1 //===-- llvm/ADT/FoldingSet.h - Uniquing Hash Set ---------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a hash set that can be used to remove duplication of nodes
11 // in a graph.  This code was originally created by Chris Lattner for use with
12 // SelectionDAGCSEMap, but was isolated to provide use across the llvm code set.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_ADT_FOLDINGSET_H
17 #define LLVM_ADT_FOLDINGSET_H
18 
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/iterator.h"
21 #include "llvm/Support/Allocator.h"
22 
23 namespace llvm {
24 /// This folding set used for two purposes:
25 ///   1. Given information about a node we want to create, look up the unique
26 ///      instance of the node in the set.  If the node already exists, return
27 ///      it, otherwise return the bucket it should be inserted into.
28 ///   2. Given a node that has already been created, remove it from the set.
29 ///
30 /// This class is implemented as a single-link chained hash table, where the
31 /// "buckets" are actually the nodes themselves (the next pointer is in the
32 /// node).  The last node points back to the bucket to simplify node removal.
33 ///
34 /// Any node that is to be included in the folding set must be a subclass of
35 /// FoldingSetNode.  The node class must also define a Profile method used to
36 /// establish the unique bits of data for the node.  The Profile method is
37 /// passed a FoldingSetNodeID object which is used to gather the bits.  Just
38 /// call one of the Add* functions defined in the FoldingSetImpl::NodeID class.
39 /// NOTE: That the folding set does not own the nodes and it is the
40 /// responsibility of the user to dispose of the nodes.
41 ///
42 /// Eg.
43 ///    class MyNode : public FoldingSetNode {
44 ///    private:
45 ///      std::string Name;
46 ///      unsigned Value;
47 ///    public:
48 ///      MyNode(const char *N, unsigned V) : Name(N), Value(V) {}
49 ///       ...
50 ///      void Profile(FoldingSetNodeID &ID) const {
51 ///        ID.AddString(Name);
52 ///        ID.AddInteger(Value);
53 ///      }
54 ///      ...
55 ///    };
56 ///
57 /// To define the folding set itself use the FoldingSet template;
58 ///
59 /// Eg.
60 ///    FoldingSet<MyNode> MyFoldingSet;
61 ///
62 /// Four public methods are available to manipulate the folding set;
63 ///
64 /// 1) If you have an existing node that you want add to the set but unsure
65 /// that the node might already exist then call;
66 ///
67 ///    MyNode *M = MyFoldingSet.GetOrInsertNode(N);
68 ///
69 /// If The result is equal to the input then the node has been inserted.
70 /// Otherwise, the result is the node existing in the folding set, and the
71 /// input can be discarded (use the result instead.)
72 ///
73 /// 2) If you are ready to construct a node but want to check if it already
74 /// exists, then call FindNodeOrInsertPos with a FoldingSetNodeID of the bits to
75 /// check;
76 ///
77 ///   FoldingSetNodeID ID;
78 ///   ID.AddString(Name);
79 ///   ID.AddInteger(Value);
80 ///   void *InsertPoint;
81 ///
82 ///    MyNode *M = MyFoldingSet.FindNodeOrInsertPos(ID, InsertPoint);
83 ///
84 /// If found then M with be non-NULL, else InsertPoint will point to where it
85 /// should be inserted using InsertNode.
86 ///
87 /// 3) If you get a NULL result from FindNodeOrInsertPos then you can as a new
88 /// node with FindNodeOrInsertPos;
89 ///
90 ///    InsertNode(N, InsertPoint);
91 ///
92 /// 4) Finally, if you want to remove a node from the folding set call;
93 ///
94 ///    bool WasRemoved = RemoveNode(N);
95 ///
96 /// The result indicates whether the node existed in the folding set.
97 
98 class FoldingSetNodeID;
99 class StringRef;
100 
101 //===----------------------------------------------------------------------===//
102 /// FoldingSetImpl - Implements the folding set functionality.  The main
103 /// structure is an array of buckets.  Each bucket is indexed by the hash of
104 /// the nodes it contains.  The bucket itself points to the nodes contained
105 /// in the bucket via a singly linked list.  The last node in the list points
106 /// back to the bucket to facilitate node removal.
107 ///
108 class FoldingSetImpl {
109   virtual void anchor(); // Out of line virtual method.
110 
111 protected:
112   /// Buckets - Array of bucket chains.
113   ///
114   void **Buckets;
115 
116   /// NumBuckets - Length of the Buckets array.  Always a power of 2.
117   ///
118   unsigned NumBuckets;
119 
120   /// NumNodes - Number of nodes in the folding set. Growth occurs when NumNodes
121   /// is greater than twice the number of buckets.
122   unsigned NumNodes;
123 
124   explicit FoldingSetImpl(unsigned Log2InitSize = 6);
125   FoldingSetImpl(FoldingSetImpl &&Arg);
126   FoldingSetImpl &operator=(FoldingSetImpl &&RHS);
127   ~FoldingSetImpl();
128 
129 public:
130   //===--------------------------------------------------------------------===//
131   /// Node - This class is used to maintain the singly linked bucket list in
132   /// a folding set.
133   ///
134   class Node {
135   private:
136     // NextInFoldingSetBucket - next link in the bucket list.
137     void *NextInFoldingSetBucket;
138 
139   public:
Node()140     Node() : NextInFoldingSetBucket(nullptr) {}
141 
142     // Accessors
getNextInBucket()143     void *getNextInBucket() const { return NextInFoldingSetBucket; }
SetNextInBucket(void * N)144     void SetNextInBucket(void *N) { NextInFoldingSetBucket = N; }
145   };
146 
147   /// clear - Remove all nodes from the folding set.
148   void clear();
149 
150   /// RemoveNode - Remove a node from the folding set, returning true if one
151   /// was removed or false if the node was not in the folding set.
152   bool RemoveNode(Node *N);
153 
154   /// GetOrInsertNode - If there is an existing simple Node exactly
155   /// equal to the specified node, return it.  Otherwise, insert 'N' and return
156   /// it instead.
157   Node *GetOrInsertNode(Node *N);
158 
159   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
160   /// return it.  If not, return the insertion token that will make insertion
161   /// faster.
162   Node *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
163 
164   /// InsertNode - Insert the specified node into the folding set, knowing that
165   /// it is not already in the folding set.  InsertPos must be obtained from
166   /// FindNodeOrInsertPos.
167   void InsertNode(Node *N, void *InsertPos);
168 
169   /// InsertNode - Insert the specified node into the folding set, knowing that
170   /// it is not already in the folding set.
InsertNode(Node * N)171   void InsertNode(Node *N) {
172     Node *Inserted = GetOrInsertNode(N);
173     (void)Inserted;
174     assert(Inserted == N && "Node already inserted!");
175   }
176 
177   /// size - Returns the number of nodes in the folding set.
size()178   unsigned size() const { return NumNodes; }
179 
180   /// empty - Returns true if there are no nodes in the folding set.
empty()181   bool empty() const { return NumNodes == 0; }
182 
183   /// reserve - Increase the number of buckets such that adding the
184   /// EltCount-th node won't cause a rebucket operation. reserve is permitted
185   /// to allocate more space than requested by EltCount.
186   void reserve(unsigned EltCount);
187   /// capacity - Returns the number of nodes permitted in the folding set
188   /// before a rebucket operation is performed.
capacity()189   unsigned capacity() {
190     // We allow a load factor of up to 2.0,
191     // so that means our capacity is NumBuckets * 2
192     return NumBuckets * 2;
193   }
194 
195 private:
196   /// GrowHashTable - Double the size of the hash table and rehash everything.
197   void GrowHashTable();
198 
199   /// GrowBucketCount - resize the hash table and rehash everything.
200   /// NewBucketCount must be a power of two, and must be greater than the old
201   /// bucket count.
202   void GrowBucketCount(unsigned NewBucketCount);
203 protected:
204   /// GetNodeProfile - Instantiations of the FoldingSet template implement
205   /// this function to gather data bits for the given node.
206   virtual void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const = 0;
207   /// NodeEquals - Instantiations of the FoldingSet template implement
208   /// this function to compare the given node with the given ID.
209   virtual bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash,
210                           FoldingSetNodeID &TempID) const=0;
211   /// ComputeNodeHash - Instantiations of the FoldingSet template implement
212   /// this function to compute a hash value for the given node.
213   virtual unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const = 0;
214 };
215 
216 //===----------------------------------------------------------------------===//
217 
218 template<typename T> struct FoldingSetTrait;
219 
220 /// DefaultFoldingSetTrait - This class provides default implementations
221 /// for FoldingSetTrait implementations.
222 ///
223 template<typename T> struct DefaultFoldingSetTrait {
ProfileDefaultFoldingSetTrait224   static void Profile(const T &X, FoldingSetNodeID &ID) {
225     X.Profile(ID);
226   }
ProfileDefaultFoldingSetTrait227   static void Profile(T &X, FoldingSetNodeID &ID) {
228     X.Profile(ID);
229   }
230 
231   // Equals - Test if the profile for X would match ID, using TempID
232   // to compute a temporary ID if necessary. The default implementation
233   // just calls Profile and does a regular comparison. Implementations
234   // can override this to provide more efficient implementations.
235   static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash,
236                             FoldingSetNodeID &TempID);
237 
238   // ComputeHash - Compute a hash value for X, using TempID to
239   // compute a temporary ID if necessary. The default implementation
240   // just calls Profile and does a regular hash computation.
241   // Implementations can override this to provide more efficient
242   // implementations.
243   static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID);
244 };
245 
246 /// FoldingSetTrait - This trait class is used to define behavior of how
247 /// to "profile" (in the FoldingSet parlance) an object of a given type.
248 /// The default behavior is to invoke a 'Profile' method on an object, but
249 /// through template specialization the behavior can be tailored for specific
250 /// types.  Combined with the FoldingSetNodeWrapper class, one can add objects
251 /// to FoldingSets that were not originally designed to have that behavior.
252 template<typename T> struct FoldingSetTrait
253   : public DefaultFoldingSetTrait<T> {};
254 
255 template<typename T, typename Ctx> struct ContextualFoldingSetTrait;
256 
257 /// DefaultContextualFoldingSetTrait - Like DefaultFoldingSetTrait, but
258 /// for ContextualFoldingSets.
259 template<typename T, typename Ctx>
260 struct DefaultContextualFoldingSetTrait {
ProfileDefaultContextualFoldingSetTrait261   static void Profile(T &X, FoldingSetNodeID &ID, Ctx Context) {
262     X.Profile(ID, Context);
263   }
264   static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash,
265                             FoldingSetNodeID &TempID, Ctx Context);
266   static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID,
267                                      Ctx Context);
268 };
269 
270 /// ContextualFoldingSetTrait - Like FoldingSetTrait, but for
271 /// ContextualFoldingSets.
272 template<typename T, typename Ctx> struct ContextualFoldingSetTrait
273   : public DefaultContextualFoldingSetTrait<T, Ctx> {};
274 
275 //===--------------------------------------------------------------------===//
276 /// FoldingSetNodeIDRef - This class describes a reference to an interned
277 /// FoldingSetNodeID, which can be a useful to store node id data rather
278 /// than using plain FoldingSetNodeIDs, since the 32-element SmallVector
279 /// is often much larger than necessary, and the possibility of heap
280 /// allocation means it requires a non-trivial destructor call.
281 class FoldingSetNodeIDRef {
282   const unsigned *Data;
283   size_t Size;
284 
285 public:
FoldingSetNodeIDRef()286   FoldingSetNodeIDRef() : Data(nullptr), Size(0) {}
FoldingSetNodeIDRef(const unsigned * D,size_t S)287   FoldingSetNodeIDRef(const unsigned *D, size_t S) : Data(D), Size(S) {}
288 
289   /// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef,
290   /// used to lookup the node in the FoldingSetImpl.
291   unsigned ComputeHash() const;
292 
293   bool operator==(FoldingSetNodeIDRef) const;
294 
295   bool operator!=(FoldingSetNodeIDRef RHS) const { return !(*this == RHS); }
296 
297   /// Used to compare the "ordering" of two nodes as defined by the
298   /// profiled bits and their ordering defined by memcmp().
299   bool operator<(FoldingSetNodeIDRef) const;
300 
getData()301   const unsigned *getData() const { return Data; }
getSize()302   size_t getSize() const { return Size; }
303 };
304 
305 //===--------------------------------------------------------------------===//
306 /// FoldingSetNodeID - This class is used to gather all the unique data bits of
307 /// a node.  When all the bits are gathered this class is used to produce a
308 /// hash value for the node.
309 ///
310 class FoldingSetNodeID {
311   /// Bits - Vector of all the data bits that make the node unique.
312   /// Use a SmallVector to avoid a heap allocation in the common case.
313   SmallVector<unsigned, 32> Bits;
314 
315 public:
FoldingSetNodeID()316   FoldingSetNodeID() {}
317 
FoldingSetNodeID(FoldingSetNodeIDRef Ref)318   FoldingSetNodeID(FoldingSetNodeIDRef Ref)
319     : Bits(Ref.getData(), Ref.getData() + Ref.getSize()) {}
320 
321   /// Add* - Add various data types to Bit data.
322   ///
323   void AddPointer(const void *Ptr);
324   void AddInteger(signed I);
325   void AddInteger(unsigned I);
326   void AddInteger(long I);
327   void AddInteger(unsigned long I);
328   void AddInteger(long long I);
329   void AddInteger(unsigned long long I);
AddBoolean(bool B)330   void AddBoolean(bool B) { AddInteger(B ? 1U : 0U); }
331   void AddString(StringRef String);
332   void AddNodeID(const FoldingSetNodeID &ID);
333 
334   template <typename T>
Add(const T & x)335   inline void Add(const T &x) { FoldingSetTrait<T>::Profile(x, *this); }
336 
337   /// clear - Clear the accumulated profile, allowing this FoldingSetNodeID
338   /// object to be used to compute a new profile.
clear()339   inline void clear() { Bits.clear(); }
340 
341   /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used
342   /// to lookup the node in the FoldingSetImpl.
343   unsigned ComputeHash() const;
344 
345   /// operator== - Used to compare two nodes to each other.
346   ///
347   bool operator==(const FoldingSetNodeID &RHS) const;
348   bool operator==(const FoldingSetNodeIDRef RHS) const;
349 
350   bool operator!=(const FoldingSetNodeID &RHS) const { return !(*this == RHS); }
351   bool operator!=(const FoldingSetNodeIDRef RHS) const { return !(*this ==RHS);}
352 
353   /// Used to compare the "ordering" of two nodes as defined by the
354   /// profiled bits and their ordering defined by memcmp().
355   bool operator<(const FoldingSetNodeID &RHS) const;
356   bool operator<(const FoldingSetNodeIDRef RHS) const;
357 
358   /// Intern - Copy this node's data to a memory region allocated from the
359   /// given allocator and return a FoldingSetNodeIDRef describing the
360   /// interned data.
361   FoldingSetNodeIDRef Intern(BumpPtrAllocator &Allocator) const;
362 };
363 
364 // Convenience type to hide the implementation of the folding set.
365 typedef FoldingSetImpl::Node FoldingSetNode;
366 template<class T> class FoldingSetIterator;
367 template<class T> class FoldingSetBucketIterator;
368 
369 // Definitions of FoldingSetTrait and ContextualFoldingSetTrait functions, which
370 // require the definition of FoldingSetNodeID.
371 template<typename T>
372 inline bool
Equals(T & X,const FoldingSetNodeID & ID,unsigned,FoldingSetNodeID & TempID)373 DefaultFoldingSetTrait<T>::Equals(T &X, const FoldingSetNodeID &ID,
374                                   unsigned /*IDHash*/,
375                                   FoldingSetNodeID &TempID) {
376   FoldingSetTrait<T>::Profile(X, TempID);
377   return TempID == ID;
378 }
379 template<typename T>
380 inline unsigned
ComputeHash(T & X,FoldingSetNodeID & TempID)381 DefaultFoldingSetTrait<T>::ComputeHash(T &X, FoldingSetNodeID &TempID) {
382   FoldingSetTrait<T>::Profile(X, TempID);
383   return TempID.ComputeHash();
384 }
385 template<typename T, typename Ctx>
386 inline bool
Equals(T & X,const FoldingSetNodeID & ID,unsigned,FoldingSetNodeID & TempID,Ctx Context)387 DefaultContextualFoldingSetTrait<T, Ctx>::Equals(T &X,
388                                                  const FoldingSetNodeID &ID,
389                                                  unsigned /*IDHash*/,
390                                                  FoldingSetNodeID &TempID,
391                                                  Ctx Context) {
392   ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
393   return TempID == ID;
394 }
395 template<typename T, typename Ctx>
396 inline unsigned
ComputeHash(T & X,FoldingSetNodeID & TempID,Ctx Context)397 DefaultContextualFoldingSetTrait<T, Ctx>::ComputeHash(T &X,
398                                                       FoldingSetNodeID &TempID,
399                                                       Ctx Context) {
400   ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
401   return TempID.ComputeHash();
402 }
403 
404 //===----------------------------------------------------------------------===//
405 /// FoldingSet - This template class is used to instantiate a specialized
406 /// implementation of the folding set to the node class T.  T must be a
407 /// subclass of FoldingSetNode and implement a Profile function.
408 ///
409 /// Note that this set type is movable and move-assignable. However, its
410 /// moved-from state is not a valid state for anything other than
411 /// move-assigning and destroying. This is primarily to enable movable APIs
412 /// that incorporate these objects.
413 template <class T> class FoldingSet final : public FoldingSetImpl {
414 private:
415   /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
416   /// way to convert nodes into a unique specifier.
GetNodeProfile(Node * N,FoldingSetNodeID & ID)417   void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const override {
418     T *TN = static_cast<T *>(N);
419     FoldingSetTrait<T>::Profile(*TN, ID);
420   }
421   /// NodeEquals - Instantiations may optionally provide a way to compare a
422   /// node with a specified ID.
NodeEquals(Node * N,const FoldingSetNodeID & ID,unsigned IDHash,FoldingSetNodeID & TempID)423   bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash,
424                   FoldingSetNodeID &TempID) const override {
425     T *TN = static_cast<T *>(N);
426     return FoldingSetTrait<T>::Equals(*TN, ID, IDHash, TempID);
427   }
428   /// ComputeNodeHash - Instantiations may optionally provide a way to compute a
429   /// hash value directly from a node.
ComputeNodeHash(Node * N,FoldingSetNodeID & TempID)430   unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const override {
431     T *TN = static_cast<T *>(N);
432     return FoldingSetTrait<T>::ComputeHash(*TN, TempID);
433   }
434 
435 public:
436   explicit FoldingSet(unsigned Log2InitSize = 6)
FoldingSetImpl(Log2InitSize)437       : FoldingSetImpl(Log2InitSize) {}
438 
FoldingSet(FoldingSet && Arg)439   FoldingSet(FoldingSet &&Arg) : FoldingSetImpl(std::move(Arg)) {}
440   FoldingSet &operator=(FoldingSet &&RHS) {
441     (void)FoldingSetImpl::operator=(std::move(RHS));
442     return *this;
443   }
444 
445   typedef FoldingSetIterator<T> iterator;
begin()446   iterator begin() { return iterator(Buckets); }
end()447   iterator end() { return iterator(Buckets+NumBuckets); }
448 
449   typedef FoldingSetIterator<const T> const_iterator;
begin()450   const_iterator begin() const { return const_iterator(Buckets); }
end()451   const_iterator end() const { return const_iterator(Buckets+NumBuckets); }
452 
453   typedef FoldingSetBucketIterator<T> bucket_iterator;
454 
bucket_begin(unsigned hash)455   bucket_iterator bucket_begin(unsigned hash) {
456     return bucket_iterator(Buckets + (hash & (NumBuckets-1)));
457   }
458 
bucket_end(unsigned hash)459   bucket_iterator bucket_end(unsigned hash) {
460     return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true);
461   }
462 
463   /// GetOrInsertNode - If there is an existing simple Node exactly
464   /// equal to the specified node, return it.  Otherwise, insert 'N' and
465   /// return it instead.
GetOrInsertNode(Node * N)466   T *GetOrInsertNode(Node *N) {
467     return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N));
468   }
469 
470   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
471   /// return it.  If not, return the insertion token that will make insertion
472   /// faster.
FindNodeOrInsertPos(const FoldingSetNodeID & ID,void * & InsertPos)473   T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
474     return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos));
475   }
476 };
477 
478 //===----------------------------------------------------------------------===//
479 /// ContextualFoldingSet - This template class is a further refinement
480 /// of FoldingSet which provides a context argument when calling
481 /// Profile on its nodes.  Currently, that argument is fixed at
482 /// initialization time.
483 ///
484 /// T must be a subclass of FoldingSetNode and implement a Profile
485 /// function with signature
486 ///   void Profile(llvm::FoldingSetNodeID &, Ctx);
487 template <class T, class Ctx>
488 class ContextualFoldingSet final : public FoldingSetImpl {
489   // Unfortunately, this can't derive from FoldingSet<T> because the
490   // construction vtable for FoldingSet<T> requires
491   // FoldingSet<T>::GetNodeProfile to be instantiated, which in turn
492   // requires a single-argument T::Profile().
493 
494 private:
495   Ctx Context;
496 
497   /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
498   /// way to convert nodes into a unique specifier.
GetNodeProfile(FoldingSetImpl::Node * N,FoldingSetNodeID & ID)499   void GetNodeProfile(FoldingSetImpl::Node *N,
500                       FoldingSetNodeID &ID) const override {
501     T *TN = static_cast<T *>(N);
502     ContextualFoldingSetTrait<T, Ctx>::Profile(*TN, ID, Context);
503   }
NodeEquals(FoldingSetImpl::Node * N,const FoldingSetNodeID & ID,unsigned IDHash,FoldingSetNodeID & TempID)504   bool NodeEquals(FoldingSetImpl::Node *N, const FoldingSetNodeID &ID,
505                   unsigned IDHash, FoldingSetNodeID &TempID) const override {
506     T *TN = static_cast<T *>(N);
507     return ContextualFoldingSetTrait<T, Ctx>::Equals(*TN, ID, IDHash, TempID,
508                                                      Context);
509   }
ComputeNodeHash(FoldingSetImpl::Node * N,FoldingSetNodeID & TempID)510   unsigned ComputeNodeHash(FoldingSetImpl::Node *N,
511                            FoldingSetNodeID &TempID) const override {
512     T *TN = static_cast<T *>(N);
513     return ContextualFoldingSetTrait<T, Ctx>::ComputeHash(*TN, TempID, Context);
514   }
515 
516 public:
517   explicit ContextualFoldingSet(Ctx Context, unsigned Log2InitSize = 6)
FoldingSetImpl(Log2InitSize)518   : FoldingSetImpl(Log2InitSize), Context(Context)
519   {}
520 
getContext()521   Ctx getContext() const { return Context; }
522 
523   typedef FoldingSetIterator<T> iterator;
begin()524   iterator begin() { return iterator(Buckets); }
end()525   iterator end() { return iterator(Buckets+NumBuckets); }
526 
527   typedef FoldingSetIterator<const T> const_iterator;
begin()528   const_iterator begin() const { return const_iterator(Buckets); }
end()529   const_iterator end() const { return const_iterator(Buckets+NumBuckets); }
530 
531   typedef FoldingSetBucketIterator<T> bucket_iterator;
532 
bucket_begin(unsigned hash)533   bucket_iterator bucket_begin(unsigned hash) {
534     return bucket_iterator(Buckets + (hash & (NumBuckets-1)));
535   }
536 
bucket_end(unsigned hash)537   bucket_iterator bucket_end(unsigned hash) {
538     return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true);
539   }
540 
541   /// GetOrInsertNode - If there is an existing simple Node exactly
542   /// equal to the specified node, return it.  Otherwise, insert 'N'
543   /// and return it instead.
GetOrInsertNode(Node * N)544   T *GetOrInsertNode(Node *N) {
545     return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N));
546   }
547 
548   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it
549   /// exists, return it.  If not, return the insertion token that will
550   /// make insertion faster.
FindNodeOrInsertPos(const FoldingSetNodeID & ID,void * & InsertPos)551   T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
552     return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos));
553   }
554 };
555 
556 //===----------------------------------------------------------------------===//
557 /// FoldingSetVector - This template class combines a FoldingSet and a vector
558 /// to provide the interface of FoldingSet but with deterministic iteration
559 /// order based on the insertion order. T must be a subclass of FoldingSetNode
560 /// and implement a Profile function.
561 template <class T, class VectorT = SmallVector<T*, 8> >
562 class FoldingSetVector {
563   FoldingSet<T> Set;
564   VectorT Vector;
565 
566 public:
567   explicit FoldingSetVector(unsigned Log2InitSize = 6)
Set(Log2InitSize)568       : Set(Log2InitSize) {
569   }
570 
571   typedef pointee_iterator<typename VectorT::iterator> iterator;
begin()572   iterator begin() { return Vector.begin(); }
end()573   iterator end()   { return Vector.end(); }
574 
575   typedef pointee_iterator<typename VectorT::const_iterator> const_iterator;
begin()576   const_iterator begin() const { return Vector.begin(); }
end()577   const_iterator end()   const { return Vector.end(); }
578 
579   /// clear - Remove all nodes from the folding set.
clear()580   void clear() { Set.clear(); Vector.clear(); }
581 
582   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
583   /// return it.  If not, return the insertion token that will make insertion
584   /// faster.
FindNodeOrInsertPos(const FoldingSetNodeID & ID,void * & InsertPos)585   T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
586     return Set.FindNodeOrInsertPos(ID, InsertPos);
587   }
588 
589   /// GetOrInsertNode - If there is an existing simple Node exactly
590   /// equal to the specified node, return it.  Otherwise, insert 'N' and
591   /// return it instead.
GetOrInsertNode(T * N)592   T *GetOrInsertNode(T *N) {
593     T *Result = Set.GetOrInsertNode(N);
594     if (Result == N) Vector.push_back(N);
595     return Result;
596   }
597 
598   /// InsertNode - Insert the specified node into the folding set, knowing that
599   /// it is not already in the folding set.  InsertPos must be obtained from
600   /// FindNodeOrInsertPos.
InsertNode(T * N,void * InsertPos)601   void InsertNode(T *N, void *InsertPos) {
602     Set.InsertNode(N, InsertPos);
603     Vector.push_back(N);
604   }
605 
606   /// InsertNode - Insert the specified node into the folding set, knowing that
607   /// it is not already in the folding set.
InsertNode(T * N)608   void InsertNode(T *N) {
609     Set.InsertNode(N);
610     Vector.push_back(N);
611   }
612 
613   /// size - Returns the number of nodes in the folding set.
size()614   unsigned size() const { return Set.size(); }
615 
616   /// empty - Returns true if there are no nodes in the folding set.
empty()617   bool empty() const { return Set.empty(); }
618 };
619 
620 //===----------------------------------------------------------------------===//
621 /// FoldingSetIteratorImpl - This is the common iterator support shared by all
622 /// folding sets, which knows how to walk the folding set hash table.
623 class FoldingSetIteratorImpl {
624 protected:
625   FoldingSetNode *NodePtr;
626   FoldingSetIteratorImpl(void **Bucket);
627   void advance();
628 
629 public:
630   bool operator==(const FoldingSetIteratorImpl &RHS) const {
631     return NodePtr == RHS.NodePtr;
632   }
633   bool operator!=(const FoldingSetIteratorImpl &RHS) const {
634     return NodePtr != RHS.NodePtr;
635   }
636 };
637 
638 template <class T> class FoldingSetIterator : public FoldingSetIteratorImpl {
639 public:
FoldingSetIterator(void ** Bucket)640   explicit FoldingSetIterator(void **Bucket) : FoldingSetIteratorImpl(Bucket) {}
641 
642   T &operator*() const {
643     return *static_cast<T*>(NodePtr);
644   }
645 
646   T *operator->() const {
647     return static_cast<T*>(NodePtr);
648   }
649 
650   inline FoldingSetIterator &operator++() {          // Preincrement
651     advance();
652     return *this;
653   }
654   FoldingSetIterator operator++(int) {        // Postincrement
655     FoldingSetIterator tmp = *this; ++*this; return tmp;
656   }
657 };
658 
659 //===----------------------------------------------------------------------===//
660 /// FoldingSetBucketIteratorImpl - This is the common bucket iterator support
661 /// shared by all folding sets, which knows how to walk a particular bucket
662 /// of a folding set hash table.
663 
664 class FoldingSetBucketIteratorImpl {
665 protected:
666   void *Ptr;
667 
668   explicit FoldingSetBucketIteratorImpl(void **Bucket);
669 
FoldingSetBucketIteratorImpl(void ** Bucket,bool)670   FoldingSetBucketIteratorImpl(void **Bucket, bool)
671     : Ptr(Bucket) {}
672 
advance()673   void advance() {
674     void *Probe = static_cast<FoldingSetNode*>(Ptr)->getNextInBucket();
675     uintptr_t x = reinterpret_cast<uintptr_t>(Probe) & ~0x1;
676     Ptr = reinterpret_cast<void*>(x);
677   }
678 
679 public:
680   bool operator==(const FoldingSetBucketIteratorImpl &RHS) const {
681     return Ptr == RHS.Ptr;
682   }
683   bool operator!=(const FoldingSetBucketIteratorImpl &RHS) const {
684     return Ptr != RHS.Ptr;
685   }
686 };
687 
688 template <class T>
689 class FoldingSetBucketIterator : public FoldingSetBucketIteratorImpl {
690 public:
FoldingSetBucketIterator(void ** Bucket)691   explicit FoldingSetBucketIterator(void **Bucket) :
692     FoldingSetBucketIteratorImpl(Bucket) {}
693 
FoldingSetBucketIterator(void ** Bucket,bool)694   FoldingSetBucketIterator(void **Bucket, bool) :
695     FoldingSetBucketIteratorImpl(Bucket, true) {}
696 
697   T &operator*() const { return *static_cast<T*>(Ptr); }
698   T *operator->() const { return static_cast<T*>(Ptr); }
699 
700   inline FoldingSetBucketIterator &operator++() { // Preincrement
701     advance();
702     return *this;
703   }
704   FoldingSetBucketIterator operator++(int) {      // Postincrement
705     FoldingSetBucketIterator tmp = *this; ++*this; return tmp;
706   }
707 };
708 
709 //===----------------------------------------------------------------------===//
710 /// FoldingSetNodeWrapper - This template class is used to "wrap" arbitrary
711 /// types in an enclosing object so that they can be inserted into FoldingSets.
712 template <typename T>
713 class FoldingSetNodeWrapper : public FoldingSetNode {
714   T data;
715 
716 public:
717   template <typename... Ts>
FoldingSetNodeWrapper(Ts &&...Args)718   explicit FoldingSetNodeWrapper(Ts &&... Args)
719       : data(std::forward<Ts>(Args)...) {}
720 
Profile(FoldingSetNodeID & ID)721   void Profile(FoldingSetNodeID &ID) { FoldingSetTrait<T>::Profile(data, ID); }
722 
getValue()723   T &getValue() { return data; }
getValue()724   const T &getValue() const { return data; }
725 
726   operator T&() { return data; }
727   operator const T&() const { return data; }
728 };
729 
730 //===----------------------------------------------------------------------===//
731 /// FastFoldingSetNode - This is a subclass of FoldingSetNode which stores
732 /// a FoldingSetNodeID value rather than requiring the node to recompute it
733 /// each time it is needed. This trades space for speed (which can be
734 /// significant if the ID is long), and it also permits nodes to drop
735 /// information that would otherwise only be required for recomputing an ID.
736 class FastFoldingSetNode : public FoldingSetNode {
737   FoldingSetNodeID FastID;
738 
739 protected:
FastFoldingSetNode(const FoldingSetNodeID & ID)740   explicit FastFoldingSetNode(const FoldingSetNodeID &ID) : FastID(ID) {}
741 
742 public:
Profile(FoldingSetNodeID & ID)743   void Profile(FoldingSetNodeID &ID) const { ID.AddNodeID(FastID); }
744 };
745 
746 //===----------------------------------------------------------------------===//
747 // Partial specializations of FoldingSetTrait.
748 
749 template<typename T> struct FoldingSetTrait<T*> {
750   static inline void Profile(T *X, FoldingSetNodeID &ID) {
751     ID.AddPointer(X);
752   }
753 };
754 template <typename T1, typename T2>
755 struct FoldingSetTrait<std::pair<T1, T2>> {
756   static inline void Profile(const std::pair<T1, T2> &P,
757                              llvm::FoldingSetNodeID &ID) {
758     ID.Add(P.first);
759     ID.Add(P.second);
760   }
761 };
762 } // End of namespace llvm.
763 
764 #endif
765