1 /* ====================================================================
2 * Copyright (c) 2008 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * openssl-core@openssl.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ==================================================================== */
48
49 #ifndef OPENSSL_HEADER_MODES_INTERNAL_H
50 #define OPENSSL_HEADER_MODES_INTERNAL_H
51
52 #include <openssl/base.h>
53
54 #include <string.h>
55
56 #include "../internal.h"
57
58 #if defined(__cplusplus)
59 extern "C" {
60 #endif
61
62
63 #define asm __asm__
64
65 #define STRICT_ALIGNMENT 1
66 #if defined(OPENSSL_X86_64) || defined(OPENSSL_X86) || defined(OPENSSL_AARCH64)
67 #undef STRICT_ALIGNMENT
68 #define STRICT_ALIGNMENT 0
69 #endif
70
71 #if defined(__GNUC__) && __GNUC__ >= 2
CRYPTO_bswap4(uint32_t x)72 static inline uint32_t CRYPTO_bswap4(uint32_t x) {
73 return __builtin_bswap32(x);
74 }
75
CRYPTO_bswap8(uint64_t x)76 static inline uint64_t CRYPTO_bswap8(uint64_t x) {
77 return __builtin_bswap64(x);
78 }
79 #elif defined(_MSC_VER)
80 OPENSSL_MSVC_PRAGMA(warning(push, 3))
81 #include <intrin.h>
82 OPENSSL_MSVC_PRAGMA(warning(pop))
83 #pragma intrinsic(_byteswap_uint64, _byteswap_ulong)
84 static inline uint32_t CRYPTO_bswap4(uint32_t x) {
85 return _byteswap_ulong(x);
86 }
87
88 static inline uint64_t CRYPTO_bswap8(uint64_t x) {
89 return _byteswap_uint64(x);
90 }
91 #else
92 static inline uint32_t CRYPTO_bswap4(uint32_t x) {
93 x = (x >> 16) | (x << 16);
94 x = ((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8);
95 return x;
96 }
97
98 static inline uint64_t CRYPTO_bswap8(uint64_t x) {
99 return CRYPTO_bswap4(x >> 32) | (((uint64_t)CRYPTO_bswap4(x)) << 32);
100 }
101 #endif
102
GETU32(const void * in)103 static inline uint32_t GETU32(const void *in) {
104 uint32_t v;
105 OPENSSL_memcpy(&v, in, sizeof(v));
106 return CRYPTO_bswap4(v);
107 }
108
PUTU32(void * out,uint32_t v)109 static inline void PUTU32(void *out, uint32_t v) {
110 v = CRYPTO_bswap4(v);
111 OPENSSL_memcpy(out, &v, sizeof(v));
112 }
113
GETU32_aligned(const void * in)114 static inline uint32_t GETU32_aligned(const void *in) {
115 const char *alias = (const char *) in;
116 return CRYPTO_bswap4(*((const uint32_t *) alias));
117 }
118
PUTU32_aligned(void * in,uint32_t v)119 static inline void PUTU32_aligned(void *in, uint32_t v) {
120 char *alias = (char *) in;
121 *((uint32_t *) alias) = CRYPTO_bswap4(v);
122 }
123
124 /* block128_f is the type of a 128-bit, block cipher. */
125 typedef void (*block128_f)(const uint8_t in[16], uint8_t out[16],
126 const void *key);
127
128 /* GCM definitions */
129 typedef struct { uint64_t hi,lo; } u128;
130
131 /* gmult_func multiplies |Xi| by the GCM key and writes the result back to
132 * |Xi|. */
133 typedef void (*gmult_func)(uint64_t Xi[2], const u128 Htable[16]);
134
135 /* ghash_func repeatedly multiplies |Xi| by the GCM key and adds in blocks from
136 * |inp|. The result is written back to |Xi| and the |len| argument must be a
137 * multiple of 16. */
138 typedef void (*ghash_func)(uint64_t Xi[2], const u128 Htable[16],
139 const uint8_t *inp, size_t len);
140
141 /* This differs from upstream's |gcm128_context| in that it does not have the
142 * |key| pointer, in order to make it |memcpy|-friendly. Rather the key is
143 * passed into each call that needs it. */
144 struct gcm128_context {
145 /* Following 6 names follow names in GCM specification */
146 union {
147 uint64_t u[2];
148 uint32_t d[4];
149 uint8_t c[16];
150 size_t t[16 / sizeof(size_t)];
151 } Yi, EKi, EK0, len, Xi;
152
153 /* Note that the order of |Xi|, |H| and |Htable| is fixed by the MOVBE-based,
154 * x86-64, GHASH assembly. */
155 u128 H;
156 u128 Htable[16];
157 gmult_func gmult;
158 ghash_func ghash;
159
160 unsigned int mres, ares;
161 block128_f block;
162 };
163
164 #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
165 /* crypto_gcm_clmul_enabled returns one if the CLMUL implementation of GCM is
166 * used. */
167 int crypto_gcm_clmul_enabled(void);
168 #endif
169
170
171 /* CTR. */
172
173 /* ctr128_f is the type of a function that performs CTR-mode encryption. */
174 typedef void (*ctr128_f)(const uint8_t *in, uint8_t *out, size_t blocks,
175 const void *key, const uint8_t ivec[16]);
176
177 /* CRYPTO_ctr128_encrypt encrypts (or decrypts, it's the same in CTR mode)
178 * |len| bytes from |in| to |out| using |block| in counter mode. There's no
179 * requirement that |len| be a multiple of any value and any partial blocks are
180 * stored in |ecount_buf| and |*num|, which must be zeroed before the initial
181 * call. The counter is a 128-bit, big-endian value in |ivec| and is
182 * incremented by this function. */
183 void CRYPTO_ctr128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
184 const void *key, uint8_t ivec[16],
185 uint8_t ecount_buf[16], unsigned *num,
186 block128_f block);
187
188 /* CRYPTO_ctr128_encrypt_ctr32 acts like |CRYPTO_ctr128_encrypt| but takes
189 * |ctr|, a function that performs CTR mode but only deals with the lower 32
190 * bits of the counter. This is useful when |ctr| can be an optimised
191 * function. */
192 void CRYPTO_ctr128_encrypt_ctr32(const uint8_t *in, uint8_t *out, size_t len,
193 const void *key, uint8_t ivec[16],
194 uint8_t ecount_buf[16], unsigned *num,
195 ctr128_f ctr);
196
197 #if !defined(OPENSSL_NO_ASM) && \
198 (defined(OPENSSL_X86) || defined(OPENSSL_X86_64))
199 void aesni_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t blocks,
200 const void *key, const uint8_t *ivec);
201 #endif
202
203
204 /* GCM.
205 *
206 * This API differs from the upstream API slightly. The |GCM128_CONTEXT| does
207 * not have a |key| pointer that points to the key as upstream's version does.
208 * Instead, every function takes a |key| parameter. This way |GCM128_CONTEXT|
209 * can be safely copied. */
210
211 typedef struct gcm128_context GCM128_CONTEXT;
212
213 /* CRYPTO_ghash_init writes a precomputed table of powers of |gcm_key| to
214 * |out_table| and sets |*out_mult| and |*out_hash| to (potentially hardware
215 * accelerated) functions for performing operations in the GHASH field. */
216 void CRYPTO_ghash_init(gmult_func *out_mult, ghash_func *out_hash,
217 u128 *out_key, u128 out_table[16],
218 const uint8_t *gcm_key);
219
220 /* CRYPTO_gcm128_init initialises |ctx| to use |block| (typically AES) with
221 * the given key. */
222 OPENSSL_EXPORT void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx, const void *key,
223 block128_f block);
224
225 /* CRYPTO_gcm128_setiv sets the IV (nonce) for |ctx|. The |key| must be the
226 * same key that was passed to |CRYPTO_gcm128_init|. */
227 OPENSSL_EXPORT void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const void *key,
228 const uint8_t *iv, size_t iv_len);
229
230 /* CRYPTO_gcm128_aad sets the authenticated data for an instance of GCM.
231 * This must be called before and data is encrypted. It returns one on success
232 * and zero otherwise. */
233 OPENSSL_EXPORT int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const uint8_t *aad,
234 size_t len);
235
236 /* CRYPTO_gcm128_encrypt encrypts |len| bytes from |in| to |out|. The |key|
237 * must be the same key that was passed to |CRYPTO_gcm128_init|. It returns one
238 * on success and zero otherwise. */
239 OPENSSL_EXPORT int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, const void *key,
240 const uint8_t *in, uint8_t *out,
241 size_t len);
242
243 /* CRYPTO_gcm128_decrypt decrypts |len| bytes from |in| to |out|. The |key|
244 * must be the same key that was passed to |CRYPTO_gcm128_init|. It returns one
245 * on success and zero otherwise. */
246 OPENSSL_EXPORT int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, const void *key,
247 const uint8_t *in, uint8_t *out,
248 size_t len);
249
250 /* CRYPTO_gcm128_encrypt_ctr32 encrypts |len| bytes from |in| to |out| using
251 * a CTR function that only handles the bottom 32 bits of the nonce, like
252 * |CRYPTO_ctr128_encrypt_ctr32|. The |key| must be the same key that was
253 * passed to |CRYPTO_gcm128_init|. It returns one on success and zero
254 * otherwise. */
255 OPENSSL_EXPORT int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx,
256 const void *key,
257 const uint8_t *in, uint8_t *out,
258 size_t len, ctr128_f stream);
259
260 /* CRYPTO_gcm128_decrypt_ctr32 decrypts |len| bytes from |in| to |out| using
261 * a CTR function that only handles the bottom 32 bits of the nonce, like
262 * |CRYPTO_ctr128_encrypt_ctr32|. The |key| must be the same key that was
263 * passed to |CRYPTO_gcm128_init|. It returns one on success and zero
264 * otherwise. */
265 OPENSSL_EXPORT int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx,
266 const void *key,
267 const uint8_t *in, uint8_t *out,
268 size_t len, ctr128_f stream);
269
270 /* CRYPTO_gcm128_finish calculates the authenticator and compares it against
271 * |len| bytes of |tag|. It returns one on success and zero otherwise. */
272 OPENSSL_EXPORT int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const uint8_t *tag,
273 size_t len);
274
275 /* CRYPTO_gcm128_tag calculates the authenticator and copies it into |tag|.
276 * The minimum of |len| and 16 bytes are copied into |tag|. */
277 OPENSSL_EXPORT void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, uint8_t *tag,
278 size_t len);
279
280
281 /* CBC. */
282
283 /* cbc128_f is the type of a function that performs CBC-mode encryption. */
284 typedef void (*cbc128_f)(const uint8_t *in, uint8_t *out, size_t len,
285 const void *key, uint8_t ivec[16], int enc);
286
287 /* CRYPTO_cbc128_encrypt encrypts |len| bytes from |in| to |out| using the
288 * given IV and block cipher in CBC mode. The input need not be a multiple of
289 * 128 bits long, but the output will round up to the nearest 128 bit multiple,
290 * zero padding the input if needed. The IV will be updated on return. */
291 void CRYPTO_cbc128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
292 const void *key, uint8_t ivec[16], block128_f block);
293
294 /* CRYPTO_cbc128_decrypt decrypts |len| bytes from |in| to |out| using the
295 * given IV and block cipher in CBC mode. If |len| is not a multiple of 128
296 * bits then only that many bytes will be written, but a multiple of 128 bits
297 * is always read from |in|. The IV will be updated on return. */
298 void CRYPTO_cbc128_decrypt(const uint8_t *in, uint8_t *out, size_t len,
299 const void *key, uint8_t ivec[16], block128_f block);
300
301
302 /* OFB. */
303
304 /* CRYPTO_ofb128_encrypt encrypts (or decrypts, it's the same with OFB mode)
305 * |len| bytes from |in| to |out| using |block| in OFB mode. There's no
306 * requirement that |len| be a multiple of any value and any partial blocks are
307 * stored in |ivec| and |*num|, the latter must be zero before the initial
308 * call. */
309 void CRYPTO_ofb128_encrypt(const uint8_t *in, uint8_t *out,
310 size_t len, const void *key, uint8_t ivec[16],
311 unsigned *num, block128_f block);
312
313
314 /* CFB. */
315
316 /* CRYPTO_cfb128_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes
317 * from |in| to |out| using |block| in CFB mode. There's no requirement that
318 * |len| be a multiple of any value and any partial blocks are stored in |ivec|
319 * and |*num|, the latter must be zero before the initial call. */
320 void CRYPTO_cfb128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
321 const void *key, uint8_t ivec[16], unsigned *num,
322 int enc, block128_f block);
323
324 /* CRYPTO_cfb128_8_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes
325 * from |in| to |out| using |block| in CFB-8 mode. Prior to the first call
326 * |num| should be set to zero. */
327 void CRYPTO_cfb128_8_encrypt(const uint8_t *in, uint8_t *out, size_t len,
328 const void *key, uint8_t ivec[16], unsigned *num,
329 int enc, block128_f block);
330
331 /* CRYPTO_cfb128_1_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes
332 * from |in| to |out| using |block| in CFB-1 mode. Prior to the first call
333 * |num| should be set to zero. */
334 void CRYPTO_cfb128_1_encrypt(const uint8_t *in, uint8_t *out, size_t bits,
335 const void *key, uint8_t ivec[16], unsigned *num,
336 int enc, block128_f block);
337
338 size_t CRYPTO_cts128_encrypt_block(const uint8_t *in, uint8_t *out, size_t len,
339 const void *key, uint8_t ivec[16],
340 block128_f block);
341
342
343 /* POLYVAL.
344 *
345 * POLYVAL is a polynomial authenticator that operates over a field very
346 * similar to the one that GHASH uses. See
347 * https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv-02#section-3. */
348
349 typedef union {
350 uint64_t u[2];
351 uint8_t c[16];
352 } polyval_block;
353
354 struct polyval_ctx {
355 /* Note that the order of |S|, |H| and |Htable| is fixed by the MOVBE-based,
356 * x86-64, GHASH assembly. */
357 polyval_block S;
358 u128 H;
359 u128 Htable[16];
360 gmult_func gmult;
361 ghash_func ghash;
362 };
363
364 /* CRYPTO_POLYVAL_init initialises |ctx| using |key|. */
365 void CRYPTO_POLYVAL_init(struct polyval_ctx *ctx, const uint8_t key[16]);
366
367 /* CRYPTO_POLYVAL_update_blocks updates the accumulator in |ctx| given the
368 * blocks from |in|. Only a whole number of blocks can be processed so |in_len|
369 * must be a multiple of 16. */
370 void CRYPTO_POLYVAL_update_blocks(struct polyval_ctx *ctx, const uint8_t *in,
371 size_t in_len);
372
373 /* CRYPTO_POLYVAL_finish writes the accumulator from |ctx| to |out|. */
374 void CRYPTO_POLYVAL_finish(const struct polyval_ctx *ctx, uint8_t out[16]);
375
376
377 #if defined(__cplusplus)
378 } /* extern C */
379 #endif
380
381 #endif /* OPENSSL_HEADER_MODES_INTERNAL_H */
382