enum;") != 0) {
3338 klass->SetFinalizable();
3339 }
3340 }
3341 }
3342 } else if (method_name[0] == '<') {
3343 // Fix broken access flags for initializers. Bug 11157540.
3344 bool is_init = (strcmp("<init>", method_name) == 0);
3345 bool is_clinit = !is_init && (strcmp("<clinit>", method_name) == 0);
3346 if (UNLIKELY(!is_init && !is_clinit)) {
3347 LOG(WARNING) << "Unexpected '<' at start of method name " << method_name;
3348 } else {
3349 if (UNLIKELY((access_flags & kAccConstructor) == 0)) {
3350 LOG(WARNING) << method_name << " didn't have expected constructor access flag in class "
3351 << klass->PrettyDescriptor() << " in dex file " << dex_file.GetLocation();
3352 access_flags |= kAccConstructor;
3353 }
3354 }
3355 }
3356 dst->SetAccessFlags(access_flags);
3357 }
3358
AppendToBootClassPath(Thread * self,const DexFile & dex_file)3359 void ClassLinker::AppendToBootClassPath(Thread* self, const DexFile& dex_file) {
3360 ObjPtr<mirror::DexCache> dex_cache = AllocAndInitializeDexCache(
3361 self,
3362 dex_file,
3363 Runtime::Current()->GetLinearAlloc());
3364 CHECK(dex_cache != nullptr) << "Failed to allocate dex cache for " << dex_file.GetLocation();
3365 AppendToBootClassPath(dex_file, dex_cache);
3366 }
3367
AppendToBootClassPath(const DexFile & dex_file,ObjPtr<mirror::DexCache> dex_cache)3368 void ClassLinker::AppendToBootClassPath(const DexFile& dex_file,
3369 ObjPtr<mirror::DexCache> dex_cache) {
3370 CHECK(dex_cache != nullptr) << dex_file.GetLocation();
3371 boot_class_path_.push_back(&dex_file);
3372 RegisterBootClassPathDexFile(dex_file, dex_cache);
3373 }
3374
RegisterDexFileLocked(const DexFile & dex_file,ObjPtr<mirror::DexCache> dex_cache,ObjPtr<mirror::ClassLoader> class_loader)3375 void ClassLinker::RegisterDexFileLocked(const DexFile& dex_file,
3376 ObjPtr<mirror::DexCache> dex_cache,
3377 ObjPtr<mirror::ClassLoader> class_loader) {
3378 Thread* const self = Thread::Current();
3379 Locks::dex_lock_->AssertExclusiveHeld(self);
3380 CHECK(dex_cache != nullptr) << dex_file.GetLocation();
3381 // For app images, the dex cache location may be a suffix of the dex file location since the
3382 // dex file location is an absolute path.
3383 const std::string dex_cache_location = dex_cache->GetLocation()->ToModifiedUtf8();
3384 const size_t dex_cache_length = dex_cache_location.length();
3385 CHECK_GT(dex_cache_length, 0u) << dex_file.GetLocation();
3386 std::string dex_file_location = dex_file.GetLocation();
3387 CHECK_GE(dex_file_location.length(), dex_cache_length)
3388 << dex_cache_location << " " << dex_file.GetLocation();
3389 // Take suffix.
3390 const std::string dex_file_suffix = dex_file_location.substr(
3391 dex_file_location.length() - dex_cache_length,
3392 dex_cache_length);
3393 // Example dex_cache location is SettingsProvider.apk and
3394 // dex file location is /system/priv-app/SettingsProvider/SettingsProvider.apk
3395 CHECK_EQ(dex_cache_location, dex_file_suffix);
3396 // Clean up pass to remove null dex caches.
3397 // Null dex caches can occur due to class unloading and we are lazily removing null entries.
3398 JavaVMExt* const vm = self->GetJniEnv()->vm;
3399 for (auto it = dex_caches_.begin(); it != dex_caches_.end(); ) {
3400 DexCacheData data = *it;
3401 if (self->IsJWeakCleared(data.weak_root)) {
3402 vm->DeleteWeakGlobalRef(self, data.weak_root);
3403 it = dex_caches_.erase(it);
3404 } else {
3405 ++it;
3406 }
3407 }
3408 jweak dex_cache_jweak = vm->AddWeakGlobalRef(self, dex_cache);
3409 dex_cache->SetDexFile(&dex_file);
3410 DexCacheData data;
3411 data.weak_root = dex_cache_jweak;
3412 data.dex_file = dex_cache->GetDexFile();
3413 data.resolved_methods = dex_cache->GetResolvedMethods();
3414 data.class_table = ClassTableForClassLoader(class_loader);
3415 DCHECK(data.class_table != nullptr);
3416 dex_caches_.push_back(data);
3417 }
3418
DecodeDexCache(Thread * self,const DexCacheData & data)3419 ObjPtr<mirror::DexCache> ClassLinker::DecodeDexCache(Thread* self, const DexCacheData& data) {
3420 return data.IsValid()
3421 ? ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root))
3422 : nullptr;
3423 }
3424
EnsureSameClassLoader(Thread * self,ObjPtr<mirror::DexCache> dex_cache,const DexCacheData & data,ObjPtr<mirror::ClassLoader> class_loader)3425 ObjPtr<mirror::DexCache> ClassLinker::EnsureSameClassLoader(
3426 Thread* self,
3427 ObjPtr<mirror::DexCache> dex_cache,
3428 const DexCacheData& data,
3429 ObjPtr<mirror::ClassLoader> class_loader) {
3430 DCHECK_EQ(dex_cache->GetDexFile(), data.dex_file);
3431 if (data.class_table != ClassTableForClassLoader(class_loader)) {
3432 self->ThrowNewExceptionF("Ljava/lang/InternalError;",
3433 "Attempt to register dex file %s with multiple class loaders",
3434 data.dex_file->GetLocation().c_str());
3435 return nullptr;
3436 }
3437 return dex_cache;
3438 }
3439
RegisterDexFile(const DexFile & dex_file,ObjPtr<mirror::ClassLoader> class_loader)3440 ObjPtr<mirror::DexCache> ClassLinker::RegisterDexFile(const DexFile& dex_file,
3441 ObjPtr<mirror::ClassLoader> class_loader) {
3442 Thread* self = Thread::Current();
3443 DexCacheData old_data;
3444 {
3445 ReaderMutexLock mu(self, *Locks::dex_lock_);
3446 old_data = FindDexCacheDataLocked(dex_file);
3447 }
3448 ObjPtr<mirror::DexCache> old_dex_cache = DecodeDexCache(self, old_data);
3449 if (old_dex_cache != nullptr) {
3450 return EnsureSameClassLoader(self, old_dex_cache, old_data, class_loader);
3451 }
3452 LinearAlloc* const linear_alloc = GetOrCreateAllocatorForClassLoader(class_loader);
3453 DCHECK(linear_alloc != nullptr);
3454 ClassTable* table;
3455 {
3456 WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
3457 table = InsertClassTableForClassLoader(class_loader);
3458 }
3459 // Don't alloc while holding the lock, since allocation may need to
3460 // suspend all threads and another thread may need the dex_lock_ to
3461 // get to a suspend point.
3462 StackHandleScope<3> hs(self);
3463 Handle<mirror::ClassLoader> h_class_loader(hs.NewHandle(class_loader));
3464 ObjPtr<mirror::String> location;
3465 Handle<mirror::DexCache> h_dex_cache(hs.NewHandle(AllocDexCache(/*out*/&location,
3466 self,
3467 dex_file)));
3468 Handle<mirror::String> h_location(hs.NewHandle(location));
3469 {
3470 WriterMutexLock mu(self, *Locks::dex_lock_);
3471 old_data = FindDexCacheDataLocked(dex_file);
3472 old_dex_cache = DecodeDexCache(self, old_data);
3473 if (old_dex_cache == nullptr && h_dex_cache != nullptr) {
3474 // Do InitializeDexCache while holding dex lock to make sure two threads don't call it at the
3475 // same time with the same dex cache. Since the .bss is shared this can cause failing DCHECK
3476 // that the arrays are null.
3477 mirror::DexCache::InitializeDexCache(self,
3478 h_dex_cache.Get(),
3479 h_location.Get(),
3480 &dex_file,
3481 linear_alloc,
3482 image_pointer_size_);
3483 RegisterDexFileLocked(dex_file, h_dex_cache.Get(), h_class_loader.Get());
3484 }
3485 }
3486 if (old_dex_cache != nullptr) {
3487 // Another thread managed to initialize the dex cache faster, so use that DexCache.
3488 // If this thread encountered OOME, ignore it.
3489 DCHECK_EQ(h_dex_cache == nullptr, self->IsExceptionPending());
3490 self->ClearException();
3491 // We cannot call EnsureSameClassLoader() while holding the dex_lock_.
3492 return EnsureSameClassLoader(self, old_dex_cache, old_data, h_class_loader.Get());
3493 }
3494 if (h_dex_cache == nullptr) {
3495 self->AssertPendingOOMException();
3496 return nullptr;
3497 }
3498 table->InsertStrongRoot(h_dex_cache.Get());
3499 if (h_class_loader.Get() != nullptr) {
3500 // Since we added a strong root to the class table, do the write barrier as required for
3501 // remembered sets and generational GCs.
3502 Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(h_class_loader.Get());
3503 }
3504 return h_dex_cache.Get();
3505 }
3506
RegisterBootClassPathDexFile(const DexFile & dex_file,ObjPtr<mirror::DexCache> dex_cache)3507 void ClassLinker::RegisterBootClassPathDexFile(const DexFile& dex_file,
3508 ObjPtr<mirror::DexCache> dex_cache) {
3509 WriterMutexLock mu(Thread::Current(), *Locks::dex_lock_);
3510 RegisterDexFileLocked(dex_file, dex_cache, /* class_loader */ nullptr);
3511 }
3512
IsDexFileRegistered(Thread * self,const DexFile & dex_file)3513 bool ClassLinker::IsDexFileRegistered(Thread* self, const DexFile& dex_file) {
3514 ReaderMutexLock mu(self, *Locks::dex_lock_);
3515 return DecodeDexCache(self, FindDexCacheDataLocked(dex_file)) != nullptr;
3516 }
3517
FindDexCache(Thread * self,const DexFile & dex_file)3518 ObjPtr<mirror::DexCache> ClassLinker::FindDexCache(Thread* self, const DexFile& dex_file) {
3519 ReaderMutexLock mu(self, *Locks::dex_lock_);
3520 ObjPtr<mirror::DexCache> dex_cache = DecodeDexCache(self, FindDexCacheDataLocked(dex_file));
3521 if (dex_cache != nullptr) {
3522 return dex_cache;
3523 }
3524 // Failure, dump diagnostic and abort.
3525 for (const DexCacheData& data : dex_caches_) {
3526 if (DecodeDexCache(self, data) != nullptr) {
3527 LOG(FATAL_WITHOUT_ABORT) << "Registered dex file " << data.dex_file->GetLocation();
3528 }
3529 }
3530 LOG(FATAL) << "Failed to find DexCache for DexFile " << dex_file.GetLocation();
3531 UNREACHABLE();
3532 }
3533
FindClassTable(Thread * self,ObjPtr<mirror::DexCache> dex_cache)3534 ClassTable* ClassLinker::FindClassTable(Thread* self, ObjPtr<mirror::DexCache> dex_cache) {
3535 const DexFile* dex_file = dex_cache->GetDexFile();
3536 DCHECK(dex_file != nullptr);
3537 ReaderMutexLock mu(self, *Locks::dex_lock_);
3538 // Search assuming unique-ness of dex file.
3539 for (const DexCacheData& data : dex_caches_) {
3540 // Avoid decoding (and read barriers) other unrelated dex caches.
3541 if (data.dex_file == dex_file) {
3542 ObjPtr<mirror::DexCache> registered_dex_cache = DecodeDexCache(self, data);
3543 if (registered_dex_cache != nullptr) {
3544 CHECK_EQ(registered_dex_cache, dex_cache) << dex_file->GetLocation();
3545 return data.class_table;
3546 }
3547 }
3548 }
3549 return nullptr;
3550 }
3551
FindDexCacheDataLocked(const DexFile & dex_file)3552 ClassLinker::DexCacheData ClassLinker::FindDexCacheDataLocked(const DexFile& dex_file) {
3553 // Search assuming unique-ness of dex file.
3554 for (const DexCacheData& data : dex_caches_) {
3555 // Avoid decoding (and read barriers) other unrelated dex caches.
3556 if (data.dex_file == &dex_file) {
3557 return data;
3558 }
3559 }
3560 return DexCacheData();
3561 }
3562
FixupDexCaches(ArtMethod * resolution_method)3563 void ClassLinker::FixupDexCaches(ArtMethod* resolution_method) {
3564 Thread* const self = Thread::Current();
3565 ReaderMutexLock mu(self, *Locks::dex_lock_);
3566 for (const DexCacheData& data : dex_caches_) {
3567 if (!self->IsJWeakCleared(data.weak_root)) {
3568 ObjPtr<mirror::DexCache> dex_cache = ObjPtr<mirror::DexCache>::DownCast(
3569 self->DecodeJObject(data.weak_root));
3570 if (dex_cache != nullptr) {
3571 dex_cache->Fixup(resolution_method, image_pointer_size_);
3572 }
3573 }
3574 }
3575 }
3576
CreatePrimitiveClass(Thread * self,Primitive::Type type)3577 mirror::Class* ClassLinker::CreatePrimitiveClass(Thread* self, Primitive::Type type) {
3578 ObjPtr<mirror::Class> klass =
3579 AllocClass(self, mirror::Class::PrimitiveClassSize(image_pointer_size_));
3580 if (UNLIKELY(klass == nullptr)) {
3581 self->AssertPendingOOMException();
3582 return nullptr;
3583 }
3584 return InitializePrimitiveClass(klass, type);
3585 }
3586
InitializePrimitiveClass(ObjPtr<mirror::Class> primitive_class,Primitive::Type type)3587 mirror::Class* ClassLinker::InitializePrimitiveClass(ObjPtr<mirror::Class> primitive_class,
3588 Primitive::Type type) {
3589 CHECK(primitive_class != nullptr);
3590 // Must hold lock on object when initializing.
3591 Thread* self = Thread::Current();
3592 StackHandleScope<1> hs(self);
3593 Handle<mirror::Class> h_class(hs.NewHandle(primitive_class));
3594 ObjectLock<mirror::Class> lock(self, h_class);
3595 h_class->SetAccessFlags(kAccPublic | kAccFinal | kAccAbstract);
3596 h_class->SetPrimitiveType(type);
3597 h_class->SetIfTable(GetClassRoot(kJavaLangObject)->GetIfTable());
3598 mirror::Class::SetStatus(h_class, mirror::Class::kStatusInitialized, self);
3599 const char* descriptor = Primitive::Descriptor(type);
3600 ObjPtr<mirror::Class> existing = InsertClass(descriptor,
3601 h_class.Get(),
3602 ComputeModifiedUtf8Hash(descriptor));
3603 CHECK(existing == nullptr) << "InitPrimitiveClass(" << type << ") failed";
3604 return h_class.Get();
3605 }
3606
3607 // Create an array class (i.e. the class object for the array, not the
3608 // array itself). "descriptor" looks like "[C" or "[[[[B" or
3609 // "[Ljava/lang/String;".
3610 //
3611 // If "descriptor" refers to an array of primitives, look up the
3612 // primitive type's internally-generated class object.
3613 //
3614 // "class_loader" is the class loader of the class that's referring to
3615 // us. It's used to ensure that we're looking for the element type in
3616 // the right context. It does NOT become the class loader for the
3617 // array class; that always comes from the base element class.
3618 //
3619 // Returns null with an exception raised on failure.
CreateArrayClass(Thread * self,const char * descriptor,size_t hash,Handle<mirror::ClassLoader> class_loader)3620 mirror::Class* ClassLinker::CreateArrayClass(Thread* self, const char* descriptor, size_t hash,
3621 Handle<mirror::ClassLoader> class_loader) {
3622 // Identify the underlying component type
3623 CHECK_EQ('[', descriptor[0]);
3624 StackHandleScope<2> hs(self);
3625 MutableHandle<mirror::Class> component_type(hs.NewHandle(FindClass(self, descriptor + 1,
3626 class_loader)));
3627 if (component_type == nullptr) {
3628 DCHECK(self->IsExceptionPending());
3629 // We need to accept erroneous classes as component types.
3630 const size_t component_hash = ComputeModifiedUtf8Hash(descriptor + 1);
3631 component_type.Assign(LookupClass(self, descriptor + 1, component_hash, class_loader.Get()));
3632 if (component_type == nullptr) {
3633 DCHECK(self->IsExceptionPending());
3634 return nullptr;
3635 } else {
3636 self->ClearException();
3637 }
3638 }
3639 if (UNLIKELY(component_type->IsPrimitiveVoid())) {
3640 ThrowNoClassDefFoundError("Attempt to create array of void primitive type");
3641 return nullptr;
3642 }
3643 // See if the component type is already loaded. Array classes are
3644 // always associated with the class loader of their underlying
3645 // element type -- an array of Strings goes with the loader for
3646 // java/lang/String -- so we need to look for it there. (The
3647 // caller should have checked for the existence of the class
3648 // before calling here, but they did so with *their* class loader,
3649 // not the component type's loader.)
3650 //
3651 // If we find it, the caller adds "loader" to the class' initiating
3652 // loader list, which should prevent us from going through this again.
3653 //
3654 // This call is unnecessary if "loader" and "component_type->GetClassLoader()"
3655 // are the same, because our caller (FindClass) just did the
3656 // lookup. (Even if we get this wrong we still have correct behavior,
3657 // because we effectively do this lookup again when we add the new
3658 // class to the hash table --- necessary because of possible races with
3659 // other threads.)
3660 if (class_loader.Get() != component_type->GetClassLoader()) {
3661 ObjPtr<mirror::Class> new_class =
3662 LookupClass(self, descriptor, hash, component_type->GetClassLoader());
3663 if (new_class != nullptr) {
3664 return new_class.Ptr();
3665 }
3666 }
3667
3668 // Fill out the fields in the Class.
3669 //
3670 // It is possible to execute some methods against arrays, because
3671 // all arrays are subclasses of java_lang_Object_, so we need to set
3672 // up a vtable. We can just point at the one in java_lang_Object_.
3673 //
3674 // Array classes are simple enough that we don't need to do a full
3675 // link step.
3676 auto new_class = hs.NewHandle<mirror::Class>(nullptr);
3677 if (UNLIKELY(!init_done_)) {
3678 // Classes that were hand created, ie not by FindSystemClass
3679 if (strcmp(descriptor, "[Ljava/lang/Class;") == 0) {
3680 new_class.Assign(GetClassRoot(kClassArrayClass));
3681 } else if (strcmp(descriptor, "[Ljava/lang/Object;") == 0) {
3682 new_class.Assign(GetClassRoot(kObjectArrayClass));
3683 } else if (strcmp(descriptor, GetClassRootDescriptor(kJavaLangStringArrayClass)) == 0) {
3684 new_class.Assign(GetClassRoot(kJavaLangStringArrayClass));
3685 } else if (strcmp(descriptor, "[C") == 0) {
3686 new_class.Assign(GetClassRoot(kCharArrayClass));
3687 } else if (strcmp(descriptor, "[I") == 0) {
3688 new_class.Assign(GetClassRoot(kIntArrayClass));
3689 } else if (strcmp(descriptor, "[J") == 0) {
3690 new_class.Assign(GetClassRoot(kLongArrayClass));
3691 }
3692 }
3693 if (new_class == nullptr) {
3694 new_class.Assign(AllocClass(self, mirror::Array::ClassSize(image_pointer_size_)));
3695 if (new_class == nullptr) {
3696 self->AssertPendingOOMException();
3697 return nullptr;
3698 }
3699 new_class->SetComponentType(component_type.Get());
3700 }
3701 ObjectLock<mirror::Class> lock(self, new_class); // Must hold lock on object when initializing.
3702 DCHECK(new_class->GetComponentType() != nullptr);
3703 ObjPtr<mirror::Class> java_lang_Object = GetClassRoot(kJavaLangObject);
3704 new_class->SetSuperClass(java_lang_Object);
3705 new_class->SetVTable(java_lang_Object->GetVTable());
3706 new_class->SetPrimitiveType(Primitive::kPrimNot);
3707 new_class->SetClassLoader(component_type->GetClassLoader());
3708 if (component_type->IsPrimitive()) {
3709 new_class->SetClassFlags(mirror::kClassFlagNoReferenceFields);
3710 } else {
3711 new_class->SetClassFlags(mirror::kClassFlagObjectArray);
3712 }
3713 mirror::Class::SetStatus(new_class, mirror::Class::kStatusLoaded, self);
3714 new_class->PopulateEmbeddedVTable(image_pointer_size_);
3715 ImTable* object_imt = java_lang_Object->GetImt(image_pointer_size_);
3716 new_class->SetImt(object_imt, image_pointer_size_);
3717 mirror::Class::SetStatus(new_class, mirror::Class::kStatusInitialized, self);
3718 // don't need to set new_class->SetObjectSize(..)
3719 // because Object::SizeOf delegates to Array::SizeOf
3720
3721 // All arrays have java/lang/Cloneable and java/io/Serializable as
3722 // interfaces. We need to set that up here, so that stuff like
3723 // "instanceof" works right.
3724 //
3725 // Note: The GC could run during the call to FindSystemClass,
3726 // so we need to make sure the class object is GC-valid while we're in
3727 // there. Do this by clearing the interface list so the GC will just
3728 // think that the entries are null.
3729
3730
3731 // Use the single, global copies of "interfaces" and "iftable"
3732 // (remember not to free them for arrays).
3733 {
3734 ObjPtr<mirror::IfTable> array_iftable = array_iftable_.Read();
3735 CHECK(array_iftable != nullptr);
3736 new_class->SetIfTable(array_iftable);
3737 }
3738
3739 // Inherit access flags from the component type.
3740 int access_flags = new_class->GetComponentType()->GetAccessFlags();
3741 // Lose any implementation detail flags; in particular, arrays aren't finalizable.
3742 access_flags &= kAccJavaFlagsMask;
3743 // Arrays can't be used as a superclass or interface, so we want to add "abstract final"
3744 // and remove "interface".
3745 access_flags |= kAccAbstract | kAccFinal;
3746 access_flags &= ~kAccInterface;
3747
3748 new_class->SetAccessFlags(access_flags);
3749
3750 ObjPtr<mirror::Class> existing = InsertClass(descriptor, new_class.Get(), hash);
3751 if (existing == nullptr) {
3752 // We postpone ClassLoad and ClassPrepare events to this point in time to avoid
3753 // duplicate events in case of races. Array classes don't really follow dedicated
3754 // load and prepare, anyways.
3755 Runtime::Current()->GetRuntimeCallbacks()->ClassLoad(new_class);
3756 Runtime::Current()->GetRuntimeCallbacks()->ClassPrepare(new_class, new_class);
3757
3758 jit::Jit::NewTypeLoadedIfUsingJit(new_class.Get());
3759 return new_class.Get();
3760 }
3761 // Another thread must have loaded the class after we
3762 // started but before we finished. Abandon what we've
3763 // done.
3764 //
3765 // (Yes, this happens.)
3766
3767 return existing.Ptr();
3768 }
3769
FindPrimitiveClass(char type)3770 mirror::Class* ClassLinker::FindPrimitiveClass(char type) {
3771 switch (type) {
3772 case 'B':
3773 return GetClassRoot(kPrimitiveByte);
3774 case 'C':
3775 return GetClassRoot(kPrimitiveChar);
3776 case 'D':
3777 return GetClassRoot(kPrimitiveDouble);
3778 case 'F':
3779 return GetClassRoot(kPrimitiveFloat);
3780 case 'I':
3781 return GetClassRoot(kPrimitiveInt);
3782 case 'J':
3783 return GetClassRoot(kPrimitiveLong);
3784 case 'S':
3785 return GetClassRoot(kPrimitiveShort);
3786 case 'Z':
3787 return GetClassRoot(kPrimitiveBoolean);
3788 case 'V':
3789 return GetClassRoot(kPrimitiveVoid);
3790 default:
3791 break;
3792 }
3793 std::string printable_type(PrintableChar(type));
3794 ThrowNoClassDefFoundError("Not a primitive type: %s", printable_type.c_str());
3795 return nullptr;
3796 }
3797
InsertClass(const char * descriptor,ObjPtr<mirror::Class> klass,size_t hash)3798 mirror::Class* ClassLinker::InsertClass(const char* descriptor, ObjPtr<mirror::Class> klass, size_t hash) {
3799 if (VLOG_IS_ON(class_linker)) {
3800 ObjPtr<mirror::DexCache> dex_cache = klass->GetDexCache();
3801 std::string source;
3802 if (dex_cache != nullptr) {
3803 source += " from ";
3804 source += dex_cache->GetLocation()->ToModifiedUtf8();
3805 }
3806 LOG(INFO) << "Loaded class " << descriptor << source;
3807 }
3808 {
3809 WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
3810 ObjPtr<mirror::ClassLoader> const class_loader = klass->GetClassLoader();
3811 ClassTable* const class_table = InsertClassTableForClassLoader(class_loader);
3812 ObjPtr<mirror::Class> existing = class_table->Lookup(descriptor, hash);
3813 if (existing != nullptr) {
3814 return existing.Ptr();
3815 }
3816 VerifyObject(klass);
3817 class_table->InsertWithHash(klass, hash);
3818 if (class_loader != nullptr) {
3819 // This is necessary because we need to have the card dirtied for remembered sets.
3820 Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(class_loader);
3821 }
3822 if (log_new_roots_) {
3823 new_class_roots_.push_back(GcRoot<mirror::Class>(klass));
3824 }
3825 }
3826 if (kIsDebugBuild) {
3827 // Test that copied methods correctly can find their holder.
3828 for (ArtMethod& method : klass->GetCopiedMethods(image_pointer_size_)) {
3829 CHECK_EQ(GetHoldingClassOfCopiedMethod(&method), klass);
3830 }
3831 }
3832 return nullptr;
3833 }
3834
WriteBarrierForBootOatFileBssRoots(const OatFile * oat_file)3835 void ClassLinker::WriteBarrierForBootOatFileBssRoots(const OatFile* oat_file) {
3836 WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
3837 DCHECK(!oat_file->GetBssGcRoots().empty()) << oat_file->GetLocation();
3838 if (log_new_roots_ && !ContainsElement(new_bss_roots_boot_oat_files_, oat_file)) {
3839 new_bss_roots_boot_oat_files_.push_back(oat_file);
3840 }
3841 }
3842
3843 // TODO This should really be in mirror::Class.
UpdateClassMethods(ObjPtr<mirror::Class> klass,LengthPrefixedArray<ArtMethod> * new_methods)3844 void ClassLinker::UpdateClassMethods(ObjPtr<mirror::Class> klass,
3845 LengthPrefixedArray<ArtMethod>* new_methods) {
3846 klass->SetMethodsPtrUnchecked(new_methods,
3847 klass->NumDirectMethods(),
3848 klass->NumDeclaredVirtualMethods());
3849 // Need to mark the card so that the remembered sets and mod union tables get updated.
3850 Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(klass);
3851 }
3852
LookupClass(Thread * self,const char * descriptor,size_t hash,ObjPtr<mirror::ClassLoader> class_loader)3853 mirror::Class* ClassLinker::LookupClass(Thread* self,
3854 const char* descriptor,
3855 size_t hash,
3856 ObjPtr<mirror::ClassLoader> class_loader) {
3857 ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
3858 ClassTable* const class_table = ClassTableForClassLoader(class_loader);
3859 if (class_table != nullptr) {
3860 ObjPtr<mirror::Class> result = class_table->Lookup(descriptor, hash);
3861 if (result != nullptr) {
3862 return result.Ptr();
3863 }
3864 }
3865 return nullptr;
3866 }
3867
3868 class MoveClassTableToPreZygoteVisitor : public ClassLoaderVisitor {
3869 public:
MoveClassTableToPreZygoteVisitor()3870 explicit MoveClassTableToPreZygoteVisitor() {}
3871
Visit(ObjPtr<mirror::ClassLoader> class_loader)3872 void Visit(ObjPtr<mirror::ClassLoader> class_loader)
3873 REQUIRES(Locks::classlinker_classes_lock_)
3874 REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE {
3875 ClassTable* const class_table = class_loader->GetClassTable();
3876 if (class_table != nullptr) {
3877 class_table->FreezeSnapshot();
3878 }
3879 }
3880 };
3881
MoveClassTableToPreZygote()3882 void ClassLinker::MoveClassTableToPreZygote() {
3883 WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
3884 boot_class_table_.FreezeSnapshot();
3885 MoveClassTableToPreZygoteVisitor visitor;
3886 VisitClassLoaders(&visitor);
3887 }
3888
3889 // Look up classes by hash and descriptor and put all matching ones in the result array.
3890 class LookupClassesVisitor : public ClassLoaderVisitor {
3891 public:
LookupClassesVisitor(const char * descriptor,size_t hash,std::vector<ObjPtr<mirror::Class>> * result)3892 LookupClassesVisitor(const char* descriptor,
3893 size_t hash,
3894 std::vector<ObjPtr<mirror::Class>>* result)
3895 : descriptor_(descriptor),
3896 hash_(hash),
3897 result_(result) {}
3898
Visit(ObjPtr<mirror::ClassLoader> class_loader)3899 void Visit(ObjPtr<mirror::ClassLoader> class_loader)
3900 REQUIRES_SHARED(Locks::classlinker_classes_lock_, Locks::mutator_lock_) OVERRIDE {
3901 ClassTable* const class_table = class_loader->GetClassTable();
3902 ObjPtr<mirror::Class> klass = class_table->Lookup(descriptor_, hash_);
3903 // Add `klass` only if `class_loader` is its defining (not just initiating) class loader.
3904 if (klass != nullptr && klass->GetClassLoader() == class_loader) {
3905 result_->push_back(klass);
3906 }
3907 }
3908
3909 private:
3910 const char* const descriptor_;
3911 const size_t hash_;
3912 std::vector<ObjPtr<mirror::Class>>* const result_;
3913 };
3914
LookupClasses(const char * descriptor,std::vector<ObjPtr<mirror::Class>> & result)3915 void ClassLinker::LookupClasses(const char* descriptor,
3916 std::vector<ObjPtr<mirror::Class>>& result) {
3917 result.clear();
3918 Thread* const self = Thread::Current();
3919 ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
3920 const size_t hash = ComputeModifiedUtf8Hash(descriptor);
3921 ObjPtr<mirror::Class> klass = boot_class_table_.Lookup(descriptor, hash);
3922 if (klass != nullptr) {
3923 DCHECK(klass->GetClassLoader() == nullptr);
3924 result.push_back(klass);
3925 }
3926 LookupClassesVisitor visitor(descriptor, hash, &result);
3927 VisitClassLoaders(&visitor);
3928 }
3929
AttemptSupertypeVerification(Thread * self,Handle<mirror::Class> klass,Handle<mirror::Class> supertype)3930 bool ClassLinker::AttemptSupertypeVerification(Thread* self,
3931 Handle<mirror::Class> klass,
3932 Handle<mirror::Class> supertype) {
3933 DCHECK(self != nullptr);
3934 DCHECK(klass != nullptr);
3935 DCHECK(supertype != nullptr);
3936
3937 if (!supertype->IsVerified() && !supertype->IsErroneous()) {
3938 VerifyClass(self, supertype);
3939 }
3940
3941 if (supertype->IsVerified() || supertype->ShouldVerifyAtRuntime()) {
3942 // The supertype is either verified, or we soft failed at AOT time.
3943 DCHECK(supertype->IsVerified() || Runtime::Current()->IsAotCompiler());
3944 return true;
3945 }
3946 // If we got this far then we have a hard failure.
3947 std::string error_msg =
3948 StringPrintf("Rejecting class %s that attempts to sub-type erroneous class %s",
3949 klass->PrettyDescriptor().c_str(),
3950 supertype->PrettyDescriptor().c_str());
3951 LOG(WARNING) << error_msg << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8();
3952 StackHandleScope<1> hs(self);
3953 Handle<mirror::Throwable> cause(hs.NewHandle(self->GetException()));
3954 if (cause != nullptr) {
3955 // Set during VerifyClass call (if at all).
3956 self->ClearException();
3957 }
3958 // Change into a verify error.
3959 ThrowVerifyError(klass.Get(), "%s", error_msg.c_str());
3960 if (cause != nullptr) {
3961 self->GetException()->SetCause(cause.Get());
3962 }
3963 ClassReference ref(klass->GetDexCache()->GetDexFile(), klass->GetDexClassDefIndex());
3964 if (Runtime::Current()->IsAotCompiler()) {
3965 Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
3966 }
3967 // Need to grab the lock to change status.
3968 ObjectLock<mirror::Class> super_lock(self, klass);
3969 mirror::Class::SetStatus(klass, mirror::Class::kStatusErrorResolved, self);
3970 return false;
3971 }
3972
3973 // Ensures that methods have the kAccSkipAccessChecks bit set. We use the
3974 // kAccVerificationAttempted bit on the class access flags to determine whether this has been done
3975 // before.
EnsureSkipAccessChecksMethods(Handle<mirror::Class> klass,PointerSize pointer_size)3976 static void EnsureSkipAccessChecksMethods(Handle<mirror::Class> klass, PointerSize pointer_size)
3977 REQUIRES_SHARED(Locks::mutator_lock_) {
3978 if (!klass->WasVerificationAttempted()) {
3979 klass->SetSkipAccessChecksFlagOnAllMethods(pointer_size);
3980 klass->SetVerificationAttempted();
3981 }
3982 }
3983
VerifyClass(Thread * self,Handle<mirror::Class> klass,verifier::HardFailLogMode log_level)3984 verifier::FailureKind ClassLinker::VerifyClass(
3985 Thread* self, Handle<mirror::Class> klass, verifier::HardFailLogMode log_level) {
3986 {
3987 // TODO: assert that the monitor on the Class is held
3988 ObjectLock<mirror::Class> lock(self, klass);
3989
3990 // Is somebody verifying this now?
3991 mirror::Class::Status old_status = klass->GetStatus();
3992 while (old_status == mirror::Class::kStatusVerifying ||
3993 old_status == mirror::Class::kStatusVerifyingAtRuntime) {
3994 lock.WaitIgnoringInterrupts();
3995 CHECK(klass->IsErroneous() || (klass->GetStatus() > old_status))
3996 << "Class '" << klass->PrettyClass()
3997 << "' performed an illegal verification state transition from " << old_status
3998 << " to " << klass->GetStatus();
3999 old_status = klass->GetStatus();
4000 }
4001
4002 // The class might already be erroneous, for example at compile time if we attempted to verify
4003 // this class as a parent to another.
4004 if (klass->IsErroneous()) {
4005 ThrowEarlierClassFailure(klass.Get());
4006 return verifier::FailureKind::kHardFailure;
4007 }
4008
4009 // Don't attempt to re-verify if already verified.
4010 if (klass->IsVerified()) {
4011 EnsureSkipAccessChecksMethods(klass, image_pointer_size_);
4012 return verifier::FailureKind::kNoFailure;
4013 }
4014
4015 // For AOT, don't attempt to re-verify if we have already found we should
4016 // verify at runtime.
4017 if (Runtime::Current()->IsAotCompiler() && klass->ShouldVerifyAtRuntime()) {
4018 return verifier::FailureKind::kSoftFailure;
4019 }
4020
4021 if (klass->GetStatus() == mirror::Class::kStatusResolved) {
4022 mirror::Class::SetStatus(klass, mirror::Class::kStatusVerifying, self);
4023 } else {
4024 CHECK_EQ(klass->GetStatus(), mirror::Class::kStatusRetryVerificationAtRuntime)
4025 << klass->PrettyClass();
4026 CHECK(!Runtime::Current()->IsAotCompiler());
4027 mirror::Class::SetStatus(klass, mirror::Class::kStatusVerifyingAtRuntime, self);
4028 }
4029
4030 // Skip verification if disabled.
4031 if (!Runtime::Current()->IsVerificationEnabled()) {
4032 mirror::Class::SetStatus(klass, mirror::Class::kStatusVerified, self);
4033 EnsureSkipAccessChecksMethods(klass, image_pointer_size_);
4034 return verifier::FailureKind::kNoFailure;
4035 }
4036 }
4037
4038 // Verify super class.
4039 StackHandleScope<2> hs(self);
4040 MutableHandle<mirror::Class> supertype(hs.NewHandle(klass->GetSuperClass()));
4041 // If we have a superclass and we get a hard verification failure we can return immediately.
4042 if (supertype != nullptr && !AttemptSupertypeVerification(self, klass, supertype)) {
4043 CHECK(self->IsExceptionPending()) << "Verification error should be pending.";
4044 return verifier::FailureKind::kHardFailure;
4045 }
4046
4047 // Verify all default super-interfaces.
4048 //
4049 // (1) Don't bother if the superclass has already had a soft verification failure.
4050 //
4051 // (2) Interfaces shouldn't bother to do this recursive verification because they cannot cause
4052 // recursive initialization by themselves. This is because when an interface is initialized
4053 // directly it must not initialize its superinterfaces. We are allowed to verify regardless
4054 // but choose not to for an optimization. If the interfaces is being verified due to a class
4055 // initialization (which would need all the default interfaces to be verified) the class code
4056 // will trigger the recursive verification anyway.
4057 if ((supertype == nullptr || supertype->IsVerified()) // See (1)
4058 && !klass->IsInterface()) { // See (2)
4059 int32_t iftable_count = klass->GetIfTableCount();
4060 MutableHandle<mirror::Class> iface(hs.NewHandle<mirror::Class>(nullptr));
4061 // Loop through all interfaces this class has defined. It doesn't matter the order.
4062 for (int32_t i = 0; i < iftable_count; i++) {
4063 iface.Assign(klass->GetIfTable()->GetInterface(i));
4064 DCHECK(iface != nullptr);
4065 // We only care if we have default interfaces and can skip if we are already verified...
4066 if (LIKELY(!iface->HasDefaultMethods() || iface->IsVerified())) {
4067 continue;
4068 } else if (UNLIKELY(!AttemptSupertypeVerification(self, klass, iface))) {
4069 // We had a hard failure while verifying this interface. Just return immediately.
4070 CHECK(self->IsExceptionPending()) << "Verification error should be pending.";
4071 return verifier::FailureKind::kHardFailure;
4072 } else if (UNLIKELY(!iface->IsVerified())) {
4073 // We softly failed to verify the iface. Stop checking and clean up.
4074 // Put the iface into the supertype handle so we know what caused us to fail.
4075 supertype.Assign(iface.Get());
4076 break;
4077 }
4078 }
4079 }
4080
4081 // At this point if verification failed, then supertype is the "first" supertype that failed
4082 // verification (without a specific order). If verification succeeded, then supertype is either
4083 // null or the original superclass of klass and is verified.
4084 DCHECK(supertype == nullptr ||
4085 supertype.Get() == klass->GetSuperClass() ||
4086 !supertype->IsVerified());
4087
4088 // Try to use verification information from the oat file, otherwise do runtime verification.
4089 const DexFile& dex_file = *klass->GetDexCache()->GetDexFile();
4090 mirror::Class::Status oat_file_class_status(mirror::Class::kStatusNotReady);
4091 bool preverified = VerifyClassUsingOatFile(dex_file, klass.Get(), oat_file_class_status);
4092 // If the oat file says the class had an error, re-run the verifier. That way we will get a
4093 // precise error message. To ensure a rerun, test:
4094 // mirror::Class::IsErroneous(oat_file_class_status) => !preverified
4095 DCHECK(!mirror::Class::IsErroneous(oat_file_class_status) || !preverified);
4096
4097 std::string error_msg;
4098 verifier::FailureKind verifier_failure = verifier::FailureKind::kNoFailure;
4099 if (!preverified) {
4100 Runtime* runtime = Runtime::Current();
4101 verifier_failure = verifier::MethodVerifier::VerifyClass(self,
4102 klass.Get(),
4103 runtime->GetCompilerCallbacks(),
4104 runtime->IsAotCompiler(),
4105 log_level,
4106 &error_msg);
4107 }
4108
4109 // Verification is done, grab the lock again.
4110 ObjectLock<mirror::Class> lock(self, klass);
4111
4112 if (preverified || verifier_failure != verifier::FailureKind::kHardFailure) {
4113 if (!preverified && verifier_failure != verifier::FailureKind::kNoFailure) {
4114 VLOG(class_linker) << "Soft verification failure in class "
4115 << klass->PrettyDescriptor()
4116 << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8()
4117 << " because: " << error_msg;
4118 }
4119 self->AssertNoPendingException();
4120 // Make sure all classes referenced by catch blocks are resolved.
4121 ResolveClassExceptionHandlerTypes(klass);
4122 if (verifier_failure == verifier::FailureKind::kNoFailure) {
4123 // Even though there were no verifier failures we need to respect whether the super-class and
4124 // super-default-interfaces were verified or requiring runtime reverification.
4125 if (supertype == nullptr || supertype->IsVerified()) {
4126 mirror::Class::SetStatus(klass, mirror::Class::kStatusVerified, self);
4127 } else {
4128 CHECK_EQ(supertype->GetStatus(), mirror::Class::kStatusRetryVerificationAtRuntime);
4129 mirror::Class::SetStatus(klass, mirror::Class::kStatusRetryVerificationAtRuntime, self);
4130 // Pretend a soft failure occurred so that we don't consider the class verified below.
4131 verifier_failure = verifier::FailureKind::kSoftFailure;
4132 }
4133 } else {
4134 CHECK_EQ(verifier_failure, verifier::FailureKind::kSoftFailure);
4135 // Soft failures at compile time should be retried at runtime. Soft
4136 // failures at runtime will be handled by slow paths in the generated
4137 // code. Set status accordingly.
4138 if (Runtime::Current()->IsAotCompiler()) {
4139 mirror::Class::SetStatus(klass, mirror::Class::kStatusRetryVerificationAtRuntime, self);
4140 } else {
4141 mirror::Class::SetStatus(klass, mirror::Class::kStatusVerified, self);
4142 // As this is a fake verified status, make sure the methods are _not_ marked
4143 // kAccSkipAccessChecks later.
4144 klass->SetVerificationAttempted();
4145 }
4146 }
4147 } else {
4148 VLOG(verifier) << "Verification failed on class " << klass->PrettyDescriptor()
4149 << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8()
4150 << " because: " << error_msg;
4151 self->AssertNoPendingException();
4152 ThrowVerifyError(klass.Get(), "%s", error_msg.c_str());
4153 mirror::Class::SetStatus(klass, mirror::Class::kStatusErrorResolved, self);
4154 }
4155 if (preverified || verifier_failure == verifier::FailureKind::kNoFailure) {
4156 // Class is verified so we don't need to do any access check on its methods.
4157 // Let the interpreter know it by setting the kAccSkipAccessChecks flag onto each
4158 // method.
4159 // Note: we're going here during compilation and at runtime. When we set the
4160 // kAccSkipAccessChecks flag when compiling image classes, the flag is recorded
4161 // in the image and is set when loading the image.
4162
4163 if (UNLIKELY(Runtime::Current()->IsVerificationSoftFail())) {
4164 // Never skip access checks if the verification soft fail is forced.
4165 // Mark the class as having a verification attempt to avoid re-running the verifier.
4166 klass->SetVerificationAttempted();
4167 } else {
4168 EnsureSkipAccessChecksMethods(klass, image_pointer_size_);
4169 }
4170 }
4171 return verifier_failure;
4172 }
4173
VerifyClassUsingOatFile(const DexFile & dex_file,ObjPtr<mirror::Class> klass,mirror::Class::Status & oat_file_class_status)4174 bool ClassLinker::VerifyClassUsingOatFile(const DexFile& dex_file,
4175 ObjPtr<mirror::Class> klass,
4176 mirror::Class::Status& oat_file_class_status) {
4177 // If we're compiling, we can only verify the class using the oat file if
4178 // we are not compiling the image or if the class we're verifying is not part of
4179 // the app. In other words, we will only check for preverification of bootclasspath
4180 // classes.
4181 if (Runtime::Current()->IsAotCompiler()) {
4182 // Are we compiling the bootclasspath?
4183 if (Runtime::Current()->GetCompilerCallbacks()->IsBootImage()) {
4184 return false;
4185 }
4186 // We are compiling an app (not the image).
4187
4188 // Is this an app class? (I.e. not a bootclasspath class)
4189 if (klass->GetClassLoader() != nullptr) {
4190 return false;
4191 }
4192 }
4193
4194 const OatFile::OatDexFile* oat_dex_file = dex_file.GetOatDexFile();
4195 // In case we run without an image there won't be a backing oat file.
4196 if (oat_dex_file == nullptr || oat_dex_file->GetOatFile() == nullptr) {
4197 return false;
4198 }
4199
4200 uint16_t class_def_index = klass->GetDexClassDefIndex();
4201 oat_file_class_status = oat_dex_file->GetOatClass(class_def_index).GetStatus();
4202 if (oat_file_class_status == mirror::Class::kStatusVerified ||
4203 oat_file_class_status == mirror::Class::kStatusInitialized) {
4204 return true;
4205 }
4206 // If we only verified a subset of the classes at compile time, we can end up with classes that
4207 // were resolved by the verifier.
4208 if (oat_file_class_status == mirror::Class::kStatusResolved) {
4209 return false;
4210 }
4211 if (oat_file_class_status == mirror::Class::kStatusRetryVerificationAtRuntime) {
4212 // Compile time verification failed with a soft error. Compile time verification can fail
4213 // because we have incomplete type information. Consider the following:
4214 // class ... {
4215 // Foo x;
4216 // .... () {
4217 // if (...) {
4218 // v1 gets assigned a type of resolved class Foo
4219 // } else {
4220 // v1 gets assigned a type of unresolved class Bar
4221 // }
4222 // iput x = v1
4223 // } }
4224 // when we merge v1 following the if-the-else it results in Conflict
4225 // (see verifier::RegType::Merge) as we can't know the type of Bar and we could possibly be
4226 // allowing an unsafe assignment to the field x in the iput (javac may have compiled this as
4227 // it knew Bar was a sub-class of Foo, but for us this may have been moved into a separate apk
4228 // at compile time).
4229 return false;
4230 }
4231 if (mirror::Class::IsErroneous(oat_file_class_status)) {
4232 // Compile time verification failed with a hard error. This is caused by invalid instructions
4233 // in the class. These errors are unrecoverable.
4234 return false;
4235 }
4236 if (oat_file_class_status == mirror::Class::kStatusNotReady) {
4237 // Status is uninitialized if we couldn't determine the status at compile time, for example,
4238 // not loading the class.
4239 // TODO: when the verifier doesn't rely on Class-es failing to resolve/load the type hierarchy
4240 // isn't a problem and this case shouldn't occur
4241 return false;
4242 }
4243 std::string temp;
4244 LOG(FATAL) << "Unexpected class status: " << oat_file_class_status
4245 << " " << dex_file.GetLocation() << " " << klass->PrettyClass() << " "
4246 << klass->GetDescriptor(&temp);
4247 UNREACHABLE();
4248 }
4249
ResolveClassExceptionHandlerTypes(Handle<mirror::Class> klass)4250 void ClassLinker::ResolveClassExceptionHandlerTypes(Handle<mirror::Class> klass) {
4251 for (ArtMethod& method : klass->GetMethods(image_pointer_size_)) {
4252 ResolveMethodExceptionHandlerTypes(&method);
4253 }
4254 }
4255
ResolveMethodExceptionHandlerTypes(ArtMethod * method)4256 void ClassLinker::ResolveMethodExceptionHandlerTypes(ArtMethod* method) {
4257 // similar to DexVerifier::ScanTryCatchBlocks and dex2oat's ResolveExceptionsForMethod.
4258 const DexFile::CodeItem* code_item =
4259 method->GetDexFile()->GetCodeItem(method->GetCodeItemOffset());
4260 if (code_item == nullptr) {
4261 return; // native or abstract method
4262 }
4263 if (code_item->tries_size_ == 0) {
4264 return; // nothing to process
4265 }
4266 const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*code_item, 0);
4267 uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
4268 for (uint32_t idx = 0; idx < handlers_size; idx++) {
4269 CatchHandlerIterator iterator(handlers_ptr);
4270 for (; iterator.HasNext(); iterator.Next()) {
4271 // Ensure exception types are resolved so that they don't need resolution to be delivered,
4272 // unresolved exception types will be ignored by exception delivery
4273 if (iterator.GetHandlerTypeIndex().IsValid()) {
4274 ObjPtr<mirror::Class> exception_type = ResolveType(iterator.GetHandlerTypeIndex(), method);
4275 if (exception_type == nullptr) {
4276 DCHECK(Thread::Current()->IsExceptionPending());
4277 Thread::Current()->ClearException();
4278 }
4279 }
4280 }
4281 handlers_ptr = iterator.EndDataPointer();
4282 }
4283 }
4284
CreateProxyClass(ScopedObjectAccessAlreadyRunnable & soa,jstring name,jobjectArray interfaces,jobject loader,jobjectArray methods,jobjectArray throws)4285 mirror::Class* ClassLinker::CreateProxyClass(ScopedObjectAccessAlreadyRunnable& soa,
4286 jstring name,
4287 jobjectArray interfaces,
4288 jobject loader,
4289 jobjectArray methods,
4290 jobjectArray throws) {
4291 Thread* self = soa.Self();
4292 StackHandleScope<10> hs(self);
4293 MutableHandle<mirror::Class> temp_klass(hs.NewHandle(
4294 AllocClass(self, GetClassRoot(kJavaLangClass), sizeof(mirror::Class))));
4295 if (temp_klass == nullptr) {
4296 CHECK(self->IsExceptionPending()); // OOME.
4297 return nullptr;
4298 }
4299 DCHECK(temp_klass->GetClass() != nullptr);
4300 temp_klass->SetObjectSize(sizeof(mirror::Proxy));
4301 // Set the class access flags incl. VerificationAttempted, so we do not try to set the flag on
4302 // the methods.
4303 temp_klass->SetAccessFlags(kAccClassIsProxy | kAccPublic | kAccFinal | kAccVerificationAttempted);
4304 temp_klass->SetClassLoader(soa.Decode<mirror::ClassLoader>(loader));
4305 DCHECK_EQ(temp_klass->GetPrimitiveType(), Primitive::kPrimNot);
4306 temp_klass->SetName(soa.Decode<mirror::String>(name));
4307 temp_klass->SetDexCache(GetClassRoot(kJavaLangReflectProxy)->GetDexCache());
4308 // Object has an empty iftable, copy it for that reason.
4309 temp_klass->SetIfTable(GetClassRoot(kJavaLangObject)->GetIfTable());
4310 mirror::Class::SetStatus(temp_klass, mirror::Class::kStatusIdx, self);
4311 std::string descriptor(GetDescriptorForProxy(temp_klass.Get()));
4312 const size_t hash = ComputeModifiedUtf8Hash(descriptor.c_str());
4313
4314 // Needs to be before we insert the class so that the allocator field is set.
4315 LinearAlloc* const allocator = GetOrCreateAllocatorForClassLoader(temp_klass->GetClassLoader());
4316
4317 // Insert the class before loading the fields as the field roots
4318 // (ArtField::declaring_class_) are only visited from the class
4319 // table. There can't be any suspend points between inserting the
4320 // class and setting the field arrays below.
4321 ObjPtr<mirror::Class> existing = InsertClass(descriptor.c_str(), temp_klass.Get(), hash);
4322 CHECK(existing == nullptr);
4323
4324 // Instance fields are inherited, but we add a couple of static fields...
4325 const size_t num_fields = 2;
4326 LengthPrefixedArray<ArtField>* sfields = AllocArtFieldArray(self, allocator, num_fields);
4327 temp_klass->SetSFieldsPtr(sfields);
4328
4329 // 1. Create a static field 'interfaces' that holds the _declared_ interfaces implemented by
4330 // our proxy, so Class.getInterfaces doesn't return the flattened set.
4331 ArtField& interfaces_sfield = sfields->At(0);
4332 interfaces_sfield.SetDexFieldIndex(0);
4333 interfaces_sfield.SetDeclaringClass(temp_klass.Get());
4334 interfaces_sfield.SetAccessFlags(kAccStatic | kAccPublic | kAccFinal);
4335
4336 // 2. Create a static field 'throws' that holds exceptions thrown by our methods.
4337 ArtField& throws_sfield = sfields->At(1);
4338 throws_sfield.SetDexFieldIndex(1);
4339 throws_sfield.SetDeclaringClass(temp_klass.Get());
4340 throws_sfield.SetAccessFlags(kAccStatic | kAccPublic | kAccFinal);
4341
4342 // Proxies have 1 direct method, the constructor
4343 const size_t num_direct_methods = 1;
4344
4345 // They have as many virtual methods as the array
4346 auto h_methods = hs.NewHandle(soa.Decode<mirror::ObjectArray<mirror::Method>>(methods));
4347 DCHECK_EQ(h_methods->GetClass(), mirror::Method::ArrayClass())
4348 << mirror::Class::PrettyClass(h_methods->GetClass());
4349 const size_t num_virtual_methods = h_methods->GetLength();
4350
4351 // Create the methods array.
4352 LengthPrefixedArray<ArtMethod>* proxy_class_methods = AllocArtMethodArray(
4353 self, allocator, num_direct_methods + num_virtual_methods);
4354 // Currently AllocArtMethodArray cannot return null, but the OOM logic is left there in case we
4355 // want to throw OOM in the future.
4356 if (UNLIKELY(proxy_class_methods == nullptr)) {
4357 self->AssertPendingOOMException();
4358 return nullptr;
4359 }
4360 temp_klass->SetMethodsPtr(proxy_class_methods, num_direct_methods, num_virtual_methods);
4361
4362 // Create the single direct method.
4363 CreateProxyConstructor(temp_klass, temp_klass->GetDirectMethodUnchecked(0, image_pointer_size_));
4364
4365 // Create virtual method using specified prototypes.
4366 // TODO These should really use the iterators.
4367 for (size_t i = 0; i < num_virtual_methods; ++i) {
4368 auto* virtual_method = temp_klass->GetVirtualMethodUnchecked(i, image_pointer_size_);
4369 auto* prototype = h_methods->Get(i)->GetArtMethod();
4370 CreateProxyMethod(temp_klass, prototype, virtual_method);
4371 DCHECK(virtual_method->GetDeclaringClass() != nullptr);
4372 DCHECK(prototype->GetDeclaringClass() != nullptr);
4373 }
4374
4375 // The super class is java.lang.reflect.Proxy
4376 temp_klass->SetSuperClass(GetClassRoot(kJavaLangReflectProxy));
4377 // Now effectively in the loaded state.
4378 mirror::Class::SetStatus(temp_klass, mirror::Class::kStatusLoaded, self);
4379 self->AssertNoPendingException();
4380
4381 // At this point the class is loaded. Publish a ClassLoad event.
4382 // Note: this may be a temporary class. It is a listener's responsibility to handle this.
4383 Runtime::Current()->GetRuntimeCallbacks()->ClassLoad(temp_klass);
4384
4385 MutableHandle<mirror::Class> klass = hs.NewHandle<mirror::Class>(nullptr);
4386 {
4387 // Must hold lock on object when resolved.
4388 ObjectLock<mirror::Class> resolution_lock(self, temp_klass);
4389 // Link the fields and virtual methods, creating vtable and iftables.
4390 // The new class will replace the old one in the class table.
4391 Handle<mirror::ObjectArray<mirror::Class>> h_interfaces(
4392 hs.NewHandle(soa.Decode<mirror::ObjectArray<mirror::Class>>(interfaces)));
4393 if (!LinkClass(self, descriptor.c_str(), temp_klass, h_interfaces, &klass)) {
4394 mirror::Class::SetStatus(temp_klass, mirror::Class::kStatusErrorUnresolved, self);
4395 return nullptr;
4396 }
4397 }
4398 CHECK(temp_klass->IsRetired());
4399 CHECK_NE(temp_klass.Get(), klass.Get());
4400
4401 CHECK_EQ(interfaces_sfield.GetDeclaringClass(), klass.Get());
4402 interfaces_sfield.SetObject<false>(
4403 klass.Get(),
4404 soa.Decode<mirror::ObjectArray<mirror::Class>>(interfaces));
4405 CHECK_EQ(throws_sfield.GetDeclaringClass(), klass.Get());
4406 throws_sfield.SetObject<false>(
4407 klass.Get(),
4408 soa.Decode<mirror::ObjectArray<mirror::ObjectArray<mirror::Class>>>(throws));
4409
4410 Runtime::Current()->GetRuntimeCallbacks()->ClassPrepare(temp_klass, klass);
4411
4412 {
4413 // Lock on klass is released. Lock new class object.
4414 ObjectLock<mirror::Class> initialization_lock(self, klass);
4415 mirror::Class::SetStatus(klass, mirror::Class::kStatusInitialized, self);
4416 }
4417
4418 // sanity checks
4419 if (kIsDebugBuild) {
4420 CHECK(klass->GetIFieldsPtr() == nullptr);
4421 CheckProxyConstructor(klass->GetDirectMethod(0, image_pointer_size_));
4422
4423 for (size_t i = 0; i < num_virtual_methods; ++i) {
4424 auto* virtual_method = klass->GetVirtualMethodUnchecked(i, image_pointer_size_);
4425 auto* prototype = h_methods->Get(i++)->GetArtMethod();
4426 CheckProxyMethod(virtual_method, prototype);
4427 }
4428
4429 StackHandleScope<1> hs2(self);
4430 Handle<mirror::String> decoded_name = hs2.NewHandle(soa.Decode<mirror::String>(name));
4431 std::string interfaces_field_name(StringPrintf("java.lang.Class[] %s.interfaces",
4432 decoded_name->ToModifiedUtf8().c_str()));
4433 CHECK_EQ(ArtField::PrettyField(klass->GetStaticField(0)), interfaces_field_name);
4434
4435 std::string throws_field_name(StringPrintf("java.lang.Class[][] %s.throws",
4436 decoded_name->ToModifiedUtf8().c_str()));
4437 CHECK_EQ(ArtField::PrettyField(klass->GetStaticField(1)), throws_field_name);
4438
4439 CHECK_EQ(klass.Get()->GetProxyInterfaces(),
4440 soa.Decode<mirror::ObjectArray<mirror::Class>>(interfaces));
4441 CHECK_EQ(klass.Get()->GetProxyThrows(),
4442 soa.Decode<mirror::ObjectArray<mirror::ObjectArray<mirror::Class>>>(throws));
4443 }
4444 return klass.Get();
4445 }
4446
GetDescriptorForProxy(ObjPtr<mirror::Class> proxy_class)4447 std::string ClassLinker::GetDescriptorForProxy(ObjPtr<mirror::Class> proxy_class) {
4448 DCHECK(proxy_class->IsProxyClass());
4449 ObjPtr<mirror::String> name = proxy_class->GetName();
4450 DCHECK(name != nullptr);
4451 return DotToDescriptor(name->ToModifiedUtf8().c_str());
4452 }
4453
CreateProxyConstructor(Handle<mirror::Class> klass,ArtMethod * out)4454 void ClassLinker::CreateProxyConstructor(Handle<mirror::Class> klass, ArtMethod* out) {
4455 // Create constructor for Proxy that must initialize the method.
4456 CHECK_EQ(GetClassRoot(kJavaLangReflectProxy)->NumDirectMethods(), 23u);
4457
4458 // Find the <init>(InvocationHandler)V method. The exact method offset varies depending
4459 // on which front-end compiler was used to build the libcore DEX files.
4460 ArtMethod* proxy_constructor = GetClassRoot(kJavaLangReflectProxy)->
4461 FindDeclaredDirectMethod("<init>",
4462 "(Ljava/lang/reflect/InvocationHandler;)V",
4463 image_pointer_size_);
4464 DCHECK(proxy_constructor != nullptr)
4465 << "Could not find <init> method in java.lang.reflect.Proxy";
4466
4467 // Ensure constructor is in dex cache so that we can use the dex cache to look up the overridden
4468 // constructor method.
4469 GetClassRoot(kJavaLangReflectProxy)->GetDexCache()->SetResolvedMethod(
4470 proxy_constructor->GetDexMethodIndex(), proxy_constructor, image_pointer_size_);
4471 // Clone the existing constructor of Proxy (our constructor would just invoke it so steal its
4472 // code_ too)
4473 DCHECK(out != nullptr);
4474 out->CopyFrom(proxy_constructor, image_pointer_size_);
4475 // Make this constructor public and fix the class to be our Proxy version
4476 out->SetAccessFlags((out->GetAccessFlags() & ~kAccProtected) | kAccPublic);
4477 out->SetDeclaringClass(klass.Get());
4478 }
4479
CheckProxyConstructor(ArtMethod * constructor) const4480 void ClassLinker::CheckProxyConstructor(ArtMethod* constructor) const {
4481 CHECK(constructor->IsConstructor());
4482 auto* np = constructor->GetInterfaceMethodIfProxy(image_pointer_size_);
4483 CHECK_STREQ(np->GetName(), "<init>");
4484 CHECK_STREQ(np->GetSignature().ToString().c_str(), "(Ljava/lang/reflect/InvocationHandler;)V");
4485 DCHECK(constructor->IsPublic());
4486 }
4487
CreateProxyMethod(Handle<mirror::Class> klass,ArtMethod * prototype,ArtMethod * out)4488 void ClassLinker::CreateProxyMethod(Handle<mirror::Class> klass, ArtMethod* prototype,
4489 ArtMethod* out) {
4490 // Ensure prototype is in dex cache so that we can use the dex cache to look up the overridden
4491 // prototype method
4492 auto* dex_cache = prototype->GetDeclaringClass()->GetDexCache();
4493 // Avoid dirtying the dex cache unless we need to.
4494 if (dex_cache->GetResolvedMethod(prototype->GetDexMethodIndex(), image_pointer_size_) !=
4495 prototype) {
4496 dex_cache->SetResolvedMethod(
4497 prototype->GetDexMethodIndex(), prototype, image_pointer_size_);
4498 }
4499 // We steal everything from the prototype (such as DexCache, invoke stub, etc.) then specialize
4500 // as necessary
4501 DCHECK(out != nullptr);
4502 out->CopyFrom(prototype, image_pointer_size_);
4503
4504 // Set class to be the concrete proxy class.
4505 out->SetDeclaringClass(klass.Get());
4506 // Clear the abstract, default and conflict flags to ensure that defaults aren't picked in
4507 // preference to the invocation handler.
4508 const uint32_t kRemoveFlags = kAccAbstract | kAccDefault | kAccDefaultConflict;
4509 // Make the method final.
4510 const uint32_t kAddFlags = kAccFinal;
4511 out->SetAccessFlags((out->GetAccessFlags() & ~kRemoveFlags) | kAddFlags);
4512
4513 // Clear the dex_code_item_offset_. It needs to be 0 since proxy methods have no CodeItems but the
4514 // method they copy might (if it's a default method).
4515 out->SetCodeItemOffset(0);
4516
4517 // At runtime the method looks like a reference and argument saving method, clone the code
4518 // related parameters from this method.
4519 out->SetEntryPointFromQuickCompiledCode(GetQuickProxyInvokeHandler());
4520 }
4521
CheckProxyMethod(ArtMethod * method,ArtMethod * prototype) const4522 void ClassLinker::CheckProxyMethod(ArtMethod* method, ArtMethod* prototype) const {
4523 // Basic sanity
4524 CHECK(!prototype->IsFinal());
4525 CHECK(method->IsFinal());
4526 CHECK(method->IsInvokable());
4527
4528 // The proxy method doesn't have its own dex cache or dex file and so it steals those of its
4529 // interface prototype. The exception to this are Constructors and the Class of the Proxy itself.
4530 CHECK(prototype->HasSameDexCacheResolvedMethods(method, image_pointer_size_));
4531 auto* np = method->GetInterfaceMethodIfProxy(image_pointer_size_);
4532 CHECK_EQ(prototype->GetDeclaringClass()->GetDexCache(), np->GetDexCache());
4533 CHECK_EQ(prototype->GetDexMethodIndex(), method->GetDexMethodIndex());
4534
4535 CHECK_STREQ(np->GetName(), prototype->GetName());
4536 CHECK_STREQ(np->GetShorty(), prototype->GetShorty());
4537 // More complex sanity - via dex cache
4538 CHECK_EQ(np->GetReturnType(true /* resolve */), prototype->GetReturnType(true /* resolve */));
4539 }
4540
CanWeInitializeClass(ObjPtr<mirror::Class> klass,bool can_init_statics,bool can_init_parents)4541 bool ClassLinker::CanWeInitializeClass(ObjPtr<mirror::Class> klass, bool can_init_statics,
4542 bool can_init_parents) {
4543 if (can_init_statics && can_init_parents) {
4544 return true;
4545 }
4546 if (!can_init_statics) {
4547 // Check if there's a class initializer.
4548 ArtMethod* clinit = klass->FindClassInitializer(image_pointer_size_);
4549 if (clinit != nullptr) {
4550 return false;
4551 }
4552 // Check if there are encoded static values needing initialization.
4553 if (klass->NumStaticFields() != 0) {
4554 const DexFile::ClassDef* dex_class_def = klass->GetClassDef();
4555 DCHECK(dex_class_def != nullptr);
4556 if (dex_class_def->static_values_off_ != 0) {
4557 return false;
4558 }
4559 }
4560 // If we are a class we need to initialize all interfaces with default methods when we are
4561 // initialized. Check all of them.
4562 if (!klass->IsInterface()) {
4563 size_t num_interfaces = klass->GetIfTableCount();
4564 for (size_t i = 0; i < num_interfaces; i++) {
4565 ObjPtr<mirror::Class> iface = klass->GetIfTable()->GetInterface(i);
4566 if (iface->HasDefaultMethods() &&
4567 !CanWeInitializeClass(iface, can_init_statics, can_init_parents)) {
4568 return false;
4569 }
4570 }
4571 }
4572 }
4573 if (klass->IsInterface() || !klass->HasSuperClass()) {
4574 return true;
4575 }
4576 ObjPtr<mirror::Class> super_class = klass->GetSuperClass();
4577 if (!can_init_parents && !super_class->IsInitialized()) {
4578 return false;
4579 }
4580 return CanWeInitializeClass(super_class, can_init_statics, can_init_parents);
4581 }
4582
InitializeClass(Thread * self,Handle<mirror::Class> klass,bool can_init_statics,bool can_init_parents)4583 bool ClassLinker::InitializeClass(Thread* self, Handle<mirror::Class> klass,
4584 bool can_init_statics, bool can_init_parents) {
4585 // see JLS 3rd edition, 12.4.2 "Detailed Initialization Procedure" for the locking protocol
4586
4587 // Are we already initialized and therefore done?
4588 // Note: we differ from the JLS here as we don't do this under the lock, this is benign as
4589 // an initialized class will never change its state.
4590 if (klass->IsInitialized()) {
4591 return true;
4592 }
4593
4594 // Fast fail if initialization requires a full runtime. Not part of the JLS.
4595 if (!CanWeInitializeClass(klass.Get(), can_init_statics, can_init_parents)) {
4596 return false;
4597 }
4598
4599 self->AllowThreadSuspension();
4600 uint64_t t0;
4601 {
4602 ObjectLock<mirror::Class> lock(self, klass);
4603
4604 // Re-check under the lock in case another thread initialized ahead of us.
4605 if (klass->IsInitialized()) {
4606 return true;
4607 }
4608
4609 // Was the class already found to be erroneous? Done under the lock to match the JLS.
4610 if (klass->IsErroneous()) {
4611 ThrowEarlierClassFailure(klass.Get(), true);
4612 VlogClassInitializationFailure(klass);
4613 return false;
4614 }
4615
4616 CHECK(klass->IsResolved() && !klass->IsErroneousResolved())
4617 << klass->PrettyClass() << ": state=" << klass->GetStatus();
4618
4619 if (!klass->IsVerified()) {
4620 VerifyClass(self, klass);
4621 if (!klass->IsVerified()) {
4622 // We failed to verify, expect either the klass to be erroneous or verification failed at
4623 // compile time.
4624 if (klass->IsErroneous()) {
4625 // The class is erroneous. This may be a verifier error, or another thread attempted
4626 // verification and/or initialization and failed. We can distinguish those cases by
4627 // whether an exception is already pending.
4628 if (self->IsExceptionPending()) {
4629 // Check that it's a VerifyError.
4630 DCHECK_EQ("java.lang.Class<java.lang.VerifyError>",
4631 mirror::Class::PrettyClass(self->GetException()->GetClass()));
4632 } else {
4633 // Check that another thread attempted initialization.
4634 DCHECK_NE(0, klass->GetClinitThreadId());
4635 DCHECK_NE(self->GetTid(), klass->GetClinitThreadId());
4636 // Need to rethrow the previous failure now.
4637 ThrowEarlierClassFailure(klass.Get(), true);
4638 }
4639 VlogClassInitializationFailure(klass);
4640 } else {
4641 CHECK(Runtime::Current()->IsAotCompiler());
4642 CHECK_EQ(klass->GetStatus(), mirror::Class::kStatusRetryVerificationAtRuntime);
4643 }
4644 return false;
4645 } else {
4646 self->AssertNoPendingException();
4647 }
4648
4649 // A separate thread could have moved us all the way to initialized. A "simple" example
4650 // involves a subclass of the current class being initialized at the same time (which
4651 // will implicitly initialize the superclass, if scheduled that way). b/28254258
4652 DCHECK(!klass->IsErroneous()) << klass->GetStatus();
4653 if (klass->IsInitialized()) {
4654 return true;
4655 }
4656 }
4657
4658 // If the class is kStatusInitializing, either this thread is
4659 // initializing higher up the stack or another thread has beat us
4660 // to initializing and we need to wait. Either way, this
4661 // invocation of InitializeClass will not be responsible for
4662 // running <clinit> and will return.
4663 if (klass->GetStatus() == mirror::Class::kStatusInitializing) {
4664 // Could have got an exception during verification.
4665 if (self->IsExceptionPending()) {
4666 VlogClassInitializationFailure(klass);
4667 return false;
4668 }
4669 // We caught somebody else in the act; was it us?
4670 if (klass->GetClinitThreadId() == self->GetTid()) {
4671 // Yes. That's fine. Return so we can continue initializing.
4672 return true;
4673 }
4674 // No. That's fine. Wait for another thread to finish initializing.
4675 return WaitForInitializeClass(klass, self, lock);
4676 }
4677
4678 if (!ValidateSuperClassDescriptors(klass)) {
4679 mirror::Class::SetStatus(klass, mirror::Class::kStatusErrorResolved, self);
4680 return false;
4681 }
4682 self->AllowThreadSuspension();
4683
4684 CHECK_EQ(klass->GetStatus(), mirror::Class::kStatusVerified) << klass->PrettyClass()
4685 << " self.tid=" << self->GetTid() << " clinit.tid=" << klass->GetClinitThreadId();
4686
4687 // From here out other threads may observe that we're initializing and so changes of state
4688 // require the a notification.
4689 klass->SetClinitThreadId(self->GetTid());
4690 mirror::Class::SetStatus(klass, mirror::Class::kStatusInitializing, self);
4691
4692 t0 = NanoTime();
4693 }
4694
4695 // Initialize super classes, must be done while initializing for the JLS.
4696 if (!klass->IsInterface() && klass->HasSuperClass()) {
4697 ObjPtr<mirror::Class> super_class = klass->GetSuperClass();
4698 if (!super_class->IsInitialized()) {
4699 CHECK(!super_class->IsInterface());
4700 CHECK(can_init_parents);
4701 StackHandleScope<1> hs(self);
4702 Handle<mirror::Class> handle_scope_super(hs.NewHandle(super_class));
4703 bool super_initialized = InitializeClass(self, handle_scope_super, can_init_statics, true);
4704 if (!super_initialized) {
4705 // The super class was verified ahead of entering initializing, we should only be here if
4706 // the super class became erroneous due to initialization.
4707 CHECK(handle_scope_super->IsErroneous() && self->IsExceptionPending())
4708 << "Super class initialization failed for "
4709 << handle_scope_super->PrettyDescriptor()
4710 << " that has unexpected status " << handle_scope_super->GetStatus()
4711 << "\nPending exception:\n"
4712 << (self->GetException() != nullptr ? self->GetException()->Dump() : "");
4713 ObjectLock<mirror::Class> lock(self, klass);
4714 // Initialization failed because the super-class is erroneous.
4715 mirror::Class::SetStatus(klass, mirror::Class::kStatusErrorResolved, self);
4716 return false;
4717 }
4718 }
4719 }
4720
4721 if (!klass->IsInterface()) {
4722 // Initialize interfaces with default methods for the JLS.
4723 size_t num_direct_interfaces = klass->NumDirectInterfaces();
4724 // Only setup the (expensive) handle scope if we actually need to.
4725 if (UNLIKELY(num_direct_interfaces > 0)) {
4726 StackHandleScope<1> hs_iface(self);
4727 MutableHandle<mirror::Class> handle_scope_iface(hs_iface.NewHandle<mirror::Class>(nullptr));
4728 for (size_t i = 0; i < num_direct_interfaces; i++) {
4729 handle_scope_iface.Assign(mirror::Class::GetDirectInterface(self, klass.Get(), i));
4730 CHECK(handle_scope_iface != nullptr) << klass->PrettyDescriptor() << " iface #" << i;
4731 CHECK(handle_scope_iface->IsInterface());
4732 if (handle_scope_iface->HasBeenRecursivelyInitialized()) {
4733 // We have already done this for this interface. Skip it.
4734 continue;
4735 }
4736 // We cannot just call initialize class directly because we need to ensure that ALL
4737 // interfaces with default methods are initialized. Non-default interface initialization
4738 // will not affect other non-default super-interfaces.
4739 bool iface_initialized = InitializeDefaultInterfaceRecursive(self,
4740 handle_scope_iface,
4741 can_init_statics,
4742 can_init_parents);
4743 if (!iface_initialized) {
4744 ObjectLock<mirror::Class> lock(self, klass);
4745 // Initialization failed because one of our interfaces with default methods is erroneous.
4746 mirror::Class::SetStatus(klass, mirror::Class::kStatusErrorResolved, self);
4747 return false;
4748 }
4749 }
4750 }
4751 }
4752
4753 const size_t num_static_fields = klass->NumStaticFields();
4754 if (num_static_fields > 0) {
4755 const DexFile::ClassDef* dex_class_def = klass->GetClassDef();
4756 CHECK(dex_class_def != nullptr);
4757 const DexFile& dex_file = klass->GetDexFile();
4758 StackHandleScope<3> hs(self);
4759 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader()));
4760 Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache()));
4761
4762 // Eagerly fill in static fields so that the we don't have to do as many expensive
4763 // Class::FindStaticField in ResolveField.
4764 for (size_t i = 0; i < num_static_fields; ++i) {
4765 ArtField* field = klass->GetStaticField(i);
4766 const uint32_t field_idx = field->GetDexFieldIndex();
4767 ArtField* resolved_field = dex_cache->GetResolvedField(field_idx, image_pointer_size_);
4768 if (resolved_field == nullptr) {
4769 dex_cache->SetResolvedField(field_idx, field, image_pointer_size_);
4770 } else {
4771 DCHECK_EQ(field, resolved_field);
4772 }
4773 }
4774
4775 annotations::RuntimeEncodedStaticFieldValueIterator value_it(dex_file,
4776 &dex_cache,
4777 &class_loader,
4778 this,
4779 *dex_class_def);
4780 const uint8_t* class_data = dex_file.GetClassData(*dex_class_def);
4781 ClassDataItemIterator field_it(dex_file, class_data);
4782 if (value_it.HasNext()) {
4783 DCHECK(field_it.HasNextStaticField());
4784 CHECK(can_init_statics);
4785 for ( ; value_it.HasNext(); value_it.Next(), field_it.Next()) {
4786 ArtField* field = ResolveField(
4787 dex_file, field_it.GetMemberIndex(), dex_cache, class_loader, true);
4788 if (Runtime::Current()->IsActiveTransaction()) {
4789 value_it.ReadValueToField<true>(field);
4790 } else {
4791 value_it.ReadValueToField<false>(field);
4792 }
4793 if (self->IsExceptionPending()) {
4794 break;
4795 }
4796 DCHECK(!value_it.HasNext() || field_it.HasNextStaticField());
4797 }
4798 }
4799 }
4800
4801
4802 if (!self->IsExceptionPending()) {
4803 ArtMethod* clinit = klass->FindClassInitializer(image_pointer_size_);
4804 if (clinit != nullptr) {
4805 CHECK(can_init_statics);
4806 JValue result;
4807 clinit->Invoke(self, nullptr, 0, &result, "V");
4808 }
4809 }
4810 self->AllowThreadSuspension();
4811 uint64_t t1 = NanoTime();
4812
4813 bool success = true;
4814 {
4815 ObjectLock<mirror::Class> lock(self, klass);
4816
4817 if (self->IsExceptionPending()) {
4818 WrapExceptionInInitializer(klass);
4819 mirror::Class::SetStatus(klass, mirror::Class::kStatusErrorResolved, self);
4820 success = false;
4821 } else if (Runtime::Current()->IsTransactionAborted()) {
4822 // The exception thrown when the transaction aborted has been caught and cleared
4823 // so we need to throw it again now.
4824 VLOG(compiler) << "Return from class initializer of "
4825 << mirror::Class::PrettyDescriptor(klass.Get())
4826 << " without exception while transaction was aborted: re-throw it now.";
4827 Runtime::Current()->ThrowTransactionAbortError(self);
4828 mirror::Class::SetStatus(klass, mirror::Class::kStatusErrorResolved, self);
4829 success = false;
4830 } else {
4831 RuntimeStats* global_stats = Runtime::Current()->GetStats();
4832 RuntimeStats* thread_stats = self->GetStats();
4833 ++global_stats->class_init_count;
4834 ++thread_stats->class_init_count;
4835 global_stats->class_init_time_ns += (t1 - t0);
4836 thread_stats->class_init_time_ns += (t1 - t0);
4837 // Set the class as initialized except if failed to initialize static fields.
4838 mirror::Class::SetStatus(klass, mirror::Class::kStatusInitialized, self);
4839 if (VLOG_IS_ON(class_linker)) {
4840 std::string temp;
4841 LOG(INFO) << "Initialized class " << klass->GetDescriptor(&temp) << " from " <<
4842 klass->GetLocation();
4843 }
4844 // Opportunistically set static method trampolines to their destination.
4845 FixupStaticTrampolines(klass.Get());
4846 }
4847 }
4848 return success;
4849 }
4850
4851 // We recursively run down the tree of interfaces. We need to do this in the order they are declared
4852 // and perform the initialization only on those interfaces that contain default methods.
InitializeDefaultInterfaceRecursive(Thread * self,Handle<mirror::Class> iface,bool can_init_statics,bool can_init_parents)4853 bool ClassLinker::InitializeDefaultInterfaceRecursive(Thread* self,
4854 Handle<mirror::Class> iface,
4855 bool can_init_statics,
4856 bool can_init_parents) {
4857 CHECK(iface->IsInterface());
4858 size_t num_direct_ifaces = iface->NumDirectInterfaces();
4859 // Only create the (expensive) handle scope if we need it.
4860 if (UNLIKELY(num_direct_ifaces > 0)) {
4861 StackHandleScope<1> hs(self);
4862 MutableHandle<mirror::Class> handle_super_iface(hs.NewHandle<mirror::Class>(nullptr));
4863 // First we initialize all of iface's super-interfaces recursively.
4864 for (size_t i = 0; i < num_direct_ifaces; i++) {
4865 ObjPtr<mirror::Class> super_iface = mirror::Class::GetDirectInterface(self, iface.Get(), i);
4866 CHECK(super_iface != nullptr) << iface->PrettyDescriptor() << " iface #" << i;
4867 if (!super_iface->HasBeenRecursivelyInitialized()) {
4868 // Recursive step
4869 handle_super_iface.Assign(super_iface);
4870 if (!InitializeDefaultInterfaceRecursive(self,
4871 handle_super_iface,
4872 can_init_statics,
4873 can_init_parents)) {
4874 return false;
4875 }
4876 }
4877 }
4878 }
4879
4880 bool result = true;
4881 // Then we initialize 'iface' if it has default methods. We do not need to (and in fact must not)
4882 // initialize if we don't have default methods.
4883 if (iface->HasDefaultMethods()) {
4884 result = EnsureInitialized(self, iface, can_init_statics, can_init_parents);
4885 }
4886
4887 // Mark that this interface has undergone recursive default interface initialization so we know we
4888 // can skip it on any later class initializations. We do this even if we are not a default
4889 // interface since we can still avoid the traversal. This is purely a performance optimization.
4890 if (result) {
4891 // TODO This should be done in a better way
4892 ObjectLock<mirror::Class> lock(self, iface);
4893 iface->SetRecursivelyInitialized();
4894 }
4895 return result;
4896 }
4897
WaitForInitializeClass(Handle<mirror::Class> klass,Thread * self,ObjectLock<mirror::Class> & lock)4898 bool ClassLinker::WaitForInitializeClass(Handle<mirror::Class> klass,
4899 Thread* self,
4900 ObjectLock<mirror::Class>& lock)
4901 REQUIRES_SHARED(Locks::mutator_lock_) {
4902 while (true) {
4903 self->AssertNoPendingException();
4904 CHECK(!klass->IsInitialized());
4905 lock.WaitIgnoringInterrupts();
4906
4907 // When we wake up, repeat the test for init-in-progress. If
4908 // there's an exception pending (only possible if
4909 // we were not using WaitIgnoringInterrupts), bail out.
4910 if (self->IsExceptionPending()) {
4911 WrapExceptionInInitializer(klass);
4912 mirror::Class::SetStatus(klass, mirror::Class::kStatusErrorResolved, self);
4913 return false;
4914 }
4915 // Spurious wakeup? Go back to waiting.
4916 if (klass->GetStatus() == mirror::Class::kStatusInitializing) {
4917 continue;
4918 }
4919 if (klass->GetStatus() == mirror::Class::kStatusVerified &&
4920 Runtime::Current()->IsAotCompiler()) {
4921 // Compile time initialization failed.
4922 return false;
4923 }
4924 if (klass->IsErroneous()) {
4925 // The caller wants an exception, but it was thrown in a
4926 // different thread. Synthesize one here.
4927 ThrowNoClassDefFoundError("<clinit> failed for class %s; see exception in other thread",
4928 klass->PrettyDescriptor().c_str());
4929 VlogClassInitializationFailure(klass);
4930 return false;
4931 }
4932 if (klass->IsInitialized()) {
4933 return true;
4934 }
4935 LOG(FATAL) << "Unexpected class status. " << klass->PrettyClass() << " is "
4936 << klass->GetStatus();
4937 }
4938 UNREACHABLE();
4939 }
4940
ThrowSignatureCheckResolveReturnTypeException(Handle<mirror::Class> klass,Handle<mirror::Class> super_klass,ArtMethod * method,ArtMethod * m)4941 static void ThrowSignatureCheckResolveReturnTypeException(Handle<mirror::Class> klass,
4942 Handle<mirror::Class> super_klass,
4943 ArtMethod* method,
4944 ArtMethod* m)
4945 REQUIRES_SHARED(Locks::mutator_lock_) {
4946 DCHECK(Thread::Current()->IsExceptionPending());
4947 DCHECK(!m->IsProxyMethod());
4948 const DexFile* dex_file = m->GetDexFile();
4949 const DexFile::MethodId& method_id = dex_file->GetMethodId(m->GetDexMethodIndex());
4950 const DexFile::ProtoId& proto_id = dex_file->GetMethodPrototype(method_id);
4951 dex::TypeIndex return_type_idx = proto_id.return_type_idx_;
4952 std::string return_type = dex_file->PrettyType(return_type_idx);
4953 std::string class_loader = mirror::Object::PrettyTypeOf(m->GetDeclaringClass()->GetClassLoader());
4954 ThrowWrappedLinkageError(klass.Get(),
4955 "While checking class %s method %s signature against %s %s: "
4956 "Failed to resolve return type %s with %s",
4957 mirror::Class::PrettyDescriptor(klass.Get()).c_str(),
4958 ArtMethod::PrettyMethod(method).c_str(),
4959 super_klass->IsInterface() ? "interface" : "superclass",
4960 mirror::Class::PrettyDescriptor(super_klass.Get()).c_str(),
4961 return_type.c_str(), class_loader.c_str());
4962 }
4963
ThrowSignatureCheckResolveArgException(Handle<mirror::Class> klass,Handle<mirror::Class> super_klass,ArtMethod * method,ArtMethod * m,uint32_t index,dex::TypeIndex arg_type_idx)4964 static void ThrowSignatureCheckResolveArgException(Handle<mirror::Class> klass,
4965 Handle<mirror::Class> super_klass,
4966 ArtMethod* method,
4967 ArtMethod* m,
4968 uint32_t index,
4969 dex::TypeIndex arg_type_idx)
4970 REQUIRES_SHARED(Locks::mutator_lock_) {
4971 DCHECK(Thread::Current()->IsExceptionPending());
4972 DCHECK(!m->IsProxyMethod());
4973 const DexFile* dex_file = m->GetDexFile();
4974 std::string arg_type = dex_file->PrettyType(arg_type_idx);
4975 std::string class_loader = mirror::Object::PrettyTypeOf(m->GetDeclaringClass()->GetClassLoader());
4976 ThrowWrappedLinkageError(klass.Get(),
4977 "While checking class %s method %s signature against %s %s: "
4978 "Failed to resolve arg %u type %s with %s",
4979 mirror::Class::PrettyDescriptor(klass.Get()).c_str(),
4980 ArtMethod::PrettyMethod(method).c_str(),
4981 super_klass->IsInterface() ? "interface" : "superclass",
4982 mirror::Class::PrettyDescriptor(super_klass.Get()).c_str(),
4983 index, arg_type.c_str(), class_loader.c_str());
4984 }
4985
ThrowSignatureMismatch(Handle<mirror::Class> klass,Handle<mirror::Class> super_klass,ArtMethod * method,const std::string & error_msg)4986 static void ThrowSignatureMismatch(Handle<mirror::Class> klass,
4987 Handle<mirror::Class> super_klass,
4988 ArtMethod* method,
4989 const std::string& error_msg)
4990 REQUIRES_SHARED(Locks::mutator_lock_) {
4991 ThrowLinkageError(klass.Get(),
4992 "Class %s method %s resolves differently in %s %s: %s",
4993 mirror::Class::PrettyDescriptor(klass.Get()).c_str(),
4994 ArtMethod::PrettyMethod(method).c_str(),
4995 super_klass->IsInterface() ? "interface" : "superclass",
4996 mirror::Class::PrettyDescriptor(super_klass.Get()).c_str(),
4997 error_msg.c_str());
4998 }
4999
HasSameSignatureWithDifferentClassLoaders(Thread * self,Handle<mirror::Class> klass,Handle<mirror::Class> super_klass,ArtMethod * method1,ArtMethod * method2)5000 static bool HasSameSignatureWithDifferentClassLoaders(Thread* self,
5001 Handle<mirror::Class> klass,
5002 Handle<mirror::Class> super_klass,
5003 ArtMethod* method1,
5004 ArtMethod* method2)
5005 REQUIRES_SHARED(Locks::mutator_lock_) {
5006 {
5007 StackHandleScope<1> hs(self);
5008 Handle<mirror::Class> return_type(hs.NewHandle(method1->GetReturnType(true /* resolve */)));
5009 if (UNLIKELY(return_type == nullptr)) {
5010 ThrowSignatureCheckResolveReturnTypeException(klass, super_klass, method1, method1);
5011 return false;
5012 }
5013 ObjPtr<mirror::Class> other_return_type = method2->GetReturnType(true /* resolve */);
5014 if (UNLIKELY(other_return_type == nullptr)) {
5015 ThrowSignatureCheckResolveReturnTypeException(klass, super_klass, method1, method2);
5016 return false;
5017 }
5018 if (UNLIKELY(other_return_type != return_type.Get())) {
5019 ThrowSignatureMismatch(klass, super_klass, method1,
5020 StringPrintf("Return types mismatch: %s(%p) vs %s(%p)",
5021 return_type->PrettyClassAndClassLoader().c_str(),
5022 return_type.Get(),
5023 other_return_type->PrettyClassAndClassLoader().c_str(),
5024 other_return_type.Ptr()));
5025 return false;
5026 }
5027 }
5028 const DexFile::TypeList* types1 = method1->GetParameterTypeList();
5029 const DexFile::TypeList* types2 = method2->GetParameterTypeList();
5030 if (types1 == nullptr) {
5031 if (types2 != nullptr && types2->Size() != 0) {
5032 ThrowSignatureMismatch(klass, super_klass, method1,
5033 StringPrintf("Type list mismatch with %s",
5034 method2->PrettyMethod(true).c_str()));
5035 return false;
5036 }
5037 return true;
5038 } else if (UNLIKELY(types2 == nullptr)) {
5039 if (types1->Size() != 0) {
5040 ThrowSignatureMismatch(klass, super_klass, method1,
5041 StringPrintf("Type list mismatch with %s",
5042 method2->PrettyMethod(true).c_str()));
5043 return false;
5044 }
5045 return true;
5046 }
5047 uint32_t num_types = types1->Size();
5048 if (UNLIKELY(num_types != types2->Size())) {
5049 ThrowSignatureMismatch(klass, super_klass, method1,
5050 StringPrintf("Type list mismatch with %s",
5051 method2->PrettyMethod(true).c_str()));
5052 return false;
5053 }
5054 for (uint32_t i = 0; i < num_types; ++i) {
5055 StackHandleScope<1> hs(self);
5056 dex::TypeIndex param_type_idx = types1->GetTypeItem(i).type_idx_;
5057 Handle<mirror::Class> param_type(hs.NewHandle(
5058 method1->GetClassFromTypeIndex(param_type_idx, true /* resolve */)));
5059 if (UNLIKELY(param_type == nullptr)) {
5060 ThrowSignatureCheckResolveArgException(klass, super_klass, method1,
5061 method1, i, param_type_idx);
5062 return false;
5063 }
5064 dex::TypeIndex other_param_type_idx = types2->GetTypeItem(i).type_idx_;
5065 ObjPtr<mirror::Class> other_param_type =
5066 method2->GetClassFromTypeIndex(other_param_type_idx, true /* resolve */);
5067 if (UNLIKELY(other_param_type == nullptr)) {
5068 ThrowSignatureCheckResolveArgException(klass, super_klass, method1,
5069 method2, i, other_param_type_idx);
5070 return false;
5071 }
5072 if (UNLIKELY(param_type.Get() != other_param_type)) {
5073 ThrowSignatureMismatch(klass, super_klass, method1,
5074 StringPrintf("Parameter %u type mismatch: %s(%p) vs %s(%p)",
5075 i,
5076 param_type->PrettyClassAndClassLoader().c_str(),
5077 param_type.Get(),
5078 other_param_type->PrettyClassAndClassLoader().c_str(),
5079 other_param_type.Ptr()));
5080 return false;
5081 }
5082 }
5083 return true;
5084 }
5085
5086
ValidateSuperClassDescriptors(Handle<mirror::Class> klass)5087 bool ClassLinker::ValidateSuperClassDescriptors(Handle<mirror::Class> klass) {
5088 if (klass->IsInterface()) {
5089 return true;
5090 }
5091 // Begin with the methods local to the superclass.
5092 Thread* self = Thread::Current();
5093 StackHandleScope<1> hs(self);
5094 MutableHandle<mirror::Class> super_klass(hs.NewHandle<mirror::Class>(nullptr));
5095 if (klass->HasSuperClass() &&
5096 klass->GetClassLoader() != klass->GetSuperClass()->GetClassLoader()) {
5097 super_klass.Assign(klass->GetSuperClass());
5098 for (int i = klass->GetSuperClass()->GetVTableLength() - 1; i >= 0; --i) {
5099 auto* m = klass->GetVTableEntry(i, image_pointer_size_);
5100 auto* super_m = klass->GetSuperClass()->GetVTableEntry(i, image_pointer_size_);
5101 if (m != super_m) {
5102 if (UNLIKELY(!HasSameSignatureWithDifferentClassLoaders(self,
5103 klass,
5104 super_klass,
5105 m,
5106 super_m))) {
5107 self->AssertPendingException();
5108 return false;
5109 }
5110 }
5111 }
5112 }
5113 for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) {
5114 super_klass.Assign(klass->GetIfTable()->GetInterface(i));
5115 if (klass->GetClassLoader() != super_klass->GetClassLoader()) {
5116 uint32_t num_methods = super_klass->NumVirtualMethods();
5117 for (uint32_t j = 0; j < num_methods; ++j) {
5118 auto* m = klass->GetIfTable()->GetMethodArray(i)->GetElementPtrSize<ArtMethod*>(
5119 j, image_pointer_size_);
5120 auto* super_m = super_klass->GetVirtualMethod(j, image_pointer_size_);
5121 if (m != super_m) {
5122 if (UNLIKELY(!HasSameSignatureWithDifferentClassLoaders(self,
5123 klass,
5124 super_klass,
5125 m,
5126 super_m))) {
5127 self->AssertPendingException();
5128 return false;
5129 }
5130 }
5131 }
5132 }
5133 }
5134 return true;
5135 }
5136
EnsureInitialized(Thread * self,Handle<mirror::Class> c,bool can_init_fields,bool can_init_parents)5137 bool ClassLinker::EnsureInitialized(Thread* self,
5138 Handle<mirror::Class> c,
5139 bool can_init_fields,
5140 bool can_init_parents) {
5141 DCHECK(c != nullptr);
5142 if (c->IsInitialized()) {
5143 EnsureSkipAccessChecksMethods(c, image_pointer_size_);
5144 self->AssertNoPendingException();
5145 return true;
5146 }
5147 const bool success = InitializeClass(self, c, can_init_fields, can_init_parents);
5148 if (!success) {
5149 if (can_init_fields && can_init_parents) {
5150 CHECK(self->IsExceptionPending()) << c->PrettyClass();
5151 }
5152 } else {
5153 self->AssertNoPendingException();
5154 }
5155 return success;
5156 }
5157
FixupTemporaryDeclaringClass(ObjPtr<mirror::Class> temp_class,ObjPtr<mirror::Class> new_class)5158 void ClassLinker::FixupTemporaryDeclaringClass(ObjPtr<mirror::Class> temp_class,
5159 ObjPtr<mirror::Class> new_class) {
5160 DCHECK_EQ(temp_class->NumInstanceFields(), 0u);
5161 for (ArtField& field : new_class->GetIFields()) {
5162 if (field.GetDeclaringClass() == temp_class) {
5163 field.SetDeclaringClass(new_class);
5164 }
5165 }
5166
5167 DCHECK_EQ(temp_class->NumStaticFields(), 0u);
5168 for (ArtField& field : new_class->GetSFields()) {
5169 if (field.GetDeclaringClass() == temp_class) {
5170 field.SetDeclaringClass(new_class);
5171 }
5172 }
5173
5174 DCHECK_EQ(temp_class->NumDirectMethods(), 0u);
5175 DCHECK_EQ(temp_class->NumVirtualMethods(), 0u);
5176 for (auto& method : new_class->GetMethods(image_pointer_size_)) {
5177 if (method.GetDeclaringClass() == temp_class) {
5178 method.SetDeclaringClass(new_class);
5179 }
5180 }
5181
5182 // Make sure the remembered set and mod-union tables know that we updated some of the native
5183 // roots.
5184 Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(new_class);
5185 }
5186
RegisterClassLoader(ObjPtr<mirror::ClassLoader> class_loader)5187 void ClassLinker::RegisterClassLoader(ObjPtr<mirror::ClassLoader> class_loader) {
5188 CHECK(class_loader->GetAllocator() == nullptr);
5189 CHECK(class_loader->GetClassTable() == nullptr);
5190 Thread* const self = Thread::Current();
5191 ClassLoaderData data;
5192 data.weak_root = self->GetJniEnv()->vm->AddWeakGlobalRef(self, class_loader);
5193 // Create and set the class table.
5194 data.class_table = new ClassTable;
5195 class_loader->SetClassTable(data.class_table);
5196 // Create and set the linear allocator.
5197 data.allocator = Runtime::Current()->CreateLinearAlloc();
5198 class_loader->SetAllocator(data.allocator);
5199 // Add to the list so that we know to free the data later.
5200 class_loaders_.push_back(data);
5201 }
5202
InsertClassTableForClassLoader(ObjPtr<mirror::ClassLoader> class_loader)5203 ClassTable* ClassLinker::InsertClassTableForClassLoader(ObjPtr<mirror::ClassLoader> class_loader) {
5204 if (class_loader == nullptr) {
5205 return &boot_class_table_;
5206 }
5207 ClassTable* class_table = class_loader->GetClassTable();
5208 if (class_table == nullptr) {
5209 RegisterClassLoader(class_loader);
5210 class_table = class_loader->GetClassTable();
5211 DCHECK(class_table != nullptr);
5212 }
5213 return class_table;
5214 }
5215
ClassTableForClassLoader(ObjPtr<mirror::ClassLoader> class_loader)5216 ClassTable* ClassLinker::ClassTableForClassLoader(ObjPtr<mirror::ClassLoader> class_loader) {
5217 return class_loader == nullptr ? &boot_class_table_ : class_loader->GetClassTable();
5218 }
5219
FindSuperImt(ObjPtr<mirror::Class> klass,PointerSize pointer_size)5220 static ImTable* FindSuperImt(ObjPtr<mirror::Class> klass, PointerSize pointer_size)
5221 REQUIRES_SHARED(Locks::mutator_lock_) {
5222 while (klass->HasSuperClass()) {
5223 klass = klass->GetSuperClass();
5224 if (klass->ShouldHaveImt()) {
5225 return klass->GetImt(pointer_size);
5226 }
5227 }
5228 return nullptr;
5229 }
5230
LinkClass(Thread * self,const char * descriptor,Handle<mirror::Class> klass,Handle<mirror::ObjectArray<mirror::Class>> interfaces,MutableHandle<mirror::Class> * h_new_class_out)5231 bool ClassLinker::LinkClass(Thread* self,
5232 const char* descriptor,
5233 Handle<mirror::Class> klass,
5234 Handle<mirror::ObjectArray<mirror::Class>> interfaces,
5235 MutableHandle<mirror::Class>* h_new_class_out) {
5236 CHECK_EQ(mirror::Class::kStatusLoaded, klass->GetStatus());
5237
5238 if (!LinkSuperClass(klass)) {
5239 return false;
5240 }
5241 ArtMethod* imt_data[ImTable::kSize];
5242 // If there are any new conflicts compared to super class.
5243 bool new_conflict = false;
5244 std::fill_n(imt_data, arraysize(imt_data), Runtime::Current()->GetImtUnimplementedMethod());
5245 if (!LinkMethods(self, klass, interfaces, &new_conflict, imt_data)) {
5246 return false;
5247 }
5248 if (!LinkInstanceFields(self, klass)) {
5249 return false;
5250 }
5251 size_t class_size;
5252 if (!LinkStaticFields(self, klass, &class_size)) {
5253 return false;
5254 }
5255 CreateReferenceInstanceOffsets(klass);
5256 CHECK_EQ(mirror::Class::kStatusLoaded, klass->GetStatus());
5257
5258 ImTable* imt = nullptr;
5259 if (klass->ShouldHaveImt()) {
5260 // If there are any new conflicts compared to the super class we can not make a copy. There
5261 // can be cases where both will have a conflict method at the same slot without having the same
5262 // set of conflicts. In this case, we can not share the IMT since the conflict table slow path
5263 // will possibly create a table that is incorrect for either of the classes.
5264 // Same IMT with new_conflict does not happen very often.
5265 if (!new_conflict) {
5266 ImTable* super_imt = FindSuperImt(klass.Get(), image_pointer_size_);
5267 if (super_imt != nullptr) {
5268 bool imt_equals = true;
5269 for (size_t i = 0; i < ImTable::kSize && imt_equals; ++i) {
5270 imt_equals = imt_equals && (super_imt->Get(i, image_pointer_size_) == imt_data[i]);
5271 }
5272 if (imt_equals) {
5273 imt = super_imt;
5274 }
5275 }
5276 }
5277 if (imt == nullptr) {
5278 LinearAlloc* allocator = GetAllocatorForClassLoader(klass->GetClassLoader());
5279 imt = reinterpret_cast<ImTable*>(
5280 allocator->Alloc(self, ImTable::SizeInBytes(image_pointer_size_)));
5281 if (imt == nullptr) {
5282 return false;
5283 }
5284 imt->Populate(imt_data, image_pointer_size_);
5285 }
5286 }
5287
5288 if (!klass->IsTemp() || (!init_done_ && klass->GetClassSize() == class_size)) {
5289 // We don't need to retire this class as it has no embedded tables or it was created the
5290 // correct size during class linker initialization.
5291 CHECK_EQ(klass->GetClassSize(), class_size) << klass->PrettyDescriptor();
5292
5293 if (klass->ShouldHaveEmbeddedVTable()) {
5294 klass->PopulateEmbeddedVTable(image_pointer_size_);
5295 }
5296 if (klass->ShouldHaveImt()) {
5297 klass->SetImt(imt, image_pointer_size_);
5298 }
5299
5300 // Update CHA info based on whether we override methods.
5301 // Have to do this before setting the class as resolved which allows
5302 // instantiation of klass.
5303 Runtime::Current()->GetClassHierarchyAnalysis()->UpdateAfterLoadingOf(klass);
5304
5305 // This will notify waiters on klass that saw the not yet resolved
5306 // class in the class_table_ during EnsureResolved.
5307 mirror::Class::SetStatus(klass, mirror::Class::kStatusResolved, self);
5308 h_new_class_out->Assign(klass.Get());
5309 } else {
5310 CHECK(!klass->IsResolved());
5311 // Retire the temporary class and create the correctly sized resolved class.
5312 StackHandleScope<1> hs(self);
5313 auto h_new_class = hs.NewHandle(klass->CopyOf(self, class_size, imt, image_pointer_size_));
5314 // Set arrays to null since we don't want to have multiple classes with the same ArtField or
5315 // ArtMethod array pointers. If this occurs, it causes bugs in remembered sets since the GC
5316 // may not see any references to the target space and clean the card for a class if another
5317 // class had the same array pointer.
5318 klass->SetMethodsPtrUnchecked(nullptr, 0, 0);
5319 klass->SetSFieldsPtrUnchecked(nullptr);
5320 klass->SetIFieldsPtrUnchecked(nullptr);
5321 if (UNLIKELY(h_new_class == nullptr)) {
5322 self->AssertPendingOOMException();
5323 mirror::Class::SetStatus(klass, mirror::Class::kStatusErrorUnresolved, self);
5324 return false;
5325 }
5326
5327 CHECK_EQ(h_new_class->GetClassSize(), class_size);
5328 ObjectLock<mirror::Class> lock(self, h_new_class);
5329 FixupTemporaryDeclaringClass(klass.Get(), h_new_class.Get());
5330
5331 {
5332 WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
5333 ObjPtr<mirror::ClassLoader> const class_loader = h_new_class.Get()->GetClassLoader();
5334 ClassTable* const table = InsertClassTableForClassLoader(class_loader);
5335 ObjPtr<mirror::Class> existing = table->UpdateClass(descriptor, h_new_class.Get(),
5336 ComputeModifiedUtf8Hash(descriptor));
5337 if (class_loader != nullptr) {
5338 // We updated the class in the class table, perform the write barrier so that the GC knows
5339 // about the change.
5340 Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(class_loader);
5341 }
5342 CHECK_EQ(existing, klass.Get());
5343 if (log_new_roots_) {
5344 new_class_roots_.push_back(GcRoot<mirror::Class>(h_new_class.Get()));
5345 }
5346 }
5347
5348 // Update CHA info based on whether we override methods.
5349 // Have to do this before setting the class as resolved which allows
5350 // instantiation of klass.
5351 Runtime::Current()->GetClassHierarchyAnalysis()->UpdateAfterLoadingOf(h_new_class);
5352
5353 // This will notify waiters on temp class that saw the not yet resolved class in the
5354 // class_table_ during EnsureResolved.
5355 mirror::Class::SetStatus(klass, mirror::Class::kStatusRetired, self);
5356
5357 CHECK_EQ(h_new_class->GetStatus(), mirror::Class::kStatusResolving);
5358 // This will notify waiters on new_class that saw the not yet resolved
5359 // class in the class_table_ during EnsureResolved.
5360 mirror::Class::SetStatus(h_new_class, mirror::Class::kStatusResolved, self);
5361 // Return the new class.
5362 h_new_class_out->Assign(h_new_class.Get());
5363 }
5364 return true;
5365 }
5366
CountMethodsAndFields(ClassDataItemIterator & dex_data,size_t * virtual_methods,size_t * direct_methods,size_t * static_fields,size_t * instance_fields)5367 static void CountMethodsAndFields(ClassDataItemIterator& dex_data,
5368 size_t* virtual_methods,
5369 size_t* direct_methods,
5370 size_t* static_fields,
5371 size_t* instance_fields) {
5372 *virtual_methods = *direct_methods = *static_fields = *instance_fields = 0;
5373
5374 while (dex_data.HasNextStaticField()) {
5375 dex_data.Next();
5376 (*static_fields)++;
5377 }
5378 while (dex_data.HasNextInstanceField()) {
5379 dex_data.Next();
5380 (*instance_fields)++;
5381 }
5382 while (dex_data.HasNextDirectMethod()) {
5383 (*direct_methods)++;
5384 dex_data.Next();
5385 }
5386 while (dex_data.HasNextVirtualMethod()) {
5387 (*virtual_methods)++;
5388 dex_data.Next();
5389 }
5390 DCHECK(!dex_data.HasNext());
5391 }
5392
DumpClass(std::ostream & os,const DexFile & dex_file,const DexFile::ClassDef & dex_class_def,const char * suffix)5393 static void DumpClass(std::ostream& os,
5394 const DexFile& dex_file, const DexFile::ClassDef& dex_class_def,
5395 const char* suffix) {
5396 ClassDataItemIterator dex_data(dex_file, dex_file.GetClassData(dex_class_def));
5397 os << dex_file.GetClassDescriptor(dex_class_def) << suffix << ":\n";
5398 os << " Static fields:\n";
5399 while (dex_data.HasNextStaticField()) {
5400 const DexFile::FieldId& id = dex_file.GetFieldId(dex_data.GetMemberIndex());
5401 os << " " << dex_file.GetFieldTypeDescriptor(id) << " " << dex_file.GetFieldName(id) << "\n";
5402 dex_data.Next();
5403 }
5404 os << " Instance fields:\n";
5405 while (dex_data.HasNextInstanceField()) {
5406 const DexFile::FieldId& id = dex_file.GetFieldId(dex_data.GetMemberIndex());
5407 os << " " << dex_file.GetFieldTypeDescriptor(id) << " " << dex_file.GetFieldName(id) << "\n";
5408 dex_data.Next();
5409 }
5410 os << " Direct methods:\n";
5411 while (dex_data.HasNextDirectMethod()) {
5412 const DexFile::MethodId& id = dex_file.GetMethodId(dex_data.GetMemberIndex());
5413 os << " " << dex_file.GetMethodName(id) << dex_file.GetMethodSignature(id).ToString() << "\n";
5414 dex_data.Next();
5415 }
5416 os << " Virtual methods:\n";
5417 while (dex_data.HasNextVirtualMethod()) {
5418 const DexFile::MethodId& id = dex_file.GetMethodId(dex_data.GetMemberIndex());
5419 os << " " << dex_file.GetMethodName(id) << dex_file.GetMethodSignature(id).ToString() << "\n";
5420 dex_data.Next();
5421 }
5422 }
5423
DumpClasses(const DexFile & dex_file1,const DexFile::ClassDef & dex_class_def1,const DexFile & dex_file2,const DexFile::ClassDef & dex_class_def2)5424 static std::string DumpClasses(const DexFile& dex_file1,
5425 const DexFile::ClassDef& dex_class_def1,
5426 const DexFile& dex_file2,
5427 const DexFile::ClassDef& dex_class_def2) {
5428 std::ostringstream os;
5429 DumpClass(os, dex_file1, dex_class_def1, " (Compile time)");
5430 DumpClass(os, dex_file2, dex_class_def2, " (Runtime)");
5431 return os.str();
5432 }
5433
5434
5435 // Very simple structural check on whether the classes match. Only compares the number of
5436 // methods and fields.
SimpleStructuralCheck(const DexFile & dex_file1,const DexFile::ClassDef & dex_class_def1,const DexFile & dex_file2,const DexFile::ClassDef & dex_class_def2,std::string * error_msg)5437 static bool SimpleStructuralCheck(const DexFile& dex_file1,
5438 const DexFile::ClassDef& dex_class_def1,
5439 const DexFile& dex_file2,
5440 const DexFile::ClassDef& dex_class_def2,
5441 std::string* error_msg) {
5442 ClassDataItemIterator dex_data1(dex_file1, dex_file1.GetClassData(dex_class_def1));
5443 ClassDataItemIterator dex_data2(dex_file2, dex_file2.GetClassData(dex_class_def2));
5444
5445 // Counters for current dex file.
5446 size_t dex_virtual_methods1, dex_direct_methods1, dex_static_fields1, dex_instance_fields1;
5447 CountMethodsAndFields(dex_data1,
5448 &dex_virtual_methods1,
5449 &dex_direct_methods1,
5450 &dex_static_fields1,
5451 &dex_instance_fields1);
5452 // Counters for compile-time dex file.
5453 size_t dex_virtual_methods2, dex_direct_methods2, dex_static_fields2, dex_instance_fields2;
5454 CountMethodsAndFields(dex_data2,
5455 &dex_virtual_methods2,
5456 &dex_direct_methods2,
5457 &dex_static_fields2,
5458 &dex_instance_fields2);
5459
5460 if (dex_virtual_methods1 != dex_virtual_methods2) {
5461 std::string class_dump = DumpClasses(dex_file1, dex_class_def1, dex_file2, dex_class_def2);
5462 *error_msg = StringPrintf("Virtual method count off: %zu vs %zu\n%s",
5463 dex_virtual_methods1,
5464 dex_virtual_methods2,
5465 class_dump.c_str());
5466 return false;
5467 }
5468 if (dex_direct_methods1 != dex_direct_methods2) {
5469 std::string class_dump = DumpClasses(dex_file1, dex_class_def1, dex_file2, dex_class_def2);
5470 *error_msg = StringPrintf("Direct method count off: %zu vs %zu\n%s",
5471 dex_direct_methods1,
5472 dex_direct_methods2,
5473 class_dump.c_str());
5474 return false;
5475 }
5476 if (dex_static_fields1 != dex_static_fields2) {
5477 std::string class_dump = DumpClasses(dex_file1, dex_class_def1, dex_file2, dex_class_def2);
5478 *error_msg = StringPrintf("Static field count off: %zu vs %zu\n%s",
5479 dex_static_fields1,
5480 dex_static_fields2,
5481 class_dump.c_str());
5482 return false;
5483 }
5484 if (dex_instance_fields1 != dex_instance_fields2) {
5485 std::string class_dump = DumpClasses(dex_file1, dex_class_def1, dex_file2, dex_class_def2);
5486 *error_msg = StringPrintf("Instance field count off: %zu vs %zu\n%s",
5487 dex_instance_fields1,
5488 dex_instance_fields2,
5489 class_dump.c_str());
5490 return false;
5491 }
5492
5493 return true;
5494 }
5495
5496 // Checks whether a the super-class changed from what we had at compile-time. This would
5497 // invalidate quickening.
CheckSuperClassChange(Handle<mirror::Class> klass,const DexFile & dex_file,const DexFile::ClassDef & class_def,ObjPtr<mirror::Class> super_class)5498 static bool CheckSuperClassChange(Handle<mirror::Class> klass,
5499 const DexFile& dex_file,
5500 const DexFile::ClassDef& class_def,
5501 ObjPtr<mirror::Class> super_class)
5502 REQUIRES_SHARED(Locks::mutator_lock_) {
5503 // Check for unexpected changes in the superclass.
5504 // Quick check 1) is the super_class class-loader the boot class loader? This always has
5505 // precedence.
5506 if (super_class->GetClassLoader() != nullptr &&
5507 // Quick check 2) different dex cache? Breaks can only occur for different dex files,
5508 // which is implied by different dex cache.
5509 klass->GetDexCache() != super_class->GetDexCache()) {
5510 // Now comes the expensive part: things can be broken if (a) the klass' dex file has a
5511 // definition for the super-class, and (b) the files are in separate oat files. The oat files
5512 // are referenced from the dex file, so do (b) first. Only relevant if we have oat files.
5513 const OatDexFile* class_oat_dex_file = dex_file.GetOatDexFile();
5514 const OatFile* class_oat_file = nullptr;
5515 if (class_oat_dex_file != nullptr) {
5516 class_oat_file = class_oat_dex_file->GetOatFile();
5517 }
5518
5519 if (class_oat_file != nullptr) {
5520 const OatDexFile* loaded_super_oat_dex_file = super_class->GetDexFile().GetOatDexFile();
5521 const OatFile* loaded_super_oat_file = nullptr;
5522 if (loaded_super_oat_dex_file != nullptr) {
5523 loaded_super_oat_file = loaded_super_oat_dex_file->GetOatFile();
5524 }
5525
5526 if (loaded_super_oat_file != nullptr && class_oat_file != loaded_super_oat_file) {
5527 // Now check (a).
5528 const DexFile::ClassDef* super_class_def = dex_file.FindClassDef(class_def.superclass_idx_);
5529 if (super_class_def != nullptr) {
5530 // Uh-oh, we found something. Do our check.
5531 std::string error_msg;
5532 if (!SimpleStructuralCheck(dex_file, *super_class_def,
5533 super_class->GetDexFile(), *super_class->GetClassDef(),
5534 &error_msg)) {
5535 // Print a warning to the log. This exception might be caught, e.g., as common in test
5536 // drivers. When the class is later tried to be used, we re-throw a new instance, as we
5537 // only save the type of the exception.
5538 LOG(WARNING) << "Incompatible structural change detected: " <<
5539 StringPrintf(
5540 "Structural change of %s is hazardous (%s at compile time, %s at runtime): %s",
5541 dex_file.PrettyType(super_class_def->class_idx_).c_str(),
5542 class_oat_file->GetLocation().c_str(),
5543 loaded_super_oat_file->GetLocation().c_str(),
5544 error_msg.c_str());
5545 ThrowIncompatibleClassChangeError(klass.Get(),
5546 "Structural change of %s is hazardous (%s at compile time, %s at runtime): %s",
5547 dex_file.PrettyType(super_class_def->class_idx_).c_str(),
5548 class_oat_file->GetLocation().c_str(),
5549 loaded_super_oat_file->GetLocation().c_str(),
5550 error_msg.c_str());
5551 return false;
5552 }
5553 }
5554 }
5555 }
5556 }
5557 return true;
5558 }
5559
LoadSuperAndInterfaces(Handle<mirror::Class> klass,const DexFile & dex_file)5560 bool ClassLinker::LoadSuperAndInterfaces(Handle<mirror::Class> klass, const DexFile& dex_file) {
5561 CHECK_EQ(mirror::Class::kStatusIdx, klass->GetStatus());
5562 const DexFile::ClassDef& class_def = dex_file.GetClassDef(klass->GetDexClassDefIndex());
5563 dex::TypeIndex super_class_idx = class_def.superclass_idx_;
5564 if (super_class_idx.IsValid()) {
5565 // Check that a class does not inherit from itself directly.
5566 //
5567 // TODO: This is a cheap check to detect the straightforward case
5568 // of a class extending itself (b/28685551), but we should do a
5569 // proper cycle detection on loaded classes, to detect all cases
5570 // of class circularity errors (b/28830038).
5571 if (super_class_idx == class_def.class_idx_) {
5572 ThrowClassCircularityError(klass.Get(),
5573 "Class %s extends itself",
5574 klass->PrettyDescriptor().c_str());
5575 return false;
5576 }
5577
5578 ObjPtr<mirror::Class> super_class = ResolveType(dex_file, super_class_idx, klass.Get());
5579 if (super_class == nullptr) {
5580 DCHECK(Thread::Current()->IsExceptionPending());
5581 return false;
5582 }
5583 // Verify
5584 if (!klass->CanAccess(super_class)) {
5585 ThrowIllegalAccessError(klass.Get(), "Class %s extended by class %s is inaccessible",
5586 super_class->PrettyDescriptor().c_str(),
5587 klass->PrettyDescriptor().c_str());
5588 return false;
5589 }
5590 CHECK(super_class->IsResolved());
5591 klass->SetSuperClass(super_class);
5592
5593 if (!CheckSuperClassChange(klass, dex_file, class_def, super_class)) {
5594 DCHECK(Thread::Current()->IsExceptionPending());
5595 return false;
5596 }
5597 }
5598 const DexFile::TypeList* interfaces = dex_file.GetInterfacesList(class_def);
5599 if (interfaces != nullptr) {
5600 for (size_t i = 0; i < interfaces->Size(); i++) {
5601 dex::TypeIndex idx = interfaces->GetTypeItem(i).type_idx_;
5602 ObjPtr<mirror::Class> interface = ResolveType(dex_file, idx, klass.Get());
5603 if (interface == nullptr) {
5604 DCHECK(Thread::Current()->IsExceptionPending());
5605 return false;
5606 }
5607 // Verify
5608 if (!klass->CanAccess(interface)) {
5609 // TODO: the RI seemed to ignore this in my testing.
5610 ThrowIllegalAccessError(klass.Get(),
5611 "Interface %s implemented by class %s is inaccessible",
5612 interface->PrettyDescriptor().c_str(),
5613 klass->PrettyDescriptor().c_str());
5614 return false;
5615 }
5616 }
5617 }
5618 // Mark the class as loaded.
5619 mirror::Class::SetStatus(klass, mirror::Class::kStatusLoaded, nullptr);
5620 return true;
5621 }
5622
LinkSuperClass(Handle<mirror::Class> klass)5623 bool ClassLinker::LinkSuperClass(Handle<mirror::Class> klass) {
5624 CHECK(!klass->IsPrimitive());
5625 ObjPtr<mirror::Class> super = klass->GetSuperClass();
5626 if (klass.Get() == GetClassRoot(kJavaLangObject)) {
5627 if (super != nullptr) {
5628 ThrowClassFormatError(klass.Get(), "java.lang.Object must not have a superclass");
5629 return false;
5630 }
5631 return true;
5632 }
5633 if (super == nullptr) {
5634 ThrowLinkageError(klass.Get(), "No superclass defined for class %s",
5635 klass->PrettyDescriptor().c_str());
5636 return false;
5637 }
5638 // Verify
5639 if (super->IsFinal() || super->IsInterface()) {
5640 ThrowIncompatibleClassChangeError(klass.Get(),
5641 "Superclass %s of %s is %s",
5642 super->PrettyDescriptor().c_str(),
5643 klass->PrettyDescriptor().c_str(),
5644 super->IsFinal() ? "declared final" : "an interface");
5645 return false;
5646 }
5647 if (!klass->CanAccess(super)) {
5648 ThrowIllegalAccessError(klass.Get(), "Superclass %s is inaccessible to class %s",
5649 super->PrettyDescriptor().c_str(),
5650 klass->PrettyDescriptor().c_str());
5651 return false;
5652 }
5653
5654 // Inherit kAccClassIsFinalizable from the superclass in case this
5655 // class doesn't override finalize.
5656 if (super->IsFinalizable()) {
5657 klass->SetFinalizable();
5658 }
5659
5660 // Inherit class loader flag form super class.
5661 if (super->IsClassLoaderClass()) {
5662 klass->SetClassLoaderClass();
5663 }
5664
5665 // Inherit reference flags (if any) from the superclass.
5666 uint32_t reference_flags = (super->GetClassFlags() & mirror::kClassFlagReference);
5667 if (reference_flags != 0) {
5668 CHECK_EQ(klass->GetClassFlags(), 0u);
5669 klass->SetClassFlags(klass->GetClassFlags() | reference_flags);
5670 }
5671 // Disallow custom direct subclasses of java.lang.ref.Reference.
5672 if (init_done_ && super == GetClassRoot(kJavaLangRefReference)) {
5673 ThrowLinkageError(klass.Get(),
5674 "Class %s attempts to subclass java.lang.ref.Reference, which is not allowed",
5675 klass->PrettyDescriptor().c_str());
5676 return false;
5677 }
5678
5679 if (kIsDebugBuild) {
5680 // Ensure super classes are fully resolved prior to resolving fields..
5681 while (super != nullptr) {
5682 CHECK(super->IsResolved());
5683 super = super->GetSuperClass();
5684 }
5685 }
5686 return true;
5687 }
5688
5689 // Populate the class vtable and itable. Compute return type indices.
LinkMethods(Thread * self,Handle<mirror::Class> klass,Handle<mirror::ObjectArray<mirror::Class>> interfaces,bool * out_new_conflict,ArtMethod ** out_imt)5690 bool ClassLinker::LinkMethods(Thread* self,
5691 Handle<mirror::Class> klass,
5692 Handle<mirror::ObjectArray<mirror::Class>> interfaces,
5693 bool* out_new_conflict,
5694 ArtMethod** out_imt) {
5695 self->AllowThreadSuspension();
5696 // A map from vtable indexes to the method they need to be updated to point to. Used because we
5697 // need to have default methods be in the virtuals array of each class but we don't set that up
5698 // until LinkInterfaceMethods.
5699 std::unordered_map<size_t, ClassLinker::MethodTranslation> default_translations;
5700 // Link virtual methods then interface methods.
5701 // We set up the interface lookup table first because we need it to determine if we need to update
5702 // any vtable entries with new default method implementations.
5703 return SetupInterfaceLookupTable(self, klass, interfaces)
5704 && LinkVirtualMethods(self, klass, /*out*/ &default_translations)
5705 && LinkInterfaceMethods(self, klass, default_translations, out_new_conflict, out_imt);
5706 }
5707
5708 // Comparator for name and signature of a method, used in finding overriding methods. Implementation
5709 // avoids the use of handles, if it didn't then rather than compare dex files we could compare dex
5710 // caches in the implementation below.
5711 class MethodNameAndSignatureComparator FINAL : public ValueObject {
5712 public:
5713 explicit MethodNameAndSignatureComparator(ArtMethod* method)
REQUIRES_SHARED(Locks::mutator_lock_)5714 REQUIRES_SHARED(Locks::mutator_lock_) :
5715 dex_file_(method->GetDexFile()), mid_(&dex_file_->GetMethodId(method->GetDexMethodIndex())),
5716 name_(nullptr), name_len_(0) {
5717 DCHECK(!method->IsProxyMethod()) << method->PrettyMethod();
5718 }
5719
GetName()5720 const char* GetName() {
5721 if (name_ == nullptr) {
5722 name_ = dex_file_->StringDataAndUtf16LengthByIdx(mid_->name_idx_, &name_len_);
5723 }
5724 return name_;
5725 }
5726
HasSameNameAndSignature(ArtMethod * other)5727 bool HasSameNameAndSignature(ArtMethod* other)
5728 REQUIRES_SHARED(Locks::mutator_lock_) {
5729 DCHECK(!other->IsProxyMethod()) << other->PrettyMethod();
5730 const DexFile* other_dex_file = other->GetDexFile();
5731 const DexFile::MethodId& other_mid = other_dex_file->GetMethodId(other->GetDexMethodIndex());
5732 if (dex_file_ == other_dex_file) {
5733 return mid_->name_idx_ == other_mid.name_idx_ && mid_->proto_idx_ == other_mid.proto_idx_;
5734 }
5735 GetName(); // Only used to make sure its calculated.
5736 uint32_t other_name_len;
5737 const char* other_name = other_dex_file->StringDataAndUtf16LengthByIdx(other_mid.name_idx_,
5738 &other_name_len);
5739 if (name_len_ != other_name_len || strcmp(name_, other_name) != 0) {
5740 return false;
5741 }
5742 return dex_file_->GetMethodSignature(*mid_) == other_dex_file->GetMethodSignature(other_mid);
5743 }
5744
5745 private:
5746 // Dex file for the method to compare against.
5747 const DexFile* const dex_file_;
5748 // MethodId for the method to compare against.
5749 const DexFile::MethodId* const mid_;
5750 // Lazily computed name from the dex file's strings.
5751 const char* name_;
5752 // Lazily computed name length.
5753 uint32_t name_len_;
5754 };
5755
5756 class LinkVirtualHashTable {
5757 public:
LinkVirtualHashTable(Handle<mirror::Class> klass,size_t hash_size,uint32_t * hash_table,PointerSize image_pointer_size)5758 LinkVirtualHashTable(Handle<mirror::Class> klass,
5759 size_t hash_size,
5760 uint32_t* hash_table,
5761 PointerSize image_pointer_size)
5762 : klass_(klass),
5763 hash_size_(hash_size),
5764 hash_table_(hash_table),
5765 image_pointer_size_(image_pointer_size) {
5766 std::fill(hash_table_, hash_table_ + hash_size_, invalid_index_);
5767 }
5768
Add(uint32_t virtual_method_index)5769 void Add(uint32_t virtual_method_index) REQUIRES_SHARED(Locks::mutator_lock_) {
5770 ArtMethod* local_method = klass_->GetVirtualMethodDuringLinking(
5771 virtual_method_index, image_pointer_size_);
5772 const char* name = local_method->GetInterfaceMethodIfProxy(image_pointer_size_)->GetName();
5773 uint32_t hash = ComputeModifiedUtf8Hash(name);
5774 uint32_t index = hash % hash_size_;
5775 // Linear probe until we have an empty slot.
5776 while (hash_table_[index] != invalid_index_) {
5777 if (++index == hash_size_) {
5778 index = 0;
5779 }
5780 }
5781 hash_table_[index] = virtual_method_index;
5782 }
5783
FindAndRemove(MethodNameAndSignatureComparator * comparator)5784 uint32_t FindAndRemove(MethodNameAndSignatureComparator* comparator)
5785 REQUIRES_SHARED(Locks::mutator_lock_) {
5786 const char* name = comparator->GetName();
5787 uint32_t hash = ComputeModifiedUtf8Hash(name);
5788 size_t index = hash % hash_size_;
5789 while (true) {
5790 const uint32_t value = hash_table_[index];
5791 // Since linear probe makes continuous blocks, hitting an invalid index means we are done
5792 // the block and can safely assume not found.
5793 if (value == invalid_index_) {
5794 break;
5795 }
5796 if (value != removed_index_) { // This signifies not already overriden.
5797 ArtMethod* virtual_method =
5798 klass_->GetVirtualMethodDuringLinking(value, image_pointer_size_);
5799 if (comparator->HasSameNameAndSignature(
5800 virtual_method->GetInterfaceMethodIfProxy(image_pointer_size_))) {
5801 hash_table_[index] = removed_index_;
5802 return value;
5803 }
5804 }
5805 if (++index == hash_size_) {
5806 index = 0;
5807 }
5808 }
5809 return GetNotFoundIndex();
5810 }
5811
GetNotFoundIndex()5812 static uint32_t GetNotFoundIndex() {
5813 return invalid_index_;
5814 }
5815
5816 private:
5817 static const uint32_t invalid_index_;
5818 static const uint32_t removed_index_;
5819
5820 Handle<mirror::Class> klass_;
5821 const size_t hash_size_;
5822 uint32_t* const hash_table_;
5823 const PointerSize image_pointer_size_;
5824 };
5825
5826 const uint32_t LinkVirtualHashTable::invalid_index_ = std::numeric_limits<uint32_t>::max();
5827 const uint32_t LinkVirtualHashTable::removed_index_ = std::numeric_limits<uint32_t>::max() - 1;
5828
LinkVirtualMethods(Thread * self,Handle<mirror::Class> klass,std::unordered_map<size_t,ClassLinker::MethodTranslation> * default_translations)5829 bool ClassLinker::LinkVirtualMethods(
5830 Thread* self,
5831 Handle<mirror::Class> klass,
5832 /*out*/std::unordered_map<size_t, ClassLinker::MethodTranslation>* default_translations) {
5833 const size_t num_virtual_methods = klass->NumVirtualMethods();
5834 if (klass->IsInterface()) {
5835 // No vtable.
5836 if (!IsUint<16>(num_virtual_methods)) {
5837 ThrowClassFormatError(klass.Get(), "Too many methods on interface: %zu", num_virtual_methods);
5838 return false;
5839 }
5840 bool has_defaults = false;
5841 // Assign each method an IMT index and set the default flag.
5842 for (size_t i = 0; i < num_virtual_methods; ++i) {
5843 ArtMethod* m = klass->GetVirtualMethodDuringLinking(i, image_pointer_size_);
5844 m->SetMethodIndex(i);
5845 if (!m->IsAbstract()) {
5846 m->SetAccessFlags(m->GetAccessFlags() | kAccDefault);
5847 has_defaults = true;
5848 }
5849 }
5850 // Mark that we have default methods so that we won't need to scan the virtual_methods_ array
5851 // during initialization. This is a performance optimization. We could simply traverse the
5852 // virtual_methods_ array again during initialization.
5853 if (has_defaults) {
5854 klass->SetHasDefaultMethods();
5855 }
5856 return true;
5857 } else if (klass->HasSuperClass()) {
5858 const size_t super_vtable_length = klass->GetSuperClass()->GetVTableLength();
5859 const size_t max_count = num_virtual_methods + super_vtable_length;
5860 StackHandleScope<2> hs(self);
5861 Handle<mirror::Class> super_class(hs.NewHandle(klass->GetSuperClass()));
5862 MutableHandle<mirror::PointerArray> vtable;
5863 if (super_class->ShouldHaveEmbeddedVTable()) {
5864 vtable = hs.NewHandle(AllocPointerArray(self, max_count));
5865 if (UNLIKELY(vtable == nullptr)) {
5866 self->AssertPendingOOMException();
5867 return false;
5868 }
5869 for (size_t i = 0; i < super_vtable_length; i++) {
5870 vtable->SetElementPtrSize(
5871 i, super_class->GetEmbeddedVTableEntry(i, image_pointer_size_), image_pointer_size_);
5872 }
5873 // We might need to change vtable if we have new virtual methods or new interfaces (since that
5874 // might give us new default methods). If no new interfaces then we can skip the rest since
5875 // the class cannot override any of the super-class's methods. This is required for
5876 // correctness since without it we might not update overridden default method vtable entries
5877 // correctly.
5878 if (num_virtual_methods == 0 && super_class->GetIfTableCount() == klass->GetIfTableCount()) {
5879 klass->SetVTable(vtable.Get());
5880 return true;
5881 }
5882 } else {
5883 DCHECK(super_class->IsAbstract() && !super_class->IsArrayClass());
5884 auto* super_vtable = super_class->GetVTable();
5885 CHECK(super_vtable != nullptr) << super_class->PrettyClass();
5886 // We might need to change vtable if we have new virtual methods or new interfaces (since that
5887 // might give us new default methods). See comment above.
5888 if (num_virtual_methods == 0 && super_class->GetIfTableCount() == klass->GetIfTableCount()) {
5889 klass->SetVTable(super_vtable);
5890 return true;
5891 }
5892 vtable = hs.NewHandle(down_cast<mirror::PointerArray*>(
5893 super_vtable->CopyOf(self, max_count)));
5894 if (UNLIKELY(vtable == nullptr)) {
5895 self->AssertPendingOOMException();
5896 return false;
5897 }
5898 }
5899 // How the algorithm works:
5900 // 1. Populate hash table by adding num_virtual_methods from klass. The values in the hash
5901 // table are: invalid_index for unused slots, index super_vtable_length + i for a virtual
5902 // method which has not been matched to a vtable method, and j if the virtual method at the
5903 // index overrode the super virtual method at index j.
5904 // 2. Loop through super virtual methods, if they overwrite, update hash table to j
5905 // (j < super_vtable_length) to avoid redundant checks. (TODO maybe use this info for reducing
5906 // the need for the initial vtable which we later shrink back down).
5907 // 3. Add non overridden methods to the end of the vtable.
5908 static constexpr size_t kMaxStackHash = 250;
5909 // + 1 so that even if we only have new default methods we will still be able to use this hash
5910 // table (i.e. it will never have 0 size).
5911 const size_t hash_table_size = num_virtual_methods * 3 + 1;
5912 uint32_t* hash_table_ptr;
5913 std::unique_ptr<uint32_t[]> hash_heap_storage;
5914 if (hash_table_size <= kMaxStackHash) {
5915 hash_table_ptr = reinterpret_cast<uint32_t*>(
5916 alloca(hash_table_size * sizeof(*hash_table_ptr)));
5917 } else {
5918 hash_heap_storage.reset(new uint32_t[hash_table_size]);
5919 hash_table_ptr = hash_heap_storage.get();
5920 }
5921 LinkVirtualHashTable hash_table(klass, hash_table_size, hash_table_ptr, image_pointer_size_);
5922 // Add virtual methods to the hash table.
5923 for (size_t i = 0; i < num_virtual_methods; ++i) {
5924 DCHECK(klass->GetVirtualMethodDuringLinking(
5925 i, image_pointer_size_)->GetDeclaringClass() != nullptr);
5926 hash_table.Add(i);
5927 }
5928 // Loop through each super vtable method and see if they are overridden by a method we added to
5929 // the hash table.
5930 for (size_t j = 0; j < super_vtable_length; ++j) {
5931 // Search the hash table to see if we are overridden by any method.
5932 ArtMethod* super_method = vtable->GetElementPtrSize<ArtMethod*>(j, image_pointer_size_);
5933 if (!klass->CanAccessMember(super_method->GetDeclaringClass(),
5934 super_method->GetAccessFlags())) {
5935 // Continue on to the next method since this one is package private and canot be overridden.
5936 // Before Android 4.1, the package-private method super_method might have been incorrectly
5937 // overridden.
5938 continue;
5939 }
5940 MethodNameAndSignatureComparator super_method_name_comparator(
5941 super_method->GetInterfaceMethodIfProxy(image_pointer_size_));
5942 // We remove the method so that subsequent lookups will be faster by making the hash-map
5943 // smaller as we go on.
5944 uint32_t hash_index = hash_table.FindAndRemove(&super_method_name_comparator);
5945 if (hash_index != hash_table.GetNotFoundIndex()) {
5946 ArtMethod* virtual_method = klass->GetVirtualMethodDuringLinking(
5947 hash_index, image_pointer_size_);
5948 if (super_method->IsFinal()) {
5949 ThrowLinkageError(klass.Get(), "Method %s overrides final method in class %s",
5950 virtual_method->PrettyMethod().c_str(),
5951 super_method->GetDeclaringClassDescriptor());
5952 return false;
5953 }
5954 vtable->SetElementPtrSize(j, virtual_method, image_pointer_size_);
5955 virtual_method->SetMethodIndex(j);
5956 } else if (super_method->IsOverridableByDefaultMethod()) {
5957 // We didn't directly override this method but we might through default methods...
5958 // Check for default method update.
5959 ArtMethod* default_method = nullptr;
5960 switch (FindDefaultMethodImplementation(self,
5961 super_method,
5962 klass,
5963 /*out*/&default_method)) {
5964 case DefaultMethodSearchResult::kDefaultConflict: {
5965 // A conflict was found looking for default methods. Note this (assuming it wasn't
5966 // pre-existing) in the translations map.
5967 if (UNLIKELY(!super_method->IsDefaultConflicting())) {
5968 // Don't generate another conflict method to reduce memory use as an optimization.
5969 default_translations->insert(
5970 {j, ClassLinker::MethodTranslation::CreateConflictingMethod()});
5971 }
5972 break;
5973 }
5974 case DefaultMethodSearchResult::kAbstractFound: {
5975 // No conflict but method is abstract.
5976 // We note that this vtable entry must be made abstract.
5977 if (UNLIKELY(!super_method->IsAbstract())) {
5978 default_translations->insert(
5979 {j, ClassLinker::MethodTranslation::CreateAbstractMethod()});
5980 }
5981 break;
5982 }
5983 case DefaultMethodSearchResult::kDefaultFound: {
5984 if (UNLIKELY(super_method->IsDefaultConflicting() ||
5985 default_method->GetDeclaringClass() != super_method->GetDeclaringClass())) {
5986 // Found a default method implementation that is new.
5987 // TODO Refactor this add default methods to virtuals here and not in
5988 // LinkInterfaceMethods maybe.
5989 // The problem is default methods might override previously present
5990 // default-method or miranda-method vtable entries from the superclass.
5991 // Unfortunately we need these to be entries in this class's virtuals. We do not
5992 // give these entries there until LinkInterfaceMethods so we pass this map around
5993 // to let it know which vtable entries need to be updated.
5994 // Make a note that vtable entry j must be updated, store what it needs to be updated
5995 // to. We will allocate a virtual method slot in LinkInterfaceMethods and fix it up
5996 // then.
5997 default_translations->insert(
5998 {j, ClassLinker::MethodTranslation::CreateTranslatedMethod(default_method)});
5999 VLOG(class_linker) << "Method " << super_method->PrettyMethod()
6000 << " overridden by default "
6001 << default_method->PrettyMethod()
6002 << " in " << mirror::Class::PrettyClass(klass.Get());
6003 }
6004 break;
6005 }
6006 }
6007 }
6008 }
6009 size_t actual_count = super_vtable_length;
6010 // Add the non-overridden methods at the end.
6011 for (size_t i = 0; i < num_virtual_methods; ++i) {
6012 ArtMethod* local_method = klass->GetVirtualMethodDuringLinking(i, image_pointer_size_);
6013 size_t method_idx = local_method->GetMethodIndexDuringLinking();
6014 if (method_idx < super_vtable_length &&
6015 local_method == vtable->GetElementPtrSize<ArtMethod*>(method_idx, image_pointer_size_)) {
6016 continue;
6017 }
6018 vtable->SetElementPtrSize(actual_count, local_method, image_pointer_size_);
6019 local_method->SetMethodIndex(actual_count);
6020 ++actual_count;
6021 }
6022 if (!IsUint<16>(actual_count)) {
6023 ThrowClassFormatError(klass.Get(), "Too many methods defined on class: %zd", actual_count);
6024 return false;
6025 }
6026 // Shrink vtable if possible
6027 CHECK_LE(actual_count, max_count);
6028 if (actual_count < max_count) {
6029 vtable.Assign(down_cast<mirror::PointerArray*>(vtable->CopyOf(self, actual_count)));
6030 if (UNLIKELY(vtable == nullptr)) {
6031 self->AssertPendingOOMException();
6032 return false;
6033 }
6034 }
6035 klass->SetVTable(vtable.Get());
6036 } else {
6037 CHECK_EQ(klass.Get(), GetClassRoot(kJavaLangObject));
6038 if (!IsUint<16>(num_virtual_methods)) {
6039 ThrowClassFormatError(klass.Get(), "Too many methods: %d",
6040 static_cast<int>(num_virtual_methods));
6041 return false;
6042 }
6043 auto* vtable = AllocPointerArray(self, num_virtual_methods);
6044 if (UNLIKELY(vtable == nullptr)) {
6045 self->AssertPendingOOMException();
6046 return false;
6047 }
6048 for (size_t i = 0; i < num_virtual_methods; ++i) {
6049 ArtMethod* virtual_method = klass->GetVirtualMethodDuringLinking(i, image_pointer_size_);
6050 vtable->SetElementPtrSize(i, virtual_method, image_pointer_size_);
6051 virtual_method->SetMethodIndex(i & 0xFFFF);
6052 }
6053 klass->SetVTable(vtable);
6054 }
6055 return true;
6056 }
6057
6058 // Determine if the given iface has any subinterface in the given list that declares the method
6059 // specified by 'target'.
6060 //
6061 // Arguments
6062 // - self: The thread we are running on
6063 // - target: A comparator that will match any method that overrides the method we are checking for
6064 // - iftable: The iftable we are searching for an overriding method on.
6065 // - ifstart: The index of the interface we are checking to see if anything overrides
6066 // - iface: The interface we are checking to see if anything overrides.
6067 // - image_pointer_size:
6068 // The image pointer size.
6069 //
6070 // Returns
6071 // - True: There is some method that matches the target comparator defined in an interface that
6072 // is a subtype of iface.
6073 // - False: There is no method that matches the target comparator in any interface that is a subtype
6074 // of iface.
ContainsOverridingMethodOf(Thread * self,MethodNameAndSignatureComparator & target,Handle<mirror::IfTable> iftable,size_t ifstart,Handle<mirror::Class> iface,PointerSize image_pointer_size)6075 static bool ContainsOverridingMethodOf(Thread* self,
6076 MethodNameAndSignatureComparator& target,
6077 Handle<mirror::IfTable> iftable,
6078 size_t ifstart,
6079 Handle<mirror::Class> iface,
6080 PointerSize image_pointer_size)
6081 REQUIRES_SHARED(Locks::mutator_lock_) {
6082 DCHECK(self != nullptr);
6083 DCHECK(iface != nullptr);
6084 DCHECK(iftable != nullptr);
6085 DCHECK_GE(ifstart, 0u);
6086 DCHECK_LT(ifstart, iftable->Count());
6087 DCHECK_EQ(iface.Get(), iftable->GetInterface(ifstart));
6088 DCHECK(iface->IsInterface());
6089
6090 size_t iftable_count = iftable->Count();
6091 StackHandleScope<1> hs(self);
6092 MutableHandle<mirror::Class> current_iface(hs.NewHandle<mirror::Class>(nullptr));
6093 for (size_t k = ifstart + 1; k < iftable_count; k++) {
6094 // Skip ifstart since our current interface obviously cannot override itself.
6095 current_iface.Assign(iftable->GetInterface(k));
6096 // Iterate through every method on this interface. The order does not matter.
6097 for (ArtMethod& current_method : current_iface->GetDeclaredVirtualMethods(image_pointer_size)) {
6098 if (UNLIKELY(target.HasSameNameAndSignature(
6099 current_method.GetInterfaceMethodIfProxy(image_pointer_size)))) {
6100 // Check if the i'th interface is a subtype of this one.
6101 if (iface->IsAssignableFrom(current_iface.Get())) {
6102 return true;
6103 }
6104 break;
6105 }
6106 }
6107 }
6108 return false;
6109 }
6110
6111 // Find the default method implementation for 'interface_method' in 'klass'. Stores it into
6112 // out_default_method and returns kDefaultFound on success. If no default method was found return
6113 // kAbstractFound and store nullptr into out_default_method. If an error occurs (such as a
6114 // default_method conflict) it will return kDefaultConflict.
FindDefaultMethodImplementation(Thread * self,ArtMethod * target_method,Handle<mirror::Class> klass,ArtMethod ** out_default_method) const6115 ClassLinker::DefaultMethodSearchResult ClassLinker::FindDefaultMethodImplementation(
6116 Thread* self,
6117 ArtMethod* target_method,
6118 Handle<mirror::Class> klass,
6119 /*out*/ArtMethod** out_default_method) const {
6120 DCHECK(self != nullptr);
6121 DCHECK(target_method != nullptr);
6122 DCHECK(out_default_method != nullptr);
6123
6124 *out_default_method = nullptr;
6125
6126 // We organize the interface table so that, for interface I any subinterfaces J follow it in the
6127 // table. This lets us walk the table backwards when searching for default methods. The first one
6128 // we encounter is the best candidate since it is the most specific. Once we have found it we keep
6129 // track of it and then continue checking all other interfaces, since we need to throw an error if
6130 // we encounter conflicting default method implementations (one is not a subtype of the other).
6131 //
6132 // The order of unrelated interfaces does not matter and is not defined.
6133 size_t iftable_count = klass->GetIfTableCount();
6134 if (iftable_count == 0) {
6135 // No interfaces. We have already reset out to null so just return kAbstractFound.
6136 return DefaultMethodSearchResult::kAbstractFound;
6137 }
6138
6139 StackHandleScope<3> hs(self);
6140 MutableHandle<mirror::Class> chosen_iface(hs.NewHandle<mirror::Class>(nullptr));
6141 MutableHandle<mirror::IfTable> iftable(hs.NewHandle(klass->GetIfTable()));
6142 MutableHandle<mirror::Class> iface(hs.NewHandle<mirror::Class>(nullptr));
6143 MethodNameAndSignatureComparator target_name_comparator(
6144 target_method->GetInterfaceMethodIfProxy(image_pointer_size_));
6145 // Iterates over the klass's iftable in reverse
6146 for (size_t k = iftable_count; k != 0; ) {
6147 --k;
6148
6149 DCHECK_LT(k, iftable->Count());
6150
6151 iface.Assign(iftable->GetInterface(k));
6152 // Iterate through every declared method on this interface. The order does not matter.
6153 for (auto& method_iter : iface->GetDeclaredVirtualMethods(image_pointer_size_)) {
6154 ArtMethod* current_method = &method_iter;
6155 // Skip abstract methods and methods with different names.
6156 if (current_method->IsAbstract() ||
6157 !target_name_comparator.HasSameNameAndSignature(
6158 current_method->GetInterfaceMethodIfProxy(image_pointer_size_))) {
6159 continue;
6160 } else if (!current_method->IsPublic()) {
6161 // The verifier should have caught the non-public method for dex version 37. Just warn and
6162 // skip it since this is from before default-methods so we don't really need to care that it
6163 // has code.
6164 LOG(WARNING) << "Interface method " << current_method->PrettyMethod()
6165 << " is not public! "
6166 << "This will be a fatal error in subsequent versions of android. "
6167 << "Continuing anyway.";
6168 }
6169 if (UNLIKELY(chosen_iface != nullptr)) {
6170 // We have multiple default impls of the same method. This is a potential default conflict.
6171 // We need to check if this possibly conflicting method is either a superclass of the chosen
6172 // default implementation or is overridden by a non-default interface method. In either case
6173 // there is no conflict.
6174 if (!iface->IsAssignableFrom(chosen_iface.Get()) &&
6175 !ContainsOverridingMethodOf(self,
6176 target_name_comparator,
6177 iftable,
6178 k,
6179 iface,
6180 image_pointer_size_)) {
6181 VLOG(class_linker) << "Conflicting default method implementations found: "
6182 << current_method->PrettyMethod() << " and "
6183 << ArtMethod::PrettyMethod(*out_default_method) << " in class "
6184 << klass->PrettyClass() << " conflict.";
6185 *out_default_method = nullptr;
6186 return DefaultMethodSearchResult::kDefaultConflict;
6187 } else {
6188 break; // Continue checking at the next interface.
6189 }
6190 } else {
6191 // chosen_iface == null
6192 if (!ContainsOverridingMethodOf(self,
6193 target_name_comparator,
6194 iftable,
6195 k,
6196 iface,
6197 image_pointer_size_)) {
6198 // Don't set this as the chosen interface if something else is overriding it (because that
6199 // other interface would be potentially chosen instead if it was default). If the other
6200 // interface was abstract then we wouldn't select this interface as chosen anyway since
6201 // the abstract method masks it.
6202 *out_default_method = current_method;
6203 chosen_iface.Assign(iface.Get());
6204 // We should now finish traversing the graph to find if we have default methods that
6205 // conflict.
6206 } else {
6207 VLOG(class_linker) << "A default method '" << current_method->PrettyMethod()
6208 << "' was "
6209 << "skipped because it was overridden by an abstract method in a "
6210 << "subinterface on class '" << klass->PrettyClass() << "'";
6211 }
6212 }
6213 break;
6214 }
6215 }
6216 if (*out_default_method != nullptr) {
6217 VLOG(class_linker) << "Default method '" << (*out_default_method)->PrettyMethod()
6218 << "' selected "
6219 << "as the implementation for '" << target_method->PrettyMethod()
6220 << "' in '" << klass->PrettyClass() << "'";
6221 return DefaultMethodSearchResult::kDefaultFound;
6222 } else {
6223 return DefaultMethodSearchResult::kAbstractFound;
6224 }
6225 }
6226
AddMethodToConflictTable(ObjPtr<mirror::Class> klass,ArtMethod * conflict_method,ArtMethod * interface_method,ArtMethod * method,bool force_new_conflict_method)6227 ArtMethod* ClassLinker::AddMethodToConflictTable(ObjPtr<mirror::Class> klass,
6228 ArtMethod* conflict_method,
6229 ArtMethod* interface_method,
6230 ArtMethod* method,
6231 bool force_new_conflict_method) {
6232 ImtConflictTable* current_table = conflict_method->GetImtConflictTable(kRuntimePointerSize);
6233 Runtime* const runtime = Runtime::Current();
6234 LinearAlloc* linear_alloc = GetAllocatorForClassLoader(klass->GetClassLoader());
6235 bool new_entry = conflict_method == runtime->GetImtConflictMethod() || force_new_conflict_method;
6236
6237 // Create a new entry if the existing one is the shared conflict method.
6238 ArtMethod* new_conflict_method = new_entry
6239 ? runtime->CreateImtConflictMethod(linear_alloc)
6240 : conflict_method;
6241
6242 // Allocate a new table. Note that we will leak this table at the next conflict,
6243 // but that's a tradeoff compared to making the table fixed size.
6244 void* data = linear_alloc->Alloc(
6245 Thread::Current(), ImtConflictTable::ComputeSizeWithOneMoreEntry(current_table,
6246 image_pointer_size_));
6247 if (data == nullptr) {
6248 LOG(ERROR) << "Failed to allocate conflict table";
6249 return conflict_method;
6250 }
6251 ImtConflictTable* new_table = new (data) ImtConflictTable(current_table,
6252 interface_method,
6253 method,
6254 image_pointer_size_);
6255
6256 // Do a fence to ensure threads see the data in the table before it is assigned
6257 // to the conflict method.
6258 // Note that there is a race in the presence of multiple threads and we may leak
6259 // memory from the LinearAlloc, but that's a tradeoff compared to using
6260 // atomic operations.
6261 QuasiAtomic::ThreadFenceRelease();
6262 new_conflict_method->SetImtConflictTable(new_table, image_pointer_size_);
6263 return new_conflict_method;
6264 }
6265
AllocateIfTableMethodArrays(Thread * self,Handle<mirror::Class> klass,Handle<mirror::IfTable> iftable)6266 bool ClassLinker::AllocateIfTableMethodArrays(Thread* self,
6267 Handle<mirror::Class> klass,
6268 Handle<mirror::IfTable> iftable) {
6269 DCHECK(!klass->IsInterface());
6270 const bool has_superclass = klass->HasSuperClass();
6271 const bool extend_super_iftable = has_superclass;
6272 const size_t ifcount = klass->GetIfTableCount();
6273 const size_t super_ifcount = has_superclass ? klass->GetSuperClass()->GetIfTableCount() : 0U;
6274 for (size_t i = 0; i < ifcount; ++i) {
6275 size_t num_methods = iftable->GetInterface(i)->NumDeclaredVirtualMethods();
6276 if (num_methods > 0) {
6277 const bool is_super = i < super_ifcount;
6278 // This is an interface implemented by a super-class. Therefore we can just copy the method
6279 // array from the superclass.
6280 const bool super_interface = is_super && extend_super_iftable;
6281 ObjPtr<mirror::PointerArray> method_array;
6282 if (super_interface) {
6283 ObjPtr<mirror::IfTable> if_table = klass->GetSuperClass()->GetIfTable();
6284 DCHECK(if_table != nullptr);
6285 DCHECK(if_table->GetMethodArray(i) != nullptr);
6286 // If we are working on a super interface, try extending the existing method array.
6287 method_array = down_cast<mirror::PointerArray*>(if_table->GetMethodArray(i)->Clone(self));
6288 } else {
6289 method_array = AllocPointerArray(self, num_methods);
6290 }
6291 if (UNLIKELY(method_array == nullptr)) {
6292 self->AssertPendingOOMException();
6293 return false;
6294 }
6295 iftable->SetMethodArray(i, method_array);
6296 }
6297 }
6298 return true;
6299 }
6300
SetIMTRef(ArtMethod * unimplemented_method,ArtMethod * imt_conflict_method,ArtMethod * current_method,bool * new_conflict,ArtMethod ** imt_ref)6301 void ClassLinker::SetIMTRef(ArtMethod* unimplemented_method,
6302 ArtMethod* imt_conflict_method,
6303 ArtMethod* current_method,
6304 /*out*/bool* new_conflict,
6305 /*out*/ArtMethod** imt_ref) {
6306 // Place method in imt if entry is empty, place conflict otherwise.
6307 if (*imt_ref == unimplemented_method) {
6308 *imt_ref = current_method;
6309 } else if (!(*imt_ref)->IsRuntimeMethod()) {
6310 // If we are not a conflict and we have the same signature and name as the imt
6311 // entry, it must be that we overwrote a superclass vtable entry.
6312 // Note that we have checked IsRuntimeMethod, as there may be multiple different
6313 // conflict methods.
6314 MethodNameAndSignatureComparator imt_comparator(
6315 (*imt_ref)->GetInterfaceMethodIfProxy(image_pointer_size_));
6316 if (imt_comparator.HasSameNameAndSignature(
6317 current_method->GetInterfaceMethodIfProxy(image_pointer_size_))) {
6318 *imt_ref = current_method;
6319 } else {
6320 *imt_ref = imt_conflict_method;
6321 *new_conflict = true;
6322 }
6323 } else {
6324 // Place the default conflict method. Note that there may be an existing conflict
6325 // method in the IMT, but it could be one tailored to the super class, with a
6326 // specific ImtConflictTable.
6327 *imt_ref = imt_conflict_method;
6328 *new_conflict = true;
6329 }
6330 }
6331
FillIMTAndConflictTables(ObjPtr<mirror::Class> klass)6332 void ClassLinker::FillIMTAndConflictTables(ObjPtr<mirror::Class> klass) {
6333 DCHECK(klass->ShouldHaveImt()) << klass->PrettyClass();
6334 DCHECK(!klass->IsTemp()) << klass->PrettyClass();
6335 ArtMethod* imt_data[ImTable::kSize];
6336 Runtime* const runtime = Runtime::Current();
6337 ArtMethod* const unimplemented_method = runtime->GetImtUnimplementedMethod();
6338 ArtMethod* const conflict_method = runtime->GetImtConflictMethod();
6339 std::fill_n(imt_data, arraysize(imt_data), unimplemented_method);
6340 if (klass->GetIfTable() != nullptr) {
6341 bool new_conflict = false;
6342 FillIMTFromIfTable(klass->GetIfTable(),
6343 unimplemented_method,
6344 conflict_method,
6345 klass,
6346 /*create_conflict_tables*/true,
6347 /*ignore_copied_methods*/false,
6348 &new_conflict,
6349 &imt_data[0]);
6350 }
6351 if (!klass->ShouldHaveImt()) {
6352 return;
6353 }
6354 // Compare the IMT with the super class including the conflict methods. If they are equivalent,
6355 // we can just use the same pointer.
6356 ImTable* imt = nullptr;
6357 ObjPtr<mirror::Class> super_class = klass->GetSuperClass();
6358 if (super_class != nullptr && super_class->ShouldHaveImt()) {
6359 ImTable* super_imt = super_class->GetImt(image_pointer_size_);
6360 bool same = true;
6361 for (size_t i = 0; same && i < ImTable::kSize; ++i) {
6362 ArtMethod* method = imt_data[i];
6363 ArtMethod* super_method = super_imt->Get(i, image_pointer_size_);
6364 if (method != super_method) {
6365 bool is_conflict_table = method->IsRuntimeMethod() &&
6366 method != unimplemented_method &&
6367 method != conflict_method;
6368 // Verify conflict contents.
6369 bool super_conflict_table = super_method->IsRuntimeMethod() &&
6370 super_method != unimplemented_method &&
6371 super_method != conflict_method;
6372 if (!is_conflict_table || !super_conflict_table) {
6373 same = false;
6374 } else {
6375 ImtConflictTable* table1 = method->GetImtConflictTable(image_pointer_size_);
6376 ImtConflictTable* table2 = super_method->GetImtConflictTable(image_pointer_size_);
6377 same = same && table1->Equals(table2, image_pointer_size_);
6378 }
6379 }
6380 }
6381 if (same) {
6382 imt = super_imt;
6383 }
6384 }
6385 if (imt == nullptr) {
6386 imt = klass->GetImt(image_pointer_size_);
6387 DCHECK(imt != nullptr);
6388 imt->Populate(imt_data, image_pointer_size_);
6389 } else {
6390 klass->SetImt(imt, image_pointer_size_);
6391 }
6392 }
6393
CreateImtConflictTable(size_t count,LinearAlloc * linear_alloc,PointerSize image_pointer_size)6394 ImtConflictTable* ClassLinker::CreateImtConflictTable(size_t count,
6395 LinearAlloc* linear_alloc,
6396 PointerSize image_pointer_size) {
6397 void* data = linear_alloc->Alloc(Thread::Current(),
6398 ImtConflictTable::ComputeSize(count,
6399 image_pointer_size));
6400 return (data != nullptr) ? new (data) ImtConflictTable(count, image_pointer_size) : nullptr;
6401 }
6402
CreateImtConflictTable(size_t count,LinearAlloc * linear_alloc)6403 ImtConflictTable* ClassLinker::CreateImtConflictTable(size_t count, LinearAlloc* linear_alloc) {
6404 return CreateImtConflictTable(count, linear_alloc, image_pointer_size_);
6405 }
6406
FillIMTFromIfTable(ObjPtr<mirror::IfTable> if_table,ArtMethod * unimplemented_method,ArtMethod * imt_conflict_method,ObjPtr<mirror::Class> klass,bool create_conflict_tables,bool ignore_copied_methods,bool * new_conflict,ArtMethod ** imt)6407 void ClassLinker::FillIMTFromIfTable(ObjPtr<mirror::IfTable> if_table,
6408 ArtMethod* unimplemented_method,
6409 ArtMethod* imt_conflict_method,
6410 ObjPtr<mirror::Class> klass,
6411 bool create_conflict_tables,
6412 bool ignore_copied_methods,
6413 /*out*/bool* new_conflict,
6414 /*out*/ArtMethod** imt) {
6415 uint32_t conflict_counts[ImTable::kSize] = {};
6416 for (size_t i = 0, length = if_table->Count(); i < length; ++i) {
6417 ObjPtr<mirror::Class> interface = if_table->GetInterface(i);
6418 const size_t num_virtuals = interface->NumVirtualMethods();
6419 const size_t method_array_count = if_table->GetMethodArrayCount(i);
6420 // Virtual methods can be larger than the if table methods if there are default methods.
6421 DCHECK_GE(num_virtuals, method_array_count);
6422 if (kIsDebugBuild) {
6423 if (klass->IsInterface()) {
6424 DCHECK_EQ(method_array_count, 0u);
6425 } else {
6426 DCHECK_EQ(interface->NumDeclaredVirtualMethods(), method_array_count);
6427 }
6428 }
6429 if (method_array_count == 0) {
6430 continue;
6431 }
6432 auto* method_array = if_table->GetMethodArray(i);
6433 for (size_t j = 0; j < method_array_count; ++j) {
6434 ArtMethod* implementation_method =
6435 method_array->GetElementPtrSize<ArtMethod*>(j, image_pointer_size_);
6436 if (ignore_copied_methods && implementation_method->IsCopied()) {
6437 continue;
6438 }
6439 DCHECK(implementation_method != nullptr);
6440 // Miranda methods cannot be used to implement an interface method, but they are safe to put
6441 // in the IMT since their entrypoint is the interface trampoline. If we put any copied methods
6442 // or interface methods in the IMT here they will not create extra conflicts since we compare
6443 // names and signatures in SetIMTRef.
6444 ArtMethod* interface_method = interface->GetVirtualMethod(j, image_pointer_size_);
6445 const uint32_t imt_index = ImTable::GetImtIndex(interface_method);
6446
6447 // There is only any conflicts if all of the interface methods for an IMT slot don't have
6448 // the same implementation method, keep track of this to avoid creating a conflict table in
6449 // this case.
6450
6451 // Conflict table size for each IMT slot.
6452 ++conflict_counts[imt_index];
6453
6454 SetIMTRef(unimplemented_method,
6455 imt_conflict_method,
6456 implementation_method,
6457 /*out*/new_conflict,
6458 /*out*/&imt[imt_index]);
6459 }
6460 }
6461
6462 if (create_conflict_tables) {
6463 // Create the conflict tables.
6464 LinearAlloc* linear_alloc = GetAllocatorForClassLoader(klass->GetClassLoader());
6465 for (size_t i = 0; i < ImTable::kSize; ++i) {
6466 size_t conflicts = conflict_counts[i];
6467 if (imt[i] == imt_conflict_method) {
6468 ImtConflictTable* new_table = CreateImtConflictTable(conflicts, linear_alloc);
6469 if (new_table != nullptr) {
6470 ArtMethod* new_conflict_method =
6471 Runtime::Current()->CreateImtConflictMethod(linear_alloc);
6472 new_conflict_method->SetImtConflictTable(new_table, image_pointer_size_);
6473 imt[i] = new_conflict_method;
6474 } else {
6475 LOG(ERROR) << "Failed to allocate conflict table";
6476 imt[i] = imt_conflict_method;
6477 }
6478 } else {
6479 DCHECK_NE(imt[i], imt_conflict_method);
6480 }
6481 }
6482
6483 for (size_t i = 0, length = if_table->Count(); i < length; ++i) {
6484 ObjPtr<mirror::Class> interface = if_table->GetInterface(i);
6485 const size_t method_array_count = if_table->GetMethodArrayCount(i);
6486 // Virtual methods can be larger than the if table methods if there are default methods.
6487 if (method_array_count == 0) {
6488 continue;
6489 }
6490 auto* method_array = if_table->GetMethodArray(i);
6491 for (size_t j = 0; j < method_array_count; ++j) {
6492 ArtMethod* implementation_method =
6493 method_array->GetElementPtrSize<ArtMethod*>(j, image_pointer_size_);
6494 if (ignore_copied_methods && implementation_method->IsCopied()) {
6495 continue;
6496 }
6497 DCHECK(implementation_method != nullptr);
6498 ArtMethod* interface_method = interface->GetVirtualMethod(j, image_pointer_size_);
6499 const uint32_t imt_index = ImTable::GetImtIndex(interface_method);
6500 if (!imt[imt_index]->IsRuntimeMethod() ||
6501 imt[imt_index] == unimplemented_method ||
6502 imt[imt_index] == imt_conflict_method) {
6503 continue;
6504 }
6505 ImtConflictTable* table = imt[imt_index]->GetImtConflictTable(image_pointer_size_);
6506 const size_t num_entries = table->NumEntries(image_pointer_size_);
6507 table->SetInterfaceMethod(num_entries, image_pointer_size_, interface_method);
6508 table->SetImplementationMethod(num_entries, image_pointer_size_, implementation_method);
6509 }
6510 }
6511 }
6512 }
6513
6514 // Simple helper function that checks that no subtypes of 'val' are contained within the 'classes'
6515 // set.
NotSubinterfaceOfAny(const std::unordered_set<ObjPtr<mirror::Class>,HashObjPtr> & classes,ObjPtr<mirror::Class> val)6516 static bool NotSubinterfaceOfAny(
6517 const std::unordered_set<ObjPtr<mirror::Class>, HashObjPtr>& classes,
6518 ObjPtr<mirror::Class> val)
6519 REQUIRES(Roles::uninterruptible_)
6520 REQUIRES_SHARED(Locks::mutator_lock_) {
6521 DCHECK(val != nullptr);
6522 for (ObjPtr<mirror::Class> c : classes) {
6523 if (val->IsAssignableFrom(c)) {
6524 return false;
6525 }
6526 }
6527 return true;
6528 }
6529
6530 // Fills in and flattens the interface inheritance hierarchy.
6531 //
6532 // By the end of this function all interfaces in the transitive closure of to_process are added to
6533 // the iftable and every interface precedes all of its sub-interfaces in this list.
6534 //
6535 // all I, J: Interface | I <: J implies J precedes I
6536 //
6537 // (note A <: B means that A is a subtype of B)
6538 //
6539 // This returns the total number of items in the iftable. The iftable might be resized down after
6540 // this call.
6541 //
6542 // We order this backwards so that we do not need to reorder superclass interfaces when new
6543 // interfaces are added in subclass's interface tables.
6544 //
6545 // Upon entry into this function iftable is a copy of the superclass's iftable with the first
6546 // super_ifcount entries filled in with the transitive closure of the interfaces of the superclass.
6547 // The other entries are uninitialized. We will fill in the remaining entries in this function. The
6548 // iftable must be large enough to hold all interfaces without changing its size.
FillIfTable(ObjPtr<mirror::IfTable> iftable,size_t super_ifcount,std::vector<mirror::Class * > to_process)6549 static size_t FillIfTable(ObjPtr<mirror::IfTable> iftable,
6550 size_t super_ifcount,
6551 std::vector<mirror::Class*> to_process)
6552 REQUIRES(Roles::uninterruptible_)
6553 REQUIRES_SHARED(Locks::mutator_lock_) {
6554 // This is the set of all class's already in the iftable. Used to make checking if a class has
6555 // already been added quicker.
6556 std::unordered_set<ObjPtr<mirror::Class>, HashObjPtr> classes_in_iftable;
6557 // The first super_ifcount elements are from the superclass. We note that they are already added.
6558 for (size_t i = 0; i < super_ifcount; i++) {
6559 ObjPtr<mirror::Class> iface = iftable->GetInterface(i);
6560 DCHECK(NotSubinterfaceOfAny(classes_in_iftable, iface)) << "Bad ordering.";
6561 classes_in_iftable.insert(iface);
6562 }
6563 size_t filled_ifcount = super_ifcount;
6564 for (ObjPtr<mirror::Class> interface : to_process) {
6565 // Let us call the first filled_ifcount elements of iftable the current-iface-list.
6566 // At this point in the loop current-iface-list has the invariant that:
6567 // for every pair of interfaces I,J within it:
6568 // if index_of(I) < index_of(J) then I is not a subtype of J
6569
6570 // If we have already seen this element then all of its super-interfaces must already be in the
6571 // current-iface-list so we can skip adding it.
6572 if (!ContainsElement(classes_in_iftable, interface)) {
6573 // We haven't seen this interface so add all of its super-interfaces onto the
6574 // current-iface-list, skipping those already on it.
6575 int32_t ifcount = interface->GetIfTableCount();
6576 for (int32_t j = 0; j < ifcount; j++) {
6577 ObjPtr<mirror::Class> super_interface = interface->GetIfTable()->GetInterface(j);
6578 if (!ContainsElement(classes_in_iftable, super_interface)) {
6579 DCHECK(NotSubinterfaceOfAny(classes_in_iftable, super_interface)) << "Bad ordering.";
6580 classes_in_iftable.insert(super_interface);
6581 iftable->SetInterface(filled_ifcount, super_interface);
6582 filled_ifcount++;
6583 }
6584 }
6585 DCHECK(NotSubinterfaceOfAny(classes_in_iftable, interface)) << "Bad ordering";
6586 // Place this interface onto the current-iface-list after all of its super-interfaces.
6587 classes_in_iftable.insert(interface);
6588 iftable->SetInterface(filled_ifcount, interface);
6589 filled_ifcount++;
6590 } else if (kIsDebugBuild) {
6591 // Check all super-interfaces are already in the list.
6592 int32_t ifcount = interface->GetIfTableCount();
6593 for (int32_t j = 0; j < ifcount; j++) {
6594 ObjPtr<mirror::Class> super_interface = interface->GetIfTable()->GetInterface(j);
6595 DCHECK(ContainsElement(classes_in_iftable, super_interface))
6596 << "Iftable does not contain " << mirror::Class::PrettyClass(super_interface)
6597 << ", a superinterface of " << interface->PrettyClass();
6598 }
6599 }
6600 }
6601 if (kIsDebugBuild) {
6602 // Check that the iftable is ordered correctly.
6603 for (size_t i = 0; i < filled_ifcount; i++) {
6604 ObjPtr<mirror::Class> if_a = iftable->GetInterface(i);
6605 for (size_t j = i + 1; j < filled_ifcount; j++) {
6606 ObjPtr<mirror::Class> if_b = iftable->GetInterface(j);
6607 // !(if_a <: if_b)
6608 CHECK(!if_b->IsAssignableFrom(if_a))
6609 << "Bad interface order: " << mirror::Class::PrettyClass(if_a) << " (index " << i
6610 << ") extends "
6611 << if_b->PrettyClass() << " (index " << j << ") and so should be after it in the "
6612 << "interface list.";
6613 }
6614 }
6615 }
6616 return filled_ifcount;
6617 }
6618
SetupInterfaceLookupTable(Thread * self,Handle<mirror::Class> klass,Handle<mirror::ObjectArray<mirror::Class>> interfaces)6619 bool ClassLinker::SetupInterfaceLookupTable(Thread* self, Handle<mirror::Class> klass,
6620 Handle<mirror::ObjectArray<mirror::Class>> interfaces) {
6621 StackHandleScope<1> hs(self);
6622 const bool has_superclass = klass->HasSuperClass();
6623 const size_t super_ifcount = has_superclass ? klass->GetSuperClass()->GetIfTableCount() : 0U;
6624 const bool have_interfaces = interfaces != nullptr;
6625 const size_t num_interfaces =
6626 have_interfaces ? interfaces->GetLength() : klass->NumDirectInterfaces();
6627 if (num_interfaces == 0) {
6628 if (super_ifcount == 0) {
6629 if (LIKELY(has_superclass)) {
6630 klass->SetIfTable(klass->GetSuperClass()->GetIfTable());
6631 }
6632 // Class implements no interfaces.
6633 DCHECK_EQ(klass->GetIfTableCount(), 0);
6634 return true;
6635 }
6636 // Class implements same interfaces as parent, are any of these not marker interfaces?
6637 bool has_non_marker_interface = false;
6638 ObjPtr<mirror::IfTable> super_iftable = klass->GetSuperClass()->GetIfTable();
6639 for (size_t i = 0; i < super_ifcount; ++i) {
6640 if (super_iftable->GetMethodArrayCount(i) > 0) {
6641 has_non_marker_interface = true;
6642 break;
6643 }
6644 }
6645 // Class just inherits marker interfaces from parent so recycle parent's iftable.
6646 if (!has_non_marker_interface) {
6647 klass->SetIfTable(super_iftable);
6648 return true;
6649 }
6650 }
6651 size_t ifcount = super_ifcount + num_interfaces;
6652 // Check that every class being implemented is an interface.
6653 for (size_t i = 0; i < num_interfaces; i++) {
6654 ObjPtr<mirror::Class> interface = have_interfaces
6655 ? interfaces->GetWithoutChecks(i)
6656 : mirror::Class::GetDirectInterface(self, klass.Get(), i);
6657 DCHECK(interface != nullptr);
6658 if (UNLIKELY(!interface->IsInterface())) {
6659 std::string temp;
6660 ThrowIncompatibleClassChangeError(klass.Get(),
6661 "Class %s implements non-interface class %s",
6662 klass->PrettyDescriptor().c_str(),
6663 PrettyDescriptor(interface->GetDescriptor(&temp)).c_str());
6664 return false;
6665 }
6666 ifcount += interface->GetIfTableCount();
6667 }
6668 // Create the interface function table.
6669 MutableHandle<mirror::IfTable> iftable(hs.NewHandle(AllocIfTable(self, ifcount)));
6670 if (UNLIKELY(iftable == nullptr)) {
6671 self->AssertPendingOOMException();
6672 return false;
6673 }
6674 // Fill in table with superclass's iftable.
6675 if (super_ifcount != 0) {
6676 ObjPtr<mirror::IfTable> super_iftable = klass->GetSuperClass()->GetIfTable();
6677 for (size_t i = 0; i < super_ifcount; i++) {
6678 ObjPtr<mirror::Class> super_interface = super_iftable->GetInterface(i);
6679 iftable->SetInterface(i, super_interface);
6680 }
6681 }
6682
6683 // Note that AllowThreadSuspension is to thread suspension as pthread_testcancel is to pthread
6684 // cancellation. That is it will suspend if one has a pending suspend request but otherwise
6685 // doesn't really do anything.
6686 self->AllowThreadSuspension();
6687
6688 size_t new_ifcount;
6689 {
6690 ScopedAssertNoThreadSuspension nts("Copying mirror::Class*'s for FillIfTable");
6691 std::vector<mirror::Class*> to_add;
6692 for (size_t i = 0; i < num_interfaces; i++) {
6693 ObjPtr<mirror::Class> interface = have_interfaces ? interfaces->Get(i) :
6694 mirror::Class::GetDirectInterface(self, klass.Get(), i);
6695 to_add.push_back(interface.Ptr());
6696 }
6697
6698 new_ifcount = FillIfTable(iftable.Get(), super_ifcount, std::move(to_add));
6699 }
6700
6701 self->AllowThreadSuspension();
6702
6703 // Shrink iftable in case duplicates were found
6704 if (new_ifcount < ifcount) {
6705 DCHECK_NE(num_interfaces, 0U);
6706 iftable.Assign(down_cast<mirror::IfTable*>(
6707 iftable->CopyOf(self, new_ifcount * mirror::IfTable::kMax)));
6708 if (UNLIKELY(iftable == nullptr)) {
6709 self->AssertPendingOOMException();
6710 return false;
6711 }
6712 ifcount = new_ifcount;
6713 } else {
6714 DCHECK_EQ(new_ifcount, ifcount);
6715 }
6716 klass->SetIfTable(iftable.Get());
6717 return true;
6718 }
6719
6720 // Finds the method with a name/signature that matches cmp in the given lists of methods. The list
6721 // of methods must be unique.
FindSameNameAndSignature(MethodNameAndSignatureComparator & cmp ATTRIBUTE_UNUSED)6722 static ArtMethod* FindSameNameAndSignature(MethodNameAndSignatureComparator& cmp ATTRIBUTE_UNUSED) {
6723 return nullptr;
6724 }
6725
6726 template <typename ... Types>
FindSameNameAndSignature(MethodNameAndSignatureComparator & cmp,const ScopedArenaVector<ArtMethod * > & list,const Types &...rest)6727 static ArtMethod* FindSameNameAndSignature(MethodNameAndSignatureComparator& cmp,
6728 const ScopedArenaVector<ArtMethod*>& list,
6729 const Types& ... rest)
6730 REQUIRES_SHARED(Locks::mutator_lock_) {
6731 for (ArtMethod* method : list) {
6732 if (cmp.HasSameNameAndSignature(method)) {
6733 return method;
6734 }
6735 }
6736 return FindSameNameAndSignature(cmp, rest...);
6737 }
6738
6739 // Check that all vtable entries are present in this class's virtuals or are the same as a
6740 // superclasses vtable entry.
CheckClassOwnsVTableEntries(Thread * self,Handle<mirror::Class> klass,PointerSize pointer_size)6741 static void CheckClassOwnsVTableEntries(Thread* self,
6742 Handle<mirror::Class> klass,
6743 PointerSize pointer_size)
6744 REQUIRES_SHARED(Locks::mutator_lock_) {
6745 StackHandleScope<2> hs(self);
6746 Handle<mirror::PointerArray> check_vtable(hs.NewHandle(klass->GetVTableDuringLinking()));
6747 ObjPtr<mirror::Class> super_temp = (klass->HasSuperClass()) ? klass->GetSuperClass() : nullptr;
6748 Handle<mirror::Class> superclass(hs.NewHandle(super_temp));
6749 int32_t super_vtable_length = (superclass != nullptr) ? superclass->GetVTableLength() : 0;
6750 for (int32_t i = 0; i < check_vtable->GetLength(); ++i) {
6751 ArtMethod* m = check_vtable->GetElementPtrSize<ArtMethod*>(i, pointer_size);
6752 CHECK(m != nullptr);
6753
6754 if (m->GetMethodIndexDuringLinking() != i) {
6755 LOG(WARNING) << m->PrettyMethod()
6756 << " has an unexpected method index for its spot in the vtable for class"
6757 << klass->PrettyClass();
6758 }
6759 ArraySlice<ArtMethod> virtuals = klass->GetVirtualMethodsSliceUnchecked(pointer_size);
6760 auto is_same_method = [m] (const ArtMethod& meth) {
6761 return &meth == m;
6762 };
6763 if (!((super_vtable_length > i && superclass->GetVTableEntry(i, pointer_size) == m) ||
6764 std::find_if(virtuals.begin(), virtuals.end(), is_same_method) != virtuals.end())) {
6765 LOG(WARNING) << m->PrettyMethod() << " does not seem to be owned by current class "
6766 << klass->PrettyClass() << " or any of its superclasses!";
6767 }
6768 }
6769 }
6770
6771 // Check to make sure the vtable does not have duplicates. Duplicates could cause problems when a
6772 // method is overridden in a subclass.
CheckVTableHasNoDuplicates(Thread * self,Handle<mirror::Class> klass,PointerSize pointer_size)6773 static void CheckVTableHasNoDuplicates(Thread* self,
6774 Handle<mirror::Class> klass,
6775 PointerSize pointer_size)
6776 REQUIRES_SHARED(Locks::mutator_lock_) {
6777 StackHandleScope<1> hs(self);
6778 Handle<mirror::PointerArray> vtable(hs.NewHandle(klass->GetVTableDuringLinking()));
6779 int32_t num_entries = vtable->GetLength();
6780 for (int32_t i = 0; i < num_entries; i++) {
6781 ArtMethod* vtable_entry = vtable->GetElementPtrSize<ArtMethod*>(i, pointer_size);
6782 // Don't bother if we cannot 'see' the vtable entry (i.e. it is a package-private member maybe).
6783 if (!klass->CanAccessMember(vtable_entry->GetDeclaringClass(),
6784 vtable_entry->GetAccessFlags())) {
6785 continue;
6786 }
6787 MethodNameAndSignatureComparator name_comparator(
6788 vtable_entry->GetInterfaceMethodIfProxy(pointer_size));
6789 for (int32_t j = i + 1; j < num_entries; j++) {
6790 ArtMethod* other_entry = vtable->GetElementPtrSize<ArtMethod*>(j, pointer_size);
6791 if (!klass->CanAccessMember(other_entry->GetDeclaringClass(),
6792 other_entry->GetAccessFlags())) {
6793 continue;
6794 }
6795 if (vtable_entry == other_entry ||
6796 name_comparator.HasSameNameAndSignature(
6797 other_entry->GetInterfaceMethodIfProxy(pointer_size))) {
6798 LOG(WARNING) << "vtable entries " << i << " and " << j << " are identical for "
6799 << klass->PrettyClass() << " in method " << vtable_entry->PrettyMethod()
6800 << " (0x" << std::hex << reinterpret_cast<uintptr_t>(vtable_entry) << ") and "
6801 << other_entry->PrettyMethod() << " (0x" << std::hex
6802 << reinterpret_cast<uintptr_t>(other_entry) << ")";
6803 }
6804 }
6805 }
6806 }
6807
SanityCheckVTable(Thread * self,Handle<mirror::Class> klass,PointerSize pointer_size)6808 static void SanityCheckVTable(Thread* self, Handle<mirror::Class> klass, PointerSize pointer_size)
6809 REQUIRES_SHARED(Locks::mutator_lock_) {
6810 CheckClassOwnsVTableEntries(self, klass, pointer_size);
6811 CheckVTableHasNoDuplicates(self, klass, pointer_size);
6812 }
6813
FillImtFromSuperClass(Handle<mirror::Class> klass,ArtMethod * unimplemented_method,ArtMethod * imt_conflict_method,bool * new_conflict,ArtMethod ** imt)6814 void ClassLinker::FillImtFromSuperClass(Handle<mirror::Class> klass,
6815 ArtMethod* unimplemented_method,
6816 ArtMethod* imt_conflict_method,
6817 bool* new_conflict,
6818 ArtMethod** imt) {
6819 DCHECK(klass->HasSuperClass());
6820 ObjPtr<mirror::Class> super_class = klass->GetSuperClass();
6821 if (super_class->ShouldHaveImt()) {
6822 ImTable* super_imt = super_class->GetImt(image_pointer_size_);
6823 for (size_t i = 0; i < ImTable::kSize; ++i) {
6824 imt[i] = super_imt->Get(i, image_pointer_size_);
6825 }
6826 } else {
6827 // No imt in the super class, need to reconstruct from the iftable.
6828 ObjPtr<mirror::IfTable> if_table = super_class->GetIfTable();
6829 if (if_table->Count() != 0) {
6830 // Ignore copied methods since we will handle these in LinkInterfaceMethods.
6831 FillIMTFromIfTable(if_table,
6832 unimplemented_method,
6833 imt_conflict_method,
6834 klass.Get(),
6835 /*create_conflict_table*/false,
6836 /*ignore_copied_methods*/true,
6837 /*out*/new_conflict,
6838 /*out*/imt);
6839 }
6840 }
6841 }
6842
6843 class ClassLinker::LinkInterfaceMethodsHelper {
6844 public:
LinkInterfaceMethodsHelper(ClassLinker * class_linker,Handle<mirror::Class> klass,Thread * self,Runtime * runtime)6845 LinkInterfaceMethodsHelper(ClassLinker* class_linker,
6846 Handle<mirror::Class> klass,
6847 Thread* self,
6848 Runtime* runtime)
6849 : class_linker_(class_linker),
6850 klass_(klass),
6851 method_alignment_(ArtMethod::Alignment(class_linker->GetImagePointerSize())),
6852 method_size_(ArtMethod::Size(class_linker->GetImagePointerSize())),
6853 self_(self),
6854 stack_(runtime->GetLinearAlloc()->GetArenaPool()),
6855 allocator_(&stack_),
6856 default_conflict_methods_(allocator_.Adapter()),
6857 overriding_default_conflict_methods_(allocator_.Adapter()),
6858 miranda_methods_(allocator_.Adapter()),
6859 default_methods_(allocator_.Adapter()),
6860 overriding_default_methods_(allocator_.Adapter()),
6861 move_table_(allocator_.Adapter()) {
6862 }
6863
6864 ArtMethod* FindMethod(ArtMethod* interface_method,
6865 MethodNameAndSignatureComparator& interface_name_comparator,
6866 ArtMethod* vtable_impl)
6867 REQUIRES_SHARED(Locks::mutator_lock_);
6868
6869 ArtMethod* GetOrCreateMirandaMethod(ArtMethod* interface_method,
6870 MethodNameAndSignatureComparator& interface_name_comparator)
6871 REQUIRES_SHARED(Locks::mutator_lock_);
6872
HasNewVirtuals() const6873 bool HasNewVirtuals() const {
6874 return !(miranda_methods_.empty() &&
6875 default_methods_.empty() &&
6876 overriding_default_methods_.empty() &&
6877 overriding_default_conflict_methods_.empty() &&
6878 default_conflict_methods_.empty());
6879 }
6880
6881 void ReallocMethods() REQUIRES_SHARED(Locks::mutator_lock_);
6882
6883 ObjPtr<mirror::PointerArray> UpdateVtable(
6884 const std::unordered_map<size_t, ClassLinker::MethodTranslation>& default_translations,
6885 ObjPtr<mirror::PointerArray> old_vtable) REQUIRES_SHARED(Locks::mutator_lock_);
6886
6887 void UpdateIfTable(Handle<mirror::IfTable> iftable) REQUIRES_SHARED(Locks::mutator_lock_);
6888
6889 void UpdateIMT(ArtMethod** out_imt);
6890
CheckNoStaleMethodsInDexCache()6891 void CheckNoStaleMethodsInDexCache() REQUIRES_SHARED(Locks::mutator_lock_) {
6892 if (kIsDebugBuild) {
6893 PointerSize pointer_size = class_linker_->GetImagePointerSize();
6894 // Check that there are no stale methods are in the dex cache array.
6895 auto* resolved_methods = klass_->GetDexCache()->GetResolvedMethods();
6896 for (size_t i = 0, count = klass_->GetDexCache()->NumResolvedMethods(); i < count; ++i) {
6897 auto* m = mirror::DexCache::GetElementPtrSize(resolved_methods, i, pointer_size);
6898 CHECK(move_table_.find(m) == move_table_.end() ||
6899 // The original versions of copied methods will still be present so allow those too.
6900 // Note that if the first check passes this might fail to GetDeclaringClass().
6901 std::find_if(m->GetDeclaringClass()->GetMethods(pointer_size).begin(),
6902 m->GetDeclaringClass()->GetMethods(pointer_size).end(),
6903 [m] (ArtMethod& meth) {
6904 return &meth == m;
6905 }) != m->GetDeclaringClass()->GetMethods(pointer_size).end())
6906 << "Obsolete method " << m->PrettyMethod() << " is in dex cache!";
6907 }
6908 }
6909 }
6910
ClobberOldMethods(LengthPrefixedArray<ArtMethod> * old_methods,LengthPrefixedArray<ArtMethod> * methods)6911 void ClobberOldMethods(LengthPrefixedArray<ArtMethod>* old_methods,
6912 LengthPrefixedArray<ArtMethod>* methods) {
6913 if (kIsDebugBuild) {
6914 CHECK(methods != nullptr);
6915 // Put some random garbage in old methods to help find stale pointers.
6916 if (methods != old_methods && old_methods != nullptr) {
6917 // Need to make sure the GC is not running since it could be scanning the methods we are
6918 // about to overwrite.
6919 ScopedThreadStateChange tsc(self_, kSuspended);
6920 gc::ScopedGCCriticalSection gcs(self_,
6921 gc::kGcCauseClassLinker,
6922 gc::kCollectorTypeClassLinker);
6923 const size_t old_size = LengthPrefixedArray<ArtMethod>::ComputeSize(old_methods->size(),
6924 method_size_,
6925 method_alignment_);
6926 memset(old_methods, 0xFEu, old_size);
6927 }
6928 }
6929 }
6930
6931 private:
NumberOfNewVirtuals() const6932 size_t NumberOfNewVirtuals() const {
6933 return miranda_methods_.size() +
6934 default_methods_.size() +
6935 overriding_default_conflict_methods_.size() +
6936 overriding_default_methods_.size() +
6937 default_conflict_methods_.size();
6938 }
6939
FillTables()6940 bool FillTables() REQUIRES_SHARED(Locks::mutator_lock_) {
6941 return !klass_->IsInterface();
6942 }
6943
LogNewVirtuals() const6944 void LogNewVirtuals() const REQUIRES_SHARED(Locks::mutator_lock_) {
6945 DCHECK(!klass_->IsInterface() || (default_methods_.empty() && miranda_methods_.empty()))
6946 << "Interfaces should only have default-conflict methods appended to them.";
6947 VLOG(class_linker) << mirror::Class::PrettyClass(klass_.Get()) << ": miranda_methods="
6948 << miranda_methods_.size()
6949 << " default_methods=" << default_methods_.size()
6950 << " overriding_default_methods=" << overriding_default_methods_.size()
6951 << " default_conflict_methods=" << default_conflict_methods_.size()
6952 << " overriding_default_conflict_methods="
6953 << overriding_default_conflict_methods_.size();
6954 }
6955
6956 ClassLinker* class_linker_;
6957 Handle<mirror::Class> klass_;
6958 size_t method_alignment_;
6959 size_t method_size_;
6960 Thread* const self_;
6961
6962 // These are allocated on the heap to begin, we then transfer to linear alloc when we re-create
6963 // the virtual methods array.
6964 // Need to use low 4GB arenas for compiler or else the pointers wont fit in 32 bit method array
6965 // during cross compilation.
6966 // Use the linear alloc pool since this one is in the low 4gb for the compiler.
6967 ArenaStack stack_;
6968 ScopedArenaAllocator allocator_;
6969
6970 ScopedArenaVector<ArtMethod*> default_conflict_methods_;
6971 ScopedArenaVector<ArtMethod*> overriding_default_conflict_methods_;
6972 ScopedArenaVector<ArtMethod*> miranda_methods_;
6973 ScopedArenaVector<ArtMethod*> default_methods_;
6974 ScopedArenaVector<ArtMethod*> overriding_default_methods_;
6975
6976 ScopedArenaUnorderedMap<ArtMethod*, ArtMethod*> move_table_;
6977 };
6978
FindMethod(ArtMethod * interface_method,MethodNameAndSignatureComparator & interface_name_comparator,ArtMethod * vtable_impl)6979 ArtMethod* ClassLinker::LinkInterfaceMethodsHelper::FindMethod(
6980 ArtMethod* interface_method,
6981 MethodNameAndSignatureComparator& interface_name_comparator,
6982 ArtMethod* vtable_impl) {
6983 ArtMethod* current_method = nullptr;
6984 switch (class_linker_->FindDefaultMethodImplementation(self_,
6985 interface_method,
6986 klass_,
6987 /*out*/¤t_method)) {
6988 case DefaultMethodSearchResult::kDefaultConflict: {
6989 // Default method conflict.
6990 DCHECK(current_method == nullptr);
6991 ArtMethod* default_conflict_method = nullptr;
6992 if (vtable_impl != nullptr && vtable_impl->IsDefaultConflicting()) {
6993 // We can reuse the method from the superclass, don't bother adding it to virtuals.
6994 default_conflict_method = vtable_impl;
6995 } else {
6996 // See if we already have a conflict method for this method.
6997 ArtMethod* preexisting_conflict = FindSameNameAndSignature(
6998 interface_name_comparator,
6999 default_conflict_methods_,
7000 overriding_default_conflict_methods_);
7001 if (LIKELY(preexisting_conflict != nullptr)) {
7002 // We already have another conflict we can reuse.
7003 default_conflict_method = preexisting_conflict;
7004 } else {
7005 // Note that we do this even if we are an interface since we need to create this and
7006 // cannot reuse another classes.
7007 // Create a new conflict method for this to use.
7008 default_conflict_method = reinterpret_cast<ArtMethod*>(allocator_.Alloc(method_size_));
7009 new(default_conflict_method) ArtMethod(interface_method,
7010 class_linker_->GetImagePointerSize());
7011 if (vtable_impl == nullptr) {
7012 // Save the conflict method. We need to add it to the vtable.
7013 default_conflict_methods_.push_back(default_conflict_method);
7014 } else {
7015 // Save the conflict method but it is already in the vtable.
7016 overriding_default_conflict_methods_.push_back(default_conflict_method);
7017 }
7018 }
7019 }
7020 current_method = default_conflict_method;
7021 break;
7022 } // case kDefaultConflict
7023 case DefaultMethodSearchResult::kDefaultFound: {
7024 DCHECK(current_method != nullptr);
7025 // Found a default method.
7026 if (vtable_impl != nullptr &&
7027 current_method->GetDeclaringClass() == vtable_impl->GetDeclaringClass()) {
7028 // We found a default method but it was the same one we already have from our
7029 // superclass. Don't bother adding it to our vtable again.
7030 current_method = vtable_impl;
7031 } else if (LIKELY(FillTables())) {
7032 // Interfaces don't need to copy default methods since they don't have vtables.
7033 // Only record this default method if it is new to save space.
7034 // TODO It might be worthwhile to copy default methods on interfaces anyway since it
7035 // would make lookup for interface super much faster. (We would only need to scan
7036 // the iftable to find if there is a NSME or AME.)
7037 ArtMethod* old = FindSameNameAndSignature(interface_name_comparator,
7038 default_methods_,
7039 overriding_default_methods_);
7040 if (old == nullptr) {
7041 // We found a default method implementation and there were no conflicts.
7042 if (vtable_impl == nullptr) {
7043 // Save the default method. We need to add it to the vtable.
7044 default_methods_.push_back(current_method);
7045 } else {
7046 // Save the default method but it is already in the vtable.
7047 overriding_default_methods_.push_back(current_method);
7048 }
7049 } else {
7050 CHECK(old == current_method) << "Multiple default implementations selected!";
7051 }
7052 }
7053 break;
7054 } // case kDefaultFound
7055 case DefaultMethodSearchResult::kAbstractFound: {
7056 DCHECK(current_method == nullptr);
7057 // Abstract method masks all defaults.
7058 if (vtable_impl != nullptr &&
7059 vtable_impl->IsAbstract() &&
7060 !vtable_impl->IsDefaultConflicting()) {
7061 // We need to make this an abstract method but the version in the vtable already is so
7062 // don't do anything.
7063 current_method = vtable_impl;
7064 }
7065 break;
7066 } // case kAbstractFound
7067 }
7068 return current_method;
7069 }
7070
GetOrCreateMirandaMethod(ArtMethod * interface_method,MethodNameAndSignatureComparator & interface_name_comparator)7071 ArtMethod* ClassLinker::LinkInterfaceMethodsHelper::GetOrCreateMirandaMethod(
7072 ArtMethod* interface_method,
7073 MethodNameAndSignatureComparator& interface_name_comparator) {
7074 // Find out if there is already a miranda method we can use.
7075 ArtMethod* miranda_method = FindSameNameAndSignature(interface_name_comparator,
7076 miranda_methods_);
7077 if (miranda_method == nullptr) {
7078 DCHECK(interface_method->IsAbstract()) << interface_method->PrettyMethod();
7079 miranda_method = reinterpret_cast<ArtMethod*>(allocator_.Alloc(method_size_));
7080 CHECK(miranda_method != nullptr);
7081 // Point the interface table at a phantom slot.
7082 new(miranda_method) ArtMethod(interface_method, class_linker_->GetImagePointerSize());
7083 miranda_methods_.push_back(miranda_method);
7084 }
7085 return miranda_method;
7086 }
7087
ReallocMethods()7088 void ClassLinker::LinkInterfaceMethodsHelper::ReallocMethods() {
7089 LogNewVirtuals();
7090
7091 const size_t old_method_count = klass_->NumMethods();
7092 const size_t new_method_count = old_method_count + NumberOfNewVirtuals();
7093 DCHECK_NE(old_method_count, new_method_count);
7094
7095 // Attempt to realloc to save RAM if possible.
7096 LengthPrefixedArray<ArtMethod>* old_methods = klass_->GetMethodsPtr();
7097 // The Realloced virtual methods aren't visible from the class roots, so there is no issue
7098 // where GCs could attempt to mark stale pointers due to memcpy. And since we overwrite the
7099 // realloced memory with out->CopyFrom, we are guaranteed to have objects in the to space since
7100 // CopyFrom has internal read barriers.
7101 //
7102 // TODO We should maybe move some of this into mirror::Class or at least into another method.
7103 const size_t old_size = LengthPrefixedArray<ArtMethod>::ComputeSize(old_method_count,
7104 method_size_,
7105 method_alignment_);
7106 const size_t new_size = LengthPrefixedArray<ArtMethod>::ComputeSize(new_method_count,
7107 method_size_,
7108 method_alignment_);
7109 const size_t old_methods_ptr_size = (old_methods != nullptr) ? old_size : 0;
7110 auto* methods = reinterpret_cast<LengthPrefixedArray<ArtMethod>*>(
7111 Runtime::Current()->GetLinearAlloc()->Realloc(
7112 self_, old_methods, old_methods_ptr_size, new_size));
7113 CHECK(methods != nullptr); // Native allocation failure aborts.
7114
7115 PointerSize pointer_size = class_linker_->GetImagePointerSize();
7116 if (methods != old_methods) {
7117 // Maps from heap allocated miranda method to linear alloc miranda method.
7118 StrideIterator<ArtMethod> out = methods->begin(method_size_, method_alignment_);
7119 // Copy over the old methods.
7120 for (auto& m : klass_->GetMethods(pointer_size)) {
7121 move_table_.emplace(&m, &*out);
7122 // The CopyFrom is only necessary to not miss read barriers since Realloc won't do read
7123 // barriers when it copies.
7124 out->CopyFrom(&m, pointer_size);
7125 ++out;
7126 }
7127 }
7128 StrideIterator<ArtMethod> out(methods->begin(method_size_, method_alignment_) + old_method_count);
7129 // Copy over miranda methods before copying vtable since CopyOf may cause thread suspension and
7130 // we want the roots of the miranda methods to get visited.
7131 for (size_t i = 0; i < miranda_methods_.size(); ++i) {
7132 ArtMethod* mir_method = miranda_methods_[i];
7133 ArtMethod& new_method = *out;
7134 new_method.CopyFrom(mir_method, pointer_size);
7135 new_method.SetAccessFlags(new_method.GetAccessFlags() | kAccMiranda | kAccCopied);
7136 DCHECK_NE(new_method.GetAccessFlags() & kAccAbstract, 0u)
7137 << "Miranda method should be abstract!";
7138 move_table_.emplace(mir_method, &new_method);
7139 // Update the entry in the method array, as the array will be used for future lookups,
7140 // where thread suspension is allowed.
7141 // As such, the array should not contain locally allocated ArtMethod, otherwise the GC
7142 // would not see them.
7143 miranda_methods_[i] = &new_method;
7144 ++out;
7145 }
7146 // We need to copy the default methods into our own method table since the runtime requires that
7147 // every method on a class's vtable be in that respective class's virtual method table.
7148 // NOTE This means that two classes might have the same implementation of a method from the same
7149 // interface but will have different ArtMethod*s for them. This also means we cannot compare a
7150 // default method found on a class with one found on the declaring interface directly and must
7151 // look at the declaring class to determine if they are the same.
7152 for (ScopedArenaVector<ArtMethod*>* methods_vec : {&default_methods_,
7153 &overriding_default_methods_}) {
7154 for (size_t i = 0; i < methods_vec->size(); ++i) {
7155 ArtMethod* def_method = (*methods_vec)[i];
7156 ArtMethod& new_method = *out;
7157 new_method.CopyFrom(def_method, pointer_size);
7158 // Clear the kAccSkipAccessChecks flag if it is present. Since this class hasn't been
7159 // verified yet it shouldn't have methods that are skipping access checks.
7160 // TODO This is rather arbitrary. We should maybe support classes where only some of its
7161 // methods are skip_access_checks.
7162 constexpr uint32_t kSetFlags = kAccDefault | kAccCopied;
7163 constexpr uint32_t kMaskFlags = ~kAccSkipAccessChecks;
7164 new_method.SetAccessFlags((new_method.GetAccessFlags() | kSetFlags) & kMaskFlags);
7165 move_table_.emplace(def_method, &new_method);
7166 // Update the entry in the method array, as the array will be used for future lookups,
7167 // where thread suspension is allowed.
7168 // As such, the array should not contain locally allocated ArtMethod, otherwise the GC
7169 // would not see them.
7170 (*methods_vec)[i] = &new_method;
7171 ++out;
7172 }
7173 }
7174 for (ScopedArenaVector<ArtMethod*>* methods_vec : {&default_conflict_methods_,
7175 &overriding_default_conflict_methods_}) {
7176 for (size_t i = 0; i < methods_vec->size(); ++i) {
7177 ArtMethod* conf_method = (*methods_vec)[i];
7178 ArtMethod& new_method = *out;
7179 new_method.CopyFrom(conf_method, pointer_size);
7180 // This is a type of default method (there are default method impls, just a conflict) so
7181 // mark this as a default, non-abstract method, since thats what it is. Also clear the
7182 // kAccSkipAccessChecks bit since this class hasn't been verified yet it shouldn't have
7183 // methods that are skipping access checks.
7184 constexpr uint32_t kSetFlags = kAccDefault | kAccDefaultConflict | kAccCopied;
7185 constexpr uint32_t kMaskFlags = ~(kAccAbstract | kAccSkipAccessChecks);
7186 new_method.SetAccessFlags((new_method.GetAccessFlags() | kSetFlags) & kMaskFlags);
7187 DCHECK(new_method.IsDefaultConflicting());
7188 // The actual method might or might not be marked abstract since we just copied it from a
7189 // (possibly default) interface method. We need to set it entry point to be the bridge so
7190 // that the compiler will not invoke the implementation of whatever method we copied from.
7191 EnsureThrowsInvocationError(class_linker_, &new_method);
7192 move_table_.emplace(conf_method, &new_method);
7193 // Update the entry in the method array, as the array will be used for future lookups,
7194 // where thread suspension is allowed.
7195 // As such, the array should not contain locally allocated ArtMethod, otherwise the GC
7196 // would not see them.
7197 (*methods_vec)[i] = &new_method;
7198 ++out;
7199 }
7200 }
7201 methods->SetSize(new_method_count);
7202 class_linker_->UpdateClassMethods(klass_.Get(), methods);
7203 }
7204
UpdateVtable(const std::unordered_map<size_t,ClassLinker::MethodTranslation> & default_translations,ObjPtr<mirror::PointerArray> old_vtable)7205 ObjPtr<mirror::PointerArray> ClassLinker::LinkInterfaceMethodsHelper::UpdateVtable(
7206 const std::unordered_map<size_t, ClassLinker::MethodTranslation>& default_translations,
7207 ObjPtr<mirror::PointerArray> old_vtable) {
7208 // Update the vtable to the new method structures. We can skip this for interfaces since they
7209 // do not have vtables.
7210 const size_t old_vtable_count = old_vtable->GetLength();
7211 const size_t new_vtable_count = old_vtable_count +
7212 miranda_methods_.size() +
7213 default_methods_.size() +
7214 default_conflict_methods_.size();
7215
7216 ObjPtr<mirror::PointerArray> vtable =
7217 down_cast<mirror::PointerArray*>(old_vtable->CopyOf(self_, new_vtable_count));
7218 if (UNLIKELY(vtable == nullptr)) {
7219 self_->AssertPendingOOMException();
7220 return nullptr;
7221 }
7222
7223 size_t vtable_pos = old_vtable_count;
7224 PointerSize pointer_size = class_linker_->GetImagePointerSize();
7225 // Update all the newly copied method's indexes so they denote their placement in the vtable.
7226 for (const ScopedArenaVector<ArtMethod*>& methods_vec : {default_methods_,
7227 default_conflict_methods_,
7228 miranda_methods_}) {
7229 // These are the functions that are not already in the vtable!
7230 for (ArtMethod* new_vtable_method : methods_vec) {
7231 // Leave the declaring class alone the method's dex_code_item_offset_ and dex_method_index_
7232 // fields are references into the dex file the method was defined in. Since the ArtMethod
7233 // does not store that information it uses declaring_class_->dex_cache_.
7234 new_vtable_method->SetMethodIndex(0xFFFF & vtable_pos);
7235 vtable->SetElementPtrSize(vtable_pos, new_vtable_method, pointer_size);
7236 ++vtable_pos;
7237 }
7238 }
7239 DCHECK_EQ(vtable_pos, new_vtable_count);
7240
7241 // Update old vtable methods. We use the default_translations map to figure out what each
7242 // vtable entry should be updated to, if they need to be at all.
7243 for (size_t i = 0; i < old_vtable_count; ++i) {
7244 ArtMethod* translated_method = vtable->GetElementPtrSize<ArtMethod*>(i, pointer_size);
7245 // Try and find what we need to change this method to.
7246 auto translation_it = default_translations.find(i);
7247 if (translation_it != default_translations.end()) {
7248 if (translation_it->second.IsInConflict()) {
7249 // Find which conflict method we are to use for this method.
7250 MethodNameAndSignatureComparator old_method_comparator(
7251 translated_method->GetInterfaceMethodIfProxy(pointer_size));
7252 // We only need to look through overriding_default_conflict_methods since this is an
7253 // overridden method we are fixing up here.
7254 ArtMethod* new_conflict_method = FindSameNameAndSignature(
7255 old_method_comparator, overriding_default_conflict_methods_);
7256 CHECK(new_conflict_method != nullptr) << "Expected a conflict method!";
7257 translated_method = new_conflict_method;
7258 } else if (translation_it->second.IsAbstract()) {
7259 // Find which miranda method we are to use for this method.
7260 MethodNameAndSignatureComparator old_method_comparator(
7261 translated_method->GetInterfaceMethodIfProxy(pointer_size));
7262 ArtMethod* miranda_method = FindSameNameAndSignature(old_method_comparator,
7263 miranda_methods_);
7264 DCHECK(miranda_method != nullptr);
7265 translated_method = miranda_method;
7266 } else {
7267 // Normal default method (changed from an older default or abstract interface method).
7268 DCHECK(translation_it->second.IsTranslation());
7269 translated_method = translation_it->second.GetTranslation();
7270 auto it = move_table_.find(translated_method);
7271 DCHECK(it != move_table_.end());
7272 translated_method = it->second;
7273 }
7274 } else {
7275 auto it = move_table_.find(translated_method);
7276 translated_method = (it != move_table_.end()) ? it->second : nullptr;
7277 }
7278
7279 if (translated_method != nullptr) {
7280 // Make sure the new_methods index is set.
7281 if (translated_method->GetMethodIndexDuringLinking() != i) {
7282 if (kIsDebugBuild) {
7283 auto* methods = klass_->GetMethodsPtr();
7284 CHECK_LE(reinterpret_cast<uintptr_t>(&*methods->begin(method_size_, method_alignment_)),
7285 reinterpret_cast<uintptr_t>(translated_method));
7286 CHECK_LT(reinterpret_cast<uintptr_t>(translated_method),
7287 reinterpret_cast<uintptr_t>(&*methods->end(method_size_, method_alignment_)));
7288 }
7289 translated_method->SetMethodIndex(0xFFFF & i);
7290 }
7291 vtable->SetElementPtrSize(i, translated_method, pointer_size);
7292 }
7293 }
7294 klass_->SetVTable(vtable.Ptr());
7295 return vtable;
7296 }
7297
UpdateIfTable(Handle<mirror::IfTable> iftable)7298 void ClassLinker::LinkInterfaceMethodsHelper::UpdateIfTable(Handle<mirror::IfTable> iftable) {
7299 PointerSize pointer_size = class_linker_->GetImagePointerSize();
7300 const size_t ifcount = klass_->GetIfTableCount();
7301 // Go fix up all the stale iftable pointers.
7302 for (size_t i = 0; i < ifcount; ++i) {
7303 for (size_t j = 0, count = iftable->GetMethodArrayCount(i); j < count; ++j) {
7304 auto* method_array = iftable->GetMethodArray(i);
7305 auto* m = method_array->GetElementPtrSize<ArtMethod*>(j, pointer_size);
7306 DCHECK(m != nullptr) << klass_->PrettyClass();
7307 auto it = move_table_.find(m);
7308 if (it != move_table_.end()) {
7309 auto* new_m = it->second;
7310 DCHECK(new_m != nullptr) << klass_->PrettyClass();
7311 method_array->SetElementPtrSize(j, new_m, pointer_size);
7312 }
7313 }
7314 }
7315 }
7316
UpdateIMT(ArtMethod ** out_imt)7317 void ClassLinker::LinkInterfaceMethodsHelper::UpdateIMT(ArtMethod** out_imt) {
7318 // Fix up IMT next.
7319 for (size_t i = 0; i < ImTable::kSize; ++i) {
7320 auto it = move_table_.find(out_imt[i]);
7321 if (it != move_table_.end()) {
7322 out_imt[i] = it->second;
7323 }
7324 }
7325 }
7326
7327 // TODO This method needs to be split up into several smaller methods.
LinkInterfaceMethods(Thread * self,Handle<mirror::Class> klass,const std::unordered_map<size_t,ClassLinker::MethodTranslation> & default_translations,bool * out_new_conflict,ArtMethod ** out_imt)7328 bool ClassLinker::LinkInterfaceMethods(
7329 Thread* self,
7330 Handle<mirror::Class> klass,
7331 const std::unordered_map<size_t, ClassLinker::MethodTranslation>& default_translations,
7332 bool* out_new_conflict,
7333 ArtMethod** out_imt) {
7334 StackHandleScope<3> hs(self);
7335 Runtime* const runtime = Runtime::Current();
7336
7337 const bool is_interface = klass->IsInterface();
7338 const bool has_superclass = klass->HasSuperClass();
7339 const bool fill_tables = !is_interface;
7340 const size_t super_ifcount = has_superclass ? klass->GetSuperClass()->GetIfTableCount() : 0U;
7341 const size_t ifcount = klass->GetIfTableCount();
7342
7343 Handle<mirror::IfTable> iftable(hs.NewHandle(klass->GetIfTable()));
7344
7345 MutableHandle<mirror::PointerArray> vtable(hs.NewHandle(klass->GetVTableDuringLinking()));
7346 ArtMethod* const unimplemented_method = runtime->GetImtUnimplementedMethod();
7347 ArtMethod* const imt_conflict_method = runtime->GetImtConflictMethod();
7348 // Copy the IMT from the super class if possible.
7349 const bool extend_super_iftable = has_superclass;
7350 if (has_superclass && fill_tables) {
7351 FillImtFromSuperClass(klass,
7352 unimplemented_method,
7353 imt_conflict_method,
7354 out_new_conflict,
7355 out_imt);
7356 }
7357 // Allocate method arrays before since we don't want miss visiting miranda method roots due to
7358 // thread suspension.
7359 if (fill_tables) {
7360 if (!AllocateIfTableMethodArrays(self, klass, iftable)) {
7361 return false;
7362 }
7363 }
7364
7365 LinkInterfaceMethodsHelper helper(this, klass, self, runtime);
7366
7367 auto* old_cause = self->StartAssertNoThreadSuspension(
7368 "Copying ArtMethods for LinkInterfaceMethods");
7369 // Going in reverse to ensure that we will hit abstract methods that override defaults before the
7370 // defaults. This means we don't need to do any trickery when creating the Miranda methods, since
7371 // they will already be null. This has the additional benefit that the declarer of a miranda
7372 // method will actually declare an abstract method.
7373 for (size_t i = ifcount; i != 0; ) {
7374 --i;
7375
7376 DCHECK_GE(i, 0u);
7377 DCHECK_LT(i, ifcount);
7378
7379 size_t num_methods = iftable->GetInterface(i)->NumDeclaredVirtualMethods();
7380 if (num_methods > 0) {
7381 StackHandleScope<2> hs2(self);
7382 const bool is_super = i < super_ifcount;
7383 const bool super_interface = is_super && extend_super_iftable;
7384 // We don't actually create or fill these tables for interfaces, we just copy some methods for
7385 // conflict methods. Just set this as nullptr in those cases.
7386 Handle<mirror::PointerArray> method_array(fill_tables
7387 ? hs2.NewHandle(iftable->GetMethodArray(i))
7388 : hs2.NewHandle<mirror::PointerArray>(nullptr));
7389
7390 ArraySlice<ArtMethod> input_virtual_methods;
7391 ScopedNullHandle<mirror::PointerArray> null_handle;
7392 Handle<mirror::PointerArray> input_vtable_array(null_handle);
7393 int32_t input_array_length = 0;
7394
7395 // TODO Cleanup Needed: In the presence of default methods this optimization is rather dirty
7396 // and confusing. Default methods should always look through all the superclasses
7397 // because they are the last choice of an implementation. We get around this by looking
7398 // at the super-classes iftable methods (copied into method_array previously) when we are
7399 // looking for the implementation of a super-interface method but that is rather dirty.
7400 bool using_virtuals;
7401 if (super_interface || is_interface) {
7402 // If we are overwriting a super class interface, try to only virtual methods instead of the
7403 // whole vtable.
7404 using_virtuals = true;
7405 input_virtual_methods = klass->GetDeclaredMethodsSlice(image_pointer_size_);
7406 input_array_length = input_virtual_methods.size();
7407 } else {
7408 // For a new interface, however, we need the whole vtable in case a new
7409 // interface method is implemented in the whole superclass.
7410 using_virtuals = false;
7411 DCHECK(vtable != nullptr);
7412 input_vtable_array = vtable;
7413 input_array_length = input_vtable_array->GetLength();
7414 }
7415
7416 // For each method in interface
7417 for (size_t j = 0; j < num_methods; ++j) {
7418 auto* interface_method = iftable->GetInterface(i)->GetVirtualMethod(j, image_pointer_size_);
7419 MethodNameAndSignatureComparator interface_name_comparator(
7420 interface_method->GetInterfaceMethodIfProxy(image_pointer_size_));
7421 uint32_t imt_index = ImTable::GetImtIndex(interface_method);
7422 ArtMethod** imt_ptr = &out_imt[imt_index];
7423 // For each method listed in the interface's method list, find the
7424 // matching method in our class's method list. We want to favor the
7425 // subclass over the superclass, which just requires walking
7426 // back from the end of the vtable. (This only matters if the
7427 // superclass defines a private method and this class redefines
7428 // it -- otherwise it would use the same vtable slot. In .dex files
7429 // those don't end up in the virtual method table, so it shouldn't
7430 // matter which direction we go. We walk it backward anyway.)
7431 //
7432 // To find defaults we need to do the same but also go over interfaces.
7433 bool found_impl = false;
7434 ArtMethod* vtable_impl = nullptr;
7435 for (int32_t k = input_array_length - 1; k >= 0; --k) {
7436 ArtMethod* vtable_method = using_virtuals ?
7437 &input_virtual_methods[k] :
7438 input_vtable_array->GetElementPtrSize<ArtMethod*>(k, image_pointer_size_);
7439 ArtMethod* vtable_method_for_name_comparison =
7440 vtable_method->GetInterfaceMethodIfProxy(image_pointer_size_);
7441 if (interface_name_comparator.HasSameNameAndSignature(
7442 vtable_method_for_name_comparison)) {
7443 if (!vtable_method->IsAbstract() && !vtable_method->IsPublic()) {
7444 // Must do EndAssertNoThreadSuspension before throw since the throw can cause
7445 // allocations.
7446 self->EndAssertNoThreadSuspension(old_cause);
7447 ThrowIllegalAccessError(klass.Get(),
7448 "Method '%s' implementing interface method '%s' is not public",
7449 vtable_method->PrettyMethod().c_str(),
7450 interface_method->PrettyMethod().c_str());
7451 return false;
7452 } else if (UNLIKELY(vtable_method->IsOverridableByDefaultMethod())) {
7453 // We might have a newer, better, default method for this, so we just skip it. If we
7454 // are still using this we will select it again when scanning for default methods. To
7455 // obviate the need to copy the method again we will make a note that we already found
7456 // a default here.
7457 // TODO This should be much cleaner.
7458 vtable_impl = vtable_method;
7459 break;
7460 } else {
7461 found_impl = true;
7462 if (LIKELY(fill_tables)) {
7463 method_array->SetElementPtrSize(j, vtable_method, image_pointer_size_);
7464 // Place method in imt if entry is empty, place conflict otherwise.
7465 SetIMTRef(unimplemented_method,
7466 imt_conflict_method,
7467 vtable_method,
7468 /*out*/out_new_conflict,
7469 /*out*/imt_ptr);
7470 }
7471 break;
7472 }
7473 }
7474 }
7475 // Continue on to the next method if we are done.
7476 if (LIKELY(found_impl)) {
7477 continue;
7478 } else if (LIKELY(super_interface)) {
7479 // Don't look for a default implementation when the super-method is implemented directly
7480 // by the class.
7481 //
7482 // See if we can use the superclasses method and skip searching everything else.
7483 // Note: !found_impl && super_interface
7484 CHECK(extend_super_iftable);
7485 // If this is a super_interface method it is possible we shouldn't override it because a
7486 // superclass could have implemented it directly. We get the method the superclass used
7487 // to implement this to know if we can override it with a default method. Doing this is
7488 // safe since we know that the super_iftable is filled in so we can simply pull it from
7489 // there. We don't bother if this is not a super-classes interface since in that case we
7490 // have scanned the entire vtable anyway and would have found it.
7491 // TODO This is rather dirty but it is faster than searching through the entire vtable
7492 // every time.
7493 ArtMethod* supers_method =
7494 method_array->GetElementPtrSize<ArtMethod*>(j, image_pointer_size_);
7495 DCHECK(supers_method != nullptr);
7496 DCHECK(interface_name_comparator.HasSameNameAndSignature(supers_method));
7497 if (LIKELY(!supers_method->IsOverridableByDefaultMethod())) {
7498 // The method is not overridable by a default method (i.e. it is directly implemented
7499 // in some class). Therefore move onto the next interface method.
7500 continue;
7501 } else {
7502 // If the super-classes method is override-able by a default method we need to keep
7503 // track of it since though it is override-able it is not guaranteed to be 'overridden'.
7504 // If it turns out not to be overridden and we did not keep track of it we might add it
7505 // to the vtable twice, causing corruption (vtable entries having inconsistent and
7506 // illegal states, incorrect vtable size, and incorrect or inconsistent iftable entries)
7507 // in this class and any subclasses.
7508 DCHECK(vtable_impl == nullptr || vtable_impl == supers_method)
7509 << "vtable_impl was " << ArtMethod::PrettyMethod(vtable_impl)
7510 << " and not 'nullptr' or "
7511 << supers_method->PrettyMethod()
7512 << " as expected. IFTable appears to be corrupt!";
7513 vtable_impl = supers_method;
7514 }
7515 }
7516 // If we haven't found it yet we should search through the interfaces for default methods.
7517 ArtMethod* current_method = helper.FindMethod(interface_method,
7518 interface_name_comparator,
7519 vtable_impl);
7520 if (LIKELY(fill_tables)) {
7521 if (current_method == nullptr && !super_interface) {
7522 // We could not find an implementation for this method and since it is a brand new
7523 // interface we searched the entire vtable (and all default methods) for an
7524 // implementation but couldn't find one. We therefore need to make a miranda method.
7525 current_method = helper.GetOrCreateMirandaMethod(interface_method,
7526 interface_name_comparator);
7527 }
7528
7529 if (current_method != nullptr) {
7530 // We found a default method implementation. Record it in the iftable and IMT.
7531 method_array->SetElementPtrSize(j, current_method, image_pointer_size_);
7532 SetIMTRef(unimplemented_method,
7533 imt_conflict_method,
7534 current_method,
7535 /*out*/out_new_conflict,
7536 /*out*/imt_ptr);
7537 }
7538 }
7539 } // For each method in interface end.
7540 } // if (num_methods > 0)
7541 } // For each interface.
7542 // TODO don't extend virtuals of interface unless necessary (when is it?).
7543 if (helper.HasNewVirtuals()) {
7544 LengthPrefixedArray<ArtMethod>* old_methods = kIsDebugBuild ? klass->GetMethodsPtr() : nullptr;
7545 helper.ReallocMethods(); // No return value to check. Native allocation failure aborts.
7546 LengthPrefixedArray<ArtMethod>* methods = kIsDebugBuild ? klass->GetMethodsPtr() : nullptr;
7547
7548 // Done copying methods, they are all roots in the class now, so we can end the no thread
7549 // suspension assert.
7550 self->EndAssertNoThreadSuspension(old_cause);
7551
7552 if (fill_tables) {
7553 vtable.Assign(helper.UpdateVtable(default_translations, vtable.Get()));
7554 if (UNLIKELY(vtable == nullptr)) {
7555 // The helper has already called self->AssertPendingOOMException();
7556 return false;
7557 }
7558 helper.UpdateIfTable(iftable);
7559 helper.UpdateIMT(out_imt);
7560 }
7561
7562 helper.CheckNoStaleMethodsInDexCache();
7563 helper.ClobberOldMethods(old_methods, methods);
7564 } else {
7565 self->EndAssertNoThreadSuspension(old_cause);
7566 }
7567 if (kIsDebugBuild && !is_interface) {
7568 SanityCheckVTable(self, klass, image_pointer_size_);
7569 }
7570 return true;
7571 }
7572
LinkInstanceFields(Thread * self,Handle<mirror::Class> klass)7573 bool ClassLinker::LinkInstanceFields(Thread* self, Handle<mirror::Class> klass) {
7574 CHECK(klass != nullptr);
7575 return LinkFields(self, klass, false, nullptr);
7576 }
7577
LinkStaticFields(Thread * self,Handle<mirror::Class> klass,size_t * class_size)7578 bool ClassLinker::LinkStaticFields(Thread* self, Handle<mirror::Class> klass, size_t* class_size) {
7579 CHECK(klass != nullptr);
7580 return LinkFields(self, klass, true, class_size);
7581 }
7582
7583 struct LinkFieldsComparator {
REQUIRES_SHAREDart::LinkFieldsComparator7584 explicit LinkFieldsComparator() REQUIRES_SHARED(Locks::mutator_lock_) {
7585 }
7586 // No thread safety analysis as will be called from STL. Checked lock held in constructor.
operator ()art::LinkFieldsComparator7587 bool operator()(ArtField* field1, ArtField* field2)
7588 NO_THREAD_SAFETY_ANALYSIS {
7589 // First come reference fields, then 64-bit, then 32-bit, and then 16-bit, then finally 8-bit.
7590 Primitive::Type type1 = field1->GetTypeAsPrimitiveType();
7591 Primitive::Type type2 = field2->GetTypeAsPrimitiveType();
7592 if (type1 != type2) {
7593 if (type1 == Primitive::kPrimNot) {
7594 // Reference always goes first.
7595 return true;
7596 }
7597 if (type2 == Primitive::kPrimNot) {
7598 // Reference always goes first.
7599 return false;
7600 }
7601 size_t size1 = Primitive::ComponentSize(type1);
7602 size_t size2 = Primitive::ComponentSize(type2);
7603 if (size1 != size2) {
7604 // Larger primitive types go first.
7605 return size1 > size2;
7606 }
7607 // Primitive types differ but sizes match. Arbitrarily order by primitive type.
7608 return type1 < type2;
7609 }
7610 // Same basic group? Then sort by dex field index. This is guaranteed to be sorted
7611 // by name and for equal names by type id index.
7612 // NOTE: This works also for proxies. Their static fields are assigned appropriate indexes.
7613 return field1->GetDexFieldIndex() < field2->GetDexFieldIndex();
7614 }
7615 };
7616
LinkFields(Thread * self,Handle<mirror::Class> klass,bool is_static,size_t * class_size)7617 bool ClassLinker::LinkFields(Thread* self,
7618 Handle<mirror::Class> klass,
7619 bool is_static,
7620 size_t* class_size) {
7621 self->AllowThreadSuspension();
7622 const size_t num_fields = is_static ? klass->NumStaticFields() : klass->NumInstanceFields();
7623 LengthPrefixedArray<ArtField>* const fields = is_static ? klass->GetSFieldsPtr() :
7624 klass->GetIFieldsPtr();
7625
7626 // Initialize field_offset
7627 MemberOffset field_offset(0);
7628 if (is_static) {
7629 field_offset = klass->GetFirstReferenceStaticFieldOffsetDuringLinking(image_pointer_size_);
7630 } else {
7631 ObjPtr<mirror::Class> super_class = klass->GetSuperClass();
7632 if (super_class != nullptr) {
7633 CHECK(super_class->IsResolved())
7634 << klass->PrettyClass() << " " << super_class->PrettyClass();
7635 field_offset = MemberOffset(super_class->GetObjectSize());
7636 }
7637 }
7638
7639 CHECK_EQ(num_fields == 0, fields == nullptr) << klass->PrettyClass();
7640
7641 // we want a relatively stable order so that adding new fields
7642 // minimizes disruption of C++ version such as Class and Method.
7643 //
7644 // The overall sort order order is:
7645 // 1) All object reference fields, sorted alphabetically.
7646 // 2) All java long (64-bit) integer fields, sorted alphabetically.
7647 // 3) All java double (64-bit) floating point fields, sorted alphabetically.
7648 // 4) All java int (32-bit) integer fields, sorted alphabetically.
7649 // 5) All java float (32-bit) floating point fields, sorted alphabetically.
7650 // 6) All java char (16-bit) integer fields, sorted alphabetically.
7651 // 7) All java short (16-bit) integer fields, sorted alphabetically.
7652 // 8) All java boolean (8-bit) integer fields, sorted alphabetically.
7653 // 9) All java byte (8-bit) integer fields, sorted alphabetically.
7654 //
7655 // Once the fields are sorted in this order we will attempt to fill any gaps that might be present
7656 // in the memory layout of the structure. See ShuffleForward for how this is done.
7657 std::deque<ArtField*> grouped_and_sorted_fields;
7658 const char* old_no_suspend_cause = self->StartAssertNoThreadSuspension(
7659 "Naked ArtField references in deque");
7660 for (size_t i = 0; i < num_fields; i++) {
7661 grouped_and_sorted_fields.push_back(&fields->At(i));
7662 }
7663 std::sort(grouped_and_sorted_fields.begin(), grouped_and_sorted_fields.end(),
7664 LinkFieldsComparator());
7665
7666 // References should be at the front.
7667 size_t current_field = 0;
7668 size_t num_reference_fields = 0;
7669 FieldGaps gaps;
7670
7671 for (; current_field < num_fields; current_field++) {
7672 ArtField* field = grouped_and_sorted_fields.front();
7673 Primitive::Type type = field->GetTypeAsPrimitiveType();
7674 bool isPrimitive = type != Primitive::kPrimNot;
7675 if (isPrimitive) {
7676 break; // past last reference, move on to the next phase
7677 }
7678 if (UNLIKELY(!IsAligned<sizeof(mirror::HeapReference<mirror::Object>)>(
7679 field_offset.Uint32Value()))) {
7680 MemberOffset old_offset = field_offset;
7681 field_offset = MemberOffset(RoundUp(field_offset.Uint32Value(), 4));
7682 AddFieldGap(old_offset.Uint32Value(), field_offset.Uint32Value(), &gaps);
7683 }
7684 DCHECK_ALIGNED(field_offset.Uint32Value(), sizeof(mirror::HeapReference<mirror::Object>));
7685 grouped_and_sorted_fields.pop_front();
7686 num_reference_fields++;
7687 field->SetOffset(field_offset);
7688 field_offset = MemberOffset(field_offset.Uint32Value() +
7689 sizeof(mirror::HeapReference<mirror::Object>));
7690 }
7691 // Gaps are stored as a max heap which means that we must shuffle from largest to smallest
7692 // otherwise we could end up with suboptimal gap fills.
7693 ShuffleForward<8>(¤t_field, &field_offset, &grouped_and_sorted_fields, &gaps);
7694 ShuffleForward<4>(¤t_field, &field_offset, &grouped_and_sorted_fields, &gaps);
7695 ShuffleForward<2>(¤t_field, &field_offset, &grouped_and_sorted_fields, &gaps);
7696 ShuffleForward<1>(¤t_field, &field_offset, &grouped_and_sorted_fields, &gaps);
7697 CHECK(grouped_and_sorted_fields.empty()) << "Missed " << grouped_and_sorted_fields.size() <<
7698 " fields.";
7699 self->EndAssertNoThreadSuspension(old_no_suspend_cause);
7700
7701 // We lie to the GC about the java.lang.ref.Reference.referent field, so it doesn't scan it.
7702 if (!is_static && klass->DescriptorEquals("Ljava/lang/ref/Reference;")) {
7703 // We know there are no non-reference fields in the Reference classes, and we know
7704 // that 'referent' is alphabetically last, so this is easy...
7705 CHECK_EQ(num_reference_fields, num_fields) << klass->PrettyClass();
7706 CHECK_STREQ(fields->At(num_fields - 1).GetName(), "referent")
7707 << klass->PrettyClass();
7708 --num_reference_fields;
7709 }
7710
7711 size_t size = field_offset.Uint32Value();
7712 // Update klass
7713 if (is_static) {
7714 klass->SetNumReferenceStaticFields(num_reference_fields);
7715 *class_size = size;
7716 } else {
7717 klass->SetNumReferenceInstanceFields(num_reference_fields);
7718 ObjPtr<mirror::Class> super_class = klass->GetSuperClass();
7719 if (num_reference_fields == 0 || super_class == nullptr) {
7720 // object has one reference field, klass, but we ignore it since we always visit the class.
7721 // super_class is null iff the class is java.lang.Object.
7722 if (super_class == nullptr ||
7723 (super_class->GetClassFlags() & mirror::kClassFlagNoReferenceFields) != 0) {
7724 klass->SetClassFlags(klass->GetClassFlags() | mirror::kClassFlagNoReferenceFields);
7725 }
7726 }
7727 if (kIsDebugBuild) {
7728 DCHECK_EQ(super_class == nullptr, klass->DescriptorEquals("Ljava/lang/Object;"));
7729 size_t total_reference_instance_fields = 0;
7730 ObjPtr<mirror::Class> cur_super = klass.Get();
7731 while (cur_super != nullptr) {
7732 total_reference_instance_fields += cur_super->NumReferenceInstanceFieldsDuringLinking();
7733 cur_super = cur_super->GetSuperClass();
7734 }
7735 if (super_class == nullptr) {
7736 CHECK_EQ(total_reference_instance_fields, 1u) << klass->PrettyDescriptor();
7737 } else {
7738 // Check that there is at least num_reference_fields other than Object.class.
7739 CHECK_GE(total_reference_instance_fields, 1u + num_reference_fields)
7740 << klass->PrettyClass();
7741 }
7742 }
7743 if (!klass->IsVariableSize()) {
7744 std::string temp;
7745 DCHECK_GE(size, sizeof(mirror::Object)) << klass->GetDescriptor(&temp);
7746 size_t previous_size = klass->GetObjectSize();
7747 if (previous_size != 0) {
7748 // Make sure that we didn't originally have an incorrect size.
7749 CHECK_EQ(previous_size, size) << klass->GetDescriptor(&temp);
7750 }
7751 klass->SetObjectSize(size);
7752 }
7753 }
7754
7755 if (kIsDebugBuild) {
7756 // Make sure that the fields array is ordered by name but all reference
7757 // offsets are at the beginning as far as alignment allows.
7758 MemberOffset start_ref_offset = is_static
7759 ? klass->GetFirstReferenceStaticFieldOffsetDuringLinking(image_pointer_size_)
7760 : klass->GetFirstReferenceInstanceFieldOffset();
7761 MemberOffset end_ref_offset(start_ref_offset.Uint32Value() +
7762 num_reference_fields *
7763 sizeof(mirror::HeapReference<mirror::Object>));
7764 MemberOffset current_ref_offset = start_ref_offset;
7765 for (size_t i = 0; i < num_fields; i++) {
7766 ArtField* field = &fields->At(i);
7767 VLOG(class_linker) << "LinkFields: " << (is_static ? "static" : "instance")
7768 << " class=" << klass->PrettyClass() << " field=" << field->PrettyField()
7769 << " offset=" << field->GetOffsetDuringLinking();
7770 if (i != 0) {
7771 ArtField* const prev_field = &fields->At(i - 1);
7772 // NOTE: The field names can be the same. This is not possible in the Java language
7773 // but it's valid Java/dex bytecode and for example proguard can generate such bytecode.
7774 DCHECK_LE(strcmp(prev_field->GetName(), field->GetName()), 0);
7775 }
7776 Primitive::Type type = field->GetTypeAsPrimitiveType();
7777 bool is_primitive = type != Primitive::kPrimNot;
7778 if (klass->DescriptorEquals("Ljava/lang/ref/Reference;") &&
7779 strcmp("referent", field->GetName()) == 0) {
7780 is_primitive = true; // We lied above, so we have to expect a lie here.
7781 }
7782 MemberOffset offset = field->GetOffsetDuringLinking();
7783 if (is_primitive) {
7784 if (offset.Uint32Value() < end_ref_offset.Uint32Value()) {
7785 // Shuffled before references.
7786 size_t type_size = Primitive::ComponentSize(type);
7787 CHECK_LT(type_size, sizeof(mirror::HeapReference<mirror::Object>));
7788 CHECK_LT(offset.Uint32Value(), start_ref_offset.Uint32Value());
7789 CHECK_LE(offset.Uint32Value() + type_size, start_ref_offset.Uint32Value());
7790 CHECK(!IsAligned<sizeof(mirror::HeapReference<mirror::Object>)>(offset.Uint32Value()));
7791 }
7792 } else {
7793 CHECK_EQ(current_ref_offset.Uint32Value(), offset.Uint32Value());
7794 current_ref_offset = MemberOffset(current_ref_offset.Uint32Value() +
7795 sizeof(mirror::HeapReference<mirror::Object>));
7796 }
7797 }
7798 CHECK_EQ(current_ref_offset.Uint32Value(), end_ref_offset.Uint32Value());
7799 }
7800 return true;
7801 }
7802
7803 // Set the bitmap of reference instance field offsets.
CreateReferenceInstanceOffsets(Handle<mirror::Class> klass)7804 void ClassLinker::CreateReferenceInstanceOffsets(Handle<mirror::Class> klass) {
7805 uint32_t reference_offsets = 0;
7806 ObjPtr<mirror::Class> super_class = klass->GetSuperClass();
7807 // Leave the reference offsets as 0 for mirror::Object (the class field is handled specially).
7808 if (super_class != nullptr) {
7809 reference_offsets = super_class->GetReferenceInstanceOffsets();
7810 // Compute reference offsets unless our superclass overflowed.
7811 if (reference_offsets != mirror::Class::kClassWalkSuper) {
7812 size_t num_reference_fields = klass->NumReferenceInstanceFieldsDuringLinking();
7813 if (num_reference_fields != 0u) {
7814 // All of the fields that contain object references are guaranteed be grouped in memory
7815 // starting at an appropriately aligned address after super class object data.
7816 uint32_t start_offset = RoundUp(super_class->GetObjectSize(),
7817 sizeof(mirror::HeapReference<mirror::Object>));
7818 uint32_t start_bit = (start_offset - mirror::kObjectHeaderSize) /
7819 sizeof(mirror::HeapReference<mirror::Object>);
7820 if (start_bit + num_reference_fields > 32) {
7821 reference_offsets = mirror::Class::kClassWalkSuper;
7822 } else {
7823 reference_offsets |= (0xffffffffu << start_bit) &
7824 (0xffffffffu >> (32 - (start_bit + num_reference_fields)));
7825 }
7826 }
7827 }
7828 }
7829 klass->SetReferenceInstanceOffsets(reference_offsets);
7830 }
7831
ResolveString(const DexFile & dex_file,dex::StringIndex string_idx,Handle<mirror::DexCache> dex_cache)7832 mirror::String* ClassLinker::ResolveString(const DexFile& dex_file,
7833 dex::StringIndex string_idx,
7834 Handle<mirror::DexCache> dex_cache) {
7835 DCHECK(dex_cache != nullptr);
7836 Thread::PoisonObjectPointersIfDebug();
7837 ObjPtr<mirror::String> resolved = dex_cache->GetResolvedString(string_idx);
7838 if (resolved != nullptr) {
7839 return resolved.Ptr();
7840 }
7841 uint32_t utf16_length;
7842 const char* utf8_data = dex_file.StringDataAndUtf16LengthByIdx(string_idx, &utf16_length);
7843 ObjPtr<mirror::String> string = intern_table_->InternStrong(utf16_length, utf8_data);
7844 if (string != nullptr) {
7845 dex_cache->SetResolvedString(string_idx, string);
7846 }
7847 return string.Ptr();
7848 }
7849
LookupString(const DexFile & dex_file,dex::StringIndex string_idx,ObjPtr<mirror::DexCache> dex_cache)7850 mirror::String* ClassLinker::LookupString(const DexFile& dex_file,
7851 dex::StringIndex string_idx,
7852 ObjPtr<mirror::DexCache> dex_cache) {
7853 DCHECK(dex_cache != nullptr);
7854 ObjPtr<mirror::String> resolved = dex_cache->GetResolvedString(string_idx);
7855 if (resolved != nullptr) {
7856 return resolved.Ptr();
7857 }
7858 uint32_t utf16_length;
7859 const char* utf8_data = dex_file.StringDataAndUtf16LengthByIdx(string_idx, &utf16_length);
7860 ObjPtr<mirror::String> string =
7861 intern_table_->LookupStrong(Thread::Current(), utf16_length, utf8_data);
7862 if (string != nullptr) {
7863 dex_cache->SetResolvedString(string_idx, string);
7864 }
7865 return string.Ptr();
7866 }
7867
LookupResolvedType(const DexFile & dex_file,dex::TypeIndex type_idx,ObjPtr<mirror::DexCache> dex_cache,ObjPtr<mirror::ClassLoader> class_loader)7868 ObjPtr<mirror::Class> ClassLinker::LookupResolvedType(const DexFile& dex_file,
7869 dex::TypeIndex type_idx,
7870 ObjPtr<mirror::DexCache> dex_cache,
7871 ObjPtr<mirror::ClassLoader> class_loader) {
7872 ObjPtr<mirror::Class> type = dex_cache->GetResolvedType(type_idx);
7873 if (type == nullptr) {
7874 const char* descriptor = dex_file.StringByTypeIdx(type_idx);
7875 DCHECK_NE(*descriptor, '\0') << "descriptor is empty string";
7876 if (descriptor[1] == '\0') {
7877 // only the descriptors of primitive types should be 1 character long, also avoid class lookup
7878 // for primitive classes that aren't backed by dex files.
7879 type = FindPrimitiveClass(descriptor[0]);
7880 } else {
7881 Thread* const self = Thread::Current();
7882 DCHECK(self != nullptr);
7883 const size_t hash = ComputeModifiedUtf8Hash(descriptor);
7884 // Find the class in the loaded classes table.
7885 type = LookupClass(self, descriptor, hash, class_loader.Ptr());
7886 }
7887 if (type != nullptr) {
7888 if (type->IsResolved()) {
7889 dex_cache->SetResolvedType(type_idx, type);
7890 } else {
7891 type = nullptr;
7892 }
7893 }
7894 }
7895 DCHECK(type == nullptr || type->IsResolved());
7896 return type;
7897 }
7898
ResolveType(const DexFile & dex_file,dex::TypeIndex type_idx,ObjPtr<mirror::Class> referrer)7899 mirror::Class* ClassLinker::ResolveType(const DexFile& dex_file,
7900 dex::TypeIndex type_idx,
7901 ObjPtr<mirror::Class> referrer) {
7902 StackHandleScope<2> hs(Thread::Current());
7903 Handle<mirror::DexCache> dex_cache(hs.NewHandle(referrer->GetDexCache()));
7904 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(referrer->GetClassLoader()));
7905 return ResolveType(dex_file, type_idx, dex_cache, class_loader);
7906 }
7907
ResolveType(const DexFile & dex_file,dex::TypeIndex type_idx,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader)7908 mirror::Class* ClassLinker::ResolveType(const DexFile& dex_file,
7909 dex::TypeIndex type_idx,
7910 Handle<mirror::DexCache> dex_cache,
7911 Handle<mirror::ClassLoader> class_loader) {
7912 DCHECK(dex_cache != nullptr);
7913 Thread::PoisonObjectPointersIfDebug();
7914 ObjPtr<mirror::Class> resolved = dex_cache->GetResolvedType(type_idx);
7915 if (resolved == nullptr) {
7916 // TODO: Avoid this lookup as it duplicates work done in FindClass(). It is here
7917 // as a workaround for FastNative JNI to avoid AssertNoPendingException() when
7918 // trying to resolve annotations while an exception may be pending. Bug: 34659969
7919 resolved = LookupResolvedType(dex_file, type_idx, dex_cache.Get(), class_loader.Get());
7920 }
7921 if (resolved == nullptr) {
7922 Thread* self = Thread::Current();
7923 const char* descriptor = dex_file.StringByTypeIdx(type_idx);
7924 resolved = FindClass(self, descriptor, class_loader);
7925 if (resolved != nullptr) {
7926 // TODO: we used to throw here if resolved's class loader was not the
7927 // boot class loader. This was to permit different classes with the
7928 // same name to be loaded simultaneously by different loaders
7929 dex_cache->SetResolvedType(type_idx, resolved);
7930 } else {
7931 CHECK(self->IsExceptionPending())
7932 << "Expected pending exception for failed resolution of: " << descriptor;
7933 // Convert a ClassNotFoundException to a NoClassDefFoundError.
7934 StackHandleScope<1> hs(self);
7935 Handle<mirror::Throwable> cause(hs.NewHandle(self->GetException()));
7936 if (cause->InstanceOf(GetClassRoot(kJavaLangClassNotFoundException))) {
7937 DCHECK(resolved == nullptr); // No Handle needed to preserve resolved.
7938 self->ClearException();
7939 ThrowNoClassDefFoundError("Failed resolution of: %s", descriptor);
7940 self->GetException()->SetCause(cause.Get());
7941 }
7942 }
7943 }
7944 DCHECK((resolved == nullptr) || resolved->IsResolved())
7945 << resolved->PrettyDescriptor() << " " << resolved->GetStatus();
7946 return resolved.Ptr();
7947 }
7948
7949 template <ClassLinker::ResolveMode kResolveMode>
ResolveMethod(const DexFile & dex_file,uint32_t method_idx,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,ArtMethod * referrer,InvokeType type)7950 ArtMethod* ClassLinker::ResolveMethod(const DexFile& dex_file,
7951 uint32_t method_idx,
7952 Handle<mirror::DexCache> dex_cache,
7953 Handle<mirror::ClassLoader> class_loader,
7954 ArtMethod* referrer,
7955 InvokeType type) {
7956 DCHECK(dex_cache != nullptr);
7957 // Check for hit in the dex cache.
7958 ArtMethod* resolved = dex_cache->GetResolvedMethod(method_idx, image_pointer_size_);
7959 Thread::PoisonObjectPointersIfDebug();
7960 if (resolved != nullptr && !resolved->IsRuntimeMethod()) {
7961 DCHECK(resolved->GetDeclaringClassUnchecked() != nullptr) << resolved->GetDexMethodIndex();
7962 if (kResolveMode == ClassLinker::kForceICCECheck) {
7963 if (resolved->CheckIncompatibleClassChange(type)) {
7964 ThrowIncompatibleClassChangeError(type, resolved->GetInvokeType(), resolved, referrer);
7965 return nullptr;
7966 }
7967 }
7968 return resolved;
7969 }
7970 // Fail, get the declaring class.
7971 const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx);
7972 ObjPtr<mirror::Class> klass = ResolveType(dex_file, method_id.class_idx_, dex_cache, class_loader);
7973 if (klass == nullptr) {
7974 DCHECK(Thread::Current()->IsExceptionPending());
7975 return nullptr;
7976 }
7977 // Scan using method_idx, this saves string compares but will only hit for matching dex
7978 // caches/files.
7979 switch (type) {
7980 case kDirect: // Fall-through.
7981 case kStatic:
7982 resolved = klass->FindDirectMethod(dex_cache.Get(), method_idx, image_pointer_size_);
7983 DCHECK(resolved == nullptr || resolved->GetDeclaringClassUnchecked() != nullptr);
7984 break;
7985 case kInterface:
7986 // We have to check whether the method id really belongs to an interface (dex static bytecode
7987 // constraint A15). Otherwise you must not invoke-interface on it.
7988 //
7989 // This is not symmetric to A12-A14 (direct, static, virtual), as using FindInterfaceMethod
7990 // assumes that the given type is an interface, and will check the interface table if the
7991 // method isn't declared in the class. So it may find an interface method (usually by name
7992 // in the handling below, but we do the constraint check early). In that case,
7993 // CheckIncompatibleClassChange will succeed (as it is called on an interface method)
7994 // unexpectedly.
7995 // Example:
7996 // interface I {
7997 // foo()
7998 // }
7999 // class A implements I {
8000 // ...
8001 // }
8002 // class B extends A {
8003 // ...
8004 // }
8005 // invoke-interface B.foo
8006 // -> FindInterfaceMethod finds I.foo (interface method), not A.foo (miranda method)
8007 if (UNLIKELY(!klass->IsInterface())) {
8008 ThrowIncompatibleClassChangeError(klass,
8009 "Found class %s, but interface was expected",
8010 klass->PrettyDescriptor().c_str());
8011 return nullptr;
8012 } else {
8013 resolved = klass->FindInterfaceMethod(dex_cache.Get(), method_idx, image_pointer_size_);
8014 DCHECK(resolved == nullptr || resolved->GetDeclaringClass()->IsInterface());
8015 }
8016 break;
8017 case kSuper:
8018 if (klass->IsInterface()) {
8019 resolved = klass->FindInterfaceMethod(dex_cache.Get(), method_idx, image_pointer_size_);
8020 } else {
8021 resolved = klass->FindVirtualMethod(dex_cache.Get(), method_idx, image_pointer_size_);
8022 }
8023 break;
8024 case kVirtual:
8025 resolved = klass->FindVirtualMethod(dex_cache.Get(), method_idx, image_pointer_size_);
8026 break;
8027 default:
8028 LOG(FATAL) << "Unreachable - invocation type: " << type;
8029 UNREACHABLE();
8030 }
8031 if (resolved == nullptr) {
8032 // Search by name, which works across dex files.
8033 const char* name = dex_file.StringDataByIdx(method_id.name_idx_);
8034 const Signature signature = dex_file.GetMethodSignature(method_id);
8035 switch (type) {
8036 case kDirect: // Fall-through.
8037 case kStatic:
8038 resolved = klass->FindDirectMethod(name, signature, image_pointer_size_);
8039 DCHECK(resolved == nullptr || resolved->GetDeclaringClassUnchecked() != nullptr);
8040 break;
8041 case kInterface:
8042 resolved = klass->FindInterfaceMethod(name, signature, image_pointer_size_);
8043 DCHECK(resolved == nullptr || resolved->GetDeclaringClass()->IsInterface());
8044 break;
8045 case kSuper:
8046 if (klass->IsInterface()) {
8047 resolved = klass->FindInterfaceMethod(name, signature, image_pointer_size_);
8048 } else {
8049 resolved = klass->FindVirtualMethod(name, signature, image_pointer_size_);
8050 }
8051 break;
8052 case kVirtual:
8053 resolved = klass->FindVirtualMethod(name, signature, image_pointer_size_);
8054 break;
8055 }
8056 }
8057 // If we found a method, check for incompatible class changes.
8058 if (LIKELY(resolved != nullptr && !resolved->CheckIncompatibleClassChange(type))) {
8059 // Be a good citizen and update the dex cache to speed subsequent calls.
8060 dex_cache->SetResolvedMethod(method_idx, resolved, image_pointer_size_);
8061 return resolved;
8062 } else {
8063 // If we had a method, it's an incompatible-class-change error.
8064 if (resolved != nullptr) {
8065 ThrowIncompatibleClassChangeError(type, resolved->GetInvokeType(), resolved, referrer);
8066 } else {
8067 // We failed to find the method which means either an access error, an incompatible class
8068 // change, or no such method. First try to find the method among direct and virtual methods.
8069 const char* name = dex_file.StringDataByIdx(method_id.name_idx_);
8070 const Signature signature = dex_file.GetMethodSignature(method_id);
8071 switch (type) {
8072 case kDirect:
8073 case kStatic:
8074 resolved = klass->FindVirtualMethod(name, signature, image_pointer_size_);
8075 // Note: kDirect and kStatic are also mutually exclusive, but in that case we would
8076 // have had a resolved method before, which triggers the "true" branch above.
8077 break;
8078 case kInterface:
8079 case kVirtual:
8080 case kSuper:
8081 resolved = klass->FindDirectMethod(name, signature, image_pointer_size_);
8082 break;
8083 }
8084
8085 // If we found something, check that it can be accessed by the referrer.
8086 bool exception_generated = false;
8087 if (resolved != nullptr && referrer != nullptr) {
8088 ObjPtr<mirror::Class> methods_class = resolved->GetDeclaringClass();
8089 ObjPtr<mirror::Class> referring_class = referrer->GetDeclaringClass();
8090 if (!referring_class->CanAccess(methods_class)) {
8091 ThrowIllegalAccessErrorClassForMethodDispatch(referring_class,
8092 methods_class,
8093 resolved,
8094 type);
8095 exception_generated = true;
8096 } else if (!referring_class->CanAccessMember(methods_class, resolved->GetAccessFlags())) {
8097 ThrowIllegalAccessErrorMethod(referring_class, resolved);
8098 exception_generated = true;
8099 }
8100 }
8101 if (!exception_generated) {
8102 // Otherwise, throw an IncompatibleClassChangeError if we found something, and check
8103 // interface methods and throw if we find the method there. If we find nothing, throw a
8104 // NoSuchMethodError.
8105 switch (type) {
8106 case kDirect:
8107 case kStatic:
8108 if (resolved != nullptr) {
8109 ThrowIncompatibleClassChangeError(type, kVirtual, resolved, referrer);
8110 } else {
8111 resolved = klass->FindInterfaceMethod(name, signature, image_pointer_size_);
8112 if (resolved != nullptr) {
8113 ThrowIncompatibleClassChangeError(type, kInterface, resolved, referrer);
8114 } else {
8115 ThrowNoSuchMethodError(type, klass, name, signature);
8116 }
8117 }
8118 break;
8119 case kInterface:
8120 if (resolved != nullptr) {
8121 ThrowIncompatibleClassChangeError(type, kDirect, resolved, referrer);
8122 } else {
8123 resolved = klass->FindVirtualMethod(name, signature, image_pointer_size_);
8124 if (resolved != nullptr) {
8125 ThrowIncompatibleClassChangeError(type, kVirtual, resolved, referrer);
8126 } else {
8127 ThrowNoSuchMethodError(type, klass, name, signature);
8128 }
8129 }
8130 break;
8131 case kSuper:
8132 if (resolved != nullptr) {
8133 ThrowIncompatibleClassChangeError(type, kDirect, resolved, referrer);
8134 } else {
8135 ThrowNoSuchMethodError(type, klass, name, signature);
8136 }
8137 break;
8138 case kVirtual:
8139 if (resolved != nullptr) {
8140 ThrowIncompatibleClassChangeError(type, kDirect, resolved, referrer);
8141 } else {
8142 resolved = klass->FindInterfaceMethod(name, signature, image_pointer_size_);
8143 if (resolved != nullptr) {
8144 ThrowIncompatibleClassChangeError(type, kInterface, resolved, referrer);
8145 } else {
8146 ThrowNoSuchMethodError(type, klass, name, signature);
8147 }
8148 }
8149 break;
8150 }
8151 }
8152 }
8153 Thread::Current()->AssertPendingException();
8154 return nullptr;
8155 }
8156 }
8157
ResolveMethodWithoutInvokeType(const DexFile & dex_file,uint32_t method_idx,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader)8158 ArtMethod* ClassLinker::ResolveMethodWithoutInvokeType(const DexFile& dex_file,
8159 uint32_t method_idx,
8160 Handle<mirror::DexCache> dex_cache,
8161 Handle<mirror::ClassLoader> class_loader) {
8162 ArtMethod* resolved = dex_cache->GetResolvedMethod(method_idx, image_pointer_size_);
8163 Thread::PoisonObjectPointersIfDebug();
8164 if (resolved != nullptr && !resolved->IsRuntimeMethod()) {
8165 DCHECK(resolved->GetDeclaringClassUnchecked() != nullptr) << resolved->GetDexMethodIndex();
8166 return resolved;
8167 }
8168 // Fail, get the declaring class.
8169 const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx);
8170 ObjPtr<mirror::Class> klass = ResolveType(dex_file, method_id.class_idx_, dex_cache, class_loader);
8171 if (klass == nullptr) {
8172 Thread::Current()->AssertPendingException();
8173 return nullptr;
8174 }
8175 if (klass->IsInterface()) {
8176 LOG(FATAL) << "ResolveAmbiguousMethod: unexpected method in interface: "
8177 << klass->PrettyClass();
8178 return nullptr;
8179 }
8180
8181 // Search both direct and virtual methods
8182 resolved = klass->FindDirectMethod(dex_cache.Get(), method_idx, image_pointer_size_);
8183 if (resolved == nullptr) {
8184 resolved = klass->FindVirtualMethod(dex_cache.Get(), method_idx, image_pointer_size_);
8185 }
8186
8187 return resolved;
8188 }
8189
LookupResolvedField(uint32_t field_idx,ObjPtr<mirror::DexCache> dex_cache,ObjPtr<mirror::ClassLoader> class_loader,bool is_static)8190 ArtField* ClassLinker::LookupResolvedField(uint32_t field_idx,
8191 ObjPtr<mirror::DexCache> dex_cache,
8192 ObjPtr<mirror::ClassLoader> class_loader,
8193 bool is_static) {
8194 const DexFile& dex_file = *dex_cache->GetDexFile();
8195 const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx);
8196 ObjPtr<mirror::Class> klass = dex_cache->GetResolvedType(field_id.class_idx_);
8197 if (klass == nullptr) {
8198 klass = LookupResolvedType(dex_file, field_id.class_idx_, dex_cache, class_loader);
8199 }
8200 if (klass == nullptr) {
8201 // The class has not been resolved yet, so the field is also unresolved.
8202 return nullptr;
8203 }
8204 DCHECK(klass->IsResolved());
8205 Thread* self = is_static ? Thread::Current() : nullptr;
8206
8207 // First try to find a field declared directly by `klass` by the field index.
8208 ArtField* resolved_field = is_static
8209 ? mirror::Class::FindStaticField(self, klass, dex_cache, field_idx)
8210 : klass->FindInstanceField(dex_cache, field_idx);
8211
8212 if (resolved_field == nullptr) {
8213 // If not found in `klass` by field index, search the class hierarchy using the name and type.
8214 const char* name = dex_file.GetFieldName(field_id);
8215 const char* type = dex_file.GetFieldTypeDescriptor(field_id);
8216 resolved_field = is_static
8217 ? mirror::Class::FindStaticField(self, klass, name, type)
8218 : klass->FindInstanceField(name, type);
8219 }
8220
8221 if (resolved_field != nullptr) {
8222 dex_cache->SetResolvedField(field_idx, resolved_field, image_pointer_size_);
8223 }
8224 return resolved_field;
8225 }
8226
ResolveField(const DexFile & dex_file,uint32_t field_idx,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,bool is_static)8227 ArtField* ClassLinker::ResolveField(const DexFile& dex_file,
8228 uint32_t field_idx,
8229 Handle<mirror::DexCache> dex_cache,
8230 Handle<mirror::ClassLoader> class_loader,
8231 bool is_static) {
8232 DCHECK(dex_cache != nullptr);
8233 ArtField* resolved = dex_cache->GetResolvedField(field_idx, image_pointer_size_);
8234 Thread::PoisonObjectPointersIfDebug();
8235 if (resolved != nullptr) {
8236 return resolved;
8237 }
8238 const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx);
8239 Thread* const self = Thread::Current();
8240 ObjPtr<mirror::Class> klass = ResolveType(dex_file, field_id.class_idx_, dex_cache, class_loader);
8241 if (klass == nullptr) {
8242 DCHECK(Thread::Current()->IsExceptionPending());
8243 return nullptr;
8244 }
8245
8246 if (is_static) {
8247 resolved = mirror::Class::FindStaticField(self, klass, dex_cache.Get(), field_idx);
8248 } else {
8249 resolved = klass->FindInstanceField(dex_cache.Get(), field_idx);
8250 }
8251
8252 if (resolved == nullptr) {
8253 const char* name = dex_file.GetFieldName(field_id);
8254 const char* type = dex_file.GetFieldTypeDescriptor(field_id);
8255 if (is_static) {
8256 resolved = mirror::Class::FindStaticField(self, klass, name, type);
8257 } else {
8258 resolved = klass->FindInstanceField(name, type);
8259 }
8260 if (resolved == nullptr) {
8261 ThrowNoSuchFieldError(is_static ? "static " : "instance ", klass, type, name);
8262 return nullptr;
8263 }
8264 }
8265 dex_cache->SetResolvedField(field_idx, resolved, image_pointer_size_);
8266 return resolved;
8267 }
8268
ResolveFieldJLS(const DexFile & dex_file,uint32_t field_idx,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader)8269 ArtField* ClassLinker::ResolveFieldJLS(const DexFile& dex_file,
8270 uint32_t field_idx,
8271 Handle<mirror::DexCache> dex_cache,
8272 Handle<mirror::ClassLoader> class_loader) {
8273 DCHECK(dex_cache != nullptr);
8274 ArtField* resolved = dex_cache->GetResolvedField(field_idx, image_pointer_size_);
8275 Thread::PoisonObjectPointersIfDebug();
8276 if (resolved != nullptr) {
8277 return resolved;
8278 }
8279 const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx);
8280 Thread* self = Thread::Current();
8281 ObjPtr<mirror::Class> klass(ResolveType(dex_file, field_id.class_idx_, dex_cache, class_loader));
8282 if (klass == nullptr) {
8283 DCHECK(Thread::Current()->IsExceptionPending());
8284 return nullptr;
8285 }
8286
8287 StringPiece name(dex_file.GetFieldName(field_id));
8288 StringPiece type(dex_file.GetFieldTypeDescriptor(field_id));
8289 resolved = mirror::Class::FindField(self, klass, name, type);
8290 if (resolved != nullptr) {
8291 dex_cache->SetResolvedField(field_idx, resolved, image_pointer_size_);
8292 } else {
8293 ThrowNoSuchFieldError("", klass, type, name);
8294 }
8295 return resolved;
8296 }
8297
ResolveMethodType(const DexFile & dex_file,uint32_t proto_idx,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader)8298 mirror::MethodType* ClassLinker::ResolveMethodType(const DexFile& dex_file,
8299 uint32_t proto_idx,
8300 Handle<mirror::DexCache> dex_cache,
8301 Handle<mirror::ClassLoader> class_loader) {
8302 DCHECK(Runtime::Current()->IsMethodHandlesEnabled());
8303 DCHECK(dex_cache != nullptr);
8304
8305 ObjPtr<mirror::MethodType> resolved = dex_cache->GetResolvedMethodType(proto_idx);
8306 if (resolved != nullptr) {
8307 return resolved.Ptr();
8308 }
8309
8310 Thread* const self = Thread::Current();
8311 StackHandleScope<4> hs(self);
8312
8313 // First resolve the return type.
8314 const DexFile::ProtoId& proto_id = dex_file.GetProtoId(proto_idx);
8315 Handle<mirror::Class> return_type(hs.NewHandle(
8316 ResolveType(dex_file, proto_id.return_type_idx_, dex_cache, class_loader)));
8317 if (return_type == nullptr) {
8318 DCHECK(self->IsExceptionPending());
8319 return nullptr;
8320 }
8321
8322 // Then resolve the argument types.
8323 //
8324 // TODO: Is there a better way to figure out the number of method arguments
8325 // other than by looking at the shorty ?
8326 const size_t num_method_args = strlen(dex_file.StringDataByIdx(proto_id.shorty_idx_)) - 1;
8327
8328 ObjPtr<mirror::Class> class_type = mirror::Class::GetJavaLangClass();
8329 ObjPtr<mirror::Class> array_of_class = FindArrayClass(self, &class_type);
8330 Handle<mirror::ObjectArray<mirror::Class>> method_params(hs.NewHandle(
8331 mirror::ObjectArray<mirror::Class>::Alloc(self, array_of_class, num_method_args)));
8332 if (method_params == nullptr) {
8333 DCHECK(self->IsExceptionPending());
8334 return nullptr;
8335 }
8336
8337 DexFileParameterIterator it(dex_file, proto_id);
8338 int32_t i = 0;
8339 MutableHandle<mirror::Class> param_class = hs.NewHandle<mirror::Class>(nullptr);
8340 for (; it.HasNext(); it.Next()) {
8341 const dex::TypeIndex type_idx = it.GetTypeIdx();
8342 param_class.Assign(ResolveType(dex_file, type_idx, dex_cache, class_loader));
8343 if (param_class == nullptr) {
8344 DCHECK(self->IsExceptionPending());
8345 return nullptr;
8346 }
8347
8348 method_params->Set(i++, param_class.Get());
8349 }
8350
8351 DCHECK(!it.HasNext());
8352
8353 Handle<mirror::MethodType> type = hs.NewHandle(
8354 mirror::MethodType::Create(self, return_type, method_params));
8355 dex_cache->SetResolvedMethodType(proto_idx, type.Get());
8356
8357 return type.Get();
8358 }
8359
ResolveMethodHandle(uint32_t method_handle_idx,ArtMethod * referrer)8360 mirror::MethodHandle* ClassLinker::ResolveMethodHandle(uint32_t method_handle_idx,
8361 ArtMethod* referrer)
8362 REQUIRES_SHARED(Locks::mutator_lock_) {
8363 Thread* const self = Thread::Current();
8364 const DexFile* const dex_file = referrer->GetDexFile();
8365 const DexFile::MethodHandleItem& mh = dex_file->GetMethodHandle(method_handle_idx);
8366
8367 union {
8368 ArtField* field;
8369 ArtMethod* method;
8370 uintptr_t field_or_method;
8371 } target;
8372 uint32_t num_params;
8373 mirror::MethodHandle::Kind kind;
8374 DexFile::MethodHandleType handle_type =
8375 static_cast<DexFile::MethodHandleType>(mh.method_handle_type_);
8376 switch (handle_type) {
8377 case DexFile::MethodHandleType::kStaticPut: {
8378 kind = mirror::MethodHandle::Kind::kStaticPut;
8379 target.field = ResolveField(mh.field_or_method_idx_, referrer, true /* is_static */);
8380 num_params = 1;
8381 break;
8382 }
8383 case DexFile::MethodHandleType::kStaticGet: {
8384 kind = mirror::MethodHandle::Kind::kStaticGet;
8385 target.field = ResolveField(mh.field_or_method_idx_, referrer, true /* is_static */);
8386 num_params = 0;
8387 break;
8388 }
8389 case DexFile::MethodHandleType::kInstancePut: {
8390 kind = mirror::MethodHandle::Kind::kInstancePut;
8391 target.field = ResolveField(mh.field_or_method_idx_, referrer, false /* is_static */);
8392 num_params = 2;
8393 break;
8394 }
8395 case DexFile::MethodHandleType::kInstanceGet: {
8396 kind = mirror::MethodHandle::Kind::kInstanceGet;
8397 target.field = ResolveField(mh.field_or_method_idx_, referrer, false /* is_static */);
8398 num_params = 1;
8399 break;
8400 }
8401 case DexFile::MethodHandleType::kInvokeStatic: {
8402 kind = mirror::MethodHandle::Kind::kInvokeStatic;
8403 target.method = ResolveMethod<kNoICCECheckForCache>(self,
8404 mh.field_or_method_idx_,
8405 referrer,
8406 InvokeType::kStatic);
8407 uint32_t shorty_length;
8408 target.method->GetShorty(&shorty_length);
8409 num_params = shorty_length - 1; // Remove 1 for return value.
8410 break;
8411 }
8412 case DexFile::MethodHandleType::kInvokeInstance: {
8413 kind = mirror::MethodHandle::Kind::kInvokeVirtual;
8414 target.method = ResolveMethod<kNoICCECheckForCache>(self,
8415 mh.field_or_method_idx_,
8416 referrer,
8417 InvokeType::kVirtual);
8418 uint32_t shorty_length;
8419 target.method->GetShorty(&shorty_length);
8420 num_params = shorty_length - 1; // Remove 1 for return value.
8421 break;
8422 }
8423 case DexFile::MethodHandleType::kInvokeConstructor: {
8424 UNIMPLEMENTED(FATAL) << "Invoke constructor is implemented as a transform.";
8425 num_params = 0;
8426 }
8427 }
8428
8429 StackHandleScope<5> hs(self);
8430 ObjPtr<mirror::Class> class_type = mirror::Class::GetJavaLangClass();
8431 ObjPtr<mirror::Class> array_of_class = FindArrayClass(self, &class_type);
8432 Handle<mirror::ObjectArray<mirror::Class>> method_params(hs.NewHandle(
8433 mirror::ObjectArray<mirror::Class>::Alloc(self, array_of_class, num_params)));
8434 if (method_params.Get() == nullptr) {
8435 DCHECK(self->IsExceptionPending());
8436 return nullptr;
8437 }
8438
8439 Handle<mirror::Class> return_type;
8440 switch (handle_type) {
8441 case DexFile::MethodHandleType::kStaticPut: {
8442 method_params->Set(0, target.field->GetType<true>());
8443 return_type = hs.NewHandle(FindPrimitiveClass('V'));
8444 break;
8445 }
8446 case DexFile::MethodHandleType::kStaticGet: {
8447 return_type = hs.NewHandle(target.field->GetType<true>());
8448 break;
8449 }
8450 case DexFile::MethodHandleType::kInstancePut: {
8451 method_params->Set(0, target.field->GetDeclaringClass());
8452 method_params->Set(1, target.field->GetType<true>());
8453 return_type = hs.NewHandle(FindPrimitiveClass('V'));
8454 break;
8455 }
8456 case DexFile::MethodHandleType::kInstanceGet: {
8457 method_params->Set(0, target.field->GetDeclaringClass());
8458 return_type = hs.NewHandle(target.field->GetType<true>());
8459 break;
8460 }
8461 case DexFile::MethodHandleType::kInvokeStatic:
8462 case DexFile::MethodHandleType::kInvokeInstance: {
8463 // TODO(oth): This will not work for varargs methods as this
8464 // requires instantiating a Transformer. This resolution step
8465 // would be best done in managed code rather than in the run
8466 // time (b/35235705)
8467 Handle<mirror::DexCache> dex_cache(hs.NewHandle(referrer->GetDexCache()));
8468 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(referrer->GetClassLoader()));
8469 DexFileParameterIterator it(*dex_file, target.method->GetPrototype());
8470 for (int32_t i = 0; it.HasNext(); i++, it.Next()) {
8471 const dex::TypeIndex type_idx = it.GetTypeIdx();
8472 mirror::Class* klass = ResolveType(*dex_file, type_idx, dex_cache, class_loader);
8473 if (nullptr == klass) {
8474 DCHECK(self->IsExceptionPending());
8475 return nullptr;
8476 }
8477 method_params->Set(i, klass);
8478 }
8479 return_type = hs.NewHandle(target.method->GetReturnType(true));
8480 break;
8481 }
8482 case DexFile::MethodHandleType::kInvokeConstructor: {
8483 // TODO(oth): b/35235705
8484 UNIMPLEMENTED(FATAL) << "Invoke constructor is implemented as a transform.";
8485 }
8486 }
8487
8488 if (return_type.IsNull()) {
8489 DCHECK(self->IsExceptionPending());
8490 return nullptr;
8491 }
8492
8493 Handle<mirror::MethodType>
8494 mt(hs.NewHandle(mirror::MethodType::Create(self, return_type, method_params)));
8495 if (mt.IsNull()) {
8496 DCHECK(self->IsExceptionPending());
8497 return nullptr;
8498 }
8499 return mirror::MethodHandleImpl::Create(self, target.field_or_method, kind, mt);
8500 }
8501
IsQuickResolutionStub(const void * entry_point) const8502 bool ClassLinker::IsQuickResolutionStub(const void* entry_point) const {
8503 return (entry_point == GetQuickResolutionStub()) ||
8504 (quick_resolution_trampoline_ == entry_point);
8505 }
8506
IsQuickToInterpreterBridge(const void * entry_point) const8507 bool ClassLinker::IsQuickToInterpreterBridge(const void* entry_point) const {
8508 return (entry_point == GetQuickToInterpreterBridge()) ||
8509 (quick_to_interpreter_bridge_trampoline_ == entry_point);
8510 }
8511
IsQuickGenericJniStub(const void * entry_point) const8512 bool ClassLinker::IsQuickGenericJniStub(const void* entry_point) const {
8513 return (entry_point == GetQuickGenericJniStub()) ||
8514 (quick_generic_jni_trampoline_ == entry_point);
8515 }
8516
GetRuntimeQuickGenericJniStub() const8517 const void* ClassLinker::GetRuntimeQuickGenericJniStub() const {
8518 return GetQuickGenericJniStub();
8519 }
8520
SetEntryPointsToCompiledCode(ArtMethod * method,const void * code) const8521 void ClassLinker::SetEntryPointsToCompiledCode(ArtMethod* method, const void* code) const {
8522 CHECK(code != nullptr);
8523 const uint8_t* base = reinterpret_cast<const uint8_t*>(code); // Base of data points at code.
8524 base -= sizeof(void*); // Move backward so that code_offset != 0.
8525 const uint32_t code_offset = sizeof(void*);
8526 OatFile::OatMethod oat_method(base, code_offset);
8527 oat_method.LinkMethod(method);
8528 }
8529
SetEntryPointsToInterpreter(ArtMethod * method) const8530 void ClassLinker::SetEntryPointsToInterpreter(ArtMethod* method) const {
8531 if (!method->IsNative()) {
8532 method->SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge());
8533 } else {
8534 SetEntryPointsToCompiledCode(method, GetQuickGenericJniStub());
8535 }
8536 }
8537
SetEntryPointsForObsoleteMethod(ArtMethod * method) const8538 void ClassLinker::SetEntryPointsForObsoleteMethod(ArtMethod* method) const {
8539 DCHECK(method->IsObsolete());
8540 // We cannot mess with the entrypoints of native methods because they are used to determine how
8541 // large the method's quick stack frame is. Without this information we cannot walk the stacks.
8542 if (!method->IsNative()) {
8543 method->SetEntryPointFromQuickCompiledCode(GetInvokeObsoleteMethodStub());
8544 }
8545 }
8546
DumpForSigQuit(std::ostream & os)8547 void ClassLinker::DumpForSigQuit(std::ostream& os) {
8548 ScopedObjectAccess soa(Thread::Current());
8549 ReaderMutexLock mu(soa.Self(), *Locks::classlinker_classes_lock_);
8550 os << "Zygote loaded classes=" << NumZygoteClasses() << " post zygote classes="
8551 << NumNonZygoteClasses() << "\n";
8552 }
8553
8554 class CountClassesVisitor : public ClassLoaderVisitor {
8555 public:
CountClassesVisitor()8556 CountClassesVisitor() : num_zygote_classes(0), num_non_zygote_classes(0) {}
8557
Visit(ObjPtr<mirror::ClassLoader> class_loader)8558 void Visit(ObjPtr<mirror::ClassLoader> class_loader)
8559 REQUIRES_SHARED(Locks::classlinker_classes_lock_, Locks::mutator_lock_) OVERRIDE {
8560 ClassTable* const class_table = class_loader->GetClassTable();
8561 if (class_table != nullptr) {
8562 num_zygote_classes += class_table->NumZygoteClasses(class_loader);
8563 num_non_zygote_classes += class_table->NumNonZygoteClasses(class_loader);
8564 }
8565 }
8566
8567 size_t num_zygote_classes;
8568 size_t num_non_zygote_classes;
8569 };
8570
NumZygoteClasses() const8571 size_t ClassLinker::NumZygoteClasses() const {
8572 CountClassesVisitor visitor;
8573 VisitClassLoaders(&visitor);
8574 return visitor.num_zygote_classes + boot_class_table_.NumZygoteClasses(nullptr);
8575 }
8576
NumNonZygoteClasses() const8577 size_t ClassLinker::NumNonZygoteClasses() const {
8578 CountClassesVisitor visitor;
8579 VisitClassLoaders(&visitor);
8580 return visitor.num_non_zygote_classes + boot_class_table_.NumNonZygoteClasses(nullptr);
8581 }
8582
NumLoadedClasses()8583 size_t ClassLinker::NumLoadedClasses() {
8584 ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
8585 // Only return non zygote classes since these are the ones which apps which care about.
8586 return NumNonZygoteClasses();
8587 }
8588
GetClassesLockOwner()8589 pid_t ClassLinker::GetClassesLockOwner() {
8590 return Locks::classlinker_classes_lock_->GetExclusiveOwnerTid();
8591 }
8592
GetDexLockOwner()8593 pid_t ClassLinker::GetDexLockOwner() {
8594 return Locks::dex_lock_->GetExclusiveOwnerTid();
8595 }
8596
SetClassRoot(ClassRoot class_root,ObjPtr<mirror::Class> klass)8597 void ClassLinker::SetClassRoot(ClassRoot class_root, ObjPtr<mirror::Class> klass) {
8598 DCHECK(!init_done_);
8599
8600 DCHECK(klass != nullptr);
8601 DCHECK(klass->GetClassLoader() == nullptr);
8602
8603 mirror::ObjectArray<mirror::Class>* class_roots = class_roots_.Read();
8604 DCHECK(class_roots != nullptr);
8605 DCHECK(class_roots->Get(class_root) == nullptr);
8606 class_roots->Set<false>(class_root, klass);
8607 }
8608
GetClassRootDescriptor(ClassRoot class_root)8609 const char* ClassLinker::GetClassRootDescriptor(ClassRoot class_root) {
8610 static const char* class_roots_descriptors[] = {
8611 "Ljava/lang/Class;",
8612 "Ljava/lang/Object;",
8613 "[Ljava/lang/Class;",
8614 "[Ljava/lang/Object;",
8615 "Ljava/lang/String;",
8616 "Ljava/lang/DexCache;",
8617 "Ljava/lang/ref/Reference;",
8618 "Ljava/lang/reflect/Constructor;",
8619 "Ljava/lang/reflect/Field;",
8620 "Ljava/lang/reflect/Method;",
8621 "Ljava/lang/reflect/Proxy;",
8622 "[Ljava/lang/String;",
8623 "[Ljava/lang/reflect/Constructor;",
8624 "[Ljava/lang/reflect/Field;",
8625 "[Ljava/lang/reflect/Method;",
8626 "Ljava/lang/invoke/CallSite;",
8627 "Ljava/lang/invoke/MethodHandleImpl;",
8628 "Ljava/lang/invoke/MethodHandles$Lookup;",
8629 "Ljava/lang/invoke/MethodType;",
8630 "Ljava/lang/ClassLoader;",
8631 "Ljava/lang/Throwable;",
8632 "Ljava/lang/ClassNotFoundException;",
8633 "Ljava/lang/StackTraceElement;",
8634 "Ldalvik/system/EmulatedStackFrame;",
8635 "Z",
8636 "B",
8637 "C",
8638 "D",
8639 "F",
8640 "I",
8641 "J",
8642 "S",
8643 "V",
8644 "[Z",
8645 "[B",
8646 "[C",
8647 "[D",
8648 "[F",
8649 "[I",
8650 "[J",
8651 "[S",
8652 "[Ljava/lang/StackTraceElement;",
8653 "Ldalvik/system/ClassExt;",
8654 };
8655 static_assert(arraysize(class_roots_descriptors) == size_t(kClassRootsMax),
8656 "Mismatch between class descriptors and class-root enum");
8657
8658 const char* descriptor = class_roots_descriptors[class_root];
8659 CHECK(descriptor != nullptr);
8660 return descriptor;
8661 }
8662
CreatePathClassLoader(Thread * self,const std::vector<const DexFile * > & dex_files)8663 jobject ClassLinker::CreatePathClassLoader(Thread* self,
8664 const std::vector<const DexFile*>& dex_files) {
8665 // SOAAlreadyRunnable is protected, and we need something to add a global reference.
8666 // We could move the jobject to the callers, but all call-sites do this...
8667 ScopedObjectAccessUnchecked soa(self);
8668
8669 // For now, create a libcore-level DexFile for each ART DexFile. This "explodes" multidex.
8670 StackHandleScope<6> hs(self);
8671
8672 ArtField* dex_elements_field =
8673 jni::DecodeArtField(WellKnownClasses::dalvik_system_DexPathList_dexElements);
8674
8675 Handle<mirror::Class> dex_elements_class(hs.NewHandle(dex_elements_field->GetType<true>()));
8676 DCHECK(dex_elements_class != nullptr);
8677 DCHECK(dex_elements_class->IsArrayClass());
8678 Handle<mirror::ObjectArray<mirror::Object>> h_dex_elements(hs.NewHandle(
8679 mirror::ObjectArray<mirror::Object>::Alloc(self,
8680 dex_elements_class.Get(),
8681 dex_files.size())));
8682 Handle<mirror::Class> h_dex_element_class =
8683 hs.NewHandle(dex_elements_class->GetComponentType());
8684
8685 ArtField* element_file_field =
8686 jni::DecodeArtField(WellKnownClasses::dalvik_system_DexPathList__Element_dexFile);
8687 DCHECK_EQ(h_dex_element_class.Get(), element_file_field->GetDeclaringClass());
8688
8689 ArtField* cookie_field = jni::DecodeArtField(WellKnownClasses::dalvik_system_DexFile_cookie);
8690 DCHECK_EQ(cookie_field->GetDeclaringClass(), element_file_field->GetType<false>());
8691
8692 ArtField* file_name_field = jni::DecodeArtField(WellKnownClasses::dalvik_system_DexFile_fileName);
8693 DCHECK_EQ(file_name_field->GetDeclaringClass(), element_file_field->GetType<false>());
8694
8695 // Fill the elements array.
8696 int32_t index = 0;
8697 for (const DexFile* dex_file : dex_files) {
8698 StackHandleScope<4> hs2(self);
8699
8700 // CreatePathClassLoader is only used by gtests. Index 0 of h_long_array is supposed to be the
8701 // oat file but we can leave it null.
8702 Handle<mirror::LongArray> h_long_array = hs2.NewHandle(mirror::LongArray::Alloc(
8703 self,
8704 kDexFileIndexStart + 1));
8705 DCHECK(h_long_array != nullptr);
8706 h_long_array->Set(kDexFileIndexStart, reinterpret_cast<intptr_t>(dex_file));
8707
8708 // Note that this creates a finalizable dalvik.system.DexFile object and a corresponding
8709 // FinalizerReference which will never get cleaned up without a started runtime.
8710 Handle<mirror::Object> h_dex_file = hs2.NewHandle(
8711 cookie_field->GetDeclaringClass()->AllocObject(self));
8712 DCHECK(h_dex_file != nullptr);
8713 cookie_field->SetObject<false>(h_dex_file.Get(), h_long_array.Get());
8714
8715 Handle<mirror::String> h_file_name = hs2.NewHandle(
8716 mirror::String::AllocFromModifiedUtf8(self, dex_file->GetLocation().c_str()));
8717 DCHECK(h_file_name != nullptr);
8718 file_name_field->SetObject<false>(h_dex_file.Get(), h_file_name.Get());
8719
8720 Handle<mirror::Object> h_element = hs2.NewHandle(h_dex_element_class->AllocObject(self));
8721 DCHECK(h_element != nullptr);
8722 element_file_field->SetObject<false>(h_element.Get(), h_dex_file.Get());
8723
8724 h_dex_elements->Set(index, h_element.Get());
8725 index++;
8726 }
8727 DCHECK_EQ(index, h_dex_elements->GetLength());
8728
8729 // Create DexPathList.
8730 Handle<mirror::Object> h_dex_path_list = hs.NewHandle(
8731 dex_elements_field->GetDeclaringClass()->AllocObject(self));
8732 DCHECK(h_dex_path_list != nullptr);
8733 // Set elements.
8734 dex_elements_field->SetObject<false>(h_dex_path_list.Get(), h_dex_elements.Get());
8735
8736 // Create PathClassLoader.
8737 Handle<mirror::Class> h_path_class_class = hs.NewHandle(
8738 soa.Decode<mirror::Class>(WellKnownClasses::dalvik_system_PathClassLoader));
8739 Handle<mirror::Object> h_path_class_loader = hs.NewHandle(
8740 h_path_class_class->AllocObject(self));
8741 DCHECK(h_path_class_loader != nullptr);
8742 // Set DexPathList.
8743 ArtField* path_list_field =
8744 jni::DecodeArtField(WellKnownClasses::dalvik_system_BaseDexClassLoader_pathList);
8745 DCHECK(path_list_field != nullptr);
8746 path_list_field->SetObject<false>(h_path_class_loader.Get(), h_dex_path_list.Get());
8747
8748 // Make a pretend boot-classpath.
8749 // TODO: Should we scan the image?
8750 ArtField* const parent_field =
8751 mirror::Class::FindField(self,
8752 h_path_class_loader->GetClass(),
8753 "parent",
8754 "Ljava/lang/ClassLoader;");
8755 DCHECK(parent_field != nullptr);
8756 ObjPtr<mirror::Object> boot_cl =
8757 soa.Decode<mirror::Class>(WellKnownClasses::java_lang_BootClassLoader)->AllocObject(self);
8758 parent_field->SetObject<false>(h_path_class_loader.Get(), boot_cl);
8759
8760 // Make it a global ref and return.
8761 ScopedLocalRef<jobject> local_ref(
8762 soa.Env(), soa.Env()->AddLocalReference<jobject>(h_path_class_loader.Get()));
8763 return soa.Env()->NewGlobalRef(local_ref.get());
8764 }
8765
DropFindArrayClassCache()8766 void ClassLinker::DropFindArrayClassCache() {
8767 std::fill_n(find_array_class_cache_, kFindArrayCacheSize, GcRoot<mirror::Class>(nullptr));
8768 find_array_class_cache_next_victim_ = 0;
8769 }
8770
ClearClassTableStrongRoots() const8771 void ClassLinker::ClearClassTableStrongRoots() const {
8772 Thread* const self = Thread::Current();
8773 WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
8774 for (const ClassLoaderData& data : class_loaders_) {
8775 if (data.class_table != nullptr) {
8776 data.class_table->ClearStrongRoots();
8777 }
8778 }
8779 }
8780
VisitClassLoaders(ClassLoaderVisitor * visitor) const8781 void ClassLinker::VisitClassLoaders(ClassLoaderVisitor* visitor) const {
8782 Thread* const self = Thread::Current();
8783 for (const ClassLoaderData& data : class_loaders_) {
8784 // Need to use DecodeJObject so that we get null for cleared JNI weak globals.
8785 ObjPtr<mirror::ClassLoader> class_loader = ObjPtr<mirror::ClassLoader>::DownCast(
8786 self->DecodeJObject(data.weak_root));
8787 if (class_loader != nullptr) {
8788 visitor->Visit(class_loader.Ptr());
8789 }
8790 }
8791 }
8792
InsertDexFileInToClassLoader(ObjPtr<mirror::Object> dex_file,ObjPtr<mirror::ClassLoader> class_loader)8793 void ClassLinker::InsertDexFileInToClassLoader(ObjPtr<mirror::Object> dex_file,
8794 ObjPtr<mirror::ClassLoader> class_loader) {
8795 DCHECK(dex_file != nullptr);
8796 Thread* const self = Thread::Current();
8797 WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
8798 ClassTable* const table = ClassTableForClassLoader(class_loader.Ptr());
8799 DCHECK(table != nullptr);
8800 if (table->InsertStrongRoot(dex_file) && class_loader != nullptr) {
8801 // It was not already inserted, perform the write barrier to let the GC know the class loader's
8802 // class table was modified.
8803 Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(class_loader);
8804 }
8805 }
8806
CleanupClassLoaders()8807 void ClassLinker::CleanupClassLoaders() {
8808 Thread* const self = Thread::Current();
8809 std::vector<ClassLoaderData> to_delete;
8810 // Do the delete outside the lock to avoid lock violation in jit code cache.
8811 {
8812 WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
8813 for (auto it = class_loaders_.begin(); it != class_loaders_.end(); ) {
8814 const ClassLoaderData& data = *it;
8815 // Need to use DecodeJObject so that we get null for cleared JNI weak globals.
8816 ObjPtr<mirror::ClassLoader> class_loader =
8817 ObjPtr<mirror::ClassLoader>::DownCast(self->DecodeJObject(data.weak_root));
8818 if (class_loader != nullptr) {
8819 ++it;
8820 } else {
8821 VLOG(class_linker) << "Freeing class loader";
8822 to_delete.push_back(data);
8823 it = class_loaders_.erase(it);
8824 }
8825 }
8826 }
8827 for (ClassLoaderData& data : to_delete) {
8828 DeleteClassLoader(self, data);
8829 }
8830 }
8831
8832 class GetResolvedClassesVisitor : public ClassVisitor {
8833 public:
GetResolvedClassesVisitor(std::set<DexCacheResolvedClasses> * result,bool ignore_boot_classes)8834 GetResolvedClassesVisitor(std::set<DexCacheResolvedClasses>* result, bool ignore_boot_classes)
8835 : result_(result),
8836 ignore_boot_classes_(ignore_boot_classes),
8837 last_resolved_classes_(result->end()),
8838 last_dex_file_(nullptr),
8839 vlog_is_on_(VLOG_IS_ON(class_linker)),
8840 extra_stats_(),
8841 last_extra_stats_(extra_stats_.end()) { }
8842
operator ()(ObjPtr<mirror::Class> klass)8843 bool operator()(ObjPtr<mirror::Class> klass) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
8844 if (!klass->IsProxyClass() &&
8845 !klass->IsArrayClass() &&
8846 klass->IsResolved() &&
8847 !klass->IsErroneousResolved() &&
8848 (!ignore_boot_classes_ || klass->GetClassLoader() != nullptr)) {
8849 const DexFile& dex_file = klass->GetDexFile();
8850 if (&dex_file != last_dex_file_) {
8851 last_dex_file_ = &dex_file;
8852 DexCacheResolvedClasses resolved_classes(dex_file.GetLocation(),
8853 dex_file.GetBaseLocation(),
8854 dex_file.GetLocationChecksum());
8855 last_resolved_classes_ = result_->find(resolved_classes);
8856 if (last_resolved_classes_ == result_->end()) {
8857 last_resolved_classes_ = result_->insert(resolved_classes).first;
8858 }
8859 }
8860 bool added = last_resolved_classes_->AddClass(klass->GetDexTypeIndex());
8861 if (UNLIKELY(vlog_is_on_) && added) {
8862 const DexCacheResolvedClasses* resolved_classes = std::addressof(*last_resolved_classes_);
8863 if (last_extra_stats_ == extra_stats_.end() ||
8864 last_extra_stats_->first != resolved_classes) {
8865 last_extra_stats_ = extra_stats_.find(resolved_classes);
8866 if (last_extra_stats_ == extra_stats_.end()) {
8867 last_extra_stats_ =
8868 extra_stats_.emplace(resolved_classes, ExtraStats(dex_file.NumClassDefs())).first;
8869 }
8870 }
8871 }
8872 }
8873 return true;
8874 }
8875
PrintStatistics() const8876 void PrintStatistics() const {
8877 if (vlog_is_on_) {
8878 for (const DexCacheResolvedClasses& resolved_classes : *result_) {
8879 auto it = extra_stats_.find(std::addressof(resolved_classes));
8880 DCHECK(it != extra_stats_.end());
8881 const ExtraStats& extra_stats = it->second;
8882 LOG(INFO) << "Dex location " << resolved_classes.GetDexLocation()
8883 << " has " << resolved_classes.GetClasses().size() << " / "
8884 << extra_stats.number_of_class_defs_ << " resolved classes";
8885 }
8886 }
8887 }
8888
8889 private:
8890 struct ExtraStats {
ExtraStatsart::GetResolvedClassesVisitor::ExtraStats8891 explicit ExtraStats(uint32_t number_of_class_defs)
8892 : number_of_class_defs_(number_of_class_defs) {}
8893 uint32_t number_of_class_defs_;
8894 };
8895
8896 std::set<DexCacheResolvedClasses>* result_;
8897 bool ignore_boot_classes_;
8898 std::set<DexCacheResolvedClasses>::iterator last_resolved_classes_;
8899 const DexFile* last_dex_file_;
8900
8901 // Statistics.
8902 bool vlog_is_on_;
8903 std::map<const DexCacheResolvedClasses*, ExtraStats> extra_stats_;
8904 std::map<const DexCacheResolvedClasses*, ExtraStats>::iterator last_extra_stats_;
8905 };
8906
GetResolvedClasses(bool ignore_boot_classes)8907 std::set<DexCacheResolvedClasses> ClassLinker::GetResolvedClasses(bool ignore_boot_classes) {
8908 ScopedTrace trace(__PRETTY_FUNCTION__);
8909 ScopedObjectAccess soa(Thread::Current());
8910 ScopedAssertNoThreadSuspension ants(__FUNCTION__);
8911 std::set<DexCacheResolvedClasses> ret;
8912 VLOG(class_linker) << "Collecting resolved classes";
8913 const uint64_t start_time = NanoTime();
8914 GetResolvedClassesVisitor visitor(&ret, ignore_boot_classes);
8915 VisitClasses(&visitor);
8916 if (VLOG_IS_ON(class_linker)) {
8917 visitor.PrintStatistics();
8918 LOG(INFO) << "Collecting class profile took " << PrettyDuration(NanoTime() - start_time);
8919 }
8920 return ret;
8921 }
8922
GetClassDescriptorsForResolvedClasses(const std::set<DexCacheResolvedClasses> & classes)8923 std::unordered_set<std::string> ClassLinker::GetClassDescriptorsForResolvedClasses(
8924 const std::set<DexCacheResolvedClasses>& classes) {
8925 ScopedTrace trace(__PRETTY_FUNCTION__);
8926 std::unordered_set<std::string> ret;
8927 Thread* const self = Thread::Current();
8928 std::unordered_map<std::string, const DexFile*> location_to_dex_file;
8929 ScopedObjectAccess soa(self);
8930 ScopedAssertNoThreadSuspension ants(__FUNCTION__);
8931 ReaderMutexLock mu(self, *Locks::dex_lock_);
8932 for (const ClassLinker::DexCacheData& data : GetDexCachesData()) {
8933 if (!self->IsJWeakCleared(data.weak_root)) {
8934 ObjPtr<mirror::DexCache> dex_cache = soa.Decode<mirror::DexCache>(data.weak_root);
8935 if (dex_cache != nullptr) {
8936 const DexFile* dex_file = dex_cache->GetDexFile();
8937 // There could be duplicates if two dex files with the same location are mapped.
8938 location_to_dex_file.emplace(dex_file->GetLocation(), dex_file);
8939 }
8940 }
8941 }
8942 for (const DexCacheResolvedClasses& info : classes) {
8943 const std::string& location = info.GetDexLocation();
8944 auto found = location_to_dex_file.find(location);
8945 if (found != location_to_dex_file.end()) {
8946 const DexFile* dex_file = found->second;
8947 VLOG(profiler) << "Found opened dex file for " << dex_file->GetLocation() << " with "
8948 << info.GetClasses().size() << " classes";
8949 DCHECK_EQ(dex_file->GetLocationChecksum(), info.GetLocationChecksum());
8950 for (dex::TypeIndex type_idx : info.GetClasses()) {
8951 if (!dex_file->IsTypeIndexValid(type_idx)) {
8952 // Something went bad. The profile is probably corrupted. Abort and return an emtpy set.
8953 LOG(WARNING) << "Corrupted profile: invalid type index "
8954 << type_idx.index_ << " in dex " << location;
8955 return std::unordered_set<std::string>();
8956 }
8957 const DexFile::TypeId& type_id = dex_file->GetTypeId(type_idx);
8958 const char* descriptor = dex_file->GetTypeDescriptor(type_id);
8959 ret.insert(descriptor);
8960 }
8961 } else {
8962 VLOG(class_linker) << "Failed to find opened dex file for location " << location;
8963 }
8964 }
8965 return ret;
8966 }
8967
8968 class ClassLinker::FindVirtualMethodHolderVisitor : public ClassVisitor {
8969 public:
FindVirtualMethodHolderVisitor(const ArtMethod * method,PointerSize pointer_size)8970 FindVirtualMethodHolderVisitor(const ArtMethod* method, PointerSize pointer_size)
8971 : method_(method),
8972 pointer_size_(pointer_size) {}
8973
operator ()(ObjPtr<mirror::Class> klass)8974 bool operator()(ObjPtr<mirror::Class> klass) REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE {
8975 if (klass->GetVirtualMethodsSliceUnchecked(pointer_size_).Contains(method_)) {
8976 holder_ = klass;
8977 }
8978 // Return false to stop searching if holder_ is not null.
8979 return holder_ == nullptr;
8980 }
8981
8982 ObjPtr<mirror::Class> holder_ = nullptr;
8983 const ArtMethod* const method_;
8984 const PointerSize pointer_size_;
8985 };
8986
GetHoldingClassOfCopiedMethod(ArtMethod * method)8987 mirror::Class* ClassLinker::GetHoldingClassOfCopiedMethod(ArtMethod* method) {
8988 ScopedTrace trace(__FUNCTION__); // Since this function is slow, have a trace to notify people.
8989 CHECK(method->IsCopied());
8990 FindVirtualMethodHolderVisitor visitor(method, image_pointer_size_);
8991 VisitClasses(&visitor);
8992 return visitor.holder_.Ptr();
8993 }
8994
AllocIfTable(Thread * self,size_t ifcount)8995 mirror::IfTable* ClassLinker::AllocIfTable(Thread* self, size_t ifcount) {
8996 return down_cast<mirror::IfTable*>(
8997 mirror::IfTable::Alloc(self,
8998 GetClassRoot(kObjectArrayClass),
8999 ifcount * mirror::IfTable::kMax));
9000 }
9001
9002 // Instantiate ResolveMethod.
9003 template ArtMethod* ClassLinker::ResolveMethod<ClassLinker::kForceICCECheck>(
9004 const DexFile& dex_file,
9005 uint32_t method_idx,
9006 Handle<mirror::DexCache> dex_cache,
9007 Handle<mirror::ClassLoader> class_loader,
9008 ArtMethod* referrer,
9009 InvokeType type);
9010 template ArtMethod* ClassLinker::ResolveMethod<ClassLinker::kNoICCECheckForCache>(
9011 const DexFile& dex_file,
9012 uint32_t method_idx,
9013 Handle<mirror::DexCache> dex_cache,
9014 Handle<mirror::ClassLoader> class_loader,
9015 ArtMethod* referrer,
9016 InvokeType type);
9017
9018 } // namespace art
9019