1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/crankshaft/lithium-allocator.h"
6 
7 #include "src/crankshaft/hydrogen.h"
8 #include "src/crankshaft/lithium-inl.h"
9 #include "src/crankshaft/lithium-allocator-inl.h"
10 #include "src/register-configuration.h"
11 #include "src/string-stream.h"
12 
13 namespace v8 {
14 namespace internal {
15 
16 const auto GetRegConfig = RegisterConfiguration::Crankshaft;
17 
Min(LifetimePosition a,LifetimePosition b)18 static inline LifetimePosition Min(LifetimePosition a, LifetimePosition b) {
19   return a.Value() < b.Value() ? a : b;
20 }
21 
22 
Max(LifetimePosition a,LifetimePosition b)23 static inline LifetimePosition Max(LifetimePosition a, LifetimePosition b) {
24   return a.Value() > b.Value() ? a : b;
25 }
26 
27 
UsePosition(LifetimePosition pos,LOperand * operand,LOperand * hint)28 UsePosition::UsePosition(LifetimePosition pos,
29                          LOperand* operand,
30                          LOperand* hint)
31     : operand_(operand),
32       hint_(hint),
33       pos_(pos),
34       next_(NULL),
35       requires_reg_(false),
36       register_beneficial_(true) {
37   if (operand_ != NULL && operand_->IsUnallocated()) {
38     LUnallocated* unalloc = LUnallocated::cast(operand_);
39     requires_reg_ = unalloc->HasRegisterPolicy() ||
40         unalloc->HasDoubleRegisterPolicy();
41     register_beneficial_ = !unalloc->HasAnyPolicy();
42   }
43   DCHECK(pos_.IsValid());
44 }
45 
46 
HasHint() const47 bool UsePosition::HasHint() const {
48   return hint_ != NULL && !hint_->IsUnallocated();
49 }
50 
51 
RequiresRegister() const52 bool UsePosition::RequiresRegister() const {
53   return requires_reg_;
54 }
55 
56 
RegisterIsBeneficial() const57 bool UsePosition::RegisterIsBeneficial() const {
58   return register_beneficial_;
59 }
60 
61 
SplitAt(LifetimePosition pos,Zone * zone)62 void UseInterval::SplitAt(LifetimePosition pos, Zone* zone) {
63   DCHECK(Contains(pos) && pos.Value() != start().Value());
64   UseInterval* after = new(zone) UseInterval(pos, end_);
65   after->next_ = next_;
66   next_ = after;
67   end_ = pos;
68 }
69 
70 
71 #ifdef DEBUG
72 
73 
Verify() const74 void LiveRange::Verify() const {
75   UsePosition* cur = first_pos_;
76   while (cur != NULL) {
77     DCHECK(Start().Value() <= cur->pos().Value() &&
78            cur->pos().Value() <= End().Value());
79     cur = cur->next();
80   }
81 }
82 
83 
HasOverlap(UseInterval * target) const84 bool LiveRange::HasOverlap(UseInterval* target) const {
85   UseInterval* current_interval = first_interval_;
86   while (current_interval != NULL) {
87     // Intervals overlap if the start of one is contained in the other.
88     if (current_interval->Contains(target->start()) ||
89         target->Contains(current_interval->start())) {
90       return true;
91     }
92     current_interval = current_interval->next();
93   }
94   return false;
95 }
96 
97 
98 #endif
99 
100 
LiveRange(int id,Zone * zone)101 LiveRange::LiveRange(int id, Zone* zone)
102     : id_(id),
103       spilled_(false),
104       kind_(UNALLOCATED_REGISTERS),
105       assigned_register_(kInvalidAssignment),
106       last_interval_(NULL),
107       first_interval_(NULL),
108       first_pos_(NULL),
109       parent_(NULL),
110       next_(NULL),
111       current_interval_(NULL),
112       last_processed_use_(NULL),
113       current_hint_operand_(NULL),
114       spill_operand_(new (zone) LOperand()),
115       spill_start_index_(kMaxInt) {}
116 
117 
set_assigned_register(int reg,Zone * zone)118 void LiveRange::set_assigned_register(int reg, Zone* zone) {
119   DCHECK(!HasRegisterAssigned() && !IsSpilled());
120   assigned_register_ = reg;
121   ConvertOperands(zone);
122 }
123 
124 
MakeSpilled(Zone * zone)125 void LiveRange::MakeSpilled(Zone* zone) {
126   DCHECK(!IsSpilled());
127   DCHECK(TopLevel()->HasAllocatedSpillOperand());
128   spilled_ = true;
129   assigned_register_ = kInvalidAssignment;
130   ConvertOperands(zone);
131 }
132 
133 
HasAllocatedSpillOperand() const134 bool LiveRange::HasAllocatedSpillOperand() const {
135   DCHECK(spill_operand_ != NULL);
136   return !spill_operand_->IsIgnored();
137 }
138 
139 
SetSpillOperand(LOperand * operand)140 void LiveRange::SetSpillOperand(LOperand* operand) {
141   DCHECK(!operand->IsUnallocated());
142   DCHECK(spill_operand_ != NULL);
143   DCHECK(spill_operand_->IsIgnored());
144   spill_operand_->ConvertTo(operand->kind(), operand->index());
145 }
146 
147 
NextUsePosition(LifetimePosition start)148 UsePosition* LiveRange::NextUsePosition(LifetimePosition start) {
149   UsePosition* use_pos = last_processed_use_;
150   if (use_pos == NULL) use_pos = first_pos();
151   while (use_pos != NULL && use_pos->pos().Value() < start.Value()) {
152     use_pos = use_pos->next();
153   }
154   last_processed_use_ = use_pos;
155   return use_pos;
156 }
157 
158 
NextUsePositionRegisterIsBeneficial(LifetimePosition start)159 UsePosition* LiveRange::NextUsePositionRegisterIsBeneficial(
160     LifetimePosition start) {
161   UsePosition* pos = NextUsePosition(start);
162   while (pos != NULL && !pos->RegisterIsBeneficial()) {
163     pos = pos->next();
164   }
165   return pos;
166 }
167 
168 
PreviousUsePositionRegisterIsBeneficial(LifetimePosition start)169 UsePosition* LiveRange::PreviousUsePositionRegisterIsBeneficial(
170     LifetimePosition start) {
171   UsePosition* pos = first_pos();
172   UsePosition* prev = NULL;
173   while (pos != NULL && pos->pos().Value() < start.Value()) {
174     if (pos->RegisterIsBeneficial()) prev = pos;
175     pos = pos->next();
176   }
177   return prev;
178 }
179 
180 
NextRegisterPosition(LifetimePosition start)181 UsePosition* LiveRange::NextRegisterPosition(LifetimePosition start) {
182   UsePosition* pos = NextUsePosition(start);
183   while (pos != NULL && !pos->RequiresRegister()) {
184     pos = pos->next();
185   }
186   return pos;
187 }
188 
189 
CanBeSpilled(LifetimePosition pos)190 bool LiveRange::CanBeSpilled(LifetimePosition pos) {
191   // We cannot spill a live range that has a use requiring a register
192   // at the current or the immediate next position.
193   UsePosition* use_pos = NextRegisterPosition(pos);
194   if (use_pos == NULL) return true;
195   return
196       use_pos->pos().Value() > pos.NextInstruction().InstructionEnd().Value();
197 }
198 
199 
CreateAssignedOperand(Zone * zone)200 LOperand* LiveRange::CreateAssignedOperand(Zone* zone) {
201   LOperand* op = NULL;
202   if (HasRegisterAssigned()) {
203     DCHECK(!IsSpilled());
204     switch (Kind()) {
205       case GENERAL_REGISTERS:
206         op = LRegister::Create(assigned_register(), zone);
207         break;
208       case DOUBLE_REGISTERS:
209         op = LDoubleRegister::Create(assigned_register(), zone);
210         break;
211       default:
212         UNREACHABLE();
213     }
214   } else if (IsSpilled()) {
215     DCHECK(!HasRegisterAssigned());
216     op = TopLevel()->GetSpillOperand();
217     DCHECK(!op->IsUnallocated());
218   } else {
219     LUnallocated* unalloc = new(zone) LUnallocated(LUnallocated::NONE);
220     unalloc->set_virtual_register(id_);
221     op = unalloc;
222   }
223   return op;
224 }
225 
226 
FirstSearchIntervalForPosition(LifetimePosition position) const227 UseInterval* LiveRange::FirstSearchIntervalForPosition(
228     LifetimePosition position) const {
229   if (current_interval_ == NULL) return first_interval_;
230   if (current_interval_->start().Value() > position.Value()) {
231     current_interval_ = NULL;
232     return first_interval_;
233   }
234   return current_interval_;
235 }
236 
237 
AdvanceLastProcessedMarker(UseInterval * to_start_of,LifetimePosition but_not_past) const238 void LiveRange::AdvanceLastProcessedMarker(
239     UseInterval* to_start_of, LifetimePosition but_not_past) const {
240   if (to_start_of == NULL) return;
241   if (to_start_of->start().Value() > but_not_past.Value()) return;
242   LifetimePosition start =
243       current_interval_ == NULL ? LifetimePosition::Invalid()
244                                 : current_interval_->start();
245   if (to_start_of->start().Value() > start.Value()) {
246     current_interval_ = to_start_of;
247   }
248 }
249 
250 
SplitAt(LifetimePosition position,LiveRange * result,Zone * zone)251 void LiveRange::SplitAt(LifetimePosition position,
252                         LiveRange* result,
253                         Zone* zone) {
254   DCHECK(Start().Value() < position.Value());
255   DCHECK(result->IsEmpty());
256   // Find the last interval that ends before the position. If the
257   // position is contained in one of the intervals in the chain, we
258   // split that interval and use the first part.
259   UseInterval* current = FirstSearchIntervalForPosition(position);
260 
261   // If the split position coincides with the beginning of a use interval
262   // we need to split use positons in a special way.
263   bool split_at_start = false;
264 
265   if (current->start().Value() == position.Value()) {
266     // When splitting at start we need to locate the previous use interval.
267     current = first_interval_;
268   }
269 
270   while (current != NULL) {
271     if (current->Contains(position)) {
272       current->SplitAt(position, zone);
273       break;
274     }
275     UseInterval* next = current->next();
276     if (next->start().Value() >= position.Value()) {
277       split_at_start = (next->start().Value() == position.Value());
278       break;
279     }
280     current = next;
281   }
282 
283   // Partition original use intervals to the two live ranges.
284   UseInterval* before = current;
285   UseInterval* after = before->next();
286   result->last_interval_ = (last_interval_ == before)
287       ? after            // Only interval in the range after split.
288       : last_interval_;  // Last interval of the original range.
289   result->first_interval_ = after;
290   last_interval_ = before;
291 
292   // Find the last use position before the split and the first use
293   // position after it.
294   UsePosition* use_after = first_pos_;
295   UsePosition* use_before = NULL;
296   if (split_at_start) {
297     // The split position coincides with the beginning of a use interval (the
298     // end of a lifetime hole). Use at this position should be attributed to
299     // the split child because split child owns use interval covering it.
300     while (use_after != NULL && use_after->pos().Value() < position.Value()) {
301       use_before = use_after;
302       use_after = use_after->next();
303     }
304   } else {
305     while (use_after != NULL && use_after->pos().Value() <= position.Value()) {
306       use_before = use_after;
307       use_after = use_after->next();
308     }
309   }
310 
311   // Partition original use positions to the two live ranges.
312   if (use_before != NULL) {
313     use_before->next_ = NULL;
314   } else {
315     first_pos_ = NULL;
316   }
317   result->first_pos_ = use_after;
318 
319   // Discard cached iteration state. It might be pointing
320   // to the use that no longer belongs to this live range.
321   last_processed_use_ = NULL;
322   current_interval_ = NULL;
323 
324   // Link the new live range in the chain before any of the other
325   // ranges linked from the range before the split.
326   result->parent_ = (parent_ == NULL) ? this : parent_;
327   result->kind_ = result->parent_->kind_;
328   result->next_ = next_;
329   next_ = result;
330 
331 #ifdef DEBUG
332   Verify();
333   result->Verify();
334 #endif
335 }
336 
337 
338 // This implements an ordering on live ranges so that they are ordered by their
339 // start positions.  This is needed for the correctness of the register
340 // allocation algorithm.  If two live ranges start at the same offset then there
341 // is a tie breaker based on where the value is first used.  This part of the
342 // ordering is merely a heuristic.
ShouldBeAllocatedBefore(const LiveRange * other) const343 bool LiveRange::ShouldBeAllocatedBefore(const LiveRange* other) const {
344   LifetimePosition start = Start();
345   LifetimePosition other_start = other->Start();
346   if (start.Value() == other_start.Value()) {
347     UsePosition* pos = first_pos();
348     if (pos == NULL) return false;
349     UsePosition* other_pos = other->first_pos();
350     if (other_pos == NULL) return true;
351     return pos->pos().Value() < other_pos->pos().Value();
352   }
353   return start.Value() < other_start.Value();
354 }
355 
356 
ShortenTo(LifetimePosition start)357 void LiveRange::ShortenTo(LifetimePosition start) {
358   LAllocator::TraceAlloc("Shorten live range %d to [%d\n", id_, start.Value());
359   DCHECK(first_interval_ != NULL);
360   DCHECK(first_interval_->start().Value() <= start.Value());
361   DCHECK(start.Value() < first_interval_->end().Value());
362   first_interval_->set_start(start);
363 }
364 
365 
EnsureInterval(LifetimePosition start,LifetimePosition end,Zone * zone)366 void LiveRange::EnsureInterval(LifetimePosition start,
367                                LifetimePosition end,
368                                Zone* zone) {
369   LAllocator::TraceAlloc("Ensure live range %d in interval [%d %d[\n",
370                          id_,
371                          start.Value(),
372                          end.Value());
373   LifetimePosition new_end = end;
374   while (first_interval_ != NULL &&
375          first_interval_->start().Value() <= end.Value()) {
376     if (first_interval_->end().Value() > end.Value()) {
377       new_end = first_interval_->end();
378     }
379     first_interval_ = first_interval_->next();
380   }
381 
382   UseInterval* new_interval = new(zone) UseInterval(start, new_end);
383   new_interval->next_ = first_interval_;
384   first_interval_ = new_interval;
385   if (new_interval->next() == NULL) {
386     last_interval_ = new_interval;
387   }
388 }
389 
390 
AddUseInterval(LifetimePosition start,LifetimePosition end,Zone * zone)391 void LiveRange::AddUseInterval(LifetimePosition start,
392                                LifetimePosition end,
393                                Zone* zone) {
394   LAllocator::TraceAlloc("Add to live range %d interval [%d %d[\n",
395                          id_,
396                          start.Value(),
397                          end.Value());
398   if (first_interval_ == NULL) {
399     UseInterval* interval = new(zone) UseInterval(start, end);
400     first_interval_ = interval;
401     last_interval_ = interval;
402   } else {
403     if (end.Value() == first_interval_->start().Value()) {
404       first_interval_->set_start(start);
405     } else if (end.Value() < first_interval_->start().Value()) {
406       UseInterval* interval = new(zone) UseInterval(start, end);
407       interval->set_next(first_interval_);
408       first_interval_ = interval;
409     } else {
410       // Order of instruction's processing (see ProcessInstructions) guarantees
411       // that each new use interval either precedes or intersects with
412       // last added interval.
413       DCHECK(start.Value() < first_interval_->end().Value());
414       first_interval_->start_ = Min(start, first_interval_->start_);
415       first_interval_->end_ = Max(end, first_interval_->end_);
416     }
417   }
418 }
419 
420 
AddUsePosition(LifetimePosition pos,LOperand * operand,LOperand * hint,Zone * zone)421 void LiveRange::AddUsePosition(LifetimePosition pos,
422                                LOperand* operand,
423                                LOperand* hint,
424                                Zone* zone) {
425   LAllocator::TraceAlloc("Add to live range %d use position %d\n",
426                          id_,
427                          pos.Value());
428   UsePosition* use_pos = new(zone) UsePosition(pos, operand, hint);
429   UsePosition* prev_hint = NULL;
430   UsePosition* prev = NULL;
431   UsePosition* current = first_pos_;
432   while (current != NULL && current->pos().Value() < pos.Value()) {
433     prev_hint = current->HasHint() ? current : prev_hint;
434     prev = current;
435     current = current->next();
436   }
437 
438   if (prev == NULL) {
439     use_pos->set_next(first_pos_);
440     first_pos_ = use_pos;
441   } else {
442     use_pos->next_ = prev->next_;
443     prev->next_ = use_pos;
444   }
445 
446   if (prev_hint == NULL && use_pos->HasHint()) {
447     current_hint_operand_ = hint;
448   }
449 }
450 
451 
ConvertOperands(Zone * zone)452 void LiveRange::ConvertOperands(Zone* zone) {
453   LOperand* op = CreateAssignedOperand(zone);
454   UsePosition* use_pos = first_pos();
455   while (use_pos != NULL) {
456     DCHECK(Start().Value() <= use_pos->pos().Value() &&
457            use_pos->pos().Value() <= End().Value());
458 
459     if (use_pos->HasOperand()) {
460       DCHECK(op->IsRegister() || op->IsDoubleRegister() ||
461              !use_pos->RequiresRegister());
462       use_pos->operand()->ConvertTo(op->kind(), op->index());
463     }
464     use_pos = use_pos->next();
465   }
466 }
467 
468 
CanCover(LifetimePosition position) const469 bool LiveRange::CanCover(LifetimePosition position) const {
470   if (IsEmpty()) return false;
471   return Start().Value() <= position.Value() &&
472          position.Value() < End().Value();
473 }
474 
475 
Covers(LifetimePosition position)476 bool LiveRange::Covers(LifetimePosition position) {
477   if (!CanCover(position)) return false;
478   UseInterval* start_search = FirstSearchIntervalForPosition(position);
479   for (UseInterval* interval = start_search;
480        interval != NULL;
481        interval = interval->next()) {
482     DCHECK(interval->next() == NULL ||
483            interval->next()->start().Value() >= interval->start().Value());
484     AdvanceLastProcessedMarker(interval, position);
485     if (interval->Contains(position)) return true;
486     if (interval->start().Value() > position.Value()) return false;
487   }
488   return false;
489 }
490 
491 
FirstIntersection(LiveRange * other)492 LifetimePosition LiveRange::FirstIntersection(LiveRange* other) {
493   UseInterval* b = other->first_interval();
494   if (b == NULL) return LifetimePosition::Invalid();
495   LifetimePosition advance_last_processed_up_to = b->start();
496   UseInterval* a = FirstSearchIntervalForPosition(b->start());
497   while (a != NULL && b != NULL) {
498     if (a->start().Value() > other->End().Value()) break;
499     if (b->start().Value() > End().Value()) break;
500     LifetimePosition cur_intersection = a->Intersect(b);
501     if (cur_intersection.IsValid()) {
502       return cur_intersection;
503     }
504     if (a->start().Value() < b->start().Value()) {
505       a = a->next();
506       if (a == NULL || a->start().Value() > other->End().Value()) break;
507       AdvanceLastProcessedMarker(a, advance_last_processed_up_to);
508     } else {
509       b = b->next();
510     }
511   }
512   return LifetimePosition::Invalid();
513 }
514 
LAllocator(int num_values,HGraph * graph)515 LAllocator::LAllocator(int num_values, HGraph* graph)
516     : zone_(graph->isolate()->allocator(), ZONE_NAME),
517       chunk_(NULL),
518       live_in_sets_(graph->blocks()->length(), zone()),
519       live_ranges_(num_values * 2, zone()),
520       fixed_live_ranges_(NULL),
521       fixed_double_live_ranges_(NULL),
522       unhandled_live_ranges_(num_values * 2, zone()),
523       active_live_ranges_(8, zone()),
524       inactive_live_ranges_(8, zone()),
525       reusable_slots_(8, zone()),
526       next_virtual_register_(num_values),
527       first_artificial_register_(num_values),
528       mode_(UNALLOCATED_REGISTERS),
529       num_registers_(-1),
530       graph_(graph),
531       has_osr_entry_(false),
532       allocation_ok_(true) {}
533 
InitializeLivenessAnalysis()534 void LAllocator::InitializeLivenessAnalysis() {
535   // Initialize the live_in sets for each block to NULL.
536   int block_count = graph_->blocks()->length();
537   live_in_sets_.Initialize(block_count, zone());
538   live_in_sets_.AddBlock(NULL, block_count, zone());
539 }
540 
541 
ComputeLiveOut(HBasicBlock * block)542 BitVector* LAllocator::ComputeLiveOut(HBasicBlock* block) {
543   // Compute live out for the given block, except not including backward
544   // successor edges.
545   BitVector* live_out = new(zone()) BitVector(next_virtual_register_, zone());
546 
547   // Process all successor blocks.
548   for (HSuccessorIterator it(block->end()); !it.Done(); it.Advance()) {
549     // Add values live on entry to the successor. Note the successor's
550     // live_in will not be computed yet for backwards edges.
551     HBasicBlock* successor = it.Current();
552     BitVector* live_in = live_in_sets_[successor->block_id()];
553     if (live_in != NULL) live_out->Union(*live_in);
554 
555     // All phi input operands corresponding to this successor edge are live
556     // out from this block.
557     int index = successor->PredecessorIndexOf(block);
558     const ZoneList<HPhi*>* phis = successor->phis();
559     for (int i = 0; i < phis->length(); ++i) {
560       HPhi* phi = phis->at(i);
561       if (!phi->OperandAt(index)->IsConstant()) {
562         live_out->Add(phi->OperandAt(index)->id());
563       }
564     }
565   }
566 
567   return live_out;
568 }
569 
570 
AddInitialIntervals(HBasicBlock * block,BitVector * live_out)571 void LAllocator::AddInitialIntervals(HBasicBlock* block,
572                                      BitVector* live_out) {
573   // Add an interval that includes the entire block to the live range for
574   // each live_out value.
575   LifetimePosition start = LifetimePosition::FromInstructionIndex(
576       block->first_instruction_index());
577   LifetimePosition end = LifetimePosition::FromInstructionIndex(
578       block->last_instruction_index()).NextInstruction();
579   BitVector::Iterator iterator(live_out);
580   while (!iterator.Done()) {
581     int operand_index = iterator.Current();
582     LiveRange* range = LiveRangeFor(operand_index);
583     range->AddUseInterval(start, end, zone());
584     iterator.Advance();
585   }
586 }
587 
588 
FixedDoubleLiveRangeID(int index)589 int LAllocator::FixedDoubleLiveRangeID(int index) {
590   return -index - 1 - Register::kNumRegisters;
591 }
592 
593 
AllocateFixed(LUnallocated * operand,int pos,bool is_tagged)594 LOperand* LAllocator::AllocateFixed(LUnallocated* operand,
595                                     int pos,
596                                     bool is_tagged) {
597   TraceAlloc("Allocating fixed reg for op %d\n", operand->virtual_register());
598   DCHECK(operand->HasFixedPolicy());
599   if (operand->HasFixedSlotPolicy()) {
600     operand->ConvertTo(LOperand::STACK_SLOT, operand->fixed_slot_index());
601   } else if (operand->HasFixedRegisterPolicy()) {
602     int reg_index = operand->fixed_register_index();
603     operand->ConvertTo(LOperand::REGISTER, reg_index);
604   } else if (operand->HasFixedDoubleRegisterPolicy()) {
605     int reg_index = operand->fixed_register_index();
606     operand->ConvertTo(LOperand::DOUBLE_REGISTER, reg_index);
607   } else {
608     UNREACHABLE();
609   }
610   if (is_tagged) {
611     TraceAlloc("Fixed reg is tagged at %d\n", pos);
612     LInstruction* instr = InstructionAt(pos);
613     if (instr->HasPointerMap()) {
614       instr->pointer_map()->RecordPointer(operand, chunk()->zone());
615     }
616   }
617   return operand;
618 }
619 
620 
FixedLiveRangeFor(int index)621 LiveRange* LAllocator::FixedLiveRangeFor(int index) {
622   DCHECK(index < Register::kNumRegisters);
623   LiveRange* result = fixed_live_ranges_[index];
624   if (result == NULL) {
625     result = new(zone()) LiveRange(FixedLiveRangeID(index), chunk()->zone());
626     DCHECK(result->IsFixed());
627     result->kind_ = GENERAL_REGISTERS;
628     SetLiveRangeAssignedRegister(result, index);
629     fixed_live_ranges_[index] = result;
630   }
631   return result;
632 }
633 
634 
FixedDoubleLiveRangeFor(int index)635 LiveRange* LAllocator::FixedDoubleLiveRangeFor(int index) {
636   DCHECK(index < DoubleRegister::kMaxNumRegisters);
637   LiveRange* result = fixed_double_live_ranges_[index];
638   if (result == NULL) {
639     result = new(zone()) LiveRange(FixedDoubleLiveRangeID(index),
640                                    chunk()->zone());
641     DCHECK(result->IsFixed());
642     result->kind_ = DOUBLE_REGISTERS;
643     SetLiveRangeAssignedRegister(result, index);
644     fixed_double_live_ranges_[index] = result;
645   }
646   return result;
647 }
648 
649 
LiveRangeFor(int index)650 LiveRange* LAllocator::LiveRangeFor(int index) {
651   if (index >= live_ranges_.length()) {
652     live_ranges_.AddBlock(NULL, index - live_ranges_.length() + 1, zone());
653   }
654   LiveRange* result = live_ranges_[index];
655   if (result == NULL) {
656     result = new(zone()) LiveRange(index, chunk()->zone());
657     live_ranges_[index] = result;
658   }
659   return result;
660 }
661 
662 
GetLastGap(HBasicBlock * block)663 LGap* LAllocator::GetLastGap(HBasicBlock* block) {
664   int last_instruction = block->last_instruction_index();
665   int index = chunk_->NearestGapPos(last_instruction);
666   return GapAt(index);
667 }
668 
669 
LookupPhi(LOperand * operand) const670 HPhi* LAllocator::LookupPhi(LOperand* operand) const {
671   if (!operand->IsUnallocated()) return NULL;
672   int index = LUnallocated::cast(operand)->virtual_register();
673   HValue* instr = graph_->LookupValue(index);
674   if (instr != NULL && instr->IsPhi()) {
675     return HPhi::cast(instr);
676   }
677   return NULL;
678 }
679 
680 
LiveRangeFor(LOperand * operand)681 LiveRange* LAllocator::LiveRangeFor(LOperand* operand) {
682   if (operand->IsUnallocated()) {
683     return LiveRangeFor(LUnallocated::cast(operand)->virtual_register());
684   } else if (operand->IsRegister()) {
685     return FixedLiveRangeFor(operand->index());
686   } else if (operand->IsDoubleRegister()) {
687     return FixedDoubleLiveRangeFor(operand->index());
688   } else {
689     return NULL;
690   }
691 }
692 
693 
Define(LifetimePosition position,LOperand * operand,LOperand * hint)694 void LAllocator::Define(LifetimePosition position,
695                         LOperand* operand,
696                         LOperand* hint) {
697   LiveRange* range = LiveRangeFor(operand);
698   if (range == NULL) return;
699 
700   if (range->IsEmpty() || range->Start().Value() > position.Value()) {
701     // Can happen if there is a definition without use.
702     range->AddUseInterval(position, position.NextInstruction(), zone());
703     range->AddUsePosition(position.NextInstruction(), NULL, NULL, zone());
704   } else {
705     range->ShortenTo(position);
706   }
707 
708   if (operand->IsUnallocated()) {
709     LUnallocated* unalloc_operand = LUnallocated::cast(operand);
710     range->AddUsePosition(position, unalloc_operand, hint, zone());
711   }
712 }
713 
714 
Use(LifetimePosition block_start,LifetimePosition position,LOperand * operand,LOperand * hint)715 void LAllocator::Use(LifetimePosition block_start,
716                      LifetimePosition position,
717                      LOperand* operand,
718                      LOperand* hint) {
719   LiveRange* range = LiveRangeFor(operand);
720   if (range == NULL) return;
721   if (operand->IsUnallocated()) {
722     LUnallocated* unalloc_operand = LUnallocated::cast(operand);
723     range->AddUsePosition(position, unalloc_operand, hint, zone());
724   }
725   range->AddUseInterval(block_start, position, zone());
726 }
727 
728 
AddConstraintsGapMove(int index,LOperand * from,LOperand * to)729 void LAllocator::AddConstraintsGapMove(int index,
730                                        LOperand* from,
731                                        LOperand* to) {
732   LGap* gap = GapAt(index);
733   LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START,
734                                                      chunk()->zone());
735   if (from->IsUnallocated()) {
736     const ZoneList<LMoveOperands>* move_operands = move->move_operands();
737     for (int i = 0; i < move_operands->length(); ++i) {
738       LMoveOperands cur = move_operands->at(i);
739       LOperand* cur_to = cur.destination();
740       if (cur_to->IsUnallocated()) {
741         if (LUnallocated::cast(cur_to)->virtual_register() ==
742             LUnallocated::cast(from)->virtual_register()) {
743           move->AddMove(cur.source(), to, chunk()->zone());
744           return;
745         }
746       }
747     }
748   }
749   move->AddMove(from, to, chunk()->zone());
750 }
751 
752 
MeetRegisterConstraints(HBasicBlock * block)753 void LAllocator::MeetRegisterConstraints(HBasicBlock* block) {
754   int start = block->first_instruction_index();
755   int end = block->last_instruction_index();
756   if (start == -1) return;
757   for (int i = start; i <= end; ++i) {
758     if (IsGapAt(i)) {
759       LInstruction* instr = NULL;
760       LInstruction* prev_instr = NULL;
761       if (i < end) instr = InstructionAt(i + 1);
762       if (i > start) prev_instr = InstructionAt(i - 1);
763       MeetConstraintsBetween(prev_instr, instr, i);
764       if (!AllocationOk()) return;
765     }
766   }
767 }
768 
769 
MeetConstraintsBetween(LInstruction * first,LInstruction * second,int gap_index)770 void LAllocator::MeetConstraintsBetween(LInstruction* first,
771                                         LInstruction* second,
772                                         int gap_index) {
773   // Handle fixed temporaries.
774   if (first != NULL) {
775     for (TempIterator it(first); !it.Done(); it.Advance()) {
776       LUnallocated* temp = LUnallocated::cast(it.Current());
777       if (temp->HasFixedPolicy()) {
778         AllocateFixed(temp, gap_index - 1, false);
779       }
780     }
781   }
782 
783   // Handle fixed output operand.
784   if (first != NULL && first->Output() != NULL) {
785     LUnallocated* first_output = LUnallocated::cast(first->Output());
786     LiveRange* range = LiveRangeFor(first_output->virtual_register());
787     bool assigned = false;
788     if (first_output->HasFixedPolicy()) {
789       LUnallocated* output_copy = first_output->CopyUnconstrained(
790           chunk()->zone());
791       bool is_tagged = HasTaggedValue(first_output->virtual_register());
792       AllocateFixed(first_output, gap_index, is_tagged);
793 
794       // This value is produced on the stack, we never need to spill it.
795       if (first_output->IsStackSlot()) {
796         range->SetSpillOperand(first_output);
797         range->SetSpillStartIndex(gap_index - 1);
798         assigned = true;
799       }
800       chunk_->AddGapMove(gap_index, first_output, output_copy);
801     }
802 
803     if (!assigned) {
804       range->SetSpillStartIndex(gap_index);
805 
806       // This move to spill operand is not a real use. Liveness analysis
807       // and splitting of live ranges do not account for it.
808       // Thus it should be inserted to a lifetime position corresponding to
809       // the instruction end.
810       LGap* gap = GapAt(gap_index);
811       LParallelMove* move = gap->GetOrCreateParallelMove(LGap::BEFORE,
812                                                          chunk()->zone());
813       move->AddMove(first_output, range->GetSpillOperand(),
814                     chunk()->zone());
815     }
816   }
817 
818   // Handle fixed input operands of second instruction.
819   if (second != NULL) {
820     for (UseIterator it(second); !it.Done(); it.Advance()) {
821       LUnallocated* cur_input = LUnallocated::cast(it.Current());
822       if (cur_input->HasFixedPolicy()) {
823         LUnallocated* input_copy = cur_input->CopyUnconstrained(
824             chunk()->zone());
825         bool is_tagged = HasTaggedValue(cur_input->virtual_register());
826         AllocateFixed(cur_input, gap_index + 1, is_tagged);
827         AddConstraintsGapMove(gap_index, input_copy, cur_input);
828       } else if (cur_input->HasWritableRegisterPolicy()) {
829         // The live range of writable input registers always goes until the end
830         // of the instruction.
831         DCHECK(!cur_input->IsUsedAtStart());
832 
833         LUnallocated* input_copy = cur_input->CopyUnconstrained(
834             chunk()->zone());
835         int vreg = GetVirtualRegister();
836         if (!AllocationOk()) return;
837         cur_input->set_virtual_register(vreg);
838 
839         if (RequiredRegisterKind(input_copy->virtual_register()) ==
840             DOUBLE_REGISTERS) {
841           double_artificial_registers_.Add(
842               cur_input->virtual_register() - first_artificial_register_,
843               zone());
844         }
845 
846         AddConstraintsGapMove(gap_index, input_copy, cur_input);
847       }
848     }
849   }
850 
851   // Handle "output same as input" for second instruction.
852   if (second != NULL && second->Output() != NULL) {
853     LUnallocated* second_output = LUnallocated::cast(second->Output());
854     if (second_output->HasSameAsInputPolicy()) {
855       LUnallocated* cur_input = LUnallocated::cast(second->FirstInput());
856       int output_vreg = second_output->virtual_register();
857       int input_vreg = cur_input->virtual_register();
858 
859       LUnallocated* input_copy = cur_input->CopyUnconstrained(
860           chunk()->zone());
861       cur_input->set_virtual_register(second_output->virtual_register());
862       AddConstraintsGapMove(gap_index, input_copy, cur_input);
863 
864       if (HasTaggedValue(input_vreg) && !HasTaggedValue(output_vreg)) {
865         int index = gap_index + 1;
866         LInstruction* instr = InstructionAt(index);
867         if (instr->HasPointerMap()) {
868           instr->pointer_map()->RecordPointer(input_copy, chunk()->zone());
869         }
870       } else if (!HasTaggedValue(input_vreg) && HasTaggedValue(output_vreg)) {
871         // The input is assumed to immediately have a tagged representation,
872         // before the pointer map can be used. I.e. the pointer map at the
873         // instruction will include the output operand (whose value at the
874         // beginning of the instruction is equal to the input operand). If
875         // this is not desired, then the pointer map at this instruction needs
876         // to be adjusted manually.
877       }
878     }
879   }
880 }
881 
882 
ProcessInstructions(HBasicBlock * block,BitVector * live)883 void LAllocator::ProcessInstructions(HBasicBlock* block, BitVector* live) {
884   int block_start = block->first_instruction_index();
885   int index = block->last_instruction_index();
886 
887   LifetimePosition block_start_position =
888       LifetimePosition::FromInstructionIndex(block_start);
889 
890   while (index >= block_start) {
891     LifetimePosition curr_position =
892         LifetimePosition::FromInstructionIndex(index);
893 
894     if (IsGapAt(index)) {
895       // We have a gap at this position.
896       LGap* gap = GapAt(index);
897       LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START,
898                                                          chunk()->zone());
899       const ZoneList<LMoveOperands>* move_operands = move->move_operands();
900       for (int i = 0; i < move_operands->length(); ++i) {
901         LMoveOperands* cur = &move_operands->at(i);
902         if (cur->IsIgnored()) continue;
903         LOperand* from = cur->source();
904         LOperand* to = cur->destination();
905         HPhi* phi = LookupPhi(to);
906         LOperand* hint = to;
907         if (phi != NULL) {
908           // This is a phi resolving move.
909           if (!phi->block()->IsLoopHeader()) {
910             hint = LiveRangeFor(phi->id())->current_hint_operand();
911           }
912         } else {
913           if (to->IsUnallocated()) {
914             if (live->Contains(LUnallocated::cast(to)->virtual_register())) {
915               Define(curr_position, to, from);
916               live->Remove(LUnallocated::cast(to)->virtual_register());
917             } else {
918               cur->Eliminate();
919               continue;
920             }
921           } else {
922             Define(curr_position, to, from);
923           }
924         }
925         Use(block_start_position, curr_position, from, hint);
926         if (from->IsUnallocated()) {
927           live->Add(LUnallocated::cast(from)->virtual_register());
928         }
929       }
930     } else {
931       DCHECK(!IsGapAt(index));
932       LInstruction* instr = InstructionAt(index);
933 
934       if (instr != NULL) {
935         LOperand* output = instr->Output();
936         if (output != NULL) {
937           if (output->IsUnallocated()) {
938             live->Remove(LUnallocated::cast(output)->virtual_register());
939           }
940           Define(curr_position, output, NULL);
941         }
942 
943         if (instr->ClobbersRegisters()) {
944           for (int i = 0; i < Register::kNumRegisters; ++i) {
945             if (GetRegConfig()->IsAllocatableGeneralCode(i)) {
946               if (output == NULL || !output->IsRegister() ||
947                   output->index() != i) {
948                 LiveRange* range = FixedLiveRangeFor(i);
949                 range->AddUseInterval(curr_position,
950                                       curr_position.InstructionEnd(), zone());
951               }
952             }
953           }
954         }
955 
956         if (instr->ClobbersDoubleRegisters(isolate())) {
957           for (int i = 0; i < DoubleRegister::kMaxNumRegisters; ++i) {
958             if (GetRegConfig()->IsAllocatableDoubleCode(i)) {
959               if (output == NULL || !output->IsDoubleRegister() ||
960                   output->index() != i) {
961                 LiveRange* range = FixedDoubleLiveRangeFor(i);
962                 range->AddUseInterval(curr_position,
963                                       curr_position.InstructionEnd(), zone());
964               }
965             }
966           }
967         }
968 
969         for (UseIterator it(instr); !it.Done(); it.Advance()) {
970           LOperand* input = it.Current();
971 
972           LifetimePosition use_pos;
973           if (input->IsUnallocated() &&
974               LUnallocated::cast(input)->IsUsedAtStart()) {
975             use_pos = curr_position;
976           } else {
977             use_pos = curr_position.InstructionEnd();
978           }
979 
980           Use(block_start_position, use_pos, input, NULL);
981           if (input->IsUnallocated()) {
982             live->Add(LUnallocated::cast(input)->virtual_register());
983           }
984         }
985 
986         for (TempIterator it(instr); !it.Done(); it.Advance()) {
987           LOperand* temp = it.Current();
988           if (instr->ClobbersTemps()) {
989             if (temp->IsRegister()) continue;
990             if (temp->IsUnallocated()) {
991               LUnallocated* temp_unalloc = LUnallocated::cast(temp);
992               if (temp_unalloc->HasFixedPolicy()) {
993                 continue;
994               }
995             }
996           }
997           Use(block_start_position, curr_position.InstructionEnd(), temp, NULL);
998           Define(curr_position, temp, NULL);
999 
1000           if (temp->IsUnallocated()) {
1001             LUnallocated* temp_unalloc = LUnallocated::cast(temp);
1002             if (temp_unalloc->HasDoubleRegisterPolicy()) {
1003               double_artificial_registers_.Add(
1004                   temp_unalloc->virtual_register() - first_artificial_register_,
1005                   zone());
1006             }
1007           }
1008         }
1009       }
1010     }
1011 
1012     index = index - 1;
1013   }
1014 }
1015 
1016 
ResolvePhis(HBasicBlock * block)1017 void LAllocator::ResolvePhis(HBasicBlock* block) {
1018   const ZoneList<HPhi*>* phis = block->phis();
1019   for (int i = 0; i < phis->length(); ++i) {
1020     HPhi* phi = phis->at(i);
1021     LUnallocated* phi_operand =
1022         new (chunk()->zone()) LUnallocated(LUnallocated::NONE);
1023     phi_operand->set_virtual_register(phi->id());
1024     for (int j = 0; j < phi->OperandCount(); ++j) {
1025       HValue* op = phi->OperandAt(j);
1026       LOperand* operand = NULL;
1027       if (op->IsConstant() && op->EmitAtUses()) {
1028         HConstant* constant = HConstant::cast(op);
1029         operand = chunk_->DefineConstantOperand(constant);
1030       } else {
1031         DCHECK(!op->EmitAtUses());
1032         LUnallocated* unalloc =
1033             new(chunk()->zone()) LUnallocated(LUnallocated::ANY);
1034         unalloc->set_virtual_register(op->id());
1035         operand = unalloc;
1036       }
1037       HBasicBlock* cur_block = block->predecessors()->at(j);
1038       // The gap move must be added without any special processing as in
1039       // the AddConstraintsGapMove.
1040       chunk_->AddGapMove(cur_block->last_instruction_index() - 1,
1041                          operand,
1042                          phi_operand);
1043 
1044       // We are going to insert a move before the branch instruction.
1045       // Some branch instructions (e.g. loops' back edges)
1046       // can potentially cause a GC so they have a pointer map.
1047       // By inserting a move we essentially create a copy of a
1048       // value which is invisible to PopulatePointerMaps(), because we store
1049       // it into a location different from the operand of a live range
1050       // covering a branch instruction.
1051       // Thus we need to manually record a pointer.
1052       LInstruction* branch =
1053           InstructionAt(cur_block->last_instruction_index());
1054       if (branch->HasPointerMap()) {
1055         if (phi->representation().IsTagged() && !phi->type().IsSmi()) {
1056           branch->pointer_map()->RecordPointer(phi_operand, chunk()->zone());
1057         } else if (!phi->representation().IsDouble()) {
1058           branch->pointer_map()->RecordUntagged(phi_operand, chunk()->zone());
1059         }
1060       }
1061     }
1062 
1063     LiveRange* live_range = LiveRangeFor(phi->id());
1064     LLabel* label = chunk_->GetLabel(phi->block()->block_id());
1065     label->GetOrCreateParallelMove(LGap::START, chunk()->zone())->
1066         AddMove(phi_operand, live_range->GetSpillOperand(), chunk()->zone());
1067     live_range->SetSpillStartIndex(phi->block()->first_instruction_index());
1068   }
1069 }
1070 
1071 
Allocate(LChunk * chunk)1072 bool LAllocator::Allocate(LChunk* chunk) {
1073   DCHECK(chunk_ == NULL);
1074   chunk_ = static_cast<LPlatformChunk*>(chunk);
1075   assigned_registers_ =
1076       new (chunk->zone()) BitVector(Register::kNumRegisters, chunk->zone());
1077   assigned_double_registers_ = new (chunk->zone())
1078       BitVector(DoubleRegister::kMaxNumRegisters, chunk->zone());
1079   MeetRegisterConstraints();
1080   if (!AllocationOk()) return false;
1081   ResolvePhis();
1082   BuildLiveRanges();
1083   AllocateGeneralRegisters();
1084   if (!AllocationOk()) return false;
1085   AllocateDoubleRegisters();
1086   if (!AllocationOk()) return false;
1087   PopulatePointerMaps();
1088   ConnectRanges();
1089   ResolveControlFlow();
1090   return true;
1091 }
1092 
1093 
MeetRegisterConstraints()1094 void LAllocator::MeetRegisterConstraints() {
1095   LAllocatorPhase phase("L_Register constraints", this);
1096   const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
1097   for (int i = 0; i < blocks->length(); ++i) {
1098     HBasicBlock* block = blocks->at(i);
1099     MeetRegisterConstraints(block);
1100     if (!AllocationOk()) return;
1101   }
1102 }
1103 
1104 
ResolvePhis()1105 void LAllocator::ResolvePhis() {
1106   LAllocatorPhase phase("L_Resolve phis", this);
1107 
1108   // Process the blocks in reverse order.
1109   const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
1110   for (int block_id = blocks->length() - 1; block_id >= 0; --block_id) {
1111     HBasicBlock* block = blocks->at(block_id);
1112     ResolvePhis(block);
1113   }
1114 }
1115 
1116 
ResolveControlFlow(LiveRange * range,HBasicBlock * block,HBasicBlock * pred)1117 void LAllocator::ResolveControlFlow(LiveRange* range,
1118                                     HBasicBlock* block,
1119                                     HBasicBlock* pred) {
1120   LifetimePosition pred_end =
1121       LifetimePosition::FromInstructionIndex(pred->last_instruction_index());
1122   LifetimePosition cur_start =
1123       LifetimePosition::FromInstructionIndex(block->first_instruction_index());
1124   LiveRange* pred_cover = NULL;
1125   LiveRange* cur_cover = NULL;
1126   LiveRange* cur_range = range;
1127   while (cur_range != NULL && (cur_cover == NULL || pred_cover == NULL)) {
1128     if (cur_range->CanCover(cur_start)) {
1129       DCHECK(cur_cover == NULL);
1130       cur_cover = cur_range;
1131     }
1132     if (cur_range->CanCover(pred_end)) {
1133       DCHECK(pred_cover == NULL);
1134       pred_cover = cur_range;
1135     }
1136     cur_range = cur_range->next();
1137   }
1138 
1139   if (cur_cover->IsSpilled()) return;
1140   DCHECK(pred_cover != NULL && cur_cover != NULL);
1141   if (pred_cover != cur_cover) {
1142     LOperand* pred_op = pred_cover->CreateAssignedOperand(chunk()->zone());
1143     LOperand* cur_op = cur_cover->CreateAssignedOperand(chunk()->zone());
1144     if (!pred_op->Equals(cur_op)) {
1145       LGap* gap = NULL;
1146       if (block->predecessors()->length() == 1) {
1147         gap = GapAt(block->first_instruction_index());
1148       } else {
1149         DCHECK(pred->end()->SecondSuccessor() == NULL);
1150         gap = GetLastGap(pred);
1151 
1152         // We are going to insert a move before the branch instruction.
1153         // Some branch instructions (e.g. loops' back edges)
1154         // can potentially cause a GC so they have a pointer map.
1155         // By inserting a move we essentially create a copy of a
1156         // value which is invisible to PopulatePointerMaps(), because we store
1157         // it into a location different from the operand of a live range
1158         // covering a branch instruction.
1159         // Thus we need to manually record a pointer.
1160         LInstruction* branch = InstructionAt(pred->last_instruction_index());
1161         if (branch->HasPointerMap()) {
1162           if (HasTaggedValue(range->id())) {
1163             branch->pointer_map()->RecordPointer(cur_op, chunk()->zone());
1164           } else if (!cur_op->IsDoubleStackSlot() &&
1165                      !cur_op->IsDoubleRegister()) {
1166             branch->pointer_map()->RemovePointer(cur_op);
1167           }
1168         }
1169       }
1170       gap->GetOrCreateParallelMove(
1171           LGap::START, chunk()->zone())->AddMove(pred_op, cur_op,
1172                                                  chunk()->zone());
1173     }
1174   }
1175 }
1176 
1177 
GetConnectingParallelMove(LifetimePosition pos)1178 LParallelMove* LAllocator::GetConnectingParallelMove(LifetimePosition pos) {
1179   int index = pos.InstructionIndex();
1180   if (IsGapAt(index)) {
1181     LGap* gap = GapAt(index);
1182     return gap->GetOrCreateParallelMove(
1183         pos.IsInstructionStart() ? LGap::START : LGap::END, chunk()->zone());
1184   }
1185   int gap_pos = pos.IsInstructionStart() ? (index - 1) : (index + 1);
1186   return GapAt(gap_pos)->GetOrCreateParallelMove(
1187       (gap_pos < index) ? LGap::AFTER : LGap::BEFORE, chunk()->zone());
1188 }
1189 
1190 
GetBlock(LifetimePosition pos)1191 HBasicBlock* LAllocator::GetBlock(LifetimePosition pos) {
1192   LGap* gap = GapAt(chunk_->NearestGapPos(pos.InstructionIndex()));
1193   return gap->block();
1194 }
1195 
1196 
ConnectRanges()1197 void LAllocator::ConnectRanges() {
1198   LAllocatorPhase phase("L_Connect ranges", this);
1199   for (int i = 0; i < live_ranges()->length(); ++i) {
1200     LiveRange* first_range = live_ranges()->at(i);
1201     if (first_range == NULL || first_range->parent() != NULL) continue;
1202 
1203     LiveRange* second_range = first_range->next();
1204     while (second_range != NULL) {
1205       LifetimePosition pos = second_range->Start();
1206 
1207       if (!second_range->IsSpilled()) {
1208         // Add gap move if the two live ranges touch and there is no block
1209         // boundary.
1210         if (first_range->End().Value() == pos.Value()) {
1211           bool should_insert = true;
1212           if (IsBlockBoundary(pos)) {
1213             should_insert = CanEagerlyResolveControlFlow(GetBlock(pos));
1214           }
1215           if (should_insert) {
1216             LParallelMove* move = GetConnectingParallelMove(pos);
1217             LOperand* prev_operand = first_range->CreateAssignedOperand(
1218                 chunk()->zone());
1219             LOperand* cur_operand = second_range->CreateAssignedOperand(
1220                 chunk()->zone());
1221             move->AddMove(prev_operand, cur_operand,
1222                           chunk()->zone());
1223           }
1224         }
1225       }
1226 
1227       first_range = second_range;
1228       second_range = second_range->next();
1229     }
1230   }
1231 }
1232 
1233 
CanEagerlyResolveControlFlow(HBasicBlock * block) const1234 bool LAllocator::CanEagerlyResolveControlFlow(HBasicBlock* block) const {
1235   if (block->predecessors()->length() != 1) return false;
1236   return block->predecessors()->first()->block_id() == block->block_id() - 1;
1237 }
1238 
1239 
ResolveControlFlow()1240 void LAllocator::ResolveControlFlow() {
1241   LAllocatorPhase phase("L_Resolve control flow", this);
1242   const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
1243   for (int block_id = 1; block_id < blocks->length(); ++block_id) {
1244     HBasicBlock* block = blocks->at(block_id);
1245     if (CanEagerlyResolveControlFlow(block)) continue;
1246     BitVector* live = live_in_sets_[block->block_id()];
1247     BitVector::Iterator iterator(live);
1248     while (!iterator.Done()) {
1249       int operand_index = iterator.Current();
1250       for (int i = 0; i < block->predecessors()->length(); ++i) {
1251         HBasicBlock* cur = block->predecessors()->at(i);
1252         LiveRange* cur_range = LiveRangeFor(operand_index);
1253         ResolveControlFlow(cur_range, block, cur);
1254       }
1255       iterator.Advance();
1256     }
1257   }
1258 }
1259 
1260 
BuildLiveRanges()1261 void LAllocator::BuildLiveRanges() {
1262   LAllocatorPhase phase("L_Build live ranges", this);
1263   InitializeLivenessAnalysis();
1264   // Process the blocks in reverse order.
1265   const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
1266   for (int block_id = blocks->length() - 1; block_id >= 0; --block_id) {
1267     HBasicBlock* block = blocks->at(block_id);
1268     BitVector* live = ComputeLiveOut(block);
1269     // Initially consider all live_out values live for the entire block. We
1270     // will shorten these intervals if necessary.
1271     AddInitialIntervals(block, live);
1272 
1273     // Process the instructions in reverse order, generating and killing
1274     // live values.
1275     ProcessInstructions(block, live);
1276     // All phi output operands are killed by this block.
1277     const ZoneList<HPhi*>* phis = block->phis();
1278     for (int i = 0; i < phis->length(); ++i) {
1279       // The live range interval already ends at the first instruction of the
1280       // block.
1281       HPhi* phi = phis->at(i);
1282       live->Remove(phi->id());
1283 
1284       LOperand* hint = NULL;
1285       LOperand* phi_operand = NULL;
1286       LGap* gap = GetLastGap(phi->block()->predecessors()->at(0));
1287       LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START,
1288                                                          chunk()->zone());
1289       for (int j = 0; j < move->move_operands()->length(); ++j) {
1290         LOperand* to = move->move_operands()->at(j).destination();
1291         if (to->IsUnallocated() &&
1292             LUnallocated::cast(to)->virtual_register() == phi->id()) {
1293           hint = move->move_operands()->at(j).source();
1294           phi_operand = to;
1295           break;
1296         }
1297       }
1298       DCHECK(hint != NULL);
1299 
1300       LifetimePosition block_start = LifetimePosition::FromInstructionIndex(
1301               block->first_instruction_index());
1302       Define(block_start, phi_operand, hint);
1303     }
1304 
1305     // Now live is live_in for this block except not including values live
1306     // out on backward successor edges.
1307     live_in_sets_[block_id] = live;
1308 
1309     // If this block is a loop header go back and patch up the necessary
1310     // predecessor blocks.
1311     if (block->IsLoopHeader()) {
1312       // TODO(kmillikin): Need to be able to get the last block of the loop
1313       // in the loop information. Add a live range stretching from the first
1314       // loop instruction to the last for each value live on entry to the
1315       // header.
1316       HBasicBlock* back_edge = block->loop_information()->GetLastBackEdge();
1317       BitVector::Iterator iterator(live);
1318       LifetimePosition start = LifetimePosition::FromInstructionIndex(
1319           block->first_instruction_index());
1320       LifetimePosition end = LifetimePosition::FromInstructionIndex(
1321           back_edge->last_instruction_index()).NextInstruction();
1322       while (!iterator.Done()) {
1323         int operand_index = iterator.Current();
1324         LiveRange* range = LiveRangeFor(operand_index);
1325         range->EnsureInterval(start, end, zone());
1326         iterator.Advance();
1327       }
1328 
1329       for (int i = block->block_id() + 1; i <= back_edge->block_id(); ++i) {
1330         live_in_sets_[i]->Union(*live);
1331       }
1332     }
1333 
1334 #ifdef DEBUG
1335     if (block_id == 0) {
1336       BitVector::Iterator iterator(live);
1337       bool found = false;
1338       while (!iterator.Done()) {
1339         found = true;
1340         int operand_index = iterator.Current();
1341         {
1342           AllowHandleDereference allow_deref;
1343           PrintF("Function: %s\n", chunk_->info()->GetDebugName().get());
1344         }
1345         PrintF("Value %d used before first definition!\n", operand_index);
1346         LiveRange* range = LiveRangeFor(operand_index);
1347         PrintF("First use is at %d\n", range->first_pos()->pos().Value());
1348         iterator.Advance();
1349       }
1350       DCHECK(!found);
1351     }
1352 #endif
1353   }
1354 
1355   for (int i = 0; i < live_ranges_.length(); ++i) {
1356     if (live_ranges_[i] != NULL) {
1357       live_ranges_[i]->kind_ = RequiredRegisterKind(live_ranges_[i]->id());
1358     }
1359   }
1360 }
1361 
1362 
SafePointsAreInOrder() const1363 bool LAllocator::SafePointsAreInOrder() const {
1364   const ZoneList<LPointerMap*>* pointer_maps = chunk_->pointer_maps();
1365   int safe_point = 0;
1366   for (int i = 0; i < pointer_maps->length(); ++i) {
1367     LPointerMap* map = pointer_maps->at(i);
1368     if (safe_point > map->lithium_position()) return false;
1369     safe_point = map->lithium_position();
1370   }
1371   return true;
1372 }
1373 
1374 
PopulatePointerMaps()1375 void LAllocator::PopulatePointerMaps() {
1376   LAllocatorPhase phase("L_Populate pointer maps", this);
1377   const ZoneList<LPointerMap*>* pointer_maps = chunk_->pointer_maps();
1378 
1379   DCHECK(SafePointsAreInOrder());
1380 
1381   // Iterate over all safe point positions and record a pointer
1382   // for all spilled live ranges at this point.
1383   int first_safe_point_index = 0;
1384   int last_range_start = 0;
1385   for (int range_idx = 0; range_idx < live_ranges()->length(); ++range_idx) {
1386     LiveRange* range = live_ranges()->at(range_idx);
1387     if (range == NULL) continue;
1388     // Iterate over the first parts of multi-part live ranges.
1389     if (range->parent() != NULL) continue;
1390     // Skip non-pointer values.
1391     if (!HasTaggedValue(range->id())) continue;
1392     // Skip empty live ranges.
1393     if (range->IsEmpty()) continue;
1394 
1395     // Find the extent of the range and its children.
1396     int start = range->Start().InstructionIndex();
1397     int end = 0;
1398     for (LiveRange* cur = range; cur != NULL; cur = cur->next()) {
1399       LifetimePosition this_end = cur->End();
1400       if (this_end.InstructionIndex() > end) end = this_end.InstructionIndex();
1401       DCHECK(cur->Start().InstructionIndex() >= start);
1402     }
1403 
1404     // Most of the ranges are in order, but not all.  Keep an eye on when
1405     // they step backwards and reset the first_safe_point_index so we don't
1406     // miss any safe points.
1407     if (start < last_range_start) {
1408       first_safe_point_index = 0;
1409     }
1410     last_range_start = start;
1411 
1412     // Step across all the safe points that are before the start of this range,
1413     // recording how far we step in order to save doing this for the next range.
1414     while (first_safe_point_index < pointer_maps->length()) {
1415       LPointerMap* map = pointer_maps->at(first_safe_point_index);
1416       int safe_point = map->lithium_position();
1417       if (safe_point >= start) break;
1418       first_safe_point_index++;
1419     }
1420 
1421     // Step through the safe points to see whether they are in the range.
1422     for (int safe_point_index = first_safe_point_index;
1423          safe_point_index < pointer_maps->length();
1424          ++safe_point_index) {
1425       LPointerMap* map = pointer_maps->at(safe_point_index);
1426       int safe_point = map->lithium_position();
1427 
1428       // The safe points are sorted so we can stop searching here.
1429       if (safe_point - 1 > end) break;
1430 
1431       // Advance to the next active range that covers the current
1432       // safe point position.
1433       LifetimePosition safe_point_pos =
1434           LifetimePosition::FromInstructionIndex(safe_point);
1435       LiveRange* cur = range;
1436       while (cur != NULL && !cur->Covers(safe_point_pos)) {
1437         cur = cur->next();
1438       }
1439       if (cur == NULL) continue;
1440 
1441       // Check if the live range is spilled and the safe point is after
1442       // the spill position.
1443       if (range->HasAllocatedSpillOperand() &&
1444           safe_point >= range->spill_start_index()) {
1445         TraceAlloc("Pointer for range %d (spilled at %d) at safe point %d\n",
1446                    range->id(), range->spill_start_index(), safe_point);
1447         map->RecordPointer(range->GetSpillOperand(), chunk()->zone());
1448       }
1449 
1450       if (!cur->IsSpilled()) {
1451         TraceAlloc("Pointer in register for range %d (start at %d) "
1452                    "at safe point %d\n",
1453                    cur->id(), cur->Start().Value(), safe_point);
1454         LOperand* operand = cur->CreateAssignedOperand(chunk()->zone());
1455         DCHECK(!operand->IsStackSlot());
1456         map->RecordPointer(operand, chunk()->zone());
1457       }
1458     }
1459   }
1460 }
1461 
1462 
AllocateGeneralRegisters()1463 void LAllocator::AllocateGeneralRegisters() {
1464   LAllocatorPhase phase("L_Allocate general registers", this);
1465   num_registers_ = GetRegConfig()->num_allocatable_general_registers();
1466   allocatable_register_codes_ = GetRegConfig()->allocatable_general_codes();
1467   mode_ = GENERAL_REGISTERS;
1468   AllocateRegisters();
1469 }
1470 
1471 
AllocateDoubleRegisters()1472 void LAllocator::AllocateDoubleRegisters() {
1473   LAllocatorPhase phase("L_Allocate double registers", this);
1474   num_registers_ = GetRegConfig()->num_allocatable_double_registers();
1475   allocatable_register_codes_ = GetRegConfig()->allocatable_double_codes();
1476   mode_ = DOUBLE_REGISTERS;
1477   AllocateRegisters();
1478 }
1479 
1480 
AllocateRegisters()1481 void LAllocator::AllocateRegisters() {
1482   DCHECK(unhandled_live_ranges_.is_empty());
1483 
1484   for (int i = 0; i < live_ranges_.length(); ++i) {
1485     if (live_ranges_[i] != NULL) {
1486       if (live_ranges_[i]->Kind() == mode_) {
1487         AddToUnhandledUnsorted(live_ranges_[i]);
1488       }
1489     }
1490   }
1491   SortUnhandled();
1492   DCHECK(UnhandledIsSorted());
1493 
1494   DCHECK(reusable_slots_.is_empty());
1495   DCHECK(active_live_ranges_.is_empty());
1496   DCHECK(inactive_live_ranges_.is_empty());
1497 
1498   if (mode_ == DOUBLE_REGISTERS) {
1499     for (int i = 0; i < fixed_double_live_ranges_.length(); ++i) {
1500       LiveRange* current = fixed_double_live_ranges_.at(i);
1501       if (current != NULL) {
1502         AddToInactive(current);
1503       }
1504     }
1505   } else {
1506     DCHECK(mode_ == GENERAL_REGISTERS);
1507     for (int i = 0; i < fixed_live_ranges_.length(); ++i) {
1508       LiveRange* current = fixed_live_ranges_.at(i);
1509       if (current != NULL) {
1510         AddToInactive(current);
1511       }
1512     }
1513   }
1514 
1515   while (!unhandled_live_ranges_.is_empty()) {
1516     DCHECK(UnhandledIsSorted());
1517     LiveRange* current = unhandled_live_ranges_.RemoveLast();
1518     DCHECK(UnhandledIsSorted());
1519     LifetimePosition position = current->Start();
1520 #ifdef DEBUG
1521     allocation_finger_ = position;
1522 #endif
1523     TraceAlloc("Processing interval %d start=%d\n",
1524                current->id(),
1525                position.Value());
1526 
1527     if (current->HasAllocatedSpillOperand()) {
1528       TraceAlloc("Live range %d already has a spill operand\n", current->id());
1529       LifetimePosition next_pos = position;
1530       if (IsGapAt(next_pos.InstructionIndex())) {
1531         next_pos = next_pos.NextInstruction();
1532       }
1533       UsePosition* pos = current->NextUsePositionRegisterIsBeneficial(next_pos);
1534       // If the range already has a spill operand and it doesn't need a
1535       // register immediately, split it and spill the first part of the range.
1536       if (pos == NULL) {
1537         Spill(current);
1538         continue;
1539       } else if (pos->pos().Value() >
1540                  current->Start().NextInstruction().Value()) {
1541         // Do not spill live range eagerly if use position that can benefit from
1542         // the register is too close to the start of live range.
1543         SpillBetween(current, current->Start(), pos->pos());
1544         if (!AllocationOk()) return;
1545         DCHECK(UnhandledIsSorted());
1546         continue;
1547       }
1548     }
1549 
1550     for (int i = 0; i < active_live_ranges_.length(); ++i) {
1551       LiveRange* cur_active = active_live_ranges_.at(i);
1552       if (cur_active->End().Value() <= position.Value()) {
1553         ActiveToHandled(cur_active);
1554         --i;  // The live range was removed from the list of active live ranges.
1555       } else if (!cur_active->Covers(position)) {
1556         ActiveToInactive(cur_active);
1557         --i;  // The live range was removed from the list of active live ranges.
1558       }
1559     }
1560 
1561     for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
1562       LiveRange* cur_inactive = inactive_live_ranges_.at(i);
1563       if (cur_inactive->End().Value() <= position.Value()) {
1564         InactiveToHandled(cur_inactive);
1565         --i;  // Live range was removed from the list of inactive live ranges.
1566       } else if (cur_inactive->Covers(position)) {
1567         InactiveToActive(cur_inactive);
1568         --i;  // Live range was removed from the list of inactive live ranges.
1569       }
1570     }
1571 
1572     DCHECK(!current->HasRegisterAssigned() && !current->IsSpilled());
1573 
1574     bool result = TryAllocateFreeReg(current);
1575     if (!AllocationOk()) return;
1576 
1577     if (!result) AllocateBlockedReg(current);
1578     if (!AllocationOk()) return;
1579 
1580     if (current->HasRegisterAssigned()) {
1581       AddToActive(current);
1582     }
1583   }
1584 
1585   reusable_slots_.Rewind(0);
1586   active_live_ranges_.Rewind(0);
1587   inactive_live_ranges_.Rewind(0);
1588 }
1589 
1590 
RegisterName(int allocation_index)1591 const char* LAllocator::RegisterName(int allocation_index) {
1592   if (mode_ == GENERAL_REGISTERS) {
1593     return GetRegConfig()->GetGeneralRegisterName(allocation_index);
1594   } else {
1595     return GetRegConfig()->GetDoubleRegisterName(allocation_index);
1596   }
1597 }
1598 
1599 
TraceAlloc(const char * msg,...)1600 void LAllocator::TraceAlloc(const char* msg, ...) {
1601   if (FLAG_trace_alloc) {
1602     va_list arguments;
1603     va_start(arguments, msg);
1604     base::OS::VPrint(msg, arguments);
1605     va_end(arguments);
1606   }
1607 }
1608 
1609 
HasTaggedValue(int virtual_register) const1610 bool LAllocator::HasTaggedValue(int virtual_register) const {
1611   HValue* value = graph_->LookupValue(virtual_register);
1612   if (value == NULL) return false;
1613   return value->representation().IsTagged() && !value->type().IsSmi();
1614 }
1615 
1616 
RequiredRegisterKind(int virtual_register) const1617 RegisterKind LAllocator::RequiredRegisterKind(int virtual_register) const {
1618   if (virtual_register < first_artificial_register_) {
1619     HValue* value = graph_->LookupValue(virtual_register);
1620     if (value != NULL && value->representation().IsDouble()) {
1621       return DOUBLE_REGISTERS;
1622     }
1623   } else if (double_artificial_registers_.Contains(
1624       virtual_register - first_artificial_register_)) {
1625     return DOUBLE_REGISTERS;
1626   }
1627 
1628   return GENERAL_REGISTERS;
1629 }
1630 
1631 
AddToActive(LiveRange * range)1632 void LAllocator::AddToActive(LiveRange* range) {
1633   TraceAlloc("Add live range %d to active\n", range->id());
1634   active_live_ranges_.Add(range, zone());
1635 }
1636 
1637 
AddToInactive(LiveRange * range)1638 void LAllocator::AddToInactive(LiveRange* range) {
1639   TraceAlloc("Add live range %d to inactive\n", range->id());
1640   inactive_live_ranges_.Add(range, zone());
1641 }
1642 
1643 
AddToUnhandledSorted(LiveRange * range)1644 void LAllocator::AddToUnhandledSorted(LiveRange* range) {
1645   if (range == NULL || range->IsEmpty()) return;
1646   DCHECK(!range->HasRegisterAssigned() && !range->IsSpilled());
1647   DCHECK(allocation_finger_.Value() <= range->Start().Value());
1648   for (int i = unhandled_live_ranges_.length() - 1; i >= 0; --i) {
1649     LiveRange* cur_range = unhandled_live_ranges_.at(i);
1650     if (range->ShouldBeAllocatedBefore(cur_range)) {
1651       TraceAlloc("Add live range %d to unhandled at %d\n", range->id(), i + 1);
1652       unhandled_live_ranges_.InsertAt(i + 1, range, zone());
1653       DCHECK(UnhandledIsSorted());
1654       return;
1655     }
1656   }
1657   TraceAlloc("Add live range %d to unhandled at start\n", range->id());
1658   unhandled_live_ranges_.InsertAt(0, range, zone());
1659   DCHECK(UnhandledIsSorted());
1660 }
1661 
1662 
AddToUnhandledUnsorted(LiveRange * range)1663 void LAllocator::AddToUnhandledUnsorted(LiveRange* range) {
1664   if (range == NULL || range->IsEmpty()) return;
1665   DCHECK(!range->HasRegisterAssigned() && !range->IsSpilled());
1666   TraceAlloc("Add live range %d to unhandled unsorted at end\n", range->id());
1667   unhandled_live_ranges_.Add(range, zone());
1668 }
1669 
1670 
UnhandledSortHelper(LiveRange * const * a,LiveRange * const * b)1671 static int UnhandledSortHelper(LiveRange* const* a, LiveRange* const* b) {
1672   DCHECK(!(*a)->ShouldBeAllocatedBefore(*b) ||
1673          !(*b)->ShouldBeAllocatedBefore(*a));
1674   if ((*a)->ShouldBeAllocatedBefore(*b)) return 1;
1675   if ((*b)->ShouldBeAllocatedBefore(*a)) return -1;
1676   return (*a)->id() - (*b)->id();
1677 }
1678 
1679 
1680 // Sort the unhandled live ranges so that the ranges to be processed first are
1681 // at the end of the array list.  This is convenient for the register allocation
1682 // algorithm because it is efficient to remove elements from the end.
SortUnhandled()1683 void LAllocator::SortUnhandled() {
1684   TraceAlloc("Sort unhandled\n");
1685   unhandled_live_ranges_.Sort(&UnhandledSortHelper);
1686 }
1687 
1688 
UnhandledIsSorted()1689 bool LAllocator::UnhandledIsSorted() {
1690   int len = unhandled_live_ranges_.length();
1691   for (int i = 1; i < len; i++) {
1692     LiveRange* a = unhandled_live_ranges_.at(i - 1);
1693     LiveRange* b = unhandled_live_ranges_.at(i);
1694     if (a->Start().Value() < b->Start().Value()) return false;
1695   }
1696   return true;
1697 }
1698 
1699 
FreeSpillSlot(LiveRange * range)1700 void LAllocator::FreeSpillSlot(LiveRange* range) {
1701   // Check that we are the last range.
1702   if (range->next() != NULL) return;
1703 
1704   if (!range->TopLevel()->HasAllocatedSpillOperand()) return;
1705 
1706   int index = range->TopLevel()->GetSpillOperand()->index();
1707   if (index >= 0) {
1708     reusable_slots_.Add(range, zone());
1709   }
1710 }
1711 
1712 
TryReuseSpillSlot(LiveRange * range)1713 LOperand* LAllocator::TryReuseSpillSlot(LiveRange* range) {
1714   if (reusable_slots_.is_empty()) return NULL;
1715   if (reusable_slots_.first()->End().Value() >
1716       range->TopLevel()->Start().Value()) {
1717     return NULL;
1718   }
1719   LOperand* result = reusable_slots_.first()->TopLevel()->GetSpillOperand();
1720   reusable_slots_.Remove(0);
1721   return result;
1722 }
1723 
1724 
ActiveToHandled(LiveRange * range)1725 void LAllocator::ActiveToHandled(LiveRange* range) {
1726   DCHECK(active_live_ranges_.Contains(range));
1727   active_live_ranges_.RemoveElement(range);
1728   TraceAlloc("Moving live range %d from active to handled\n", range->id());
1729   FreeSpillSlot(range);
1730 }
1731 
1732 
ActiveToInactive(LiveRange * range)1733 void LAllocator::ActiveToInactive(LiveRange* range) {
1734   DCHECK(active_live_ranges_.Contains(range));
1735   active_live_ranges_.RemoveElement(range);
1736   inactive_live_ranges_.Add(range, zone());
1737   TraceAlloc("Moving live range %d from active to inactive\n", range->id());
1738 }
1739 
1740 
InactiveToHandled(LiveRange * range)1741 void LAllocator::InactiveToHandled(LiveRange* range) {
1742   DCHECK(inactive_live_ranges_.Contains(range));
1743   inactive_live_ranges_.RemoveElement(range);
1744   TraceAlloc("Moving live range %d from inactive to handled\n", range->id());
1745   FreeSpillSlot(range);
1746 }
1747 
1748 
InactiveToActive(LiveRange * range)1749 void LAllocator::InactiveToActive(LiveRange* range) {
1750   DCHECK(inactive_live_ranges_.Contains(range));
1751   inactive_live_ranges_.RemoveElement(range);
1752   active_live_ranges_.Add(range, zone());
1753   TraceAlloc("Moving live range %d from inactive to active\n", range->id());
1754 }
1755 
1756 
TryAllocateFreeReg(LiveRange * current)1757 bool LAllocator::TryAllocateFreeReg(LiveRange* current) {
1758   DCHECK(DoubleRegister::kMaxNumRegisters >= Register::kNumRegisters);
1759 
1760   LifetimePosition free_until_pos[DoubleRegister::kMaxNumRegisters];
1761 
1762   for (int i = 0; i < DoubleRegister::kMaxNumRegisters; i++) {
1763     free_until_pos[i] = LifetimePosition::MaxPosition();
1764   }
1765 
1766   for (int i = 0; i < active_live_ranges_.length(); ++i) {
1767     LiveRange* cur_active = active_live_ranges_.at(i);
1768     free_until_pos[cur_active->assigned_register()] =
1769         LifetimePosition::FromInstructionIndex(0);
1770   }
1771 
1772   for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
1773     LiveRange* cur_inactive = inactive_live_ranges_.at(i);
1774     DCHECK(cur_inactive->End().Value() > current->Start().Value());
1775     LifetimePosition next_intersection =
1776         cur_inactive->FirstIntersection(current);
1777     if (!next_intersection.IsValid()) continue;
1778     int cur_reg = cur_inactive->assigned_register();
1779     free_until_pos[cur_reg] = Min(free_until_pos[cur_reg], next_intersection);
1780   }
1781 
1782   LOperand* hint = current->FirstHint();
1783   if (hint != NULL && (hint->IsRegister() || hint->IsDoubleRegister())) {
1784     int register_index = hint->index();
1785     TraceAlloc(
1786         "Found reg hint %s (free until [%d) for live range %d (end %d[).\n",
1787         RegisterName(register_index),
1788         free_until_pos[register_index].Value(),
1789         current->id(),
1790         current->End().Value());
1791 
1792     // The desired register is free until the end of the current live range.
1793     if (free_until_pos[register_index].Value() >= current->End().Value()) {
1794       TraceAlloc("Assigning preferred reg %s to live range %d\n",
1795                  RegisterName(register_index),
1796                  current->id());
1797       SetLiveRangeAssignedRegister(current, register_index);
1798       return true;
1799     }
1800   }
1801 
1802   // Find the register which stays free for the longest time.
1803   int reg = allocatable_register_codes_[0];
1804   for (int i = 1; i < RegisterCount(); ++i) {
1805     int code = allocatable_register_codes_[i];
1806     if (free_until_pos[code].Value() > free_until_pos[reg].Value()) {
1807       reg = code;
1808     }
1809   }
1810 
1811   LifetimePosition pos = free_until_pos[reg];
1812 
1813   if (pos.Value() <= current->Start().Value()) {
1814     // All registers are blocked.
1815     return false;
1816   }
1817 
1818   if (pos.Value() < current->End().Value()) {
1819     // Register reg is available at the range start but becomes blocked before
1820     // the range end. Split current at position where it becomes blocked.
1821     LiveRange* tail = SplitRangeAt(current, pos);
1822     if (!AllocationOk()) return false;
1823     AddToUnhandledSorted(tail);
1824   }
1825 
1826 
1827   // Register reg is available at the range start and is free until
1828   // the range end.
1829   DCHECK(pos.Value() >= current->End().Value());
1830   TraceAlloc("Assigning free reg %s to live range %d\n",
1831              RegisterName(reg),
1832              current->id());
1833   SetLiveRangeAssignedRegister(current, reg);
1834 
1835   return true;
1836 }
1837 
1838 
AllocateBlockedReg(LiveRange * current)1839 void LAllocator::AllocateBlockedReg(LiveRange* current) {
1840   UsePosition* register_use = current->NextRegisterPosition(current->Start());
1841   if (register_use == NULL) {
1842     // There is no use in the current live range that requires a register.
1843     // We can just spill it.
1844     Spill(current);
1845     return;
1846   }
1847 
1848 
1849   LifetimePosition use_pos[DoubleRegister::kMaxNumRegisters];
1850   LifetimePosition block_pos[DoubleRegister::kMaxNumRegisters];
1851 
1852   for (int i = 0; i < DoubleRegister::kMaxNumRegisters; i++) {
1853     use_pos[i] = block_pos[i] = LifetimePosition::MaxPosition();
1854   }
1855 
1856   for (int i = 0; i < active_live_ranges_.length(); ++i) {
1857     LiveRange* range = active_live_ranges_[i];
1858     int cur_reg = range->assigned_register();
1859     if (range->IsFixed() || !range->CanBeSpilled(current->Start())) {
1860       block_pos[cur_reg] = use_pos[cur_reg] =
1861           LifetimePosition::FromInstructionIndex(0);
1862     } else {
1863       UsePosition* next_use = range->NextUsePositionRegisterIsBeneficial(
1864           current->Start());
1865       if (next_use == NULL) {
1866         use_pos[cur_reg] = range->End();
1867       } else {
1868         use_pos[cur_reg] = next_use->pos();
1869       }
1870     }
1871   }
1872 
1873   for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
1874     LiveRange* range = inactive_live_ranges_.at(i);
1875     DCHECK(range->End().Value() > current->Start().Value());
1876     LifetimePosition next_intersection = range->FirstIntersection(current);
1877     if (!next_intersection.IsValid()) continue;
1878     int cur_reg = range->assigned_register();
1879     if (range->IsFixed()) {
1880       block_pos[cur_reg] = Min(block_pos[cur_reg], next_intersection);
1881       use_pos[cur_reg] = Min(block_pos[cur_reg], use_pos[cur_reg]);
1882     } else {
1883       use_pos[cur_reg] = Min(use_pos[cur_reg], next_intersection);
1884     }
1885   }
1886 
1887   int reg = allocatable_register_codes_[0];
1888   for (int i = 1; i < RegisterCount(); ++i) {
1889     int code = allocatable_register_codes_[i];
1890     if (use_pos[code].Value() > use_pos[reg].Value()) {
1891       reg = code;
1892     }
1893   }
1894 
1895   LifetimePosition pos = use_pos[reg];
1896 
1897   if (pos.Value() < register_use->pos().Value()) {
1898     // All registers are blocked before the first use that requires a register.
1899     // Spill starting part of live range up to that use.
1900     SpillBetween(current, current->Start(), register_use->pos());
1901     return;
1902   }
1903 
1904   if (block_pos[reg].Value() < current->End().Value()) {
1905     // Register becomes blocked before the current range end. Split before that
1906     // position.
1907     LiveRange* tail = SplitBetween(current,
1908                                    current->Start(),
1909                                    block_pos[reg].InstructionStart());
1910     if (!AllocationOk()) return;
1911     AddToUnhandledSorted(tail);
1912   }
1913 
1914   // Register reg is not blocked for the whole range.
1915   DCHECK(block_pos[reg].Value() >= current->End().Value());
1916   TraceAlloc("Assigning blocked reg %s to live range %d\n",
1917              RegisterName(reg),
1918              current->id());
1919   SetLiveRangeAssignedRegister(current, reg);
1920 
1921   // This register was not free. Thus we need to find and spill
1922   // parts of active and inactive live regions that use the same register
1923   // at the same lifetime positions as current.
1924   SplitAndSpillIntersecting(current);
1925 }
1926 
1927 
FindOptimalSpillingPos(LiveRange * range,LifetimePosition pos)1928 LifetimePosition LAllocator::FindOptimalSpillingPos(LiveRange* range,
1929                                                     LifetimePosition pos) {
1930   HBasicBlock* block = GetBlock(pos.InstructionStart());
1931   HBasicBlock* loop_header =
1932       block->IsLoopHeader() ? block : block->parent_loop_header();
1933 
1934   if (loop_header == NULL) return pos;
1935 
1936   UsePosition* prev_use =
1937     range->PreviousUsePositionRegisterIsBeneficial(pos);
1938 
1939   while (loop_header != NULL) {
1940     // We are going to spill live range inside the loop.
1941     // If possible try to move spilling position backwards to loop header.
1942     // This will reduce number of memory moves on the back edge.
1943     LifetimePosition loop_start = LifetimePosition::FromInstructionIndex(
1944         loop_header->first_instruction_index());
1945 
1946     if (range->Covers(loop_start)) {
1947       if (prev_use == NULL || prev_use->pos().Value() < loop_start.Value()) {
1948         // No register beneficial use inside the loop before the pos.
1949         pos = loop_start;
1950       }
1951     }
1952 
1953     // Try hoisting out to an outer loop.
1954     loop_header = loop_header->parent_loop_header();
1955   }
1956 
1957   return pos;
1958 }
1959 
1960 
SplitAndSpillIntersecting(LiveRange * current)1961 void LAllocator::SplitAndSpillIntersecting(LiveRange* current) {
1962   DCHECK(current->HasRegisterAssigned());
1963   int reg = current->assigned_register();
1964   LifetimePosition split_pos = current->Start();
1965   for (int i = 0; i < active_live_ranges_.length(); ++i) {
1966     LiveRange* range = active_live_ranges_[i];
1967     if (range->assigned_register() == reg) {
1968       UsePosition* next_pos = range->NextRegisterPosition(current->Start());
1969       LifetimePosition spill_pos = FindOptimalSpillingPos(range, split_pos);
1970       if (next_pos == NULL) {
1971         SpillAfter(range, spill_pos);
1972       } else {
1973         // When spilling between spill_pos and next_pos ensure that the range
1974         // remains spilled at least until the start of the current live range.
1975         // This guarantees that we will not introduce new unhandled ranges that
1976         // start before the current range as this violates allocation invariant
1977         // and will lead to an inconsistent state of active and inactive
1978         // live-ranges: ranges are allocated in order of their start positions,
1979         // ranges are retired from active/inactive when the start of the
1980         // current live-range is larger than their end.
1981         SpillBetweenUntil(range, spill_pos, current->Start(), next_pos->pos());
1982       }
1983       if (!AllocationOk()) return;
1984       ActiveToHandled(range);
1985       --i;
1986     }
1987   }
1988 
1989   for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
1990     LiveRange* range = inactive_live_ranges_[i];
1991     DCHECK(range->End().Value() > current->Start().Value());
1992     if (range->assigned_register() == reg && !range->IsFixed()) {
1993       LifetimePosition next_intersection = range->FirstIntersection(current);
1994       if (next_intersection.IsValid()) {
1995         UsePosition* next_pos = range->NextRegisterPosition(current->Start());
1996         if (next_pos == NULL) {
1997           SpillAfter(range, split_pos);
1998         } else {
1999           next_intersection = Min(next_intersection, next_pos->pos());
2000           SpillBetween(range, split_pos, next_intersection);
2001         }
2002         if (!AllocationOk()) return;
2003         InactiveToHandled(range);
2004         --i;
2005       }
2006     }
2007   }
2008 }
2009 
2010 
IsBlockBoundary(LifetimePosition pos)2011 bool LAllocator::IsBlockBoundary(LifetimePosition pos) {
2012   return pos.IsInstructionStart() &&
2013       InstructionAt(pos.InstructionIndex())->IsLabel();
2014 }
2015 
2016 
SplitRangeAt(LiveRange * range,LifetimePosition pos)2017 LiveRange* LAllocator::SplitRangeAt(LiveRange* range, LifetimePosition pos) {
2018   DCHECK(!range->IsFixed());
2019   TraceAlloc("Splitting live range %d at %d\n", range->id(), pos.Value());
2020 
2021   if (pos.Value() <= range->Start().Value()) return range;
2022 
2023   // We can't properly connect liveranges if split occured at the end
2024   // of control instruction.
2025   DCHECK(pos.IsInstructionStart() ||
2026          !chunk_->instructions()->at(pos.InstructionIndex())->IsControl());
2027 
2028   int vreg = GetVirtualRegister();
2029   if (!AllocationOk()) return NULL;
2030   LiveRange* result = LiveRangeFor(vreg);
2031   range->SplitAt(pos, result, zone());
2032   return result;
2033 }
2034 
2035 
SplitBetween(LiveRange * range,LifetimePosition start,LifetimePosition end)2036 LiveRange* LAllocator::SplitBetween(LiveRange* range,
2037                                     LifetimePosition start,
2038                                     LifetimePosition end) {
2039   DCHECK(!range->IsFixed());
2040   TraceAlloc("Splitting live range %d in position between [%d, %d]\n",
2041              range->id(),
2042              start.Value(),
2043              end.Value());
2044 
2045   LifetimePosition split_pos = FindOptimalSplitPos(start, end);
2046   DCHECK(split_pos.Value() >= start.Value());
2047   return SplitRangeAt(range, split_pos);
2048 }
2049 
2050 
FindOptimalSplitPos(LifetimePosition start,LifetimePosition end)2051 LifetimePosition LAllocator::FindOptimalSplitPos(LifetimePosition start,
2052                                                  LifetimePosition end) {
2053   int start_instr = start.InstructionIndex();
2054   int end_instr = end.InstructionIndex();
2055   DCHECK(start_instr <= end_instr);
2056 
2057   // We have no choice
2058   if (start_instr == end_instr) return end;
2059 
2060   HBasicBlock* start_block = GetBlock(start);
2061   HBasicBlock* end_block = GetBlock(end);
2062 
2063   if (end_block == start_block) {
2064     // The interval is split in the same basic block. Split at the latest
2065     // possible position.
2066     return end;
2067   }
2068 
2069   HBasicBlock* block = end_block;
2070   // Find header of outermost loop.
2071   while (block->parent_loop_header() != NULL &&
2072       block->parent_loop_header()->block_id() > start_block->block_id()) {
2073     block = block->parent_loop_header();
2074   }
2075 
2076   // We did not find any suitable outer loop. Split at the latest possible
2077   // position unless end_block is a loop header itself.
2078   if (block == end_block && !end_block->IsLoopHeader()) return end;
2079 
2080   return LifetimePosition::FromInstructionIndex(
2081       block->first_instruction_index());
2082 }
2083 
2084 
SpillAfter(LiveRange * range,LifetimePosition pos)2085 void LAllocator::SpillAfter(LiveRange* range, LifetimePosition pos) {
2086   LiveRange* second_part = SplitRangeAt(range, pos);
2087   if (!AllocationOk()) return;
2088   Spill(second_part);
2089 }
2090 
2091 
SpillBetween(LiveRange * range,LifetimePosition start,LifetimePosition end)2092 void LAllocator::SpillBetween(LiveRange* range,
2093                               LifetimePosition start,
2094                               LifetimePosition end) {
2095   SpillBetweenUntil(range, start, start, end);
2096 }
2097 
2098 
SpillBetweenUntil(LiveRange * range,LifetimePosition start,LifetimePosition until,LifetimePosition end)2099 void LAllocator::SpillBetweenUntil(LiveRange* range,
2100                                    LifetimePosition start,
2101                                    LifetimePosition until,
2102                                    LifetimePosition end) {
2103   CHECK(start.Value() < end.Value());
2104   LiveRange* second_part = SplitRangeAt(range, start);
2105   if (!AllocationOk()) return;
2106 
2107   if (second_part->Start().Value() < end.Value()) {
2108     // The split result intersects with [start, end[.
2109     // Split it at position between ]start+1, end[, spill the middle part
2110     // and put the rest to unhandled.
2111     LiveRange* third_part = SplitBetween(
2112         second_part,
2113         Max(second_part->Start().InstructionEnd(), until),
2114         end.PrevInstruction().InstructionEnd());
2115     if (!AllocationOk()) return;
2116 
2117     DCHECK(third_part != second_part);
2118 
2119     Spill(second_part);
2120     AddToUnhandledSorted(third_part);
2121   } else {
2122     // The split result does not intersect with [start, end[.
2123     // Nothing to spill. Just put it to unhandled as whole.
2124     AddToUnhandledSorted(second_part);
2125   }
2126 }
2127 
2128 
Spill(LiveRange * range)2129 void LAllocator::Spill(LiveRange* range) {
2130   DCHECK(!range->IsSpilled());
2131   TraceAlloc("Spilling live range %d\n", range->id());
2132   LiveRange* first = range->TopLevel();
2133 
2134   if (!first->HasAllocatedSpillOperand()) {
2135     LOperand* op = TryReuseSpillSlot(range);
2136     if (op == NULL) op = chunk_->GetNextSpillSlot(range->Kind());
2137     first->SetSpillOperand(op);
2138   }
2139   range->MakeSpilled(chunk()->zone());
2140 }
2141 
2142 
RegisterCount() const2143 int LAllocator::RegisterCount() const {
2144   return num_registers_;
2145 }
2146 
2147 
2148 #ifdef DEBUG
2149 
2150 
Verify() const2151 void LAllocator::Verify() const {
2152   for (int i = 0; i < live_ranges()->length(); ++i) {
2153     LiveRange* current = live_ranges()->at(i);
2154     if (current != NULL) current->Verify();
2155   }
2156 }
2157 
2158 
2159 #endif
2160 
2161 
LAllocatorPhase(const char * name,LAllocator * allocator)2162 LAllocatorPhase::LAllocatorPhase(const char* name, LAllocator* allocator)
2163     : CompilationPhase(name, allocator->graph()->info()),
2164       allocator_(allocator) {
2165   if (FLAG_hydrogen_stats) {
2166     allocator_zone_start_allocation_size_ =
2167         allocator->zone()->allocation_size();
2168   }
2169 }
2170 
2171 
~LAllocatorPhase()2172 LAllocatorPhase::~LAllocatorPhase() {
2173   if (FLAG_hydrogen_stats) {
2174     size_t size = allocator_->zone()->allocation_size() -
2175                   allocator_zone_start_allocation_size_;
2176     isolate()->GetHStatistics()->SaveTiming(name(), base::TimeDelta(), size);
2177   }
2178 
2179   if (ShouldProduceTraceOutput()) {
2180     isolate()->GetHTracer()->TraceLithium(name(), allocator_->chunk());
2181     isolate()->GetHTracer()->TraceLiveRanges(name(), allocator_);
2182   }
2183 
2184 #ifdef DEBUG
2185   if (allocator_ != NULL) allocator_->Verify();
2186 #endif
2187 }
2188 
2189 
2190 }  // namespace internal
2191 }  // namespace v8
2192