1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/crankshaft/lithium-allocator.h"
6
7 #include "src/crankshaft/hydrogen.h"
8 #include "src/crankshaft/lithium-inl.h"
9 #include "src/crankshaft/lithium-allocator-inl.h"
10 #include "src/register-configuration.h"
11 #include "src/string-stream.h"
12
13 namespace v8 {
14 namespace internal {
15
16 const auto GetRegConfig = RegisterConfiguration::Crankshaft;
17
Min(LifetimePosition a,LifetimePosition b)18 static inline LifetimePosition Min(LifetimePosition a, LifetimePosition b) {
19 return a.Value() < b.Value() ? a : b;
20 }
21
22
Max(LifetimePosition a,LifetimePosition b)23 static inline LifetimePosition Max(LifetimePosition a, LifetimePosition b) {
24 return a.Value() > b.Value() ? a : b;
25 }
26
27
UsePosition(LifetimePosition pos,LOperand * operand,LOperand * hint)28 UsePosition::UsePosition(LifetimePosition pos,
29 LOperand* operand,
30 LOperand* hint)
31 : operand_(operand),
32 hint_(hint),
33 pos_(pos),
34 next_(NULL),
35 requires_reg_(false),
36 register_beneficial_(true) {
37 if (operand_ != NULL && operand_->IsUnallocated()) {
38 LUnallocated* unalloc = LUnallocated::cast(operand_);
39 requires_reg_ = unalloc->HasRegisterPolicy() ||
40 unalloc->HasDoubleRegisterPolicy();
41 register_beneficial_ = !unalloc->HasAnyPolicy();
42 }
43 DCHECK(pos_.IsValid());
44 }
45
46
HasHint() const47 bool UsePosition::HasHint() const {
48 return hint_ != NULL && !hint_->IsUnallocated();
49 }
50
51
RequiresRegister() const52 bool UsePosition::RequiresRegister() const {
53 return requires_reg_;
54 }
55
56
RegisterIsBeneficial() const57 bool UsePosition::RegisterIsBeneficial() const {
58 return register_beneficial_;
59 }
60
61
SplitAt(LifetimePosition pos,Zone * zone)62 void UseInterval::SplitAt(LifetimePosition pos, Zone* zone) {
63 DCHECK(Contains(pos) && pos.Value() != start().Value());
64 UseInterval* after = new(zone) UseInterval(pos, end_);
65 after->next_ = next_;
66 next_ = after;
67 end_ = pos;
68 }
69
70
71 #ifdef DEBUG
72
73
Verify() const74 void LiveRange::Verify() const {
75 UsePosition* cur = first_pos_;
76 while (cur != NULL) {
77 DCHECK(Start().Value() <= cur->pos().Value() &&
78 cur->pos().Value() <= End().Value());
79 cur = cur->next();
80 }
81 }
82
83
HasOverlap(UseInterval * target) const84 bool LiveRange::HasOverlap(UseInterval* target) const {
85 UseInterval* current_interval = first_interval_;
86 while (current_interval != NULL) {
87 // Intervals overlap if the start of one is contained in the other.
88 if (current_interval->Contains(target->start()) ||
89 target->Contains(current_interval->start())) {
90 return true;
91 }
92 current_interval = current_interval->next();
93 }
94 return false;
95 }
96
97
98 #endif
99
100
LiveRange(int id,Zone * zone)101 LiveRange::LiveRange(int id, Zone* zone)
102 : id_(id),
103 spilled_(false),
104 kind_(UNALLOCATED_REGISTERS),
105 assigned_register_(kInvalidAssignment),
106 last_interval_(NULL),
107 first_interval_(NULL),
108 first_pos_(NULL),
109 parent_(NULL),
110 next_(NULL),
111 current_interval_(NULL),
112 last_processed_use_(NULL),
113 current_hint_operand_(NULL),
114 spill_operand_(new (zone) LOperand()),
115 spill_start_index_(kMaxInt) {}
116
117
set_assigned_register(int reg,Zone * zone)118 void LiveRange::set_assigned_register(int reg, Zone* zone) {
119 DCHECK(!HasRegisterAssigned() && !IsSpilled());
120 assigned_register_ = reg;
121 ConvertOperands(zone);
122 }
123
124
MakeSpilled(Zone * zone)125 void LiveRange::MakeSpilled(Zone* zone) {
126 DCHECK(!IsSpilled());
127 DCHECK(TopLevel()->HasAllocatedSpillOperand());
128 spilled_ = true;
129 assigned_register_ = kInvalidAssignment;
130 ConvertOperands(zone);
131 }
132
133
HasAllocatedSpillOperand() const134 bool LiveRange::HasAllocatedSpillOperand() const {
135 DCHECK(spill_operand_ != NULL);
136 return !spill_operand_->IsIgnored();
137 }
138
139
SetSpillOperand(LOperand * operand)140 void LiveRange::SetSpillOperand(LOperand* operand) {
141 DCHECK(!operand->IsUnallocated());
142 DCHECK(spill_operand_ != NULL);
143 DCHECK(spill_operand_->IsIgnored());
144 spill_operand_->ConvertTo(operand->kind(), operand->index());
145 }
146
147
NextUsePosition(LifetimePosition start)148 UsePosition* LiveRange::NextUsePosition(LifetimePosition start) {
149 UsePosition* use_pos = last_processed_use_;
150 if (use_pos == NULL) use_pos = first_pos();
151 while (use_pos != NULL && use_pos->pos().Value() < start.Value()) {
152 use_pos = use_pos->next();
153 }
154 last_processed_use_ = use_pos;
155 return use_pos;
156 }
157
158
NextUsePositionRegisterIsBeneficial(LifetimePosition start)159 UsePosition* LiveRange::NextUsePositionRegisterIsBeneficial(
160 LifetimePosition start) {
161 UsePosition* pos = NextUsePosition(start);
162 while (pos != NULL && !pos->RegisterIsBeneficial()) {
163 pos = pos->next();
164 }
165 return pos;
166 }
167
168
PreviousUsePositionRegisterIsBeneficial(LifetimePosition start)169 UsePosition* LiveRange::PreviousUsePositionRegisterIsBeneficial(
170 LifetimePosition start) {
171 UsePosition* pos = first_pos();
172 UsePosition* prev = NULL;
173 while (pos != NULL && pos->pos().Value() < start.Value()) {
174 if (pos->RegisterIsBeneficial()) prev = pos;
175 pos = pos->next();
176 }
177 return prev;
178 }
179
180
NextRegisterPosition(LifetimePosition start)181 UsePosition* LiveRange::NextRegisterPosition(LifetimePosition start) {
182 UsePosition* pos = NextUsePosition(start);
183 while (pos != NULL && !pos->RequiresRegister()) {
184 pos = pos->next();
185 }
186 return pos;
187 }
188
189
CanBeSpilled(LifetimePosition pos)190 bool LiveRange::CanBeSpilled(LifetimePosition pos) {
191 // We cannot spill a live range that has a use requiring a register
192 // at the current or the immediate next position.
193 UsePosition* use_pos = NextRegisterPosition(pos);
194 if (use_pos == NULL) return true;
195 return
196 use_pos->pos().Value() > pos.NextInstruction().InstructionEnd().Value();
197 }
198
199
CreateAssignedOperand(Zone * zone)200 LOperand* LiveRange::CreateAssignedOperand(Zone* zone) {
201 LOperand* op = NULL;
202 if (HasRegisterAssigned()) {
203 DCHECK(!IsSpilled());
204 switch (Kind()) {
205 case GENERAL_REGISTERS:
206 op = LRegister::Create(assigned_register(), zone);
207 break;
208 case DOUBLE_REGISTERS:
209 op = LDoubleRegister::Create(assigned_register(), zone);
210 break;
211 default:
212 UNREACHABLE();
213 }
214 } else if (IsSpilled()) {
215 DCHECK(!HasRegisterAssigned());
216 op = TopLevel()->GetSpillOperand();
217 DCHECK(!op->IsUnallocated());
218 } else {
219 LUnallocated* unalloc = new(zone) LUnallocated(LUnallocated::NONE);
220 unalloc->set_virtual_register(id_);
221 op = unalloc;
222 }
223 return op;
224 }
225
226
FirstSearchIntervalForPosition(LifetimePosition position) const227 UseInterval* LiveRange::FirstSearchIntervalForPosition(
228 LifetimePosition position) const {
229 if (current_interval_ == NULL) return first_interval_;
230 if (current_interval_->start().Value() > position.Value()) {
231 current_interval_ = NULL;
232 return first_interval_;
233 }
234 return current_interval_;
235 }
236
237
AdvanceLastProcessedMarker(UseInterval * to_start_of,LifetimePosition but_not_past) const238 void LiveRange::AdvanceLastProcessedMarker(
239 UseInterval* to_start_of, LifetimePosition but_not_past) const {
240 if (to_start_of == NULL) return;
241 if (to_start_of->start().Value() > but_not_past.Value()) return;
242 LifetimePosition start =
243 current_interval_ == NULL ? LifetimePosition::Invalid()
244 : current_interval_->start();
245 if (to_start_of->start().Value() > start.Value()) {
246 current_interval_ = to_start_of;
247 }
248 }
249
250
SplitAt(LifetimePosition position,LiveRange * result,Zone * zone)251 void LiveRange::SplitAt(LifetimePosition position,
252 LiveRange* result,
253 Zone* zone) {
254 DCHECK(Start().Value() < position.Value());
255 DCHECK(result->IsEmpty());
256 // Find the last interval that ends before the position. If the
257 // position is contained in one of the intervals in the chain, we
258 // split that interval and use the first part.
259 UseInterval* current = FirstSearchIntervalForPosition(position);
260
261 // If the split position coincides with the beginning of a use interval
262 // we need to split use positons in a special way.
263 bool split_at_start = false;
264
265 if (current->start().Value() == position.Value()) {
266 // When splitting at start we need to locate the previous use interval.
267 current = first_interval_;
268 }
269
270 while (current != NULL) {
271 if (current->Contains(position)) {
272 current->SplitAt(position, zone);
273 break;
274 }
275 UseInterval* next = current->next();
276 if (next->start().Value() >= position.Value()) {
277 split_at_start = (next->start().Value() == position.Value());
278 break;
279 }
280 current = next;
281 }
282
283 // Partition original use intervals to the two live ranges.
284 UseInterval* before = current;
285 UseInterval* after = before->next();
286 result->last_interval_ = (last_interval_ == before)
287 ? after // Only interval in the range after split.
288 : last_interval_; // Last interval of the original range.
289 result->first_interval_ = after;
290 last_interval_ = before;
291
292 // Find the last use position before the split and the first use
293 // position after it.
294 UsePosition* use_after = first_pos_;
295 UsePosition* use_before = NULL;
296 if (split_at_start) {
297 // The split position coincides with the beginning of a use interval (the
298 // end of a lifetime hole). Use at this position should be attributed to
299 // the split child because split child owns use interval covering it.
300 while (use_after != NULL && use_after->pos().Value() < position.Value()) {
301 use_before = use_after;
302 use_after = use_after->next();
303 }
304 } else {
305 while (use_after != NULL && use_after->pos().Value() <= position.Value()) {
306 use_before = use_after;
307 use_after = use_after->next();
308 }
309 }
310
311 // Partition original use positions to the two live ranges.
312 if (use_before != NULL) {
313 use_before->next_ = NULL;
314 } else {
315 first_pos_ = NULL;
316 }
317 result->first_pos_ = use_after;
318
319 // Discard cached iteration state. It might be pointing
320 // to the use that no longer belongs to this live range.
321 last_processed_use_ = NULL;
322 current_interval_ = NULL;
323
324 // Link the new live range in the chain before any of the other
325 // ranges linked from the range before the split.
326 result->parent_ = (parent_ == NULL) ? this : parent_;
327 result->kind_ = result->parent_->kind_;
328 result->next_ = next_;
329 next_ = result;
330
331 #ifdef DEBUG
332 Verify();
333 result->Verify();
334 #endif
335 }
336
337
338 // This implements an ordering on live ranges so that they are ordered by their
339 // start positions. This is needed for the correctness of the register
340 // allocation algorithm. If two live ranges start at the same offset then there
341 // is a tie breaker based on where the value is first used. This part of the
342 // ordering is merely a heuristic.
ShouldBeAllocatedBefore(const LiveRange * other) const343 bool LiveRange::ShouldBeAllocatedBefore(const LiveRange* other) const {
344 LifetimePosition start = Start();
345 LifetimePosition other_start = other->Start();
346 if (start.Value() == other_start.Value()) {
347 UsePosition* pos = first_pos();
348 if (pos == NULL) return false;
349 UsePosition* other_pos = other->first_pos();
350 if (other_pos == NULL) return true;
351 return pos->pos().Value() < other_pos->pos().Value();
352 }
353 return start.Value() < other_start.Value();
354 }
355
356
ShortenTo(LifetimePosition start)357 void LiveRange::ShortenTo(LifetimePosition start) {
358 LAllocator::TraceAlloc("Shorten live range %d to [%d\n", id_, start.Value());
359 DCHECK(first_interval_ != NULL);
360 DCHECK(first_interval_->start().Value() <= start.Value());
361 DCHECK(start.Value() < first_interval_->end().Value());
362 first_interval_->set_start(start);
363 }
364
365
EnsureInterval(LifetimePosition start,LifetimePosition end,Zone * zone)366 void LiveRange::EnsureInterval(LifetimePosition start,
367 LifetimePosition end,
368 Zone* zone) {
369 LAllocator::TraceAlloc("Ensure live range %d in interval [%d %d[\n",
370 id_,
371 start.Value(),
372 end.Value());
373 LifetimePosition new_end = end;
374 while (first_interval_ != NULL &&
375 first_interval_->start().Value() <= end.Value()) {
376 if (first_interval_->end().Value() > end.Value()) {
377 new_end = first_interval_->end();
378 }
379 first_interval_ = first_interval_->next();
380 }
381
382 UseInterval* new_interval = new(zone) UseInterval(start, new_end);
383 new_interval->next_ = first_interval_;
384 first_interval_ = new_interval;
385 if (new_interval->next() == NULL) {
386 last_interval_ = new_interval;
387 }
388 }
389
390
AddUseInterval(LifetimePosition start,LifetimePosition end,Zone * zone)391 void LiveRange::AddUseInterval(LifetimePosition start,
392 LifetimePosition end,
393 Zone* zone) {
394 LAllocator::TraceAlloc("Add to live range %d interval [%d %d[\n",
395 id_,
396 start.Value(),
397 end.Value());
398 if (first_interval_ == NULL) {
399 UseInterval* interval = new(zone) UseInterval(start, end);
400 first_interval_ = interval;
401 last_interval_ = interval;
402 } else {
403 if (end.Value() == first_interval_->start().Value()) {
404 first_interval_->set_start(start);
405 } else if (end.Value() < first_interval_->start().Value()) {
406 UseInterval* interval = new(zone) UseInterval(start, end);
407 interval->set_next(first_interval_);
408 first_interval_ = interval;
409 } else {
410 // Order of instruction's processing (see ProcessInstructions) guarantees
411 // that each new use interval either precedes or intersects with
412 // last added interval.
413 DCHECK(start.Value() < first_interval_->end().Value());
414 first_interval_->start_ = Min(start, first_interval_->start_);
415 first_interval_->end_ = Max(end, first_interval_->end_);
416 }
417 }
418 }
419
420
AddUsePosition(LifetimePosition pos,LOperand * operand,LOperand * hint,Zone * zone)421 void LiveRange::AddUsePosition(LifetimePosition pos,
422 LOperand* operand,
423 LOperand* hint,
424 Zone* zone) {
425 LAllocator::TraceAlloc("Add to live range %d use position %d\n",
426 id_,
427 pos.Value());
428 UsePosition* use_pos = new(zone) UsePosition(pos, operand, hint);
429 UsePosition* prev_hint = NULL;
430 UsePosition* prev = NULL;
431 UsePosition* current = first_pos_;
432 while (current != NULL && current->pos().Value() < pos.Value()) {
433 prev_hint = current->HasHint() ? current : prev_hint;
434 prev = current;
435 current = current->next();
436 }
437
438 if (prev == NULL) {
439 use_pos->set_next(first_pos_);
440 first_pos_ = use_pos;
441 } else {
442 use_pos->next_ = prev->next_;
443 prev->next_ = use_pos;
444 }
445
446 if (prev_hint == NULL && use_pos->HasHint()) {
447 current_hint_operand_ = hint;
448 }
449 }
450
451
ConvertOperands(Zone * zone)452 void LiveRange::ConvertOperands(Zone* zone) {
453 LOperand* op = CreateAssignedOperand(zone);
454 UsePosition* use_pos = first_pos();
455 while (use_pos != NULL) {
456 DCHECK(Start().Value() <= use_pos->pos().Value() &&
457 use_pos->pos().Value() <= End().Value());
458
459 if (use_pos->HasOperand()) {
460 DCHECK(op->IsRegister() || op->IsDoubleRegister() ||
461 !use_pos->RequiresRegister());
462 use_pos->operand()->ConvertTo(op->kind(), op->index());
463 }
464 use_pos = use_pos->next();
465 }
466 }
467
468
CanCover(LifetimePosition position) const469 bool LiveRange::CanCover(LifetimePosition position) const {
470 if (IsEmpty()) return false;
471 return Start().Value() <= position.Value() &&
472 position.Value() < End().Value();
473 }
474
475
Covers(LifetimePosition position)476 bool LiveRange::Covers(LifetimePosition position) {
477 if (!CanCover(position)) return false;
478 UseInterval* start_search = FirstSearchIntervalForPosition(position);
479 for (UseInterval* interval = start_search;
480 interval != NULL;
481 interval = interval->next()) {
482 DCHECK(interval->next() == NULL ||
483 interval->next()->start().Value() >= interval->start().Value());
484 AdvanceLastProcessedMarker(interval, position);
485 if (interval->Contains(position)) return true;
486 if (interval->start().Value() > position.Value()) return false;
487 }
488 return false;
489 }
490
491
FirstIntersection(LiveRange * other)492 LifetimePosition LiveRange::FirstIntersection(LiveRange* other) {
493 UseInterval* b = other->first_interval();
494 if (b == NULL) return LifetimePosition::Invalid();
495 LifetimePosition advance_last_processed_up_to = b->start();
496 UseInterval* a = FirstSearchIntervalForPosition(b->start());
497 while (a != NULL && b != NULL) {
498 if (a->start().Value() > other->End().Value()) break;
499 if (b->start().Value() > End().Value()) break;
500 LifetimePosition cur_intersection = a->Intersect(b);
501 if (cur_intersection.IsValid()) {
502 return cur_intersection;
503 }
504 if (a->start().Value() < b->start().Value()) {
505 a = a->next();
506 if (a == NULL || a->start().Value() > other->End().Value()) break;
507 AdvanceLastProcessedMarker(a, advance_last_processed_up_to);
508 } else {
509 b = b->next();
510 }
511 }
512 return LifetimePosition::Invalid();
513 }
514
LAllocator(int num_values,HGraph * graph)515 LAllocator::LAllocator(int num_values, HGraph* graph)
516 : zone_(graph->isolate()->allocator(), ZONE_NAME),
517 chunk_(NULL),
518 live_in_sets_(graph->blocks()->length(), zone()),
519 live_ranges_(num_values * 2, zone()),
520 fixed_live_ranges_(NULL),
521 fixed_double_live_ranges_(NULL),
522 unhandled_live_ranges_(num_values * 2, zone()),
523 active_live_ranges_(8, zone()),
524 inactive_live_ranges_(8, zone()),
525 reusable_slots_(8, zone()),
526 next_virtual_register_(num_values),
527 first_artificial_register_(num_values),
528 mode_(UNALLOCATED_REGISTERS),
529 num_registers_(-1),
530 graph_(graph),
531 has_osr_entry_(false),
532 allocation_ok_(true) {}
533
InitializeLivenessAnalysis()534 void LAllocator::InitializeLivenessAnalysis() {
535 // Initialize the live_in sets for each block to NULL.
536 int block_count = graph_->blocks()->length();
537 live_in_sets_.Initialize(block_count, zone());
538 live_in_sets_.AddBlock(NULL, block_count, zone());
539 }
540
541
ComputeLiveOut(HBasicBlock * block)542 BitVector* LAllocator::ComputeLiveOut(HBasicBlock* block) {
543 // Compute live out for the given block, except not including backward
544 // successor edges.
545 BitVector* live_out = new(zone()) BitVector(next_virtual_register_, zone());
546
547 // Process all successor blocks.
548 for (HSuccessorIterator it(block->end()); !it.Done(); it.Advance()) {
549 // Add values live on entry to the successor. Note the successor's
550 // live_in will not be computed yet for backwards edges.
551 HBasicBlock* successor = it.Current();
552 BitVector* live_in = live_in_sets_[successor->block_id()];
553 if (live_in != NULL) live_out->Union(*live_in);
554
555 // All phi input operands corresponding to this successor edge are live
556 // out from this block.
557 int index = successor->PredecessorIndexOf(block);
558 const ZoneList<HPhi*>* phis = successor->phis();
559 for (int i = 0; i < phis->length(); ++i) {
560 HPhi* phi = phis->at(i);
561 if (!phi->OperandAt(index)->IsConstant()) {
562 live_out->Add(phi->OperandAt(index)->id());
563 }
564 }
565 }
566
567 return live_out;
568 }
569
570
AddInitialIntervals(HBasicBlock * block,BitVector * live_out)571 void LAllocator::AddInitialIntervals(HBasicBlock* block,
572 BitVector* live_out) {
573 // Add an interval that includes the entire block to the live range for
574 // each live_out value.
575 LifetimePosition start = LifetimePosition::FromInstructionIndex(
576 block->first_instruction_index());
577 LifetimePosition end = LifetimePosition::FromInstructionIndex(
578 block->last_instruction_index()).NextInstruction();
579 BitVector::Iterator iterator(live_out);
580 while (!iterator.Done()) {
581 int operand_index = iterator.Current();
582 LiveRange* range = LiveRangeFor(operand_index);
583 range->AddUseInterval(start, end, zone());
584 iterator.Advance();
585 }
586 }
587
588
FixedDoubleLiveRangeID(int index)589 int LAllocator::FixedDoubleLiveRangeID(int index) {
590 return -index - 1 - Register::kNumRegisters;
591 }
592
593
AllocateFixed(LUnallocated * operand,int pos,bool is_tagged)594 LOperand* LAllocator::AllocateFixed(LUnallocated* operand,
595 int pos,
596 bool is_tagged) {
597 TraceAlloc("Allocating fixed reg for op %d\n", operand->virtual_register());
598 DCHECK(operand->HasFixedPolicy());
599 if (operand->HasFixedSlotPolicy()) {
600 operand->ConvertTo(LOperand::STACK_SLOT, operand->fixed_slot_index());
601 } else if (operand->HasFixedRegisterPolicy()) {
602 int reg_index = operand->fixed_register_index();
603 operand->ConvertTo(LOperand::REGISTER, reg_index);
604 } else if (operand->HasFixedDoubleRegisterPolicy()) {
605 int reg_index = operand->fixed_register_index();
606 operand->ConvertTo(LOperand::DOUBLE_REGISTER, reg_index);
607 } else {
608 UNREACHABLE();
609 }
610 if (is_tagged) {
611 TraceAlloc("Fixed reg is tagged at %d\n", pos);
612 LInstruction* instr = InstructionAt(pos);
613 if (instr->HasPointerMap()) {
614 instr->pointer_map()->RecordPointer(operand, chunk()->zone());
615 }
616 }
617 return operand;
618 }
619
620
FixedLiveRangeFor(int index)621 LiveRange* LAllocator::FixedLiveRangeFor(int index) {
622 DCHECK(index < Register::kNumRegisters);
623 LiveRange* result = fixed_live_ranges_[index];
624 if (result == NULL) {
625 result = new(zone()) LiveRange(FixedLiveRangeID(index), chunk()->zone());
626 DCHECK(result->IsFixed());
627 result->kind_ = GENERAL_REGISTERS;
628 SetLiveRangeAssignedRegister(result, index);
629 fixed_live_ranges_[index] = result;
630 }
631 return result;
632 }
633
634
FixedDoubleLiveRangeFor(int index)635 LiveRange* LAllocator::FixedDoubleLiveRangeFor(int index) {
636 DCHECK(index < DoubleRegister::kMaxNumRegisters);
637 LiveRange* result = fixed_double_live_ranges_[index];
638 if (result == NULL) {
639 result = new(zone()) LiveRange(FixedDoubleLiveRangeID(index),
640 chunk()->zone());
641 DCHECK(result->IsFixed());
642 result->kind_ = DOUBLE_REGISTERS;
643 SetLiveRangeAssignedRegister(result, index);
644 fixed_double_live_ranges_[index] = result;
645 }
646 return result;
647 }
648
649
LiveRangeFor(int index)650 LiveRange* LAllocator::LiveRangeFor(int index) {
651 if (index >= live_ranges_.length()) {
652 live_ranges_.AddBlock(NULL, index - live_ranges_.length() + 1, zone());
653 }
654 LiveRange* result = live_ranges_[index];
655 if (result == NULL) {
656 result = new(zone()) LiveRange(index, chunk()->zone());
657 live_ranges_[index] = result;
658 }
659 return result;
660 }
661
662
GetLastGap(HBasicBlock * block)663 LGap* LAllocator::GetLastGap(HBasicBlock* block) {
664 int last_instruction = block->last_instruction_index();
665 int index = chunk_->NearestGapPos(last_instruction);
666 return GapAt(index);
667 }
668
669
LookupPhi(LOperand * operand) const670 HPhi* LAllocator::LookupPhi(LOperand* operand) const {
671 if (!operand->IsUnallocated()) return NULL;
672 int index = LUnallocated::cast(operand)->virtual_register();
673 HValue* instr = graph_->LookupValue(index);
674 if (instr != NULL && instr->IsPhi()) {
675 return HPhi::cast(instr);
676 }
677 return NULL;
678 }
679
680
LiveRangeFor(LOperand * operand)681 LiveRange* LAllocator::LiveRangeFor(LOperand* operand) {
682 if (operand->IsUnallocated()) {
683 return LiveRangeFor(LUnallocated::cast(operand)->virtual_register());
684 } else if (operand->IsRegister()) {
685 return FixedLiveRangeFor(operand->index());
686 } else if (operand->IsDoubleRegister()) {
687 return FixedDoubleLiveRangeFor(operand->index());
688 } else {
689 return NULL;
690 }
691 }
692
693
Define(LifetimePosition position,LOperand * operand,LOperand * hint)694 void LAllocator::Define(LifetimePosition position,
695 LOperand* operand,
696 LOperand* hint) {
697 LiveRange* range = LiveRangeFor(operand);
698 if (range == NULL) return;
699
700 if (range->IsEmpty() || range->Start().Value() > position.Value()) {
701 // Can happen if there is a definition without use.
702 range->AddUseInterval(position, position.NextInstruction(), zone());
703 range->AddUsePosition(position.NextInstruction(), NULL, NULL, zone());
704 } else {
705 range->ShortenTo(position);
706 }
707
708 if (operand->IsUnallocated()) {
709 LUnallocated* unalloc_operand = LUnallocated::cast(operand);
710 range->AddUsePosition(position, unalloc_operand, hint, zone());
711 }
712 }
713
714
Use(LifetimePosition block_start,LifetimePosition position,LOperand * operand,LOperand * hint)715 void LAllocator::Use(LifetimePosition block_start,
716 LifetimePosition position,
717 LOperand* operand,
718 LOperand* hint) {
719 LiveRange* range = LiveRangeFor(operand);
720 if (range == NULL) return;
721 if (operand->IsUnallocated()) {
722 LUnallocated* unalloc_operand = LUnallocated::cast(operand);
723 range->AddUsePosition(position, unalloc_operand, hint, zone());
724 }
725 range->AddUseInterval(block_start, position, zone());
726 }
727
728
AddConstraintsGapMove(int index,LOperand * from,LOperand * to)729 void LAllocator::AddConstraintsGapMove(int index,
730 LOperand* from,
731 LOperand* to) {
732 LGap* gap = GapAt(index);
733 LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START,
734 chunk()->zone());
735 if (from->IsUnallocated()) {
736 const ZoneList<LMoveOperands>* move_operands = move->move_operands();
737 for (int i = 0; i < move_operands->length(); ++i) {
738 LMoveOperands cur = move_operands->at(i);
739 LOperand* cur_to = cur.destination();
740 if (cur_to->IsUnallocated()) {
741 if (LUnallocated::cast(cur_to)->virtual_register() ==
742 LUnallocated::cast(from)->virtual_register()) {
743 move->AddMove(cur.source(), to, chunk()->zone());
744 return;
745 }
746 }
747 }
748 }
749 move->AddMove(from, to, chunk()->zone());
750 }
751
752
MeetRegisterConstraints(HBasicBlock * block)753 void LAllocator::MeetRegisterConstraints(HBasicBlock* block) {
754 int start = block->first_instruction_index();
755 int end = block->last_instruction_index();
756 if (start == -1) return;
757 for (int i = start; i <= end; ++i) {
758 if (IsGapAt(i)) {
759 LInstruction* instr = NULL;
760 LInstruction* prev_instr = NULL;
761 if (i < end) instr = InstructionAt(i + 1);
762 if (i > start) prev_instr = InstructionAt(i - 1);
763 MeetConstraintsBetween(prev_instr, instr, i);
764 if (!AllocationOk()) return;
765 }
766 }
767 }
768
769
MeetConstraintsBetween(LInstruction * first,LInstruction * second,int gap_index)770 void LAllocator::MeetConstraintsBetween(LInstruction* first,
771 LInstruction* second,
772 int gap_index) {
773 // Handle fixed temporaries.
774 if (first != NULL) {
775 for (TempIterator it(first); !it.Done(); it.Advance()) {
776 LUnallocated* temp = LUnallocated::cast(it.Current());
777 if (temp->HasFixedPolicy()) {
778 AllocateFixed(temp, gap_index - 1, false);
779 }
780 }
781 }
782
783 // Handle fixed output operand.
784 if (first != NULL && first->Output() != NULL) {
785 LUnallocated* first_output = LUnallocated::cast(first->Output());
786 LiveRange* range = LiveRangeFor(first_output->virtual_register());
787 bool assigned = false;
788 if (first_output->HasFixedPolicy()) {
789 LUnallocated* output_copy = first_output->CopyUnconstrained(
790 chunk()->zone());
791 bool is_tagged = HasTaggedValue(first_output->virtual_register());
792 AllocateFixed(first_output, gap_index, is_tagged);
793
794 // This value is produced on the stack, we never need to spill it.
795 if (first_output->IsStackSlot()) {
796 range->SetSpillOperand(first_output);
797 range->SetSpillStartIndex(gap_index - 1);
798 assigned = true;
799 }
800 chunk_->AddGapMove(gap_index, first_output, output_copy);
801 }
802
803 if (!assigned) {
804 range->SetSpillStartIndex(gap_index);
805
806 // This move to spill operand is not a real use. Liveness analysis
807 // and splitting of live ranges do not account for it.
808 // Thus it should be inserted to a lifetime position corresponding to
809 // the instruction end.
810 LGap* gap = GapAt(gap_index);
811 LParallelMove* move = gap->GetOrCreateParallelMove(LGap::BEFORE,
812 chunk()->zone());
813 move->AddMove(first_output, range->GetSpillOperand(),
814 chunk()->zone());
815 }
816 }
817
818 // Handle fixed input operands of second instruction.
819 if (second != NULL) {
820 for (UseIterator it(second); !it.Done(); it.Advance()) {
821 LUnallocated* cur_input = LUnallocated::cast(it.Current());
822 if (cur_input->HasFixedPolicy()) {
823 LUnallocated* input_copy = cur_input->CopyUnconstrained(
824 chunk()->zone());
825 bool is_tagged = HasTaggedValue(cur_input->virtual_register());
826 AllocateFixed(cur_input, gap_index + 1, is_tagged);
827 AddConstraintsGapMove(gap_index, input_copy, cur_input);
828 } else if (cur_input->HasWritableRegisterPolicy()) {
829 // The live range of writable input registers always goes until the end
830 // of the instruction.
831 DCHECK(!cur_input->IsUsedAtStart());
832
833 LUnallocated* input_copy = cur_input->CopyUnconstrained(
834 chunk()->zone());
835 int vreg = GetVirtualRegister();
836 if (!AllocationOk()) return;
837 cur_input->set_virtual_register(vreg);
838
839 if (RequiredRegisterKind(input_copy->virtual_register()) ==
840 DOUBLE_REGISTERS) {
841 double_artificial_registers_.Add(
842 cur_input->virtual_register() - first_artificial_register_,
843 zone());
844 }
845
846 AddConstraintsGapMove(gap_index, input_copy, cur_input);
847 }
848 }
849 }
850
851 // Handle "output same as input" for second instruction.
852 if (second != NULL && second->Output() != NULL) {
853 LUnallocated* second_output = LUnallocated::cast(second->Output());
854 if (second_output->HasSameAsInputPolicy()) {
855 LUnallocated* cur_input = LUnallocated::cast(second->FirstInput());
856 int output_vreg = second_output->virtual_register();
857 int input_vreg = cur_input->virtual_register();
858
859 LUnallocated* input_copy = cur_input->CopyUnconstrained(
860 chunk()->zone());
861 cur_input->set_virtual_register(second_output->virtual_register());
862 AddConstraintsGapMove(gap_index, input_copy, cur_input);
863
864 if (HasTaggedValue(input_vreg) && !HasTaggedValue(output_vreg)) {
865 int index = gap_index + 1;
866 LInstruction* instr = InstructionAt(index);
867 if (instr->HasPointerMap()) {
868 instr->pointer_map()->RecordPointer(input_copy, chunk()->zone());
869 }
870 } else if (!HasTaggedValue(input_vreg) && HasTaggedValue(output_vreg)) {
871 // The input is assumed to immediately have a tagged representation,
872 // before the pointer map can be used. I.e. the pointer map at the
873 // instruction will include the output operand (whose value at the
874 // beginning of the instruction is equal to the input operand). If
875 // this is not desired, then the pointer map at this instruction needs
876 // to be adjusted manually.
877 }
878 }
879 }
880 }
881
882
ProcessInstructions(HBasicBlock * block,BitVector * live)883 void LAllocator::ProcessInstructions(HBasicBlock* block, BitVector* live) {
884 int block_start = block->first_instruction_index();
885 int index = block->last_instruction_index();
886
887 LifetimePosition block_start_position =
888 LifetimePosition::FromInstructionIndex(block_start);
889
890 while (index >= block_start) {
891 LifetimePosition curr_position =
892 LifetimePosition::FromInstructionIndex(index);
893
894 if (IsGapAt(index)) {
895 // We have a gap at this position.
896 LGap* gap = GapAt(index);
897 LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START,
898 chunk()->zone());
899 const ZoneList<LMoveOperands>* move_operands = move->move_operands();
900 for (int i = 0; i < move_operands->length(); ++i) {
901 LMoveOperands* cur = &move_operands->at(i);
902 if (cur->IsIgnored()) continue;
903 LOperand* from = cur->source();
904 LOperand* to = cur->destination();
905 HPhi* phi = LookupPhi(to);
906 LOperand* hint = to;
907 if (phi != NULL) {
908 // This is a phi resolving move.
909 if (!phi->block()->IsLoopHeader()) {
910 hint = LiveRangeFor(phi->id())->current_hint_operand();
911 }
912 } else {
913 if (to->IsUnallocated()) {
914 if (live->Contains(LUnallocated::cast(to)->virtual_register())) {
915 Define(curr_position, to, from);
916 live->Remove(LUnallocated::cast(to)->virtual_register());
917 } else {
918 cur->Eliminate();
919 continue;
920 }
921 } else {
922 Define(curr_position, to, from);
923 }
924 }
925 Use(block_start_position, curr_position, from, hint);
926 if (from->IsUnallocated()) {
927 live->Add(LUnallocated::cast(from)->virtual_register());
928 }
929 }
930 } else {
931 DCHECK(!IsGapAt(index));
932 LInstruction* instr = InstructionAt(index);
933
934 if (instr != NULL) {
935 LOperand* output = instr->Output();
936 if (output != NULL) {
937 if (output->IsUnallocated()) {
938 live->Remove(LUnallocated::cast(output)->virtual_register());
939 }
940 Define(curr_position, output, NULL);
941 }
942
943 if (instr->ClobbersRegisters()) {
944 for (int i = 0; i < Register::kNumRegisters; ++i) {
945 if (GetRegConfig()->IsAllocatableGeneralCode(i)) {
946 if (output == NULL || !output->IsRegister() ||
947 output->index() != i) {
948 LiveRange* range = FixedLiveRangeFor(i);
949 range->AddUseInterval(curr_position,
950 curr_position.InstructionEnd(), zone());
951 }
952 }
953 }
954 }
955
956 if (instr->ClobbersDoubleRegisters(isolate())) {
957 for (int i = 0; i < DoubleRegister::kMaxNumRegisters; ++i) {
958 if (GetRegConfig()->IsAllocatableDoubleCode(i)) {
959 if (output == NULL || !output->IsDoubleRegister() ||
960 output->index() != i) {
961 LiveRange* range = FixedDoubleLiveRangeFor(i);
962 range->AddUseInterval(curr_position,
963 curr_position.InstructionEnd(), zone());
964 }
965 }
966 }
967 }
968
969 for (UseIterator it(instr); !it.Done(); it.Advance()) {
970 LOperand* input = it.Current();
971
972 LifetimePosition use_pos;
973 if (input->IsUnallocated() &&
974 LUnallocated::cast(input)->IsUsedAtStart()) {
975 use_pos = curr_position;
976 } else {
977 use_pos = curr_position.InstructionEnd();
978 }
979
980 Use(block_start_position, use_pos, input, NULL);
981 if (input->IsUnallocated()) {
982 live->Add(LUnallocated::cast(input)->virtual_register());
983 }
984 }
985
986 for (TempIterator it(instr); !it.Done(); it.Advance()) {
987 LOperand* temp = it.Current();
988 if (instr->ClobbersTemps()) {
989 if (temp->IsRegister()) continue;
990 if (temp->IsUnallocated()) {
991 LUnallocated* temp_unalloc = LUnallocated::cast(temp);
992 if (temp_unalloc->HasFixedPolicy()) {
993 continue;
994 }
995 }
996 }
997 Use(block_start_position, curr_position.InstructionEnd(), temp, NULL);
998 Define(curr_position, temp, NULL);
999
1000 if (temp->IsUnallocated()) {
1001 LUnallocated* temp_unalloc = LUnallocated::cast(temp);
1002 if (temp_unalloc->HasDoubleRegisterPolicy()) {
1003 double_artificial_registers_.Add(
1004 temp_unalloc->virtual_register() - first_artificial_register_,
1005 zone());
1006 }
1007 }
1008 }
1009 }
1010 }
1011
1012 index = index - 1;
1013 }
1014 }
1015
1016
ResolvePhis(HBasicBlock * block)1017 void LAllocator::ResolvePhis(HBasicBlock* block) {
1018 const ZoneList<HPhi*>* phis = block->phis();
1019 for (int i = 0; i < phis->length(); ++i) {
1020 HPhi* phi = phis->at(i);
1021 LUnallocated* phi_operand =
1022 new (chunk()->zone()) LUnallocated(LUnallocated::NONE);
1023 phi_operand->set_virtual_register(phi->id());
1024 for (int j = 0; j < phi->OperandCount(); ++j) {
1025 HValue* op = phi->OperandAt(j);
1026 LOperand* operand = NULL;
1027 if (op->IsConstant() && op->EmitAtUses()) {
1028 HConstant* constant = HConstant::cast(op);
1029 operand = chunk_->DefineConstantOperand(constant);
1030 } else {
1031 DCHECK(!op->EmitAtUses());
1032 LUnallocated* unalloc =
1033 new(chunk()->zone()) LUnallocated(LUnallocated::ANY);
1034 unalloc->set_virtual_register(op->id());
1035 operand = unalloc;
1036 }
1037 HBasicBlock* cur_block = block->predecessors()->at(j);
1038 // The gap move must be added without any special processing as in
1039 // the AddConstraintsGapMove.
1040 chunk_->AddGapMove(cur_block->last_instruction_index() - 1,
1041 operand,
1042 phi_operand);
1043
1044 // We are going to insert a move before the branch instruction.
1045 // Some branch instructions (e.g. loops' back edges)
1046 // can potentially cause a GC so they have a pointer map.
1047 // By inserting a move we essentially create a copy of a
1048 // value which is invisible to PopulatePointerMaps(), because we store
1049 // it into a location different from the operand of a live range
1050 // covering a branch instruction.
1051 // Thus we need to manually record a pointer.
1052 LInstruction* branch =
1053 InstructionAt(cur_block->last_instruction_index());
1054 if (branch->HasPointerMap()) {
1055 if (phi->representation().IsTagged() && !phi->type().IsSmi()) {
1056 branch->pointer_map()->RecordPointer(phi_operand, chunk()->zone());
1057 } else if (!phi->representation().IsDouble()) {
1058 branch->pointer_map()->RecordUntagged(phi_operand, chunk()->zone());
1059 }
1060 }
1061 }
1062
1063 LiveRange* live_range = LiveRangeFor(phi->id());
1064 LLabel* label = chunk_->GetLabel(phi->block()->block_id());
1065 label->GetOrCreateParallelMove(LGap::START, chunk()->zone())->
1066 AddMove(phi_operand, live_range->GetSpillOperand(), chunk()->zone());
1067 live_range->SetSpillStartIndex(phi->block()->first_instruction_index());
1068 }
1069 }
1070
1071
Allocate(LChunk * chunk)1072 bool LAllocator::Allocate(LChunk* chunk) {
1073 DCHECK(chunk_ == NULL);
1074 chunk_ = static_cast<LPlatformChunk*>(chunk);
1075 assigned_registers_ =
1076 new (chunk->zone()) BitVector(Register::kNumRegisters, chunk->zone());
1077 assigned_double_registers_ = new (chunk->zone())
1078 BitVector(DoubleRegister::kMaxNumRegisters, chunk->zone());
1079 MeetRegisterConstraints();
1080 if (!AllocationOk()) return false;
1081 ResolvePhis();
1082 BuildLiveRanges();
1083 AllocateGeneralRegisters();
1084 if (!AllocationOk()) return false;
1085 AllocateDoubleRegisters();
1086 if (!AllocationOk()) return false;
1087 PopulatePointerMaps();
1088 ConnectRanges();
1089 ResolveControlFlow();
1090 return true;
1091 }
1092
1093
MeetRegisterConstraints()1094 void LAllocator::MeetRegisterConstraints() {
1095 LAllocatorPhase phase("L_Register constraints", this);
1096 const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
1097 for (int i = 0; i < blocks->length(); ++i) {
1098 HBasicBlock* block = blocks->at(i);
1099 MeetRegisterConstraints(block);
1100 if (!AllocationOk()) return;
1101 }
1102 }
1103
1104
ResolvePhis()1105 void LAllocator::ResolvePhis() {
1106 LAllocatorPhase phase("L_Resolve phis", this);
1107
1108 // Process the blocks in reverse order.
1109 const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
1110 for (int block_id = blocks->length() - 1; block_id >= 0; --block_id) {
1111 HBasicBlock* block = blocks->at(block_id);
1112 ResolvePhis(block);
1113 }
1114 }
1115
1116
ResolveControlFlow(LiveRange * range,HBasicBlock * block,HBasicBlock * pred)1117 void LAllocator::ResolveControlFlow(LiveRange* range,
1118 HBasicBlock* block,
1119 HBasicBlock* pred) {
1120 LifetimePosition pred_end =
1121 LifetimePosition::FromInstructionIndex(pred->last_instruction_index());
1122 LifetimePosition cur_start =
1123 LifetimePosition::FromInstructionIndex(block->first_instruction_index());
1124 LiveRange* pred_cover = NULL;
1125 LiveRange* cur_cover = NULL;
1126 LiveRange* cur_range = range;
1127 while (cur_range != NULL && (cur_cover == NULL || pred_cover == NULL)) {
1128 if (cur_range->CanCover(cur_start)) {
1129 DCHECK(cur_cover == NULL);
1130 cur_cover = cur_range;
1131 }
1132 if (cur_range->CanCover(pred_end)) {
1133 DCHECK(pred_cover == NULL);
1134 pred_cover = cur_range;
1135 }
1136 cur_range = cur_range->next();
1137 }
1138
1139 if (cur_cover->IsSpilled()) return;
1140 DCHECK(pred_cover != NULL && cur_cover != NULL);
1141 if (pred_cover != cur_cover) {
1142 LOperand* pred_op = pred_cover->CreateAssignedOperand(chunk()->zone());
1143 LOperand* cur_op = cur_cover->CreateAssignedOperand(chunk()->zone());
1144 if (!pred_op->Equals(cur_op)) {
1145 LGap* gap = NULL;
1146 if (block->predecessors()->length() == 1) {
1147 gap = GapAt(block->first_instruction_index());
1148 } else {
1149 DCHECK(pred->end()->SecondSuccessor() == NULL);
1150 gap = GetLastGap(pred);
1151
1152 // We are going to insert a move before the branch instruction.
1153 // Some branch instructions (e.g. loops' back edges)
1154 // can potentially cause a GC so they have a pointer map.
1155 // By inserting a move we essentially create a copy of a
1156 // value which is invisible to PopulatePointerMaps(), because we store
1157 // it into a location different from the operand of a live range
1158 // covering a branch instruction.
1159 // Thus we need to manually record a pointer.
1160 LInstruction* branch = InstructionAt(pred->last_instruction_index());
1161 if (branch->HasPointerMap()) {
1162 if (HasTaggedValue(range->id())) {
1163 branch->pointer_map()->RecordPointer(cur_op, chunk()->zone());
1164 } else if (!cur_op->IsDoubleStackSlot() &&
1165 !cur_op->IsDoubleRegister()) {
1166 branch->pointer_map()->RemovePointer(cur_op);
1167 }
1168 }
1169 }
1170 gap->GetOrCreateParallelMove(
1171 LGap::START, chunk()->zone())->AddMove(pred_op, cur_op,
1172 chunk()->zone());
1173 }
1174 }
1175 }
1176
1177
GetConnectingParallelMove(LifetimePosition pos)1178 LParallelMove* LAllocator::GetConnectingParallelMove(LifetimePosition pos) {
1179 int index = pos.InstructionIndex();
1180 if (IsGapAt(index)) {
1181 LGap* gap = GapAt(index);
1182 return gap->GetOrCreateParallelMove(
1183 pos.IsInstructionStart() ? LGap::START : LGap::END, chunk()->zone());
1184 }
1185 int gap_pos = pos.IsInstructionStart() ? (index - 1) : (index + 1);
1186 return GapAt(gap_pos)->GetOrCreateParallelMove(
1187 (gap_pos < index) ? LGap::AFTER : LGap::BEFORE, chunk()->zone());
1188 }
1189
1190
GetBlock(LifetimePosition pos)1191 HBasicBlock* LAllocator::GetBlock(LifetimePosition pos) {
1192 LGap* gap = GapAt(chunk_->NearestGapPos(pos.InstructionIndex()));
1193 return gap->block();
1194 }
1195
1196
ConnectRanges()1197 void LAllocator::ConnectRanges() {
1198 LAllocatorPhase phase("L_Connect ranges", this);
1199 for (int i = 0; i < live_ranges()->length(); ++i) {
1200 LiveRange* first_range = live_ranges()->at(i);
1201 if (first_range == NULL || first_range->parent() != NULL) continue;
1202
1203 LiveRange* second_range = first_range->next();
1204 while (second_range != NULL) {
1205 LifetimePosition pos = second_range->Start();
1206
1207 if (!second_range->IsSpilled()) {
1208 // Add gap move if the two live ranges touch and there is no block
1209 // boundary.
1210 if (first_range->End().Value() == pos.Value()) {
1211 bool should_insert = true;
1212 if (IsBlockBoundary(pos)) {
1213 should_insert = CanEagerlyResolveControlFlow(GetBlock(pos));
1214 }
1215 if (should_insert) {
1216 LParallelMove* move = GetConnectingParallelMove(pos);
1217 LOperand* prev_operand = first_range->CreateAssignedOperand(
1218 chunk()->zone());
1219 LOperand* cur_operand = second_range->CreateAssignedOperand(
1220 chunk()->zone());
1221 move->AddMove(prev_operand, cur_operand,
1222 chunk()->zone());
1223 }
1224 }
1225 }
1226
1227 first_range = second_range;
1228 second_range = second_range->next();
1229 }
1230 }
1231 }
1232
1233
CanEagerlyResolveControlFlow(HBasicBlock * block) const1234 bool LAllocator::CanEagerlyResolveControlFlow(HBasicBlock* block) const {
1235 if (block->predecessors()->length() != 1) return false;
1236 return block->predecessors()->first()->block_id() == block->block_id() - 1;
1237 }
1238
1239
ResolveControlFlow()1240 void LAllocator::ResolveControlFlow() {
1241 LAllocatorPhase phase("L_Resolve control flow", this);
1242 const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
1243 for (int block_id = 1; block_id < blocks->length(); ++block_id) {
1244 HBasicBlock* block = blocks->at(block_id);
1245 if (CanEagerlyResolveControlFlow(block)) continue;
1246 BitVector* live = live_in_sets_[block->block_id()];
1247 BitVector::Iterator iterator(live);
1248 while (!iterator.Done()) {
1249 int operand_index = iterator.Current();
1250 for (int i = 0; i < block->predecessors()->length(); ++i) {
1251 HBasicBlock* cur = block->predecessors()->at(i);
1252 LiveRange* cur_range = LiveRangeFor(operand_index);
1253 ResolveControlFlow(cur_range, block, cur);
1254 }
1255 iterator.Advance();
1256 }
1257 }
1258 }
1259
1260
BuildLiveRanges()1261 void LAllocator::BuildLiveRanges() {
1262 LAllocatorPhase phase("L_Build live ranges", this);
1263 InitializeLivenessAnalysis();
1264 // Process the blocks in reverse order.
1265 const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
1266 for (int block_id = blocks->length() - 1; block_id >= 0; --block_id) {
1267 HBasicBlock* block = blocks->at(block_id);
1268 BitVector* live = ComputeLiveOut(block);
1269 // Initially consider all live_out values live for the entire block. We
1270 // will shorten these intervals if necessary.
1271 AddInitialIntervals(block, live);
1272
1273 // Process the instructions in reverse order, generating and killing
1274 // live values.
1275 ProcessInstructions(block, live);
1276 // All phi output operands are killed by this block.
1277 const ZoneList<HPhi*>* phis = block->phis();
1278 for (int i = 0; i < phis->length(); ++i) {
1279 // The live range interval already ends at the first instruction of the
1280 // block.
1281 HPhi* phi = phis->at(i);
1282 live->Remove(phi->id());
1283
1284 LOperand* hint = NULL;
1285 LOperand* phi_operand = NULL;
1286 LGap* gap = GetLastGap(phi->block()->predecessors()->at(0));
1287 LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START,
1288 chunk()->zone());
1289 for (int j = 0; j < move->move_operands()->length(); ++j) {
1290 LOperand* to = move->move_operands()->at(j).destination();
1291 if (to->IsUnallocated() &&
1292 LUnallocated::cast(to)->virtual_register() == phi->id()) {
1293 hint = move->move_operands()->at(j).source();
1294 phi_operand = to;
1295 break;
1296 }
1297 }
1298 DCHECK(hint != NULL);
1299
1300 LifetimePosition block_start = LifetimePosition::FromInstructionIndex(
1301 block->first_instruction_index());
1302 Define(block_start, phi_operand, hint);
1303 }
1304
1305 // Now live is live_in for this block except not including values live
1306 // out on backward successor edges.
1307 live_in_sets_[block_id] = live;
1308
1309 // If this block is a loop header go back and patch up the necessary
1310 // predecessor blocks.
1311 if (block->IsLoopHeader()) {
1312 // TODO(kmillikin): Need to be able to get the last block of the loop
1313 // in the loop information. Add a live range stretching from the first
1314 // loop instruction to the last for each value live on entry to the
1315 // header.
1316 HBasicBlock* back_edge = block->loop_information()->GetLastBackEdge();
1317 BitVector::Iterator iterator(live);
1318 LifetimePosition start = LifetimePosition::FromInstructionIndex(
1319 block->first_instruction_index());
1320 LifetimePosition end = LifetimePosition::FromInstructionIndex(
1321 back_edge->last_instruction_index()).NextInstruction();
1322 while (!iterator.Done()) {
1323 int operand_index = iterator.Current();
1324 LiveRange* range = LiveRangeFor(operand_index);
1325 range->EnsureInterval(start, end, zone());
1326 iterator.Advance();
1327 }
1328
1329 for (int i = block->block_id() + 1; i <= back_edge->block_id(); ++i) {
1330 live_in_sets_[i]->Union(*live);
1331 }
1332 }
1333
1334 #ifdef DEBUG
1335 if (block_id == 0) {
1336 BitVector::Iterator iterator(live);
1337 bool found = false;
1338 while (!iterator.Done()) {
1339 found = true;
1340 int operand_index = iterator.Current();
1341 {
1342 AllowHandleDereference allow_deref;
1343 PrintF("Function: %s\n", chunk_->info()->GetDebugName().get());
1344 }
1345 PrintF("Value %d used before first definition!\n", operand_index);
1346 LiveRange* range = LiveRangeFor(operand_index);
1347 PrintF("First use is at %d\n", range->first_pos()->pos().Value());
1348 iterator.Advance();
1349 }
1350 DCHECK(!found);
1351 }
1352 #endif
1353 }
1354
1355 for (int i = 0; i < live_ranges_.length(); ++i) {
1356 if (live_ranges_[i] != NULL) {
1357 live_ranges_[i]->kind_ = RequiredRegisterKind(live_ranges_[i]->id());
1358 }
1359 }
1360 }
1361
1362
SafePointsAreInOrder() const1363 bool LAllocator::SafePointsAreInOrder() const {
1364 const ZoneList<LPointerMap*>* pointer_maps = chunk_->pointer_maps();
1365 int safe_point = 0;
1366 for (int i = 0; i < pointer_maps->length(); ++i) {
1367 LPointerMap* map = pointer_maps->at(i);
1368 if (safe_point > map->lithium_position()) return false;
1369 safe_point = map->lithium_position();
1370 }
1371 return true;
1372 }
1373
1374
PopulatePointerMaps()1375 void LAllocator::PopulatePointerMaps() {
1376 LAllocatorPhase phase("L_Populate pointer maps", this);
1377 const ZoneList<LPointerMap*>* pointer_maps = chunk_->pointer_maps();
1378
1379 DCHECK(SafePointsAreInOrder());
1380
1381 // Iterate over all safe point positions and record a pointer
1382 // for all spilled live ranges at this point.
1383 int first_safe_point_index = 0;
1384 int last_range_start = 0;
1385 for (int range_idx = 0; range_idx < live_ranges()->length(); ++range_idx) {
1386 LiveRange* range = live_ranges()->at(range_idx);
1387 if (range == NULL) continue;
1388 // Iterate over the first parts of multi-part live ranges.
1389 if (range->parent() != NULL) continue;
1390 // Skip non-pointer values.
1391 if (!HasTaggedValue(range->id())) continue;
1392 // Skip empty live ranges.
1393 if (range->IsEmpty()) continue;
1394
1395 // Find the extent of the range and its children.
1396 int start = range->Start().InstructionIndex();
1397 int end = 0;
1398 for (LiveRange* cur = range; cur != NULL; cur = cur->next()) {
1399 LifetimePosition this_end = cur->End();
1400 if (this_end.InstructionIndex() > end) end = this_end.InstructionIndex();
1401 DCHECK(cur->Start().InstructionIndex() >= start);
1402 }
1403
1404 // Most of the ranges are in order, but not all. Keep an eye on when
1405 // they step backwards and reset the first_safe_point_index so we don't
1406 // miss any safe points.
1407 if (start < last_range_start) {
1408 first_safe_point_index = 0;
1409 }
1410 last_range_start = start;
1411
1412 // Step across all the safe points that are before the start of this range,
1413 // recording how far we step in order to save doing this for the next range.
1414 while (first_safe_point_index < pointer_maps->length()) {
1415 LPointerMap* map = pointer_maps->at(first_safe_point_index);
1416 int safe_point = map->lithium_position();
1417 if (safe_point >= start) break;
1418 first_safe_point_index++;
1419 }
1420
1421 // Step through the safe points to see whether they are in the range.
1422 for (int safe_point_index = first_safe_point_index;
1423 safe_point_index < pointer_maps->length();
1424 ++safe_point_index) {
1425 LPointerMap* map = pointer_maps->at(safe_point_index);
1426 int safe_point = map->lithium_position();
1427
1428 // The safe points are sorted so we can stop searching here.
1429 if (safe_point - 1 > end) break;
1430
1431 // Advance to the next active range that covers the current
1432 // safe point position.
1433 LifetimePosition safe_point_pos =
1434 LifetimePosition::FromInstructionIndex(safe_point);
1435 LiveRange* cur = range;
1436 while (cur != NULL && !cur->Covers(safe_point_pos)) {
1437 cur = cur->next();
1438 }
1439 if (cur == NULL) continue;
1440
1441 // Check if the live range is spilled and the safe point is after
1442 // the spill position.
1443 if (range->HasAllocatedSpillOperand() &&
1444 safe_point >= range->spill_start_index()) {
1445 TraceAlloc("Pointer for range %d (spilled at %d) at safe point %d\n",
1446 range->id(), range->spill_start_index(), safe_point);
1447 map->RecordPointer(range->GetSpillOperand(), chunk()->zone());
1448 }
1449
1450 if (!cur->IsSpilled()) {
1451 TraceAlloc("Pointer in register for range %d (start at %d) "
1452 "at safe point %d\n",
1453 cur->id(), cur->Start().Value(), safe_point);
1454 LOperand* operand = cur->CreateAssignedOperand(chunk()->zone());
1455 DCHECK(!operand->IsStackSlot());
1456 map->RecordPointer(operand, chunk()->zone());
1457 }
1458 }
1459 }
1460 }
1461
1462
AllocateGeneralRegisters()1463 void LAllocator::AllocateGeneralRegisters() {
1464 LAllocatorPhase phase("L_Allocate general registers", this);
1465 num_registers_ = GetRegConfig()->num_allocatable_general_registers();
1466 allocatable_register_codes_ = GetRegConfig()->allocatable_general_codes();
1467 mode_ = GENERAL_REGISTERS;
1468 AllocateRegisters();
1469 }
1470
1471
AllocateDoubleRegisters()1472 void LAllocator::AllocateDoubleRegisters() {
1473 LAllocatorPhase phase("L_Allocate double registers", this);
1474 num_registers_ = GetRegConfig()->num_allocatable_double_registers();
1475 allocatable_register_codes_ = GetRegConfig()->allocatable_double_codes();
1476 mode_ = DOUBLE_REGISTERS;
1477 AllocateRegisters();
1478 }
1479
1480
AllocateRegisters()1481 void LAllocator::AllocateRegisters() {
1482 DCHECK(unhandled_live_ranges_.is_empty());
1483
1484 for (int i = 0; i < live_ranges_.length(); ++i) {
1485 if (live_ranges_[i] != NULL) {
1486 if (live_ranges_[i]->Kind() == mode_) {
1487 AddToUnhandledUnsorted(live_ranges_[i]);
1488 }
1489 }
1490 }
1491 SortUnhandled();
1492 DCHECK(UnhandledIsSorted());
1493
1494 DCHECK(reusable_slots_.is_empty());
1495 DCHECK(active_live_ranges_.is_empty());
1496 DCHECK(inactive_live_ranges_.is_empty());
1497
1498 if (mode_ == DOUBLE_REGISTERS) {
1499 for (int i = 0; i < fixed_double_live_ranges_.length(); ++i) {
1500 LiveRange* current = fixed_double_live_ranges_.at(i);
1501 if (current != NULL) {
1502 AddToInactive(current);
1503 }
1504 }
1505 } else {
1506 DCHECK(mode_ == GENERAL_REGISTERS);
1507 for (int i = 0; i < fixed_live_ranges_.length(); ++i) {
1508 LiveRange* current = fixed_live_ranges_.at(i);
1509 if (current != NULL) {
1510 AddToInactive(current);
1511 }
1512 }
1513 }
1514
1515 while (!unhandled_live_ranges_.is_empty()) {
1516 DCHECK(UnhandledIsSorted());
1517 LiveRange* current = unhandled_live_ranges_.RemoveLast();
1518 DCHECK(UnhandledIsSorted());
1519 LifetimePosition position = current->Start();
1520 #ifdef DEBUG
1521 allocation_finger_ = position;
1522 #endif
1523 TraceAlloc("Processing interval %d start=%d\n",
1524 current->id(),
1525 position.Value());
1526
1527 if (current->HasAllocatedSpillOperand()) {
1528 TraceAlloc("Live range %d already has a spill operand\n", current->id());
1529 LifetimePosition next_pos = position;
1530 if (IsGapAt(next_pos.InstructionIndex())) {
1531 next_pos = next_pos.NextInstruction();
1532 }
1533 UsePosition* pos = current->NextUsePositionRegisterIsBeneficial(next_pos);
1534 // If the range already has a spill operand and it doesn't need a
1535 // register immediately, split it and spill the first part of the range.
1536 if (pos == NULL) {
1537 Spill(current);
1538 continue;
1539 } else if (pos->pos().Value() >
1540 current->Start().NextInstruction().Value()) {
1541 // Do not spill live range eagerly if use position that can benefit from
1542 // the register is too close to the start of live range.
1543 SpillBetween(current, current->Start(), pos->pos());
1544 if (!AllocationOk()) return;
1545 DCHECK(UnhandledIsSorted());
1546 continue;
1547 }
1548 }
1549
1550 for (int i = 0; i < active_live_ranges_.length(); ++i) {
1551 LiveRange* cur_active = active_live_ranges_.at(i);
1552 if (cur_active->End().Value() <= position.Value()) {
1553 ActiveToHandled(cur_active);
1554 --i; // The live range was removed from the list of active live ranges.
1555 } else if (!cur_active->Covers(position)) {
1556 ActiveToInactive(cur_active);
1557 --i; // The live range was removed from the list of active live ranges.
1558 }
1559 }
1560
1561 for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
1562 LiveRange* cur_inactive = inactive_live_ranges_.at(i);
1563 if (cur_inactive->End().Value() <= position.Value()) {
1564 InactiveToHandled(cur_inactive);
1565 --i; // Live range was removed from the list of inactive live ranges.
1566 } else if (cur_inactive->Covers(position)) {
1567 InactiveToActive(cur_inactive);
1568 --i; // Live range was removed from the list of inactive live ranges.
1569 }
1570 }
1571
1572 DCHECK(!current->HasRegisterAssigned() && !current->IsSpilled());
1573
1574 bool result = TryAllocateFreeReg(current);
1575 if (!AllocationOk()) return;
1576
1577 if (!result) AllocateBlockedReg(current);
1578 if (!AllocationOk()) return;
1579
1580 if (current->HasRegisterAssigned()) {
1581 AddToActive(current);
1582 }
1583 }
1584
1585 reusable_slots_.Rewind(0);
1586 active_live_ranges_.Rewind(0);
1587 inactive_live_ranges_.Rewind(0);
1588 }
1589
1590
RegisterName(int allocation_index)1591 const char* LAllocator::RegisterName(int allocation_index) {
1592 if (mode_ == GENERAL_REGISTERS) {
1593 return GetRegConfig()->GetGeneralRegisterName(allocation_index);
1594 } else {
1595 return GetRegConfig()->GetDoubleRegisterName(allocation_index);
1596 }
1597 }
1598
1599
TraceAlloc(const char * msg,...)1600 void LAllocator::TraceAlloc(const char* msg, ...) {
1601 if (FLAG_trace_alloc) {
1602 va_list arguments;
1603 va_start(arguments, msg);
1604 base::OS::VPrint(msg, arguments);
1605 va_end(arguments);
1606 }
1607 }
1608
1609
HasTaggedValue(int virtual_register) const1610 bool LAllocator::HasTaggedValue(int virtual_register) const {
1611 HValue* value = graph_->LookupValue(virtual_register);
1612 if (value == NULL) return false;
1613 return value->representation().IsTagged() && !value->type().IsSmi();
1614 }
1615
1616
RequiredRegisterKind(int virtual_register) const1617 RegisterKind LAllocator::RequiredRegisterKind(int virtual_register) const {
1618 if (virtual_register < first_artificial_register_) {
1619 HValue* value = graph_->LookupValue(virtual_register);
1620 if (value != NULL && value->representation().IsDouble()) {
1621 return DOUBLE_REGISTERS;
1622 }
1623 } else if (double_artificial_registers_.Contains(
1624 virtual_register - first_artificial_register_)) {
1625 return DOUBLE_REGISTERS;
1626 }
1627
1628 return GENERAL_REGISTERS;
1629 }
1630
1631
AddToActive(LiveRange * range)1632 void LAllocator::AddToActive(LiveRange* range) {
1633 TraceAlloc("Add live range %d to active\n", range->id());
1634 active_live_ranges_.Add(range, zone());
1635 }
1636
1637
AddToInactive(LiveRange * range)1638 void LAllocator::AddToInactive(LiveRange* range) {
1639 TraceAlloc("Add live range %d to inactive\n", range->id());
1640 inactive_live_ranges_.Add(range, zone());
1641 }
1642
1643
AddToUnhandledSorted(LiveRange * range)1644 void LAllocator::AddToUnhandledSorted(LiveRange* range) {
1645 if (range == NULL || range->IsEmpty()) return;
1646 DCHECK(!range->HasRegisterAssigned() && !range->IsSpilled());
1647 DCHECK(allocation_finger_.Value() <= range->Start().Value());
1648 for (int i = unhandled_live_ranges_.length() - 1; i >= 0; --i) {
1649 LiveRange* cur_range = unhandled_live_ranges_.at(i);
1650 if (range->ShouldBeAllocatedBefore(cur_range)) {
1651 TraceAlloc("Add live range %d to unhandled at %d\n", range->id(), i + 1);
1652 unhandled_live_ranges_.InsertAt(i + 1, range, zone());
1653 DCHECK(UnhandledIsSorted());
1654 return;
1655 }
1656 }
1657 TraceAlloc("Add live range %d to unhandled at start\n", range->id());
1658 unhandled_live_ranges_.InsertAt(0, range, zone());
1659 DCHECK(UnhandledIsSorted());
1660 }
1661
1662
AddToUnhandledUnsorted(LiveRange * range)1663 void LAllocator::AddToUnhandledUnsorted(LiveRange* range) {
1664 if (range == NULL || range->IsEmpty()) return;
1665 DCHECK(!range->HasRegisterAssigned() && !range->IsSpilled());
1666 TraceAlloc("Add live range %d to unhandled unsorted at end\n", range->id());
1667 unhandled_live_ranges_.Add(range, zone());
1668 }
1669
1670
UnhandledSortHelper(LiveRange * const * a,LiveRange * const * b)1671 static int UnhandledSortHelper(LiveRange* const* a, LiveRange* const* b) {
1672 DCHECK(!(*a)->ShouldBeAllocatedBefore(*b) ||
1673 !(*b)->ShouldBeAllocatedBefore(*a));
1674 if ((*a)->ShouldBeAllocatedBefore(*b)) return 1;
1675 if ((*b)->ShouldBeAllocatedBefore(*a)) return -1;
1676 return (*a)->id() - (*b)->id();
1677 }
1678
1679
1680 // Sort the unhandled live ranges so that the ranges to be processed first are
1681 // at the end of the array list. This is convenient for the register allocation
1682 // algorithm because it is efficient to remove elements from the end.
SortUnhandled()1683 void LAllocator::SortUnhandled() {
1684 TraceAlloc("Sort unhandled\n");
1685 unhandled_live_ranges_.Sort(&UnhandledSortHelper);
1686 }
1687
1688
UnhandledIsSorted()1689 bool LAllocator::UnhandledIsSorted() {
1690 int len = unhandled_live_ranges_.length();
1691 for (int i = 1; i < len; i++) {
1692 LiveRange* a = unhandled_live_ranges_.at(i - 1);
1693 LiveRange* b = unhandled_live_ranges_.at(i);
1694 if (a->Start().Value() < b->Start().Value()) return false;
1695 }
1696 return true;
1697 }
1698
1699
FreeSpillSlot(LiveRange * range)1700 void LAllocator::FreeSpillSlot(LiveRange* range) {
1701 // Check that we are the last range.
1702 if (range->next() != NULL) return;
1703
1704 if (!range->TopLevel()->HasAllocatedSpillOperand()) return;
1705
1706 int index = range->TopLevel()->GetSpillOperand()->index();
1707 if (index >= 0) {
1708 reusable_slots_.Add(range, zone());
1709 }
1710 }
1711
1712
TryReuseSpillSlot(LiveRange * range)1713 LOperand* LAllocator::TryReuseSpillSlot(LiveRange* range) {
1714 if (reusable_slots_.is_empty()) return NULL;
1715 if (reusable_slots_.first()->End().Value() >
1716 range->TopLevel()->Start().Value()) {
1717 return NULL;
1718 }
1719 LOperand* result = reusable_slots_.first()->TopLevel()->GetSpillOperand();
1720 reusable_slots_.Remove(0);
1721 return result;
1722 }
1723
1724
ActiveToHandled(LiveRange * range)1725 void LAllocator::ActiveToHandled(LiveRange* range) {
1726 DCHECK(active_live_ranges_.Contains(range));
1727 active_live_ranges_.RemoveElement(range);
1728 TraceAlloc("Moving live range %d from active to handled\n", range->id());
1729 FreeSpillSlot(range);
1730 }
1731
1732
ActiveToInactive(LiveRange * range)1733 void LAllocator::ActiveToInactive(LiveRange* range) {
1734 DCHECK(active_live_ranges_.Contains(range));
1735 active_live_ranges_.RemoveElement(range);
1736 inactive_live_ranges_.Add(range, zone());
1737 TraceAlloc("Moving live range %d from active to inactive\n", range->id());
1738 }
1739
1740
InactiveToHandled(LiveRange * range)1741 void LAllocator::InactiveToHandled(LiveRange* range) {
1742 DCHECK(inactive_live_ranges_.Contains(range));
1743 inactive_live_ranges_.RemoveElement(range);
1744 TraceAlloc("Moving live range %d from inactive to handled\n", range->id());
1745 FreeSpillSlot(range);
1746 }
1747
1748
InactiveToActive(LiveRange * range)1749 void LAllocator::InactiveToActive(LiveRange* range) {
1750 DCHECK(inactive_live_ranges_.Contains(range));
1751 inactive_live_ranges_.RemoveElement(range);
1752 active_live_ranges_.Add(range, zone());
1753 TraceAlloc("Moving live range %d from inactive to active\n", range->id());
1754 }
1755
1756
TryAllocateFreeReg(LiveRange * current)1757 bool LAllocator::TryAllocateFreeReg(LiveRange* current) {
1758 DCHECK(DoubleRegister::kMaxNumRegisters >= Register::kNumRegisters);
1759
1760 LifetimePosition free_until_pos[DoubleRegister::kMaxNumRegisters];
1761
1762 for (int i = 0; i < DoubleRegister::kMaxNumRegisters; i++) {
1763 free_until_pos[i] = LifetimePosition::MaxPosition();
1764 }
1765
1766 for (int i = 0; i < active_live_ranges_.length(); ++i) {
1767 LiveRange* cur_active = active_live_ranges_.at(i);
1768 free_until_pos[cur_active->assigned_register()] =
1769 LifetimePosition::FromInstructionIndex(0);
1770 }
1771
1772 for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
1773 LiveRange* cur_inactive = inactive_live_ranges_.at(i);
1774 DCHECK(cur_inactive->End().Value() > current->Start().Value());
1775 LifetimePosition next_intersection =
1776 cur_inactive->FirstIntersection(current);
1777 if (!next_intersection.IsValid()) continue;
1778 int cur_reg = cur_inactive->assigned_register();
1779 free_until_pos[cur_reg] = Min(free_until_pos[cur_reg], next_intersection);
1780 }
1781
1782 LOperand* hint = current->FirstHint();
1783 if (hint != NULL && (hint->IsRegister() || hint->IsDoubleRegister())) {
1784 int register_index = hint->index();
1785 TraceAlloc(
1786 "Found reg hint %s (free until [%d) for live range %d (end %d[).\n",
1787 RegisterName(register_index),
1788 free_until_pos[register_index].Value(),
1789 current->id(),
1790 current->End().Value());
1791
1792 // The desired register is free until the end of the current live range.
1793 if (free_until_pos[register_index].Value() >= current->End().Value()) {
1794 TraceAlloc("Assigning preferred reg %s to live range %d\n",
1795 RegisterName(register_index),
1796 current->id());
1797 SetLiveRangeAssignedRegister(current, register_index);
1798 return true;
1799 }
1800 }
1801
1802 // Find the register which stays free for the longest time.
1803 int reg = allocatable_register_codes_[0];
1804 for (int i = 1; i < RegisterCount(); ++i) {
1805 int code = allocatable_register_codes_[i];
1806 if (free_until_pos[code].Value() > free_until_pos[reg].Value()) {
1807 reg = code;
1808 }
1809 }
1810
1811 LifetimePosition pos = free_until_pos[reg];
1812
1813 if (pos.Value() <= current->Start().Value()) {
1814 // All registers are blocked.
1815 return false;
1816 }
1817
1818 if (pos.Value() < current->End().Value()) {
1819 // Register reg is available at the range start but becomes blocked before
1820 // the range end. Split current at position where it becomes blocked.
1821 LiveRange* tail = SplitRangeAt(current, pos);
1822 if (!AllocationOk()) return false;
1823 AddToUnhandledSorted(tail);
1824 }
1825
1826
1827 // Register reg is available at the range start and is free until
1828 // the range end.
1829 DCHECK(pos.Value() >= current->End().Value());
1830 TraceAlloc("Assigning free reg %s to live range %d\n",
1831 RegisterName(reg),
1832 current->id());
1833 SetLiveRangeAssignedRegister(current, reg);
1834
1835 return true;
1836 }
1837
1838
AllocateBlockedReg(LiveRange * current)1839 void LAllocator::AllocateBlockedReg(LiveRange* current) {
1840 UsePosition* register_use = current->NextRegisterPosition(current->Start());
1841 if (register_use == NULL) {
1842 // There is no use in the current live range that requires a register.
1843 // We can just spill it.
1844 Spill(current);
1845 return;
1846 }
1847
1848
1849 LifetimePosition use_pos[DoubleRegister::kMaxNumRegisters];
1850 LifetimePosition block_pos[DoubleRegister::kMaxNumRegisters];
1851
1852 for (int i = 0; i < DoubleRegister::kMaxNumRegisters; i++) {
1853 use_pos[i] = block_pos[i] = LifetimePosition::MaxPosition();
1854 }
1855
1856 for (int i = 0; i < active_live_ranges_.length(); ++i) {
1857 LiveRange* range = active_live_ranges_[i];
1858 int cur_reg = range->assigned_register();
1859 if (range->IsFixed() || !range->CanBeSpilled(current->Start())) {
1860 block_pos[cur_reg] = use_pos[cur_reg] =
1861 LifetimePosition::FromInstructionIndex(0);
1862 } else {
1863 UsePosition* next_use = range->NextUsePositionRegisterIsBeneficial(
1864 current->Start());
1865 if (next_use == NULL) {
1866 use_pos[cur_reg] = range->End();
1867 } else {
1868 use_pos[cur_reg] = next_use->pos();
1869 }
1870 }
1871 }
1872
1873 for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
1874 LiveRange* range = inactive_live_ranges_.at(i);
1875 DCHECK(range->End().Value() > current->Start().Value());
1876 LifetimePosition next_intersection = range->FirstIntersection(current);
1877 if (!next_intersection.IsValid()) continue;
1878 int cur_reg = range->assigned_register();
1879 if (range->IsFixed()) {
1880 block_pos[cur_reg] = Min(block_pos[cur_reg], next_intersection);
1881 use_pos[cur_reg] = Min(block_pos[cur_reg], use_pos[cur_reg]);
1882 } else {
1883 use_pos[cur_reg] = Min(use_pos[cur_reg], next_intersection);
1884 }
1885 }
1886
1887 int reg = allocatable_register_codes_[0];
1888 for (int i = 1; i < RegisterCount(); ++i) {
1889 int code = allocatable_register_codes_[i];
1890 if (use_pos[code].Value() > use_pos[reg].Value()) {
1891 reg = code;
1892 }
1893 }
1894
1895 LifetimePosition pos = use_pos[reg];
1896
1897 if (pos.Value() < register_use->pos().Value()) {
1898 // All registers are blocked before the first use that requires a register.
1899 // Spill starting part of live range up to that use.
1900 SpillBetween(current, current->Start(), register_use->pos());
1901 return;
1902 }
1903
1904 if (block_pos[reg].Value() < current->End().Value()) {
1905 // Register becomes blocked before the current range end. Split before that
1906 // position.
1907 LiveRange* tail = SplitBetween(current,
1908 current->Start(),
1909 block_pos[reg].InstructionStart());
1910 if (!AllocationOk()) return;
1911 AddToUnhandledSorted(tail);
1912 }
1913
1914 // Register reg is not blocked for the whole range.
1915 DCHECK(block_pos[reg].Value() >= current->End().Value());
1916 TraceAlloc("Assigning blocked reg %s to live range %d\n",
1917 RegisterName(reg),
1918 current->id());
1919 SetLiveRangeAssignedRegister(current, reg);
1920
1921 // This register was not free. Thus we need to find and spill
1922 // parts of active and inactive live regions that use the same register
1923 // at the same lifetime positions as current.
1924 SplitAndSpillIntersecting(current);
1925 }
1926
1927
FindOptimalSpillingPos(LiveRange * range,LifetimePosition pos)1928 LifetimePosition LAllocator::FindOptimalSpillingPos(LiveRange* range,
1929 LifetimePosition pos) {
1930 HBasicBlock* block = GetBlock(pos.InstructionStart());
1931 HBasicBlock* loop_header =
1932 block->IsLoopHeader() ? block : block->parent_loop_header();
1933
1934 if (loop_header == NULL) return pos;
1935
1936 UsePosition* prev_use =
1937 range->PreviousUsePositionRegisterIsBeneficial(pos);
1938
1939 while (loop_header != NULL) {
1940 // We are going to spill live range inside the loop.
1941 // If possible try to move spilling position backwards to loop header.
1942 // This will reduce number of memory moves on the back edge.
1943 LifetimePosition loop_start = LifetimePosition::FromInstructionIndex(
1944 loop_header->first_instruction_index());
1945
1946 if (range->Covers(loop_start)) {
1947 if (prev_use == NULL || prev_use->pos().Value() < loop_start.Value()) {
1948 // No register beneficial use inside the loop before the pos.
1949 pos = loop_start;
1950 }
1951 }
1952
1953 // Try hoisting out to an outer loop.
1954 loop_header = loop_header->parent_loop_header();
1955 }
1956
1957 return pos;
1958 }
1959
1960
SplitAndSpillIntersecting(LiveRange * current)1961 void LAllocator::SplitAndSpillIntersecting(LiveRange* current) {
1962 DCHECK(current->HasRegisterAssigned());
1963 int reg = current->assigned_register();
1964 LifetimePosition split_pos = current->Start();
1965 for (int i = 0; i < active_live_ranges_.length(); ++i) {
1966 LiveRange* range = active_live_ranges_[i];
1967 if (range->assigned_register() == reg) {
1968 UsePosition* next_pos = range->NextRegisterPosition(current->Start());
1969 LifetimePosition spill_pos = FindOptimalSpillingPos(range, split_pos);
1970 if (next_pos == NULL) {
1971 SpillAfter(range, spill_pos);
1972 } else {
1973 // When spilling between spill_pos and next_pos ensure that the range
1974 // remains spilled at least until the start of the current live range.
1975 // This guarantees that we will not introduce new unhandled ranges that
1976 // start before the current range as this violates allocation invariant
1977 // and will lead to an inconsistent state of active and inactive
1978 // live-ranges: ranges are allocated in order of their start positions,
1979 // ranges are retired from active/inactive when the start of the
1980 // current live-range is larger than their end.
1981 SpillBetweenUntil(range, spill_pos, current->Start(), next_pos->pos());
1982 }
1983 if (!AllocationOk()) return;
1984 ActiveToHandled(range);
1985 --i;
1986 }
1987 }
1988
1989 for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
1990 LiveRange* range = inactive_live_ranges_[i];
1991 DCHECK(range->End().Value() > current->Start().Value());
1992 if (range->assigned_register() == reg && !range->IsFixed()) {
1993 LifetimePosition next_intersection = range->FirstIntersection(current);
1994 if (next_intersection.IsValid()) {
1995 UsePosition* next_pos = range->NextRegisterPosition(current->Start());
1996 if (next_pos == NULL) {
1997 SpillAfter(range, split_pos);
1998 } else {
1999 next_intersection = Min(next_intersection, next_pos->pos());
2000 SpillBetween(range, split_pos, next_intersection);
2001 }
2002 if (!AllocationOk()) return;
2003 InactiveToHandled(range);
2004 --i;
2005 }
2006 }
2007 }
2008 }
2009
2010
IsBlockBoundary(LifetimePosition pos)2011 bool LAllocator::IsBlockBoundary(LifetimePosition pos) {
2012 return pos.IsInstructionStart() &&
2013 InstructionAt(pos.InstructionIndex())->IsLabel();
2014 }
2015
2016
SplitRangeAt(LiveRange * range,LifetimePosition pos)2017 LiveRange* LAllocator::SplitRangeAt(LiveRange* range, LifetimePosition pos) {
2018 DCHECK(!range->IsFixed());
2019 TraceAlloc("Splitting live range %d at %d\n", range->id(), pos.Value());
2020
2021 if (pos.Value() <= range->Start().Value()) return range;
2022
2023 // We can't properly connect liveranges if split occured at the end
2024 // of control instruction.
2025 DCHECK(pos.IsInstructionStart() ||
2026 !chunk_->instructions()->at(pos.InstructionIndex())->IsControl());
2027
2028 int vreg = GetVirtualRegister();
2029 if (!AllocationOk()) return NULL;
2030 LiveRange* result = LiveRangeFor(vreg);
2031 range->SplitAt(pos, result, zone());
2032 return result;
2033 }
2034
2035
SplitBetween(LiveRange * range,LifetimePosition start,LifetimePosition end)2036 LiveRange* LAllocator::SplitBetween(LiveRange* range,
2037 LifetimePosition start,
2038 LifetimePosition end) {
2039 DCHECK(!range->IsFixed());
2040 TraceAlloc("Splitting live range %d in position between [%d, %d]\n",
2041 range->id(),
2042 start.Value(),
2043 end.Value());
2044
2045 LifetimePosition split_pos = FindOptimalSplitPos(start, end);
2046 DCHECK(split_pos.Value() >= start.Value());
2047 return SplitRangeAt(range, split_pos);
2048 }
2049
2050
FindOptimalSplitPos(LifetimePosition start,LifetimePosition end)2051 LifetimePosition LAllocator::FindOptimalSplitPos(LifetimePosition start,
2052 LifetimePosition end) {
2053 int start_instr = start.InstructionIndex();
2054 int end_instr = end.InstructionIndex();
2055 DCHECK(start_instr <= end_instr);
2056
2057 // We have no choice
2058 if (start_instr == end_instr) return end;
2059
2060 HBasicBlock* start_block = GetBlock(start);
2061 HBasicBlock* end_block = GetBlock(end);
2062
2063 if (end_block == start_block) {
2064 // The interval is split in the same basic block. Split at the latest
2065 // possible position.
2066 return end;
2067 }
2068
2069 HBasicBlock* block = end_block;
2070 // Find header of outermost loop.
2071 while (block->parent_loop_header() != NULL &&
2072 block->parent_loop_header()->block_id() > start_block->block_id()) {
2073 block = block->parent_loop_header();
2074 }
2075
2076 // We did not find any suitable outer loop. Split at the latest possible
2077 // position unless end_block is a loop header itself.
2078 if (block == end_block && !end_block->IsLoopHeader()) return end;
2079
2080 return LifetimePosition::FromInstructionIndex(
2081 block->first_instruction_index());
2082 }
2083
2084
SpillAfter(LiveRange * range,LifetimePosition pos)2085 void LAllocator::SpillAfter(LiveRange* range, LifetimePosition pos) {
2086 LiveRange* second_part = SplitRangeAt(range, pos);
2087 if (!AllocationOk()) return;
2088 Spill(second_part);
2089 }
2090
2091
SpillBetween(LiveRange * range,LifetimePosition start,LifetimePosition end)2092 void LAllocator::SpillBetween(LiveRange* range,
2093 LifetimePosition start,
2094 LifetimePosition end) {
2095 SpillBetweenUntil(range, start, start, end);
2096 }
2097
2098
SpillBetweenUntil(LiveRange * range,LifetimePosition start,LifetimePosition until,LifetimePosition end)2099 void LAllocator::SpillBetweenUntil(LiveRange* range,
2100 LifetimePosition start,
2101 LifetimePosition until,
2102 LifetimePosition end) {
2103 CHECK(start.Value() < end.Value());
2104 LiveRange* second_part = SplitRangeAt(range, start);
2105 if (!AllocationOk()) return;
2106
2107 if (second_part->Start().Value() < end.Value()) {
2108 // The split result intersects with [start, end[.
2109 // Split it at position between ]start+1, end[, spill the middle part
2110 // and put the rest to unhandled.
2111 LiveRange* third_part = SplitBetween(
2112 second_part,
2113 Max(second_part->Start().InstructionEnd(), until),
2114 end.PrevInstruction().InstructionEnd());
2115 if (!AllocationOk()) return;
2116
2117 DCHECK(third_part != second_part);
2118
2119 Spill(second_part);
2120 AddToUnhandledSorted(third_part);
2121 } else {
2122 // The split result does not intersect with [start, end[.
2123 // Nothing to spill. Just put it to unhandled as whole.
2124 AddToUnhandledSorted(second_part);
2125 }
2126 }
2127
2128
Spill(LiveRange * range)2129 void LAllocator::Spill(LiveRange* range) {
2130 DCHECK(!range->IsSpilled());
2131 TraceAlloc("Spilling live range %d\n", range->id());
2132 LiveRange* first = range->TopLevel();
2133
2134 if (!first->HasAllocatedSpillOperand()) {
2135 LOperand* op = TryReuseSpillSlot(range);
2136 if (op == NULL) op = chunk_->GetNextSpillSlot(range->Kind());
2137 first->SetSpillOperand(op);
2138 }
2139 range->MakeSpilled(chunk()->zone());
2140 }
2141
2142
RegisterCount() const2143 int LAllocator::RegisterCount() const {
2144 return num_registers_;
2145 }
2146
2147
2148 #ifdef DEBUG
2149
2150
Verify() const2151 void LAllocator::Verify() const {
2152 for (int i = 0; i < live_ranges()->length(); ++i) {
2153 LiveRange* current = live_ranges()->at(i);
2154 if (current != NULL) current->Verify();
2155 }
2156 }
2157
2158
2159 #endif
2160
2161
LAllocatorPhase(const char * name,LAllocator * allocator)2162 LAllocatorPhase::LAllocatorPhase(const char* name, LAllocator* allocator)
2163 : CompilationPhase(name, allocator->graph()->info()),
2164 allocator_(allocator) {
2165 if (FLAG_hydrogen_stats) {
2166 allocator_zone_start_allocation_size_ =
2167 allocator->zone()->allocation_size();
2168 }
2169 }
2170
2171
~LAllocatorPhase()2172 LAllocatorPhase::~LAllocatorPhase() {
2173 if (FLAG_hydrogen_stats) {
2174 size_t size = allocator_->zone()->allocation_size() -
2175 allocator_zone_start_allocation_size_;
2176 isolate()->GetHStatistics()->SaveTiming(name(), base::TimeDelta(), size);
2177 }
2178
2179 if (ShouldProduceTraceOutput()) {
2180 isolate()->GetHTracer()->TraceLithium(name(), allocator_->chunk());
2181 isolate()->GetHTracer()->TraceLiveRanges(name(), allocator_);
2182 }
2183
2184 #ifdef DEBUG
2185 if (allocator_ != NULL) allocator_->Verify();
2186 #endif
2187 }
2188
2189
2190 } // namespace internal
2191 } // namespace v8
2192