1 /* ====================================================================
2  * Copyright (c) 2008 The OpenSSL Project.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in
13  *    the documentation and/or other materials provided with the
14  *    distribution.
15  *
16  * 3. All advertising materials mentioning features or use of this
17  *    software must display the following acknowledgment:
18  *    "This product includes software developed by the OpenSSL Project
19  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
20  *
21  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22  *    endorse or promote products derived from this software without
23  *    prior written permission. For written permission, please contact
24  *    openssl-core@openssl.org.
25  *
26  * 5. Products derived from this software may not be called "OpenSSL"
27  *    nor may "OpenSSL" appear in their names without prior written
28  *    permission of the OpenSSL Project.
29  *
30  * 6. Redistributions of any form whatsoever must retain the following
31  *    acknowledgment:
32  *    "This product includes software developed by the OpenSSL Project
33  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
36  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
39  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46  * OF THE POSSIBILITY OF SUCH DAMAGE.
47  * ==================================================================== */
48 
49 #ifndef OPENSSL_HEADER_MODES_INTERNAL_H
50 #define OPENSSL_HEADER_MODES_INTERNAL_H
51 
52 #include <openssl/base.h>
53 
54 #include <string.h>
55 
56 #include "../internal.h"
57 
58 #if defined(__cplusplus)
59 extern "C" {
60 #endif
61 
62 
63 #define asm __asm__
64 
65 #define STRICT_ALIGNMENT 1
66 #if defined(OPENSSL_X86_64) || defined(OPENSSL_X86) || defined(OPENSSL_AARCH64)
67 #undef STRICT_ALIGNMENT
68 #define STRICT_ALIGNMENT 0
69 #endif
70 
71 #if defined(__GNUC__) && __GNUC__ >= 2
CRYPTO_bswap4(uint32_t x)72 static inline uint32_t CRYPTO_bswap4(uint32_t x) {
73   return __builtin_bswap32(x);
74 }
75 
CRYPTO_bswap8(uint64_t x)76 static inline uint64_t CRYPTO_bswap8(uint64_t x) {
77   return __builtin_bswap64(x);
78 }
79 #elif defined(_MSC_VER)
80 OPENSSL_MSVC_PRAGMA(warning(push, 3))
81 #include <intrin.h>
82 OPENSSL_MSVC_PRAGMA(warning(pop))
83 #pragma intrinsic(_byteswap_uint64, _byteswap_ulong)
84 static inline uint32_t CRYPTO_bswap4(uint32_t x) {
85   return _byteswap_ulong(x);
86 }
87 
88 static inline uint64_t CRYPTO_bswap8(uint64_t x) {
89   return _byteswap_uint64(x);
90 }
91 #else
92 static inline uint32_t CRYPTO_bswap4(uint32_t x) {
93   x = (x >> 16) | (x << 16);
94   x = ((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8);
95   return x;
96 }
97 
98 static inline uint64_t CRYPTO_bswap8(uint64_t x) {
99   return CRYPTO_bswap4(x >> 32) | (((uint64_t)CRYPTO_bswap4(x)) << 32);
100 }
101 #endif
102 
GETU32(const void * in)103 static inline uint32_t GETU32(const void *in) {
104   uint32_t v;
105   OPENSSL_memcpy(&v, in, sizeof(v));
106   return CRYPTO_bswap4(v);
107 }
108 
PUTU32(void * out,uint32_t v)109 static inline void PUTU32(void *out, uint32_t v) {
110   v = CRYPTO_bswap4(v);
111   OPENSSL_memcpy(out, &v, sizeof(v));
112 }
113 
GETU32_aligned(const void * in)114 static inline uint32_t GETU32_aligned(const void *in) {
115   const char *alias = (const char *) in;
116   return CRYPTO_bswap4(*((const uint32_t *) alias));
117 }
118 
PUTU32_aligned(void * in,uint32_t v)119 static inline void PUTU32_aligned(void *in, uint32_t v) {
120   char *alias = (char *) in;
121   *((uint32_t *) alias) = CRYPTO_bswap4(v);
122 }
123 
124 /* block128_f is the type of a 128-bit, block cipher. */
125 typedef void (*block128_f)(const uint8_t in[16], uint8_t out[16],
126                            const void *key);
127 
128 /* GCM definitions */
129 typedef struct { uint64_t hi,lo; } u128;
130 
131 /* gmult_func multiplies |Xi| by the GCM key and writes the result back to
132  * |Xi|. */
133 typedef void (*gmult_func)(uint64_t Xi[2], const u128 Htable[16]);
134 
135 /* ghash_func repeatedly multiplies |Xi| by the GCM key and adds in blocks from
136  * |inp|. The result is written back to |Xi| and the |len| argument must be a
137  * multiple of 16. */
138 typedef void (*ghash_func)(uint64_t Xi[2], const u128 Htable[16],
139                            const uint8_t *inp, size_t len);
140 
141 /* This differs from upstream's |gcm128_context| in that it does not have the
142  * |key| pointer, in order to make it |memcpy|-friendly. Rather the key is
143  * passed into each call that needs it. */
144 struct gcm128_context {
145   /* Following 6 names follow names in GCM specification */
146   union {
147     uint64_t u[2];
148     uint32_t d[4];
149     uint8_t c[16];
150     size_t t[16 / sizeof(size_t)];
151   } Yi, EKi, EK0, len, Xi;
152 
153   /* Note that the order of |Xi|, |H| and |Htable| is fixed by the MOVBE-based,
154    * x86-64, GHASH assembly. */
155   u128 H;
156   u128 Htable[16];
157   gmult_func gmult;
158   ghash_func ghash;
159 
160   unsigned int mres, ares;
161   block128_f block;
162 };
163 
164 #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
165 /* crypto_gcm_clmul_enabled returns one if the CLMUL implementation of GCM is
166  * used. */
167 int crypto_gcm_clmul_enabled(void);
168 #endif
169 
170 
171 /* CTR. */
172 
173 /* ctr128_f is the type of a function that performs CTR-mode encryption. */
174 typedef void (*ctr128_f)(const uint8_t *in, uint8_t *out, size_t blocks,
175                          const void *key, const uint8_t ivec[16]);
176 
177 /* CRYPTO_ctr128_encrypt encrypts (or decrypts, it's the same in CTR mode)
178  * |len| bytes from |in| to |out| using |block| in counter mode. There's no
179  * requirement that |len| be a multiple of any value and any partial blocks are
180  * stored in |ecount_buf| and |*num|, which must be zeroed before the initial
181  * call. The counter is a 128-bit, big-endian value in |ivec| and is
182  * incremented by this function. */
183 void CRYPTO_ctr128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
184                            const void *key, uint8_t ivec[16],
185                            uint8_t ecount_buf[16], unsigned *num,
186                            block128_f block);
187 
188 /* CRYPTO_ctr128_encrypt_ctr32 acts like |CRYPTO_ctr128_encrypt| but takes
189  * |ctr|, a function that performs CTR mode but only deals with the lower 32
190  * bits of the counter. This is useful when |ctr| can be an optimised
191  * function. */
192 void CRYPTO_ctr128_encrypt_ctr32(const uint8_t *in, uint8_t *out, size_t len,
193                                  const void *key, uint8_t ivec[16],
194                                  uint8_t ecount_buf[16], unsigned *num,
195                                  ctr128_f ctr);
196 
197 #if !defined(OPENSSL_NO_ASM) && \
198     (defined(OPENSSL_X86) || defined(OPENSSL_X86_64))
199 void aesni_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t blocks,
200                                 const void *key, const uint8_t *ivec);
201 #endif
202 
203 
204 /* GCM.
205  *
206  * This API differs from the upstream API slightly. The |GCM128_CONTEXT| does
207  * not have a |key| pointer that points to the key as upstream's version does.
208  * Instead, every function takes a |key| parameter. This way |GCM128_CONTEXT|
209  * can be safely copied. */
210 
211 typedef struct gcm128_context GCM128_CONTEXT;
212 
213 /* CRYPTO_ghash_init writes a precomputed table of powers of |gcm_key| to
214  * |out_table| and sets |*out_mult| and |*out_hash| to (potentially hardware
215  * accelerated) functions for performing operations in the GHASH field. */
216 void CRYPTO_ghash_init(gmult_func *out_mult, ghash_func *out_hash,
217                        u128 *out_key, u128 out_table[16],
218                        const uint8_t *gcm_key);
219 
220 /* CRYPTO_gcm128_init initialises |ctx| to use |block| (typically AES) with
221  * the given key. */
222 OPENSSL_EXPORT void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx, const void *key,
223                                        block128_f block);
224 
225 /* CRYPTO_gcm128_setiv sets the IV (nonce) for |ctx|. The |key| must be the
226  * same key that was passed to |CRYPTO_gcm128_init|. */
227 OPENSSL_EXPORT void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const void *key,
228                                         const uint8_t *iv, size_t iv_len);
229 
230 /* CRYPTO_gcm128_aad sets the authenticated data for an instance of GCM.
231  * This must be called before and data is encrypted. It returns one on success
232  * and zero otherwise. */
233 OPENSSL_EXPORT int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const uint8_t *aad,
234                                      size_t len);
235 
236 /* CRYPTO_gcm128_encrypt encrypts |len| bytes from |in| to |out|. The |key|
237  * must be the same key that was passed to |CRYPTO_gcm128_init|. It returns one
238  * on success and zero otherwise. */
239 OPENSSL_EXPORT int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, const void *key,
240                                          const uint8_t *in, uint8_t *out,
241                                          size_t len);
242 
243 /* CRYPTO_gcm128_decrypt decrypts |len| bytes from |in| to |out|. The |key|
244  * must be the same key that was passed to |CRYPTO_gcm128_init|. It returns one
245  * on success and zero otherwise. */
246 OPENSSL_EXPORT int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, const void *key,
247                                          const uint8_t *in, uint8_t *out,
248                                          size_t len);
249 
250 /* CRYPTO_gcm128_encrypt_ctr32 encrypts |len| bytes from |in| to |out| using
251  * a CTR function that only handles the bottom 32 bits of the nonce, like
252  * |CRYPTO_ctr128_encrypt_ctr32|. The |key| must be the same key that was
253  * passed to |CRYPTO_gcm128_init|. It returns one on success and zero
254  * otherwise. */
255 OPENSSL_EXPORT int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx,
256                                                const void *key,
257                                                const uint8_t *in, uint8_t *out,
258                                                size_t len, ctr128_f stream);
259 
260 /* CRYPTO_gcm128_decrypt_ctr32 decrypts |len| bytes from |in| to |out| using
261  * a CTR function that only handles the bottom 32 bits of the nonce, like
262  * |CRYPTO_ctr128_encrypt_ctr32|. The |key| must be the same key that was
263  * passed to |CRYPTO_gcm128_init|. It returns one on success and zero
264  * otherwise. */
265 OPENSSL_EXPORT int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx,
266                                                const void *key,
267                                                const uint8_t *in, uint8_t *out,
268                                                size_t len, ctr128_f stream);
269 
270 /* CRYPTO_gcm128_finish calculates the authenticator and compares it against
271  * |len| bytes of |tag|. It returns one on success and zero otherwise. */
272 OPENSSL_EXPORT int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const uint8_t *tag,
273                                         size_t len);
274 
275 /* CRYPTO_gcm128_tag calculates the authenticator and copies it into |tag|.
276  * The minimum of |len| and 16 bytes are copied into |tag|. */
277 OPENSSL_EXPORT void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, uint8_t *tag,
278                                       size_t len);
279 
280 
281 /* CBC. */
282 
283 /* cbc128_f is the type of a function that performs CBC-mode encryption. */
284 typedef void (*cbc128_f)(const uint8_t *in, uint8_t *out, size_t len,
285                          const void *key, uint8_t ivec[16], int enc);
286 
287 /* CRYPTO_cbc128_encrypt encrypts |len| bytes from |in| to |out| using the
288  * given IV and block cipher in CBC mode. The input need not be a multiple of
289  * 128 bits long, but the output will round up to the nearest 128 bit multiple,
290  * zero padding the input if needed. The IV will be updated on return. */
291 void CRYPTO_cbc128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
292                            const void *key, uint8_t ivec[16], block128_f block);
293 
294 /* CRYPTO_cbc128_decrypt decrypts |len| bytes from |in| to |out| using the
295  * given IV and block cipher in CBC mode. If |len| is not a multiple of 128
296  * bits then only that many bytes will be written, but a multiple of 128 bits
297  * is always read from |in|. The IV will be updated on return. */
298 void CRYPTO_cbc128_decrypt(const uint8_t *in, uint8_t *out, size_t len,
299                            const void *key, uint8_t ivec[16], block128_f block);
300 
301 
302 /* OFB. */
303 
304 /* CRYPTO_ofb128_encrypt encrypts (or decrypts, it's the same with OFB mode)
305  * |len| bytes from |in| to |out| using |block| in OFB mode. There's no
306  * requirement that |len| be a multiple of any value and any partial blocks are
307  * stored in |ivec| and |*num|, the latter must be zero before the initial
308  * call. */
309 void CRYPTO_ofb128_encrypt(const uint8_t *in, uint8_t *out,
310                            size_t len, const void *key, uint8_t ivec[16],
311                            unsigned *num, block128_f block);
312 
313 
314 /* CFB. */
315 
316 /* CRYPTO_cfb128_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes
317  * from |in| to |out| using |block| in CFB mode. There's no requirement that
318  * |len| be a multiple of any value and any partial blocks are stored in |ivec|
319  * and |*num|, the latter must be zero before the initial call. */
320 void CRYPTO_cfb128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
321                            const void *key, uint8_t ivec[16], unsigned *num,
322                            int enc, block128_f block);
323 
324 /* CRYPTO_cfb128_8_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes
325  * from |in| to |out| using |block| in CFB-8 mode. Prior to the first call
326  * |num| should be set to zero. */
327 void CRYPTO_cfb128_8_encrypt(const uint8_t *in, uint8_t *out, size_t len,
328                              const void *key, uint8_t ivec[16], unsigned *num,
329                              int enc, block128_f block);
330 
331 /* CRYPTO_cfb128_1_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes
332  * from |in| to |out| using |block| in CFB-1 mode. Prior to the first call
333  * |num| should be set to zero. */
334 void CRYPTO_cfb128_1_encrypt(const uint8_t *in, uint8_t *out, size_t bits,
335                              const void *key, uint8_t ivec[16], unsigned *num,
336                              int enc, block128_f block);
337 
338 size_t CRYPTO_cts128_encrypt_block(const uint8_t *in, uint8_t *out, size_t len,
339                                    const void *key, uint8_t ivec[16],
340                                    block128_f block);
341 
342 
343 /* POLYVAL.
344  *
345  * POLYVAL is a polynomial authenticator that operates over a field very
346  * similar to the one that GHASH uses. See
347  * https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv-02#section-3. */
348 
349 typedef union {
350   uint64_t u[2];
351   uint8_t c[16];
352 } polyval_block;
353 
354 struct polyval_ctx {
355   /* Note that the order of |S|, |H| and |Htable| is fixed by the MOVBE-based,
356    * x86-64, GHASH assembly. */
357   polyval_block S;
358   u128 H;
359   u128 Htable[16];
360   gmult_func gmult;
361   ghash_func ghash;
362 };
363 
364 /* CRYPTO_POLYVAL_init initialises |ctx| using |key|. */
365 void CRYPTO_POLYVAL_init(struct polyval_ctx *ctx, const uint8_t key[16]);
366 
367 /* CRYPTO_POLYVAL_update_blocks updates the accumulator in |ctx| given the
368  * blocks from |in|. Only a whole number of blocks can be processed so |in_len|
369  * must be a multiple of 16. */
370 void CRYPTO_POLYVAL_update_blocks(struct polyval_ctx *ctx, const uint8_t *in,
371                                   size_t in_len);
372 
373 /* CRYPTO_POLYVAL_finish writes the accumulator from |ctx| to |out|. */
374 void CRYPTO_POLYVAL_finish(const struct polyval_ctx *ctx, uint8_t out[16]);
375 
376 
377 #if defined(__cplusplus)
378 } /* extern C */
379 #endif
380 
381 #endif /* OPENSSL_HEADER_MODES_INTERNAL_H */
382