1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "Sk4fLinearGradient.h"
9 #include "SkColorSpace_XYZ.h"
10 #include "SkGradientShaderPriv.h"
11 #include "SkHalf.h"
12 #include "SkLinearGradient.h"
13 #include "SkRadialGradient.h"
14 #include "SkTwoPointConicalGradient.h"
15 #include "SkSweepGradient.h"
16 
17 enum GradientSerializationFlags {
18     // Bits 29:31 used for various boolean flags
19     kHasPosition_GSF    = 0x80000000,
20     kHasLocalMatrix_GSF = 0x40000000,
21     kHasColorSpace_GSF  = 0x20000000,
22 
23     // Bits 12:28 unused
24 
25     // Bits 8:11 for fTileMode
26     kTileModeShift_GSF  = 8,
27     kTileModeMask_GSF   = 0xF,
28 
29     // Bits 0:7 for fGradFlags (note that kForce4fContext_PrivateFlag is 0x80)
30     kGradFlagsShift_GSF = 0,
31     kGradFlagsMask_GSF  = 0xFF,
32 };
33 
flatten(SkWriteBuffer & buffer) const34 void SkGradientShaderBase::Descriptor::flatten(SkWriteBuffer& buffer) const {
35     uint32_t flags = 0;
36     if (fPos) {
37         flags |= kHasPosition_GSF;
38     }
39     if (fLocalMatrix) {
40         flags |= kHasLocalMatrix_GSF;
41     }
42     sk_sp<SkData> colorSpaceData = fColorSpace ? fColorSpace->serialize() : nullptr;
43     if (colorSpaceData) {
44         flags |= kHasColorSpace_GSF;
45     }
46     SkASSERT(static_cast<uint32_t>(fTileMode) <= kTileModeMask_GSF);
47     flags |= (fTileMode << kTileModeShift_GSF);
48     SkASSERT(fGradFlags <= kGradFlagsMask_GSF);
49     flags |= (fGradFlags << kGradFlagsShift_GSF);
50 
51     buffer.writeUInt(flags);
52 
53     buffer.writeColor4fArray(fColors, fCount);
54     if (colorSpaceData) {
55         buffer.writeDataAsByteArray(colorSpaceData.get());
56     }
57     if (fPos) {
58         buffer.writeScalarArray(fPos, fCount);
59     }
60     if (fLocalMatrix) {
61         buffer.writeMatrix(*fLocalMatrix);
62     }
63 }
64 
unflatten(SkReadBuffer & buffer)65 bool SkGradientShaderBase::DescriptorScope::unflatten(SkReadBuffer& buffer) {
66     if (buffer.isVersionLT(SkReadBuffer::kGradientShaderFloatColor_Version)) {
67         fCount = buffer.getArrayCount();
68         if (fCount > kStorageCount) {
69             size_t allocSize = (sizeof(SkColor4f) + sizeof(SkScalar)) * fCount;
70             fDynamicStorage.reset(allocSize);
71             fColors = (SkColor4f*)fDynamicStorage.get();
72             fPos = (SkScalar*)(fColors + fCount);
73         } else {
74             fColors = fColorStorage;
75             fPos = fPosStorage;
76         }
77 
78         // Old gradients serialized SkColor. Read that to a temporary location, then convert.
79         SkSTArray<2, SkColor, true> colors;
80         colors.resize_back(fCount);
81         if (!buffer.readColorArray(colors.begin(), fCount)) {
82             return false;
83         }
84         for (int i = 0; i < fCount; ++i) {
85             mutableColors()[i] = SkColor4f::FromColor(colors[i]);
86         }
87 
88         if (buffer.readBool()) {
89             if (!buffer.readScalarArray(const_cast<SkScalar*>(fPos), fCount)) {
90                 return false;
91             }
92         } else {
93             fPos = nullptr;
94         }
95 
96         fColorSpace = nullptr;
97         fTileMode = (SkShader::TileMode)buffer.read32();
98         fGradFlags = buffer.read32();
99 
100         if (buffer.readBool()) {
101             fLocalMatrix = &fLocalMatrixStorage;
102             buffer.readMatrix(&fLocalMatrixStorage);
103         } else {
104             fLocalMatrix = nullptr;
105         }
106     } else {
107         // New gradient format. Includes floating point color, color space, densely packed flags
108         uint32_t flags = buffer.readUInt();
109 
110         fTileMode = (SkShader::TileMode)((flags >> kTileModeShift_GSF) & kTileModeMask_GSF);
111         fGradFlags = (flags >> kGradFlagsShift_GSF) & kGradFlagsMask_GSF;
112 
113         fCount = buffer.getArrayCount();
114         if (fCount > kStorageCount) {
115             size_t allocSize = (sizeof(SkColor4f) + sizeof(SkScalar)) * fCount;
116             fDynamicStorage.reset(allocSize);
117             fColors = (SkColor4f*)fDynamicStorage.get();
118             fPos = (SkScalar*)(fColors + fCount);
119         } else {
120             fColors = fColorStorage;
121             fPos = fPosStorage;
122         }
123         if (!buffer.readColor4fArray(mutableColors(), fCount)) {
124             return false;
125         }
126         if (SkToBool(flags & kHasColorSpace_GSF)) {
127             sk_sp<SkData> data = buffer.readByteArrayAsData();
128             fColorSpace = SkColorSpace::Deserialize(data->data(), data->size());
129         } else {
130             fColorSpace = nullptr;
131         }
132         if (SkToBool(flags & kHasPosition_GSF)) {
133             if (!buffer.readScalarArray(mutablePos(), fCount)) {
134                 return false;
135             }
136         } else {
137             fPos = nullptr;
138         }
139         if (SkToBool(flags & kHasLocalMatrix_GSF)) {
140             fLocalMatrix = &fLocalMatrixStorage;
141             buffer.readMatrix(&fLocalMatrixStorage);
142         } else {
143             fLocalMatrix = nullptr;
144         }
145     }
146     return buffer.isValid();
147 }
148 
149 ////////////////////////////////////////////////////////////////////////////////////////////
150 
SkGradientShaderBase(const Descriptor & desc,const SkMatrix & ptsToUnit)151 SkGradientShaderBase::SkGradientShaderBase(const Descriptor& desc, const SkMatrix& ptsToUnit)
152     : INHERITED(desc.fLocalMatrix)
153     , fPtsToUnit(ptsToUnit)
154 {
155     fPtsToUnit.getType();  // Precache so reads are threadsafe.
156     SkASSERT(desc.fCount > 1);
157 
158     fGradFlags = static_cast<uint8_t>(desc.fGradFlags);
159 
160     SkASSERT((unsigned)desc.fTileMode < SkShader::kTileModeCount);
161     SkASSERT(SkShader::kTileModeCount == SK_ARRAY_COUNT(gTileProcs));
162     fTileMode = desc.fTileMode;
163     fTileProc = gTileProcs[desc.fTileMode];
164 
165     /*  Note: we let the caller skip the first and/or last position.
166         i.e. pos[0] = 0.3, pos[1] = 0.7
167         In these cases, we insert dummy entries to ensure that the final data
168         will be bracketed by [0, 1].
169         i.e. our_pos[0] = 0, our_pos[1] = 0.3, our_pos[2] = 0.7, our_pos[3] = 1
170 
171         Thus colorCount (the caller's value, and fColorCount (our value) may
172         differ by up to 2. In the above example:
173             colorCount = 2
174             fColorCount = 4
175      */
176     fColorCount = desc.fCount;
177     // check if we need to add in dummy start and/or end position/colors
178     bool dummyFirst = false;
179     bool dummyLast = false;
180     if (desc.fPos) {
181         dummyFirst = desc.fPos[0] != 0;
182         dummyLast = desc.fPos[desc.fCount - 1] != SK_Scalar1;
183         fColorCount += dummyFirst + dummyLast;
184     }
185 
186     if (fColorCount > kColorStorageCount) {
187         size_t size = sizeof(SkColor) + sizeof(SkColor4f) + sizeof(Rec);
188         if (desc.fPos) {
189             size += sizeof(SkScalar);
190         }
191         fOrigColors = reinterpret_cast<SkColor*>(sk_malloc_throw(size * fColorCount));
192     }
193     else {
194         fOrigColors = fStorage;
195     }
196 
197     fOrigColors4f = (SkColor4f*)(fOrigColors + fColorCount);
198 
199     // Now copy over the colors, adding the dummies as needed
200     SkColor4f* origColors = fOrigColors4f;
201     if (dummyFirst) {
202         *origColors++ = desc.fColors[0];
203     }
204     memcpy(origColors, desc.fColors, desc.fCount * sizeof(SkColor4f));
205     if (dummyLast) {
206         origColors += desc.fCount;
207         *origColors = desc.fColors[desc.fCount - 1];
208     }
209 
210     // Convert our SkColor4f colors to SkColor as well. Note that this is incorrect if the
211     // source colors are not in sRGB gamut. We would need to do a gamut transformation, but
212     // SkColorSpaceXform can't do that (yet). GrColorSpaceXform can, but we may not have GPU
213     // support compiled in here. For the common case (sRGB colors), this does the right thing.
214     for (int i = 0; i < fColorCount; ++i) {
215         fOrigColors[i] = fOrigColors4f[i].toSkColor();
216     }
217 
218     if (!desc.fColorSpace) {
219         // This happens if we were constructed from SkColors, so our colors are really sRGB
220         fColorSpace = SkColorSpace::MakeSRGBLinear();
221     } else {
222         // The color space refers to the float colors, so it must be linear gamma
223         SkASSERT(desc.fColorSpace->gammaIsLinear());
224         fColorSpace = desc.fColorSpace;
225     }
226 
227     if (desc.fPos && fColorCount) {
228         fOrigPos = (SkScalar*)(fOrigColors4f + fColorCount);
229         fRecs = (Rec*)(fOrigPos + fColorCount);
230     } else {
231         fOrigPos = nullptr;
232         fRecs = (Rec*)(fOrigColors4f + fColorCount);
233     }
234 
235     if (fColorCount > 2) {
236         Rec* recs = fRecs;
237         recs->fPos = 0;
238         //  recs->fScale = 0; // unused;
239         recs += 1;
240         if (desc.fPos) {
241             SkScalar* origPosPtr = fOrigPos;
242             *origPosPtr++ = 0;
243 
244             /*  We need to convert the user's array of relative positions into
245                 fixed-point positions and scale factors. We need these results
246                 to be strictly monotonic (no two values equal or out of order).
247                 Hence this complex loop that just jams a zero for the scale
248                 value if it sees a segment out of order, and it assures that
249                 we start at 0 and end at 1.0
250             */
251             SkScalar prev = 0;
252             int startIndex = dummyFirst ? 0 : 1;
253             int count = desc.fCount + dummyLast;
254             for (int i = startIndex; i < count; i++) {
255                 // force the last value to be 1.0
256                 SkScalar curr;
257                 if (i == desc.fCount) {  // we're really at the dummyLast
258                     curr = 1;
259                 } else {
260                     curr = SkScalarPin(desc.fPos[i], 0, 1);
261                 }
262                 *origPosPtr++ = curr;
263 
264                 recs->fPos = SkScalarToFixed(curr);
265                 SkFixed diff = SkScalarToFixed(curr - prev);
266                 if (diff > 0) {
267                     recs->fScale = (1 << 24) / diff;
268                 } else {
269                     recs->fScale = 0; // ignore this segment
270                 }
271                 // get ready for the next value
272                 prev = curr;
273                 recs += 1;
274             }
275         } else {    // assume even distribution
276             fOrigPos = nullptr;
277 
278             SkFixed dp = SK_Fixed1 / (desc.fCount - 1);
279             SkFixed p = dp;
280             SkFixed scale = (desc.fCount - 1) << 8;  // (1 << 24) / dp
281             for (int i = 1; i < desc.fCount - 1; i++) {
282                 recs->fPos   = p;
283                 recs->fScale = scale;
284                 recs += 1;
285                 p += dp;
286             }
287             recs->fPos = SK_Fixed1;
288             recs->fScale = scale;
289         }
290     } else if (desc.fPos) {
291         SkASSERT(2 == fColorCount);
292         fOrigPos[0] = SkScalarPin(desc.fPos[0], 0, 1);
293         fOrigPos[1] = SkScalarPin(desc.fPos[1], fOrigPos[0], 1);
294         if (0 == fOrigPos[0] && 1 == fOrigPos[1]) {
295             fOrigPos = nullptr;
296         }
297     }
298     this->initCommon();
299 }
300 
~SkGradientShaderBase()301 SkGradientShaderBase::~SkGradientShaderBase() {
302     if (fOrigColors != fStorage) {
303         sk_free(fOrigColors);
304     }
305 }
306 
initCommon()307 void SkGradientShaderBase::initCommon() {
308     unsigned colorAlpha = 0xFF;
309     for (int i = 0; i < fColorCount; i++) {
310         colorAlpha &= SkColorGetA(fOrigColors[i]);
311     }
312     fColorsAreOpaque = colorAlpha == 0xFF;
313 }
314 
flatten(SkWriteBuffer & buffer) const315 void SkGradientShaderBase::flatten(SkWriteBuffer& buffer) const {
316     Descriptor desc;
317     desc.fColors = fOrigColors4f;
318     desc.fColorSpace = fColorSpace;
319     desc.fPos = fOrigPos;
320     desc.fCount = fColorCount;
321     desc.fTileMode = fTileMode;
322     desc.fGradFlags = fGradFlags;
323 
324     const SkMatrix& m = this->getLocalMatrix();
325     desc.fLocalMatrix = m.isIdentity() ? nullptr : &m;
326     desc.flatten(buffer);
327 }
328 
FlipGradientColors(SkColor * colorDst,Rec * recDst,SkColor * colorSrc,Rec * recSrc,int count)329 void SkGradientShaderBase::FlipGradientColors(SkColor* colorDst, Rec* recDst,
330                                               SkColor* colorSrc, Rec* recSrc,
331                                               int count) {
332     SkAutoSTArray<8, SkColor> colorsTemp(count);
333     for (int i = 0; i < count; ++i) {
334         int offset = count - i - 1;
335         colorsTemp[i] = colorSrc[offset];
336     }
337     if (count > 2) {
338         SkAutoSTArray<8, Rec> recsTemp(count);
339         for (int i = 0; i < count; ++i) {
340             int offset = count - i - 1;
341             recsTemp[i].fPos = SK_Fixed1 - recSrc[offset].fPos;
342             recsTemp[i].fScale = recSrc[offset].fScale;
343         }
344         memcpy(recDst, recsTemp.get(), count * sizeof(Rec));
345     }
346     memcpy(colorDst, colorsTemp.get(), count * sizeof(SkColor));
347 }
348 
isOpaque() const349 bool SkGradientShaderBase::isOpaque() const {
350     return fColorsAreOpaque;
351 }
352 
rounded_divide(unsigned numer,unsigned denom)353 static unsigned rounded_divide(unsigned numer, unsigned denom) {
354     return (numer + (denom >> 1)) / denom;
355 }
356 
onAsLuminanceColor(SkColor * lum) const357 bool SkGradientShaderBase::onAsLuminanceColor(SkColor* lum) const {
358     // we just compute an average color.
359     // possibly we could weight this based on the proportional width for each color
360     //   assuming they are not evenly distributed in the fPos array.
361     int r = 0;
362     int g = 0;
363     int b = 0;
364     const int n = fColorCount;
365     for (int i = 0; i < n; ++i) {
366         SkColor c = fOrigColors[i];
367         r += SkColorGetR(c);
368         g += SkColorGetG(c);
369         b += SkColorGetB(c);
370     }
371     *lum = SkColorSetRGB(rounded_divide(r, n), rounded_divide(g, n), rounded_divide(b, n));
372     return true;
373 }
374 
GradientShaderBaseContext(const SkGradientShaderBase & shader,const ContextRec & rec)375 SkGradientShaderBase::GradientShaderBaseContext::GradientShaderBaseContext(
376         const SkGradientShaderBase& shader, const ContextRec& rec)
377     : INHERITED(shader, rec)
378 #ifdef SK_SUPPORT_LEGACY_GRADIENT_DITHERING
379     , fDither(true)
380 #else
381     , fDither(rec.fPaint->isDither())
382 #endif
383     , fCache(shader.refCache(getPaintAlpha(), fDither))
384 {
385     const SkMatrix& inverse = this->getTotalInverse();
386 
387     fDstToIndex.setConcat(shader.fPtsToUnit, inverse);
388 
389     fDstToIndexProc = fDstToIndex.getMapXYProc();
390     fDstToIndexClass = (uint8_t)SkShader::Context::ComputeMatrixClass(fDstToIndex);
391 
392     // now convert our colors in to PMColors
393     unsigned paintAlpha = this->getPaintAlpha();
394 
395     fFlags = this->INHERITED::getFlags();
396     if (shader.fColorsAreOpaque && paintAlpha == 0xFF) {
397         fFlags |= kOpaqueAlpha_Flag;
398     }
399 }
400 
isValid() const401 bool SkGradientShaderBase::GradientShaderBaseContext::isValid() const {
402     return fDstToIndex.isFinite();
403 }
404 
GradientShaderCache(U8CPU alpha,bool dither,const SkGradientShaderBase & shader)405 SkGradientShaderBase::GradientShaderCache::GradientShaderCache(
406         U8CPU alpha, bool dither, const SkGradientShaderBase& shader)
407     : fCacheAlpha(alpha)
408     , fCacheDither(dither)
409     , fShader(shader)
410 {
411     // Only initialize the cache in getCache32.
412     fCache32 = nullptr;
413     fCache32PixelRef = nullptr;
414 }
415 
~GradientShaderCache()416 SkGradientShaderBase::GradientShaderCache::~GradientShaderCache() {
417     SkSafeUnref(fCache32PixelRef);
418 }
419 
420 /*
421  *  r,g,b used to be SkFixed, but on gcc (4.2.1 mac and 4.6.3 goobuntu) in
422  *  release builds, we saw a compiler error where the 0xFF parameter in
423  *  SkPackARGB32() was being totally ignored whenever it was called with
424  *  a non-zero add (e.g. 0x8000).
425  *
426  *  We found two work-arounds:
427  *      1. change r,g,b to unsigned (or just one of them)
428  *      2. change SkPackARGB32 to + its (a << SK_A32_SHIFT) value instead
429  *         of using |
430  *
431  *  We chose #1 just because it was more localized.
432  *  See http://code.google.com/p/skia/issues/detail?id=1113
433  *
434  *  The type SkUFixed encapsulate this need for unsigned, but logically Fixed.
435  */
436 typedef uint32_t SkUFixed;
437 
Build32bitCache(SkPMColor cache[],SkColor c0,SkColor c1,int count,U8CPU paintAlpha,uint32_t gradFlags,bool dither)438 void SkGradientShaderBase::GradientShaderCache::Build32bitCache(
439         SkPMColor cache[], SkColor c0, SkColor c1,
440         int count, U8CPU paintAlpha, uint32_t gradFlags, bool dither) {
441     SkASSERT(count > 1);
442 
443     // need to apply paintAlpha to our two endpoints
444     uint32_t a0 = SkMulDiv255Round(SkColorGetA(c0), paintAlpha);
445     uint32_t a1 = SkMulDiv255Round(SkColorGetA(c1), paintAlpha);
446 
447 
448     const bool interpInPremul = SkToBool(gradFlags &
449                            SkGradientShader::kInterpolateColorsInPremul_Flag);
450 
451     uint32_t r0 = SkColorGetR(c0);
452     uint32_t g0 = SkColorGetG(c0);
453     uint32_t b0 = SkColorGetB(c0);
454 
455     uint32_t r1 = SkColorGetR(c1);
456     uint32_t g1 = SkColorGetG(c1);
457     uint32_t b1 = SkColorGetB(c1);
458 
459     if (interpInPremul) {
460         r0 = SkMulDiv255Round(r0, a0);
461         g0 = SkMulDiv255Round(g0, a0);
462         b0 = SkMulDiv255Round(b0, a0);
463 
464         r1 = SkMulDiv255Round(r1, a1);
465         g1 = SkMulDiv255Round(g1, a1);
466         b1 = SkMulDiv255Round(b1, a1);
467     }
468 
469     SkFixed da = SkIntToFixed(a1 - a0) / (count - 1);
470     SkFixed dr = SkIntToFixed(r1 - r0) / (count - 1);
471     SkFixed dg = SkIntToFixed(g1 - g0) / (count - 1);
472     SkFixed db = SkIntToFixed(b1 - b0) / (count - 1);
473 
474     /*  We pre-add 1/8 to avoid having to add this to our [0] value each time
475         in the loop. Without this, the bias for each would be
476             0x2000  0xA000  0xE000  0x6000
477         With this trick, we can add 0 for the first (no-op) and just adjust the
478         others.
479      */
480     const SkUFixed bias0 = dither ? 0x2000 : 0x8000;
481     const SkUFixed bias1 = dither ? 0x8000 : 0;
482     const SkUFixed bias2 = dither ? 0xC000 : 0;
483     const SkUFixed bias3 = dither ? 0x4000 : 0;
484 
485     SkUFixed a = SkIntToFixed(a0) + bias0;
486     SkUFixed r = SkIntToFixed(r0) + bias0;
487     SkUFixed g = SkIntToFixed(g0) + bias0;
488     SkUFixed b = SkIntToFixed(b0) + bias0;
489 
490     /*
491      *  Our dither-cell (spatially) is
492      *      0 2
493      *      3 1
494      *  Where
495      *      [0] -> [-1/8 ... 1/8 ) values near 0
496      *      [1] -> [ 1/8 ... 3/8 ) values near 1/4
497      *      [2] -> [ 3/8 ... 5/8 ) values near 1/2
498      *      [3] -> [ 5/8 ... 7/8 ) values near 3/4
499      */
500 
501     if (0xFF == a0 && 0 == da) {
502         do {
503             cache[kCache32Count*0] = SkPackARGB32(0xFF, (r + 0    ) >> 16,
504                                                         (g + 0    ) >> 16,
505                                                         (b + 0    ) >> 16);
506             cache[kCache32Count*1] = SkPackARGB32(0xFF, (r + bias1) >> 16,
507                                                         (g + bias1) >> 16,
508                                                         (b + bias1) >> 16);
509             cache[kCache32Count*2] = SkPackARGB32(0xFF, (r + bias2) >> 16,
510                                                         (g + bias2) >> 16,
511                                                         (b + bias2) >> 16);
512             cache[kCache32Count*3] = SkPackARGB32(0xFF, (r + bias3) >> 16,
513                                                         (g + bias3) >> 16,
514                                                         (b + bias3) >> 16);
515             cache += 1;
516             r += dr;
517             g += dg;
518             b += db;
519         } while (--count != 0);
520     } else if (interpInPremul) {
521         do {
522             cache[kCache32Count*0] = SkPackARGB32((a + 0    ) >> 16,
523                                                   (r + 0    ) >> 16,
524                                                   (g + 0    ) >> 16,
525                                                   (b + 0    ) >> 16);
526             cache[kCache32Count*1] = SkPackARGB32((a + bias1) >> 16,
527                                                   (r + bias1) >> 16,
528                                                   (g + bias1) >> 16,
529                                                   (b + bias1) >> 16);
530             cache[kCache32Count*2] = SkPackARGB32((a + bias2) >> 16,
531                                                   (r + bias2) >> 16,
532                                                   (g + bias2) >> 16,
533                                                   (b + bias2) >> 16);
534             cache[kCache32Count*3] = SkPackARGB32((a + bias3) >> 16,
535                                                   (r + bias3) >> 16,
536                                                   (g + bias3) >> 16,
537                                                   (b + bias3) >> 16);
538             cache += 1;
539             a += da;
540             r += dr;
541             g += dg;
542             b += db;
543         } while (--count != 0);
544     } else {    // interpolate in unpreml space
545         do {
546             cache[kCache32Count*0] = SkPremultiplyARGBInline((a + 0     ) >> 16,
547                                                              (r + 0     ) >> 16,
548                                                              (g + 0     ) >> 16,
549                                                              (b + 0     ) >> 16);
550             cache[kCache32Count*1] = SkPremultiplyARGBInline((a + bias1) >> 16,
551                                                              (r + bias1) >> 16,
552                                                              (g + bias1) >> 16,
553                                                              (b + bias1) >> 16);
554             cache[kCache32Count*2] = SkPremultiplyARGBInline((a + bias2) >> 16,
555                                                              (r + bias2) >> 16,
556                                                              (g + bias2) >> 16,
557                                                              (b + bias2) >> 16);
558             cache[kCache32Count*3] = SkPremultiplyARGBInline((a + bias3) >> 16,
559                                                              (r + bias3) >> 16,
560                                                              (g + bias3) >> 16,
561                                                              (b + bias3) >> 16);
562             cache += 1;
563             a += da;
564             r += dr;
565             g += dg;
566             b += db;
567         } while (--count != 0);
568     }
569 }
570 
SkFixedToFFFF(SkFixed x)571 static inline int SkFixedToFFFF(SkFixed x) {
572     SkASSERT((unsigned)x <= SK_Fixed1);
573     return x - (x >> 16);
574 }
575 
getCache32()576 const SkPMColor* SkGradientShaderBase::GradientShaderCache::getCache32() {
577     fCache32InitOnce(SkGradientShaderBase::GradientShaderCache::initCache32, this);
578     SkASSERT(fCache32);
579     return fCache32;
580 }
581 
initCache32(GradientShaderCache * cache)582 void SkGradientShaderBase::GradientShaderCache::initCache32(GradientShaderCache* cache) {
583     const int kNumberOfDitherRows = 4;
584     const SkImageInfo info = SkImageInfo::MakeN32Premul(kCache32Count, kNumberOfDitherRows);
585 
586     SkASSERT(nullptr == cache->fCache32PixelRef);
587     cache->fCache32PixelRef = SkMallocPixelRef::NewAllocate(info, 0, nullptr);
588     cache->fCache32 = (SkPMColor*)cache->fCache32PixelRef->getAddr();
589     if (cache->fShader.fColorCount == 2) {
590         Build32bitCache(cache->fCache32, cache->fShader.fOrigColors[0],
591                         cache->fShader.fOrigColors[1], kCache32Count, cache->fCacheAlpha,
592                         cache->fShader.fGradFlags, cache->fCacheDither);
593     } else {
594         Rec* rec = cache->fShader.fRecs;
595         int prevIndex = 0;
596         for (int i = 1; i < cache->fShader.fColorCount; i++) {
597             int nextIndex = SkFixedToFFFF(rec[i].fPos) >> kCache32Shift;
598             SkASSERT(nextIndex < kCache32Count);
599 
600             if (nextIndex > prevIndex)
601                 Build32bitCache(cache->fCache32 + prevIndex, cache->fShader.fOrigColors[i-1],
602                                 cache->fShader.fOrigColors[i], nextIndex - prevIndex + 1,
603                                 cache->fCacheAlpha, cache->fShader.fGradFlags, cache->fCacheDither);
604             prevIndex = nextIndex;
605         }
606     }
607 }
608 
initLinearBitmap(SkBitmap * bitmap) const609 void SkGradientShaderBase::initLinearBitmap(SkBitmap* bitmap) const {
610     const bool interpInPremul = SkToBool(fGradFlags &
611                                          SkGradientShader::kInterpolateColorsInPremul_Flag);
612     bitmap->lockPixels();
613     SkHalf* pixelsF16 = reinterpret_cast<SkHalf*>(bitmap->getPixels());
614     uint32_t* pixelsS32 = reinterpret_cast<uint32_t*>(bitmap->getPixels());
615 
616     typedef std::function<void(const Sk4f&, int)> pixelWriteFn_t;
617 
618     pixelWriteFn_t writeF16Pixel = [&](const Sk4f& x, int index) {
619         Sk4h c = SkFloatToHalf_finite_ftz(x);
620         pixelsF16[4*index+0] = c[0];
621         pixelsF16[4*index+1] = c[1];
622         pixelsF16[4*index+2] = c[2];
623         pixelsF16[4*index+3] = c[3];
624     };
625     pixelWriteFn_t writeS32Pixel = [&](const Sk4f& c, int index) {
626         pixelsS32[index] = Sk4f_toS32(c);
627     };
628 
629     pixelWriteFn_t writeSizedPixel =
630         (kRGBA_F16_SkColorType == bitmap->colorType()) ? writeF16Pixel : writeS32Pixel;
631     pixelWriteFn_t writeUnpremulPixel = [&](const Sk4f& c, int index) {
632         writeSizedPixel(c * Sk4f(c[3], c[3], c[3], 1.0f), index);
633     };
634 
635     pixelWriteFn_t writePixel = interpInPremul ? writeSizedPixel : writeUnpremulPixel;
636 
637     int prevIndex = 0;
638     for (int i = 1; i < fColorCount; i++) {
639         int nextIndex = (fColorCount == 2) ? (kCache32Count - 1)
640             : SkFixedToFFFF(fRecs[i].fPos) >> kCache32Shift;
641         SkASSERT(nextIndex < kCache32Count);
642 
643         if (nextIndex > prevIndex) {
644             Sk4f c0 = Sk4f::Load(fOrigColors4f[i - 1].vec());
645             Sk4f c1 = Sk4f::Load(fOrigColors4f[i].vec());
646             if (interpInPremul) {
647                 c0 = c0 * Sk4f(c0[3], c0[3], c0[3], 1.0f);
648                 c1 = c1 * Sk4f(c1[3], c1[3], c1[3], 1.0f);
649             }
650 
651             Sk4f step = Sk4f(1.0f / static_cast<float>(nextIndex - prevIndex));
652             Sk4f delta = (c1 - c0) * step;
653 
654             for (int curIndex = prevIndex; curIndex <= nextIndex; ++curIndex) {
655                 writePixel(c0, curIndex);
656                 c0 += delta;
657             }
658         }
659         prevIndex = nextIndex;
660     }
661     SkASSERT(prevIndex == kCache32Count - 1);
662     bitmap->unlockPixels();
663 }
664 
665 /*
666  *  The gradient holds a cache for the most recent value of alpha. Successive
667  *  callers with the same alpha value will share the same cache.
668  */
refCache(U8CPU alpha,bool dither) const669 sk_sp<SkGradientShaderBase::GradientShaderCache> SkGradientShaderBase::refCache(U8CPU alpha,
670                                                                           bool dither) const {
671     SkAutoMutexAcquire ama(fCacheMutex);
672     if (!fCache || fCache->getAlpha() != alpha || fCache->getDither() != dither) {
673         fCache.reset(new GradientShaderCache(alpha, dither, *this));
674     }
675     // Increment the ref counter inside the mutex to ensure the returned pointer is still valid.
676     // Otherwise, the pointer may have been overwritten on a different thread before the object's
677     // ref count was incremented.
678     return fCache;
679 }
680 
681 SK_DECLARE_STATIC_MUTEX(gGradientCacheMutex);
682 /*
683  *  Because our caller might rebuild the same (logically the same) gradient
684  *  over and over, we'd like to return exactly the same "bitmap" if possible,
685  *  allowing the client to utilize a cache of our bitmap (e.g. with a GPU).
686  *  To do that, we maintain a private cache of built-bitmaps, based on our
687  *  colors and positions. Note: we don't try to flatten the fMapper, so if one
688  *  is present, we skip the cache for now.
689  */
getGradientTableBitmap(SkBitmap * bitmap,GradientBitmapType bitmapType) const690 void SkGradientShaderBase::getGradientTableBitmap(SkBitmap* bitmap,
691                                                   GradientBitmapType bitmapType) const {
692     // our caller assumes no external alpha, so we ensure that our cache is built with 0xFF
693     sk_sp<GradientShaderCache> cache(this->refCache(0xFF, true));
694 
695     // build our key: [numColors + colors[] + {positions[]} + flags + colorType ]
696     int count = 1 + fColorCount + 1 + 1;
697     if (fColorCount > 2) {
698         count += fColorCount - 1;    // fRecs[].fPos
699     }
700 
701     SkAutoSTMalloc<16, int32_t> storage(count);
702     int32_t* buffer = storage.get();
703 
704     *buffer++ = fColorCount;
705     memcpy(buffer, fOrigColors, fColorCount * sizeof(SkColor));
706     buffer += fColorCount;
707     if (fColorCount > 2) {
708         for (int i = 1; i < fColorCount; i++) {
709             *buffer++ = fRecs[i].fPos;
710         }
711     }
712     *buffer++ = fGradFlags;
713     *buffer++ = static_cast<int32_t>(bitmapType);
714     SkASSERT(buffer - storage.get() == count);
715 
716     ///////////////////////////////////
717 
718     static SkGradientBitmapCache* gCache;
719     // each cache cost 1K or 2K of RAM, since each bitmap will be 1x256 at either 32bpp or 64bpp
720     static const int MAX_NUM_CACHED_GRADIENT_BITMAPS = 32;
721     SkAutoMutexAcquire ama(gGradientCacheMutex);
722 
723     if (nullptr == gCache) {
724         gCache = new SkGradientBitmapCache(MAX_NUM_CACHED_GRADIENT_BITMAPS);
725     }
726     size_t size = count * sizeof(int32_t);
727 
728     if (!gCache->find(storage.get(), size, bitmap)) {
729         if (GradientBitmapType::kLegacy == bitmapType) {
730             // force our cache32pixelref to be built
731             (void)cache->getCache32();
732             bitmap->setInfo(SkImageInfo::MakeN32Premul(kCache32Count, 1));
733             bitmap->setPixelRef(sk_ref_sp(cache->getCache32PixelRef()), 0, 0);
734         } else {
735             // For these cases we use the bitmap cache, but not the GradientShaderCache. So just
736             // allocate and populate the bitmap's data directly.
737 
738             SkImageInfo info;
739             switch (bitmapType) {
740                 case GradientBitmapType::kSRGB:
741                     info = SkImageInfo::Make(kCache32Count, 1, kRGBA_8888_SkColorType,
742                                              kPremul_SkAlphaType,
743                                              SkColorSpace::MakeSRGB());
744                     break;
745                 case GradientBitmapType::kHalfFloat:
746                     info = SkImageInfo::Make(
747                         kCache32Count, 1, kRGBA_F16_SkColorType, kPremul_SkAlphaType,
748                         SkColorSpace::MakeSRGBLinear());
749                     break;
750                 default:
751                     SkFAIL("Unexpected bitmap type");
752                     return;
753             }
754             bitmap->allocPixels(info);
755             this->initLinearBitmap(bitmap);
756         }
757         gCache->add(storage.get(), size, *bitmap);
758     }
759 }
760 
commonAsAGradient(GradientInfo * info,bool flipGrad) const761 void SkGradientShaderBase::commonAsAGradient(GradientInfo* info, bool flipGrad) const {
762     if (info) {
763         if (info->fColorCount >= fColorCount) {
764             SkColor* colorLoc;
765             Rec*     recLoc;
766             SkAutoSTArray<8, SkColor> colorStorage;
767             SkAutoSTArray<8, Rec> recStorage;
768             if (flipGrad && (info->fColors || info->fColorOffsets)) {
769                 colorStorage.reset(fColorCount);
770                 recStorage.reset(fColorCount);
771                 colorLoc = colorStorage.get();
772                 recLoc = recStorage.get();
773                 FlipGradientColors(colorLoc, recLoc, fOrigColors, fRecs, fColorCount);
774             } else {
775                 colorLoc = fOrigColors;
776                 recLoc = fRecs;
777             }
778             if (info->fColors) {
779                 memcpy(info->fColors, colorLoc, fColorCount * sizeof(SkColor));
780             }
781             if (info->fColorOffsets) {
782                 if (fColorCount == 2) {
783                     info->fColorOffsets[0] = 0;
784                     info->fColorOffsets[1] = SK_Scalar1;
785                 } else if (fColorCount > 2) {
786                     for (int i = 0; i < fColorCount; ++i) {
787                         info->fColorOffsets[i] = SkFixedToScalar(recLoc[i].fPos);
788                     }
789                 }
790             }
791         }
792         info->fColorCount = fColorCount;
793         info->fTileMode = fTileMode;
794         info->fGradientFlags = fGradFlags;
795     }
796 }
797 
798 #ifndef SK_IGNORE_TO_STRING
toString(SkString * str) const799 void SkGradientShaderBase::toString(SkString* str) const {
800 
801     str->appendf("%d colors: ", fColorCount);
802 
803     for (int i = 0; i < fColorCount; ++i) {
804         str->appendHex(fOrigColors[i], 8);
805         if (i < fColorCount-1) {
806             str->append(", ");
807         }
808     }
809 
810     if (fColorCount > 2) {
811         str->append(" points: (");
812         for (int i = 0; i < fColorCount; ++i) {
813             str->appendScalar(SkFixedToScalar(fRecs[i].fPos));
814             if (i < fColorCount-1) {
815                 str->append(", ");
816             }
817         }
818         str->append(")");
819     }
820 
821     static const char* gTileModeName[SkShader::kTileModeCount] = {
822         "clamp", "repeat", "mirror"
823     };
824 
825     str->append(" ");
826     str->append(gTileModeName[fTileMode]);
827 
828     this->INHERITED::toString(str);
829 }
830 #endif
831 
832 ///////////////////////////////////////////////////////////////////////////////
833 ///////////////////////////////////////////////////////////////////////////////
834 
835 // Return true if these parameters are valid/legal/safe to construct a gradient
836 //
valid_grad(const SkColor4f colors[],const SkScalar pos[],int count,unsigned tileMode)837 static bool valid_grad(const SkColor4f colors[], const SkScalar pos[], int count,
838                        unsigned tileMode) {
839     return nullptr != colors && count >= 1 && tileMode < (unsigned)SkShader::kTileModeCount;
840 }
841 
desc_init(SkGradientShaderBase::Descriptor * desc,const SkColor4f colors[],sk_sp<SkColorSpace> colorSpace,const SkScalar pos[],int colorCount,SkShader::TileMode mode,uint32_t flags,const SkMatrix * localMatrix)842 static void desc_init(SkGradientShaderBase::Descriptor* desc,
843                       const SkColor4f colors[], sk_sp<SkColorSpace> colorSpace,
844                       const SkScalar pos[], int colorCount,
845                       SkShader::TileMode mode, uint32_t flags, const SkMatrix* localMatrix) {
846     SkASSERT(colorCount > 1);
847 
848     desc->fColors       = colors;
849     desc->fColorSpace   = std::move(colorSpace);
850     desc->fPos          = pos;
851     desc->fCount        = colorCount;
852     desc->fTileMode     = mode;
853     desc->fGradFlags    = flags;
854     desc->fLocalMatrix  = localMatrix;
855 }
856 
857 // assumes colors is SkColor4f* and pos is SkScalar*
858 #define EXPAND_1_COLOR(count)                \
859      SkColor4f tmp[2];                       \
860      do {                                    \
861          if (1 == count) {                   \
862              tmp[0] = tmp[1] = colors[0];    \
863              colors = tmp;                   \
864              pos = nullptr;                  \
865              count = 2;                      \
866          }                                   \
867      } while (0)
868 
869 struct ColorStopOptimizer {
ColorStopOptimizerColorStopOptimizer870     ColorStopOptimizer(const SkColor4f* colors, const SkScalar* pos,
871                        int count, SkShader::TileMode mode)
872         : fColors(colors)
873         , fPos(pos)
874         , fCount(count) {
875 
876             if (!pos || count != 3) {
877                 return;
878             }
879 
880             if (SkScalarNearlyEqual(pos[0], 0.0f) &&
881                 SkScalarNearlyEqual(pos[1], 0.0f) &&
882                 SkScalarNearlyEqual(pos[2], 1.0f)) {
883 
884                 if (SkShader::kRepeat_TileMode == mode ||
885                     SkShader::kMirror_TileMode == mode ||
886                     colors[0] == colors[1]) {
887 
888                     // Ignore the leftmost color/pos.
889                     fColors += 1;
890                     fPos    += 1;
891                     fCount   = 2;
892                 }
893             } else if (SkScalarNearlyEqual(pos[0], 0.0f) &&
894                        SkScalarNearlyEqual(pos[1], 1.0f) &&
895                        SkScalarNearlyEqual(pos[2], 1.0f)) {
896 
897                 if (SkShader::kRepeat_TileMode == mode ||
898                     SkShader::kMirror_TileMode == mode ||
899                     colors[1] == colors[2]) {
900 
901                     // Ignore the rightmost color/pos.
902                     fCount  = 2;
903                 }
904             }
905     }
906 
907     const SkColor4f* fColors;
908     const SkScalar*  fPos;
909     int              fCount;
910 };
911 
912 struct ColorConverter {
ColorConverterColorConverter913     ColorConverter(const SkColor* colors, int count) {
914         for (int i = 0; i < count; ++i) {
915             fColors4f.push_back(SkColor4f::FromColor(colors[i]));
916         }
917     }
918 
919     SkSTArray<2, SkColor4f, true> fColors4f;
920 };
921 
MakeLinear(const SkPoint pts[2],const SkColor colors[],const SkScalar pos[],int colorCount,SkShader::TileMode mode,uint32_t flags,const SkMatrix * localMatrix)922 sk_sp<SkShader> SkGradientShader::MakeLinear(const SkPoint pts[2],
923                                              const SkColor colors[],
924                                              const SkScalar pos[], int colorCount,
925                                              SkShader::TileMode mode,
926                                              uint32_t flags,
927                                              const SkMatrix* localMatrix) {
928     ColorConverter converter(colors, colorCount);
929     return MakeLinear(pts, converter.fColors4f.begin(), nullptr, pos, colorCount, mode, flags,
930                       localMatrix);
931 }
932 
MakeLinear(const SkPoint pts[2],const SkColor4f colors[],sk_sp<SkColorSpace> colorSpace,const SkScalar pos[],int colorCount,SkShader::TileMode mode,uint32_t flags,const SkMatrix * localMatrix)933 sk_sp<SkShader> SkGradientShader::MakeLinear(const SkPoint pts[2],
934                                              const SkColor4f colors[],
935                                              sk_sp<SkColorSpace> colorSpace,
936                                              const SkScalar pos[], int colorCount,
937                                              SkShader::TileMode mode,
938                                              uint32_t flags,
939                                              const SkMatrix* localMatrix) {
940     if (!pts || !SkScalarIsFinite((pts[1] - pts[0]).length())) {
941         return nullptr;
942     }
943     if (!valid_grad(colors, pos, colorCount, mode)) {
944         return nullptr;
945     }
946     if (1 == colorCount) {
947         return SkShader::MakeColorShader(colors[0], std::move(colorSpace));
948     }
949     if (localMatrix && !localMatrix->invert(nullptr)) {
950         return nullptr;
951     }
952 
953     ColorStopOptimizer opt(colors, pos, colorCount, mode);
954 
955     SkGradientShaderBase::Descriptor desc;
956     desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags,
957               localMatrix);
958     return sk_make_sp<SkLinearGradient>(pts, desc);
959 }
960 
MakeRadial(const SkPoint & center,SkScalar radius,const SkColor colors[],const SkScalar pos[],int colorCount,SkShader::TileMode mode,uint32_t flags,const SkMatrix * localMatrix)961 sk_sp<SkShader> SkGradientShader::MakeRadial(const SkPoint& center, SkScalar radius,
962                                              const SkColor colors[],
963                                              const SkScalar pos[], int colorCount,
964                                              SkShader::TileMode mode,
965                                              uint32_t flags,
966                                              const SkMatrix* localMatrix) {
967     ColorConverter converter(colors, colorCount);
968     return MakeRadial(center, radius, converter.fColors4f.begin(), nullptr, pos, colorCount, mode,
969                       flags, localMatrix);
970 }
971 
MakeRadial(const SkPoint & center,SkScalar radius,const SkColor4f colors[],sk_sp<SkColorSpace> colorSpace,const SkScalar pos[],int colorCount,SkShader::TileMode mode,uint32_t flags,const SkMatrix * localMatrix)972 sk_sp<SkShader> SkGradientShader::MakeRadial(const SkPoint& center, SkScalar radius,
973                                              const SkColor4f colors[],
974                                              sk_sp<SkColorSpace> colorSpace,
975                                              const SkScalar pos[], int colorCount,
976                                              SkShader::TileMode mode,
977                                              uint32_t flags,
978                                              const SkMatrix* localMatrix) {
979     if (radius <= 0) {
980         return nullptr;
981     }
982     if (!valid_grad(colors, pos, colorCount, mode)) {
983         return nullptr;
984     }
985     if (1 == colorCount) {
986         return SkShader::MakeColorShader(colors[0], std::move(colorSpace));
987     }
988     if (localMatrix && !localMatrix->invert(nullptr)) {
989         return nullptr;
990     }
991 
992     ColorStopOptimizer opt(colors, pos, colorCount, mode);
993 
994     SkGradientShaderBase::Descriptor desc;
995     desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags,
996               localMatrix);
997     return sk_make_sp<SkRadialGradient>(center, radius, desc);
998 }
999 
MakeTwoPointConical(const SkPoint & start,SkScalar startRadius,const SkPoint & end,SkScalar endRadius,const SkColor colors[],const SkScalar pos[],int colorCount,SkShader::TileMode mode,uint32_t flags,const SkMatrix * localMatrix)1000 sk_sp<SkShader> SkGradientShader::MakeTwoPointConical(const SkPoint& start,
1001                                                       SkScalar startRadius,
1002                                                       const SkPoint& end,
1003                                                       SkScalar endRadius,
1004                                                       const SkColor colors[],
1005                                                       const SkScalar pos[],
1006                                                       int colorCount,
1007                                                       SkShader::TileMode mode,
1008                                                       uint32_t flags,
1009                                                       const SkMatrix* localMatrix) {
1010     ColorConverter converter(colors, colorCount);
1011     return MakeTwoPointConical(start, startRadius, end, endRadius, converter.fColors4f.begin(),
1012                                nullptr, pos, colorCount, mode, flags, localMatrix);
1013 }
1014 
MakeTwoPointConical(const SkPoint & start,SkScalar startRadius,const SkPoint & end,SkScalar endRadius,const SkColor4f colors[],sk_sp<SkColorSpace> colorSpace,const SkScalar pos[],int colorCount,SkShader::TileMode mode,uint32_t flags,const SkMatrix * localMatrix)1015 sk_sp<SkShader> SkGradientShader::MakeTwoPointConical(const SkPoint& start,
1016                                                       SkScalar startRadius,
1017                                                       const SkPoint& end,
1018                                                       SkScalar endRadius,
1019                                                       const SkColor4f colors[],
1020                                                       sk_sp<SkColorSpace> colorSpace,
1021                                                       const SkScalar pos[],
1022                                                       int colorCount,
1023                                                       SkShader::TileMode mode,
1024                                                       uint32_t flags,
1025                                                       const SkMatrix* localMatrix) {
1026     if (startRadius < 0 || endRadius < 0) {
1027         return nullptr;
1028     }
1029     if (!valid_grad(colors, pos, colorCount, mode)) {
1030         return nullptr;
1031     }
1032     if (startRadius == endRadius) {
1033         if (start == end || startRadius == 0) {
1034             return SkShader::MakeEmptyShader();
1035         }
1036     }
1037     if (localMatrix && !localMatrix->invert(nullptr)) {
1038         return nullptr;
1039     }
1040     EXPAND_1_COLOR(colorCount);
1041 
1042     ColorStopOptimizer opt(colors, pos, colorCount, mode);
1043 
1044     bool flipGradient = startRadius > endRadius;
1045 
1046     SkGradientShaderBase::Descriptor desc;
1047 
1048     if (!flipGradient) {
1049         desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags,
1050                   localMatrix);
1051         return sk_make_sp<SkTwoPointConicalGradient>(start, startRadius, end, endRadius,
1052                                                      flipGradient, desc);
1053     } else {
1054         SkAutoSTArray<8, SkColor4f> colorsNew(opt.fCount);
1055         SkAutoSTArray<8, SkScalar> posNew(opt.fCount);
1056         for (int i = 0; i < opt.fCount; ++i) {
1057             colorsNew[i] = opt.fColors[opt.fCount - i - 1];
1058         }
1059 
1060         if (pos) {
1061             for (int i = 0; i < opt.fCount; ++i) {
1062                 posNew[i] = 1 - opt.fPos[opt.fCount - i - 1];
1063             }
1064             desc_init(&desc, colorsNew.get(), std::move(colorSpace), posNew.get(), opt.fCount, mode,
1065                       flags, localMatrix);
1066         } else {
1067             desc_init(&desc, colorsNew.get(), std::move(colorSpace), nullptr, opt.fCount, mode,
1068                       flags, localMatrix);
1069         }
1070 
1071         return sk_make_sp<SkTwoPointConicalGradient>(end, endRadius, start, startRadius,
1072                                                      flipGradient, desc);
1073     }
1074 }
1075 
MakeSweep(SkScalar cx,SkScalar cy,const SkColor colors[],const SkScalar pos[],int colorCount,uint32_t flags,const SkMatrix * localMatrix)1076 sk_sp<SkShader> SkGradientShader::MakeSweep(SkScalar cx, SkScalar cy,
1077                                             const SkColor colors[],
1078                                             const SkScalar pos[],
1079                                             int colorCount,
1080                                             uint32_t flags,
1081                                             const SkMatrix* localMatrix) {
1082     ColorConverter converter(colors, colorCount);
1083     return MakeSweep(cx, cy, converter.fColors4f.begin(), nullptr, pos, colorCount, flags,
1084                      localMatrix);
1085 }
1086 
MakeSweep(SkScalar cx,SkScalar cy,const SkColor4f colors[],sk_sp<SkColorSpace> colorSpace,const SkScalar pos[],int colorCount,uint32_t flags,const SkMatrix * localMatrix)1087 sk_sp<SkShader> SkGradientShader::MakeSweep(SkScalar cx, SkScalar cy,
1088                                             const SkColor4f colors[],
1089                                             sk_sp<SkColorSpace> colorSpace,
1090                                             const SkScalar pos[],
1091                                             int colorCount,
1092                                             uint32_t flags,
1093                                             const SkMatrix* localMatrix) {
1094     if (!valid_grad(colors, pos, colorCount, SkShader::kClamp_TileMode)) {
1095         return nullptr;
1096     }
1097     if (1 == colorCount) {
1098         return SkShader::MakeColorShader(colors[0], std::move(colorSpace));
1099     }
1100     if (localMatrix && !localMatrix->invert(nullptr)) {
1101         return nullptr;
1102     }
1103 
1104     auto mode = SkShader::kClamp_TileMode;
1105 
1106     ColorStopOptimizer opt(colors, pos, colorCount, mode);
1107 
1108     SkGradientShaderBase::Descriptor desc;
1109     desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags,
1110               localMatrix);
1111     return sk_make_sp<SkSweepGradient>(cx, cy, desc);
1112 }
1113 
1114 SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkGradientShader)
SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkLinearGradient)1115     SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkLinearGradient)
1116     SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkRadialGradient)
1117     SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkSweepGradient)
1118     SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkTwoPointConicalGradient)
1119 SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END
1120 
1121 ///////////////////////////////////////////////////////////////////////////////
1122 
1123 #if SK_SUPPORT_GPU
1124 
1125 #include "GrContext.h"
1126 #include "GrShaderCaps.h"
1127 #include "GrTextureStripAtlas.h"
1128 #include "gl/GrGLContext.h"
1129 #include "glsl/GrGLSLColorSpaceXformHelper.h"
1130 #include "glsl/GrGLSLFragmentShaderBuilder.h"
1131 #include "glsl/GrGLSLProgramDataManager.h"
1132 #include "glsl/GrGLSLUniformHandler.h"
1133 #include "SkGr.h"
1134 
1135 static inline bool close_to_one_half(const SkFixed& val) {
1136     return SkScalarNearlyEqual(SkFixedToScalar(val), SK_ScalarHalf);
1137 }
1138 
color_type_to_color_count(GrGradientEffect::ColorType colorType)1139 static inline int color_type_to_color_count(GrGradientEffect::ColorType colorType) {
1140     switch (colorType) {
1141 #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS
1142         case GrGradientEffect::kSingleHardStop_ColorType:
1143             return 4;
1144         case GrGradientEffect::kHardStopLeftEdged_ColorType:
1145         case GrGradientEffect::kHardStopRightEdged_ColorType:
1146             return 3;
1147 #endif
1148         case GrGradientEffect::kTwo_ColorType:
1149             return 2;
1150         case GrGradientEffect::kThree_ColorType:
1151             return 3;
1152         case GrGradientEffect::kTexture_ColorType:
1153             return 0;
1154     }
1155 
1156     SkDEBUGFAIL("Unhandled ColorType in color_type_to_color_count()");
1157     return -1;
1158 }
1159 
determineColorType(const SkGradientShaderBase & shader)1160 GrGradientEffect::ColorType GrGradientEffect::determineColorType(
1161         const SkGradientShaderBase& shader) {
1162 #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS
1163     if (shader.fOrigPos) {
1164         if (4 == shader.fColorCount) {
1165             if (SkScalarNearlyEqual(shader.fOrigPos[0], 0.0f) &&
1166                 SkScalarNearlyEqual(shader.fOrigPos[1], shader.fOrigPos[2]) &&
1167                 SkScalarNearlyEqual(shader.fOrigPos[3], 1.0f)) {
1168 
1169                 return kSingleHardStop_ColorType;
1170             }
1171         } else if (3 == shader.fColorCount) {
1172             if (SkScalarNearlyEqual(shader.fOrigPos[0], 0.0f) &&
1173                 SkScalarNearlyEqual(shader.fOrigPos[1], 0.0f) &&
1174                 SkScalarNearlyEqual(shader.fOrigPos[2], 1.0f)) {
1175 
1176                 return kHardStopLeftEdged_ColorType;
1177             } else if (SkScalarNearlyEqual(shader.fOrigPos[0], 0.0f) &&
1178                        SkScalarNearlyEqual(shader.fOrigPos[1], 1.0f) &&
1179                        SkScalarNearlyEqual(shader.fOrigPos[2], 1.0f)) {
1180 
1181                 return kHardStopRightEdged_ColorType;
1182             }
1183         }
1184     }
1185 #endif
1186 
1187     if (SkShader::kClamp_TileMode == shader.getTileMode()) {
1188         if (2 == shader.fColorCount) {
1189             return kTwo_ColorType;
1190         } else if (3 == shader.fColorCount &&
1191                    close_to_one_half(shader.getRecs()[1].fPos)) {
1192             return kThree_ColorType;
1193         }
1194     }
1195 
1196     return kTexture_ColorType;
1197 }
1198 
emitUniforms(GrGLSLUniformHandler * uniformHandler,const GrGradientEffect & ge)1199 void GrGradientEffect::GLSLProcessor::emitUniforms(GrGLSLUniformHandler* uniformHandler,
1200                                                    const GrGradientEffect& ge) {
1201     if (int colorCount = color_type_to_color_count(ge.getColorType())) {
1202         fColorsUni = uniformHandler->addUniformArray(kFragment_GrShaderFlag,
1203                                                      kVec4f_GrSLType,
1204                                                      kDefault_GrSLPrecision,
1205                                                      "Colors",
1206                                                      colorCount);
1207         if (ge.fColorType == kSingleHardStop_ColorType) {
1208             fHardStopT = uniformHandler->addUniform(kFragment_GrShaderFlag, kFloat_GrSLType,
1209                                                     kDefault_GrSLPrecision, "HardStopT");
1210         }
1211     } else {
1212         fFSYUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
1213                                              kFloat_GrSLType, kDefault_GrSLPrecision,
1214                                              "GradientYCoordFS");
1215     }
1216 }
1217 
set_after_interp_color_uni_array(const GrGLSLProgramDataManager & pdman,const GrGLSLProgramDataManager::UniformHandle uni,const SkTDArray<SkColor4f> & colors,const GrColorSpaceXform * colorSpaceXform)1218 static inline void set_after_interp_color_uni_array(
1219                                                   const GrGLSLProgramDataManager& pdman,
1220                                                   const GrGLSLProgramDataManager::UniformHandle uni,
1221                                                   const SkTDArray<SkColor4f>& colors,
1222                                                   const GrColorSpaceXform* colorSpaceXform) {
1223     int count = colors.count();
1224     if (colorSpaceXform) {
1225         constexpr int kSmallCount = 10;
1226         SkAutoSTArray<4 * kSmallCount, float> vals(4 * count);
1227 
1228         for (int i = 0; i < count; i++) {
1229             colorSpaceXform->srcToDst().mapScalars(colors[i].vec(), &vals[4 * i]);
1230         }
1231 
1232         pdman.set4fv(uni, count, vals.get());
1233     } else {
1234         pdman.set4fv(uni, count, (float*)&colors[0]);
1235     }
1236 }
1237 
set_before_interp_color_uni_array(const GrGLSLProgramDataManager & pdman,const GrGLSLProgramDataManager::UniformHandle uni,const SkTDArray<SkColor4f> & colors,const GrColorSpaceXform * colorSpaceXform)1238 static inline void set_before_interp_color_uni_array(
1239                                                   const GrGLSLProgramDataManager& pdman,
1240                                                   const GrGLSLProgramDataManager::UniformHandle uni,
1241                                                   const SkTDArray<SkColor4f>& colors,
1242                                                   const GrColorSpaceXform* colorSpaceXform) {
1243     int count = colors.count();
1244     constexpr int kSmallCount = 10;
1245     SkAutoSTArray<4 * kSmallCount, float> vals(4 * count);
1246 
1247     for (int i = 0; i < count; i++) {
1248         float a = colors[i].fA;
1249         vals[4 * i + 0] = colors[i].fR * a;
1250         vals[4 * i + 1] = colors[i].fG * a;
1251         vals[4 * i + 2] = colors[i].fB * a;
1252         vals[4 * i + 3] = a;
1253     }
1254 
1255     if (colorSpaceXform) {
1256         for (int i = 0; i < count; i++) {
1257             colorSpaceXform->srcToDst().mapScalars(&vals[4 * i]);
1258         }
1259     }
1260 
1261     pdman.set4fv(uni, count, vals.get());
1262 }
1263 
set_after_interp_color_uni_array(const GrGLSLProgramDataManager & pdman,const GrGLSLProgramDataManager::UniformHandle uni,const SkTDArray<SkColor> & colors)1264 static inline void set_after_interp_color_uni_array(const GrGLSLProgramDataManager& pdman,
1265                                        const GrGLSLProgramDataManager::UniformHandle uni,
1266                                        const SkTDArray<SkColor>& colors) {
1267     int count = colors.count();
1268     constexpr int kSmallCount = 10;
1269 
1270     SkAutoSTArray<4*kSmallCount, float> vals(4*count);
1271 
1272     for (int i = 0; i < colors.count(); i++) {
1273         // RGBA
1274         vals[4*i + 0] = SkColorGetR(colors[i]) / 255.f;
1275         vals[4*i + 1] = SkColorGetG(colors[i]) / 255.f;
1276         vals[4*i + 2] = SkColorGetB(colors[i]) / 255.f;
1277         vals[4*i + 3] = SkColorGetA(colors[i]) / 255.f;
1278     }
1279 
1280     pdman.set4fv(uni, colors.count(), vals.get());
1281 }
1282 
set_before_interp_color_uni_array(const GrGLSLProgramDataManager & pdman,const GrGLSLProgramDataManager::UniformHandle uni,const SkTDArray<SkColor> & colors)1283 static inline void set_before_interp_color_uni_array(const GrGLSLProgramDataManager& pdman,
1284                                               const GrGLSLProgramDataManager::UniformHandle uni,
1285                                               const SkTDArray<SkColor>& colors) {
1286     int count = colors.count();
1287     constexpr int kSmallCount = 10;
1288 
1289     SkAutoSTArray<4*kSmallCount, float> vals(4*count);
1290 
1291     for (int i = 0; i < count; i++) {
1292         float a = SkColorGetA(colors[i]) / 255.f;
1293         float aDiv255 = a / 255.f;
1294 
1295         // RGBA
1296         vals[4*i + 0] = SkColorGetR(colors[i]) * aDiv255;
1297         vals[4*i + 1] = SkColorGetG(colors[i]) * aDiv255;
1298         vals[4*i + 2] = SkColorGetB(colors[i]) * aDiv255;
1299         vals[4*i + 3] = a;
1300     }
1301 
1302     pdman.set4fv(uni, count, vals.get());
1303 }
1304 
onSetData(const GrGLSLProgramDataManager & pdman,const GrProcessor & processor)1305 void GrGradientEffect::GLSLProcessor::onSetData(const GrGLSLProgramDataManager& pdman,
1306                                                 const GrProcessor& processor) {
1307     const GrGradientEffect& e = processor.cast<GrGradientEffect>();
1308 
1309     switch (e.getColorType()) {
1310 #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS
1311         case GrGradientEffect::kSingleHardStop_ColorType:
1312             pdman.set1f(fHardStopT, e.fPositions[1]);
1313             // fall through
1314         case GrGradientEffect::kHardStopLeftEdged_ColorType:
1315         case GrGradientEffect::kHardStopRightEdged_ColorType:
1316 #endif
1317         case GrGradientEffect::kTwo_ColorType:
1318         case GrGradientEffect::kThree_ColorType: {
1319             if (e.fColors4f.count() > 0) {
1320                 // Gamma-correct / color-space aware
1321                 if (GrGradientEffect::kBeforeInterp_PremulType == e.getPremulType()) {
1322                     set_before_interp_color_uni_array(pdman, fColorsUni, e.fColors4f,
1323                                                       e.fColorSpaceXform.get());
1324                 } else {
1325                     set_after_interp_color_uni_array(pdman, fColorsUni, e.fColors4f,
1326                                                      e.fColorSpaceXform.get());
1327                 }
1328             } else {
1329                 // Legacy mode. Would be nice if we had converted the 8-bit colors to float earlier
1330                 if (GrGradientEffect::kBeforeInterp_PremulType == e.getPremulType()) {
1331                     set_before_interp_color_uni_array(pdman, fColorsUni, e.fColors);
1332                 } else {
1333                     set_after_interp_color_uni_array(pdman, fColorsUni, e.fColors);
1334                 }
1335             }
1336 
1337             break;
1338         }
1339 
1340         case GrGradientEffect::kTexture_ColorType: {
1341             SkScalar yCoord = e.getYCoord();
1342             if (yCoord != fCachedYCoord) {
1343                 pdman.set1f(fFSYUni, yCoord);
1344                 fCachedYCoord = yCoord;
1345             }
1346             if (SkToBool(e.fColorSpaceXform)) {
1347                 fColorSpaceHelper.setData(pdman, e.fColorSpaceXform.get());
1348             }
1349             break;
1350         }
1351     }
1352 }
1353 
GenBaseGradientKey(const GrProcessor & processor)1354 uint32_t GrGradientEffect::GLSLProcessor::GenBaseGradientKey(const GrProcessor& processor) {
1355     const GrGradientEffect& e = processor.cast<GrGradientEffect>();
1356 
1357     uint32_t key = 0;
1358 
1359     if (GrGradientEffect::kBeforeInterp_PremulType == e.getPremulType()) {
1360         key |= kPremulBeforeInterpKey;
1361     }
1362 
1363     if (GrGradientEffect::kTwo_ColorType == e.getColorType()) {
1364         key |= kTwoColorKey;
1365     } else if (GrGradientEffect::kThree_ColorType == e.getColorType()) {
1366         key |= kThreeColorKey;
1367     }
1368 #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS
1369     else if (GrGradientEffect::kSingleHardStop_ColorType == e.getColorType()) {
1370         key |= kHardStopCenteredKey;
1371     } else if (GrGradientEffect::kHardStopLeftEdged_ColorType == e.getColorType()) {
1372         key |= kHardStopZeroZeroOneKey;
1373     } else if (GrGradientEffect::kHardStopRightEdged_ColorType == e.getColorType()) {
1374         key |= kHardStopZeroOneOneKey;
1375     }
1376 
1377     if (SkShader::TileMode::kClamp_TileMode == e.fTileMode) {
1378         key |= kClampTileMode;
1379     } else if (SkShader::TileMode::kRepeat_TileMode == e.fTileMode) {
1380         key |= kRepeatTileMode;
1381     } else {
1382         key |= kMirrorTileMode;
1383     }
1384 #endif
1385 
1386     key |= GrColorSpaceXform::XformKey(e.fColorSpaceXform.get()) << kReservedBits;
1387 
1388     return key;
1389 }
1390 
emitColor(GrGLSLFPFragmentBuilder * fragBuilder,GrGLSLUniformHandler * uniformHandler,const GrShaderCaps * shaderCaps,const GrGradientEffect & ge,const char * gradientTValue,const char * outputColor,const char * inputColor,const TextureSamplers & texSamplers)1391 void GrGradientEffect::GLSLProcessor::emitColor(GrGLSLFPFragmentBuilder* fragBuilder,
1392                                                 GrGLSLUniformHandler* uniformHandler,
1393                                                 const GrShaderCaps* shaderCaps,
1394                                                 const GrGradientEffect& ge,
1395                                                 const char* gradientTValue,
1396                                                 const char* outputColor,
1397                                                 const char* inputColor,
1398                                                 const TextureSamplers& texSamplers) {
1399     switch (ge.getColorType()) {
1400 #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS
1401         case kSingleHardStop_ColorType: {
1402             const char* t      = gradientTValue;
1403             const char* colors = uniformHandler->getUniformCStr(fColorsUni);
1404             const char* stopT = uniformHandler->getUniformCStr(fHardStopT);
1405 
1406             fragBuilder->codeAppendf("float clamp_t = clamp(%s, 0.0, 1.0);", t);
1407 
1408             // Account for tile mode
1409             if (SkShader::kRepeat_TileMode == ge.fTileMode) {
1410                 fragBuilder->codeAppendf("clamp_t = fract(%s);", t);
1411             } else if (SkShader::kMirror_TileMode == ge.fTileMode) {
1412                 fragBuilder->codeAppendf("if (%s < 0.0 || %s > 1.0) {", t, t);
1413                 fragBuilder->codeAppendf("    if (mod(floor(%s), 2.0) == 0.0) {", t);
1414                 fragBuilder->codeAppendf("        clamp_t = fract(%s);", t);
1415                 fragBuilder->codeAppendf("    } else {");
1416                 fragBuilder->codeAppendf("        clamp_t = 1.0 - fract(%s);", t);
1417                 fragBuilder->codeAppendf("    }");
1418                 fragBuilder->codeAppendf("}");
1419             }
1420 
1421             // Calculate color
1422             fragBuilder->codeAppend ("vec4 start, end;");
1423             fragBuilder->codeAppend ("float relative_t;");
1424             fragBuilder->codeAppendf("if (clamp_t < %s) {", stopT);
1425             fragBuilder->codeAppendf("    start = %s[0];", colors);
1426             fragBuilder->codeAppendf("    end   = %s[1];", colors);
1427             fragBuilder->codeAppendf("    relative_t = clamp_t / %s;", stopT);
1428             fragBuilder->codeAppend ("} else {");
1429             fragBuilder->codeAppendf("    start = %s[2];", colors);
1430             fragBuilder->codeAppendf("    end   = %s[3];", colors);
1431             fragBuilder->codeAppendf("    relative_t = (clamp_t - %s) / (1 - %s);", stopT, stopT);
1432             fragBuilder->codeAppend ("}");
1433             fragBuilder->codeAppend ("vec4 colorTemp = mix(start, end, relative_t);");
1434 
1435             if (GrGradientEffect::kAfterInterp_PremulType == ge.getPremulType()) {
1436                 fragBuilder->codeAppend("colorTemp.rgb *= colorTemp.a;");
1437             }
1438             if (ge.fColorSpaceXform) {
1439                 fragBuilder->codeAppend("colorTemp.rgb = clamp(colorTemp.rgb, 0, colorTemp.a);");
1440             }
1441             fragBuilder->codeAppendf("%s = %s;", outputColor,
1442                                      (GrGLSLExpr4(inputColor) * GrGLSLExpr4("colorTemp")).c_str());
1443 
1444             break;
1445         }
1446 
1447         case kHardStopLeftEdged_ColorType: {
1448             const char* t      = gradientTValue;
1449             const char* colors = uniformHandler->getUniformCStr(fColorsUni);
1450 
1451             fragBuilder->codeAppendf("float clamp_t = clamp(%s, 0.0, 1.0);", t);
1452 
1453             // Account for tile mode
1454             if (SkShader::kRepeat_TileMode == ge.fTileMode) {
1455                 fragBuilder->codeAppendf("clamp_t = fract(%s);", t);
1456             } else if (SkShader::kMirror_TileMode == ge.fTileMode) {
1457                 fragBuilder->codeAppendf("if (%s < 0.0 || %s > 1.0) {", t, t);
1458                 fragBuilder->codeAppendf("    if (mod(floor(%s), 2.0) == 0.0) {", t);
1459                 fragBuilder->codeAppendf("        clamp_t = fract(%s);", t);
1460                 fragBuilder->codeAppendf("    } else {");
1461                 fragBuilder->codeAppendf("        clamp_t = 1.0 - fract(%s);", t);
1462                 fragBuilder->codeAppendf("    }");
1463                 fragBuilder->codeAppendf("}");
1464             }
1465 
1466             fragBuilder->codeAppendf("vec4 colorTemp = mix(%s[1], %s[2], clamp_t);", colors,
1467                                      colors);
1468             if (SkShader::kClamp_TileMode == ge.fTileMode) {
1469                 fragBuilder->codeAppendf("if (%s < 0.0) {", t);
1470                 fragBuilder->codeAppendf("    colorTemp = %s[0];", colors);
1471                 fragBuilder->codeAppendf("}");
1472             }
1473 
1474             if (GrGradientEffect::kAfterInterp_PremulType == ge.getPremulType()) {
1475                 fragBuilder->codeAppend("colorTemp.rgb *= colorTemp.a;");
1476             }
1477             if (ge.fColorSpaceXform) {
1478                 fragBuilder->codeAppend("colorTemp.rgb = clamp(colorTemp.rgb, 0, colorTemp.a);");
1479             }
1480             fragBuilder->codeAppendf("%s = %s;", outputColor,
1481                                      (GrGLSLExpr4(inputColor) * GrGLSLExpr4("colorTemp")).c_str());
1482 
1483             break;
1484         }
1485 
1486         case kHardStopRightEdged_ColorType: {
1487             const char* t      = gradientTValue;
1488             const char* colors = uniformHandler->getUniformCStr(fColorsUni);
1489 
1490             fragBuilder->codeAppendf("float clamp_t = clamp(%s, 0.0, 1.0);", t);
1491 
1492             // Account for tile mode
1493             if (SkShader::kRepeat_TileMode == ge.fTileMode) {
1494                 fragBuilder->codeAppendf("clamp_t = fract(%s);", t);
1495             } else if (SkShader::kMirror_TileMode == ge.fTileMode) {
1496                 fragBuilder->codeAppendf("if (%s < 0.0 || %s > 1.0) {", t, t);
1497                 fragBuilder->codeAppendf("    if (mod(floor(%s), 2.0) == 0.0) {", t);
1498                 fragBuilder->codeAppendf("        clamp_t = fract(%s);", t);
1499                 fragBuilder->codeAppendf("    } else {");
1500                 fragBuilder->codeAppendf("        clamp_t = 1.0 - fract(%s);", t);
1501                 fragBuilder->codeAppendf("    }");
1502                 fragBuilder->codeAppendf("}");
1503             }
1504 
1505             fragBuilder->codeAppendf("vec4 colorTemp = mix(%s[0], %s[1], clamp_t);", colors,
1506                                      colors);
1507             if (SkShader::kClamp_TileMode == ge.fTileMode) {
1508                 fragBuilder->codeAppendf("if (%s > 1.0) {", t);
1509                 fragBuilder->codeAppendf("    colorTemp = %s[2];", colors);
1510                 fragBuilder->codeAppendf("}");
1511             }
1512 
1513             if (GrGradientEffect::kAfterInterp_PremulType == ge.getPremulType()) {
1514                 fragBuilder->codeAppend("colorTemp.rgb *= colorTemp.a;");
1515             }
1516             if (ge.fColorSpaceXform) {
1517                 fragBuilder->codeAppend("colorTemp.rgb = clamp(colorTemp.rgb, 0, colorTemp.a);");
1518             }
1519             fragBuilder->codeAppendf("%s = %s;", outputColor,
1520                                      (GrGLSLExpr4(inputColor) * GrGLSLExpr4("colorTemp")).c_str());
1521 
1522             break;
1523         }
1524 #endif
1525 
1526         case kTwo_ColorType: {
1527             const char* t      = gradientTValue;
1528             const char* colors = uniformHandler->getUniformCStr(fColorsUni);
1529 
1530             fragBuilder->codeAppendf("vec4 colorTemp = mix(%s[0], %s[1], clamp(%s, 0.0, 1.0));",
1531                                      colors, colors, t);
1532 
1533             // We could skip this step if both colors are known to be opaque. Two
1534             // considerations:
1535             // The gradient SkShader reporting opaque is more restrictive than necessary in the two
1536             // pt case. Make sure the key reflects this optimization (and note that it can use the
1537             // same shader as thekBeforeIterp case). This same optimization applies to the 3 color
1538             // case below.
1539             if (GrGradientEffect::kAfterInterp_PremulType == ge.getPremulType()) {
1540                 fragBuilder->codeAppend("colorTemp.rgb *= colorTemp.a;");
1541             }
1542             if (ge.fColorSpaceXform) {
1543                 fragBuilder->codeAppend("colorTemp.rgb = clamp(colorTemp.rgb, 0, colorTemp.a);");
1544             }
1545 
1546             fragBuilder->codeAppendf("%s = %s;", outputColor,
1547                                      (GrGLSLExpr4(inputColor) * GrGLSLExpr4("colorTemp")).c_str());
1548 
1549             break;
1550         }
1551 
1552         case kThree_ColorType: {
1553             const char* t      = gradientTValue;
1554             const char* colors = uniformHandler->getUniformCStr(fColorsUni);
1555 
1556             fragBuilder->codeAppendf("float oneMinus2t = 1.0 - (2.0 * %s);", t);
1557             fragBuilder->codeAppendf("vec4 colorTemp = clamp(oneMinus2t, 0.0, 1.0) * %s[0];",
1558                                      colors);
1559             if (!shaderCaps->canUseMinAndAbsTogether()) {
1560                 // The Tegra3 compiler will sometimes never return if we have
1561                 // min(abs(oneMinus2t), 1.0), or do the abs first in a separate expression.
1562                 fragBuilder->codeAppendf("float minAbs = abs(oneMinus2t);");
1563                 fragBuilder->codeAppendf("minAbs = minAbs > 1.0 ? 1.0 : minAbs;");
1564                 fragBuilder->codeAppendf("colorTemp += (1.0 - minAbs) * %s[1];", colors);
1565             } else {
1566                 fragBuilder->codeAppendf("colorTemp += (1.0 - min(abs(oneMinus2t), 1.0)) * %s[1];",
1567                                          colors);
1568             }
1569             fragBuilder->codeAppendf("colorTemp += clamp(-oneMinus2t, 0.0, 1.0) * %s[2];", colors);
1570 
1571             if (GrGradientEffect::kAfterInterp_PremulType == ge.getPremulType()) {
1572                 fragBuilder->codeAppend("colorTemp.rgb *= colorTemp.a;");
1573             }
1574             if (ge.fColorSpaceXform) {
1575                 fragBuilder->codeAppend("colorTemp.rgb = clamp(colorTemp.rgb, 0, colorTemp.a);");
1576             }
1577 
1578             fragBuilder->codeAppendf("%s = %s;", outputColor,
1579                                      (GrGLSLExpr4(inputColor) * GrGLSLExpr4("colorTemp")).c_str());
1580 
1581             break;
1582         }
1583 
1584         case kTexture_ColorType: {
1585             fColorSpaceHelper.emitCode(uniformHandler, ge.fColorSpaceXform.get());
1586 
1587             const char* fsyuni = uniformHandler->getUniformCStr(fFSYUni);
1588 
1589             fragBuilder->codeAppendf("vec2 coord = vec2(%s, %s);", gradientTValue, fsyuni);
1590             fragBuilder->codeAppendf("%s = ", outputColor);
1591             fragBuilder->appendTextureLookupAndModulate(inputColor, texSamplers[0], "coord",
1592                                                         kVec2f_GrSLType, &fColorSpaceHelper);
1593             fragBuilder->codeAppend(";");
1594 
1595             break;
1596         }
1597     }
1598 }
1599 
1600 /////////////////////////////////////////////////////////////////////
1601 
OptFlags(bool isOpaque)1602 inline GrFragmentProcessor::OptimizationFlags GrGradientEffect::OptFlags(bool isOpaque) {
1603     return isOpaque
1604                    ? kPreservesOpaqueInput_OptimizationFlag |
1605                              kCompatibleWithCoverageAsAlpha_OptimizationFlag
1606                    : kCompatibleWithCoverageAsAlpha_OptimizationFlag;
1607 }
1608 
GrGradientEffect(const CreateArgs & args,bool isOpaque)1609 GrGradientEffect::GrGradientEffect(const CreateArgs& args, bool isOpaque)
1610         : INHERITED(OptFlags(isOpaque)) {
1611     const SkGradientShaderBase& shader(*args.fShader);
1612 
1613     fIsOpaque = shader.isOpaque();
1614 
1615     fColorType = this->determineColorType(shader);
1616     fColorSpaceXform = std::move(args.fColorSpaceXform);
1617 
1618     if (kTexture_ColorType != fColorType) {
1619         SkASSERT(shader.fOrigColors && shader.fOrigColors4f);
1620         if (args.fGammaCorrect) {
1621             fColors4f = SkTDArray<SkColor4f>(shader.fOrigColors4f, shader.fColorCount);
1622         } else {
1623             fColors = SkTDArray<SkColor>(shader.fOrigColors, shader.fColorCount);
1624         }
1625 
1626 #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS
1627         if (shader.fOrigPos) {
1628             fPositions = SkTDArray<SkScalar>(shader.fOrigPos, shader.fColorCount);
1629         }
1630 #endif
1631     }
1632 
1633 #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS
1634     fTileMode = args.fTileMode;
1635 #endif
1636 
1637     switch (fColorType) {
1638         // The two and three color specializations do not currently support tiling.
1639         case kTwo_ColorType:
1640         case kThree_ColorType:
1641 #if GR_GL_USE_ACCURATE_HARD_STOP_GRADIENTS
1642         case kHardStopLeftEdged_ColorType:
1643         case kHardStopRightEdged_ColorType:
1644         case kSingleHardStop_ColorType:
1645 #endif
1646             fRow = -1;
1647 
1648             if (SkGradientShader::kInterpolateColorsInPremul_Flag & shader.getGradFlags()) {
1649                 fPremulType = kBeforeInterp_PremulType;
1650             } else {
1651                 fPremulType = kAfterInterp_PremulType;
1652             }
1653 
1654             fCoordTransform.reset(*args.fMatrix);
1655 
1656             break;
1657         case kTexture_ColorType:
1658             // doesn't matter how this is set, just be consistent because it is part of the
1659             // effect key.
1660             fPremulType = kBeforeInterp_PremulType;
1661 
1662             SkGradientShaderBase::GradientBitmapType bitmapType =
1663                 SkGradientShaderBase::GradientBitmapType::kLegacy;
1664             if (args.fGammaCorrect) {
1665                 // Try to use F16 if we can
1666                 if (args.fContext->caps()->isConfigTexturable(kRGBA_half_GrPixelConfig)) {
1667                     bitmapType = SkGradientShaderBase::GradientBitmapType::kHalfFloat;
1668                 } else if (args.fContext->caps()->isConfigTexturable(kSRGBA_8888_GrPixelConfig)) {
1669                     bitmapType = SkGradientShaderBase::GradientBitmapType::kSRGB;
1670                 } else {
1671                     // This can happen, but only if someone explicitly creates an unsupported
1672                     // (eg sRGB) surface. Just fall back to legacy behavior.
1673                 }
1674             }
1675 
1676             SkBitmap bitmap;
1677             shader.getGradientTableBitmap(&bitmap, bitmapType);
1678             SkASSERT(1 == bitmap.height() && SkIsPow2(bitmap.width()));
1679 
1680 
1681             GrTextureStripAtlas::Desc desc;
1682             desc.fWidth  = bitmap.width();
1683             desc.fHeight = 32;
1684             desc.fRowHeight = bitmap.height();
1685             desc.fContext = args.fContext;
1686             desc.fConfig = SkImageInfo2GrPixelConfig(bitmap.info(), *args.fContext->caps());
1687             fAtlas = GrTextureStripAtlas::GetAtlas(desc);
1688             SkASSERT(fAtlas);
1689 
1690             // We always filter the gradient table. Each table is one row of a texture, always
1691             // y-clamp.
1692             GrSamplerParams params;
1693             params.setFilterMode(GrSamplerParams::kBilerp_FilterMode);
1694             params.setTileModeX(args.fTileMode);
1695 
1696             fRow = fAtlas->lockRow(bitmap);
1697             if (-1 != fRow) {
1698                 fYCoord = fAtlas->getYOffset(fRow)+SK_ScalarHalf*fAtlas->getNormalizedTexelHeight();
1699                 // This is 1/2 places where auto-normalization is disabled
1700                 fCoordTransform.reset(args.fContext->resourceProvider(), *args.fMatrix,
1701                                       fAtlas->asTextureProxyRef().get(),
1702                                       params.filterMode(), false);
1703                 fTextureSampler.reset(args.fContext->resourceProvider(),
1704                                       fAtlas->asTextureProxyRef(), params);
1705             } else {
1706                 // In this instance we know the params are:
1707                 //   clampY, bilerp
1708                 // and the proxy is:
1709                 //   exact fit, power of two in both dimensions
1710                 // Only the x-tileMode is unknown. However, given all the other knowns we know
1711                 // that GrMakeCachedBitmapProxy is sufficient (i.e., it won't need to be
1712                 // extracted to a subset or mipmapped).
1713                 sk_sp<GrTextureProxy> proxy = GrMakeCachedBitmapProxy(
1714                                                                 args.fContext->resourceProvider(),
1715                                                                 bitmap);
1716                 if (!proxy) {
1717                     return;
1718                 }
1719                 // This is 2/2 places where auto-normalization is disabled
1720                 fCoordTransform.reset(args.fContext->resourceProvider(), *args.fMatrix,
1721                                       proxy.get(), params.filterMode(), false);
1722                 fTextureSampler.reset(args.fContext->resourceProvider(),
1723                                       std::move(proxy), params);
1724                 fYCoord = SK_ScalarHalf;
1725             }
1726 
1727             this->addTextureSampler(&fTextureSampler);
1728 
1729             break;
1730     }
1731 
1732     this->addCoordTransform(&fCoordTransform);
1733 }
1734 
~GrGradientEffect()1735 GrGradientEffect::~GrGradientEffect() {
1736     if (this->useAtlas()) {
1737         fAtlas->unlockRow(fRow);
1738     }
1739 }
1740 
onIsEqual(const GrFragmentProcessor & processor) const1741 bool GrGradientEffect::onIsEqual(const GrFragmentProcessor& processor) const {
1742     const GrGradientEffect& ge = processor.cast<GrGradientEffect>();
1743 
1744     if (this->fColorType != ge.getColorType()) {
1745         return false;
1746     }
1747     SkASSERT(this->useAtlas() == ge.useAtlas());
1748     if (kTexture_ColorType == fColorType) {
1749         if (fYCoord != ge.getYCoord()) {
1750             return false;
1751         }
1752     } else {
1753         if (kSingleHardStop_ColorType == fColorType) {
1754             if (!SkScalarNearlyEqual(ge.fPositions[1], fPositions[1])) {
1755                 return false;
1756             }
1757         }
1758         if (this->getPremulType() != ge.getPremulType() ||
1759             this->fColors.count() != ge.fColors.count() ||
1760             this->fColors4f.count() != ge.fColors4f.count()) {
1761             return false;
1762         }
1763 
1764         for (int i = 0; i < this->fColors.count(); i++) {
1765             if (*this->getColors(i) != *ge.getColors(i)) {
1766                 return false;
1767             }
1768         }
1769         for (int i = 0; i < this->fColors4f.count(); i++) {
1770             if (*this->getColors4f(i) != *ge.getColors4f(i)) {
1771                 return false;
1772             }
1773         }
1774     }
1775     return GrColorSpaceXform::Equals(this->fColorSpaceXform.get(), ge.fColorSpaceXform.get());
1776 }
1777 
1778 #if GR_TEST_UTILS
RandomGradientParams(SkRandom * random)1779 GrGradientEffect::RandomGradientParams::RandomGradientParams(SkRandom* random) {
1780     // Set color count to min of 2 so that we don't trigger the const color optimization and make
1781     // a non-gradient processor.
1782     fColorCount = random->nextRangeU(2, kMaxRandomGradientColors);
1783     fUseColors4f = random->nextBool();
1784 
1785     // if one color, omit stops, otherwise randomly decide whether or not to
1786     if (fColorCount == 1 || (fColorCount >= 2 && random->nextBool())) {
1787         fStops = nullptr;
1788     } else {
1789         fStops = fStopStorage;
1790     }
1791 
1792     // if using SkColor4f, attach a random (possibly null) color space (with linear gamma)
1793     if (fUseColors4f) {
1794         fColorSpace = GrTest::TestColorSpace(random);
1795         if (fColorSpace) {
1796             SkASSERT(SkColorSpace_Base::Type::kXYZ == as_CSB(fColorSpace)->type());
1797             fColorSpace = static_cast<SkColorSpace_XYZ*>(fColorSpace.get())->makeLinearGamma();
1798         }
1799     }
1800 
1801     SkScalar stop = 0.f;
1802     for (int i = 0; i < fColorCount; ++i) {
1803         if (fUseColors4f) {
1804             fColors4f[i].fR = random->nextUScalar1();
1805             fColors4f[i].fG = random->nextUScalar1();
1806             fColors4f[i].fB = random->nextUScalar1();
1807             fColors4f[i].fA = random->nextUScalar1();
1808         } else {
1809             fColors[i] = random->nextU();
1810         }
1811         if (fStops) {
1812             fStops[i] = stop;
1813             stop = i < fColorCount - 1 ? stop + random->nextUScalar1() * (1.f - stop) : 1.f;
1814         }
1815     }
1816     fTileMode = static_cast<SkShader::TileMode>(random->nextULessThan(SkShader::kTileModeCount));
1817 }
1818 #endif
1819 
1820 #endif
1821