1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "induction_var_range.h"
18
19 #include <limits>
20
21 namespace art {
22
23 /** Returns true if 64-bit constant fits in 32-bit constant. */
CanLongValueFitIntoInt(int64_t c)24 static bool CanLongValueFitIntoInt(int64_t c) {
25 return std::numeric_limits<int32_t>::min() <= c && c <= std::numeric_limits<int32_t>::max();
26 }
27
28 /** Returns true if 32-bit addition can be done safely. */
IsSafeAdd(int32_t c1,int32_t c2)29 static bool IsSafeAdd(int32_t c1, int32_t c2) {
30 return CanLongValueFitIntoInt(static_cast<int64_t>(c1) + static_cast<int64_t>(c2));
31 }
32
33 /** Returns true if 32-bit subtraction can be done safely. */
IsSafeSub(int32_t c1,int32_t c2)34 static bool IsSafeSub(int32_t c1, int32_t c2) {
35 return CanLongValueFitIntoInt(static_cast<int64_t>(c1) - static_cast<int64_t>(c2));
36 }
37
38 /** Returns true if 32-bit multiplication can be done safely. */
IsSafeMul(int32_t c1,int32_t c2)39 static bool IsSafeMul(int32_t c1, int32_t c2) {
40 return CanLongValueFitIntoInt(static_cast<int64_t>(c1) * static_cast<int64_t>(c2));
41 }
42
43 /** Returns true if 32-bit division can be done safely. */
IsSafeDiv(int32_t c1,int32_t c2)44 static bool IsSafeDiv(int32_t c1, int32_t c2) {
45 return c2 != 0 && CanLongValueFitIntoInt(static_cast<int64_t>(c1) / static_cast<int64_t>(c2));
46 }
47
48 /** Computes a * b for a,b > 0 (at least until first overflow happens). */
SafeMul(int64_t a,int64_t b,bool * overflow)49 static int64_t SafeMul(int64_t a, int64_t b, /*out*/ bool* overflow) {
50 if (a > 0 && b > 0 && a > (std::numeric_limits<int64_t>::max() / b)) {
51 *overflow = true;
52 }
53 return a * b;
54 }
55
56 /** Returns b^e for b,e > 0. Sets overflow if arithmetic wrap-around occurred. */
IntPow(int64_t b,int64_t e,bool * overflow)57 static int64_t IntPow(int64_t b, int64_t e, /*out*/ bool* overflow) {
58 DCHECK_LT(0, b);
59 DCHECK_LT(0, e);
60 int64_t pow = 1;
61 while (e) {
62 if (e & 1) {
63 pow = SafeMul(pow, b, overflow);
64 }
65 e >>= 1;
66 if (e) {
67 b = SafeMul(b, b, overflow);
68 }
69 }
70 return pow;
71 }
72
73 /**
74 * Detects an instruction that is >= 0. As long as the value is carried by
75 * a single instruction, arithmetic wrap-around cannot occur.
76 */
IsGEZero(HInstruction * instruction)77 static bool IsGEZero(HInstruction* instruction) {
78 DCHECK(instruction != nullptr);
79 if (instruction->IsArrayLength()) {
80 return true;
81 } else if (instruction->IsInvokeStaticOrDirect()) {
82 switch (instruction->AsInvoke()->GetIntrinsic()) {
83 case Intrinsics::kMathMinIntInt:
84 case Intrinsics::kMathMinLongLong:
85 // Instruction MIN(>=0, >=0) is >= 0.
86 return IsGEZero(instruction->InputAt(0)) &&
87 IsGEZero(instruction->InputAt(1));
88 case Intrinsics::kMathAbsInt:
89 case Intrinsics::kMathAbsLong:
90 // Instruction ABS(x) is >= 0.
91 return true;
92 default:
93 break;
94 }
95 }
96 int64_t value = -1;
97 return IsInt64AndGet(instruction, &value) && value >= 0;
98 }
99
100 /** Hunts "under the hood" for a suitable instruction at the hint. */
IsMaxAtHint(HInstruction * instruction,HInstruction * hint,HInstruction ** suitable)101 static bool IsMaxAtHint(
102 HInstruction* instruction, HInstruction* hint, /*out*/HInstruction** suitable) {
103 if (instruction->IsInvokeStaticOrDirect()) {
104 switch (instruction->AsInvoke()->GetIntrinsic()) {
105 case Intrinsics::kMathMinIntInt:
106 case Intrinsics::kMathMinLongLong:
107 // For MIN(x, y), return most suitable x or y as maximum.
108 return IsMaxAtHint(instruction->InputAt(0), hint, suitable) ||
109 IsMaxAtHint(instruction->InputAt(1), hint, suitable);
110 default:
111 break;
112 }
113 } else {
114 *suitable = instruction;
115 return HuntForDeclaration(instruction) == hint;
116 }
117 return false;
118 }
119
120 /** Post-analysis simplification of a minimum value that makes the bound more useful to clients. */
SimplifyMin(InductionVarRange::Value v)121 static InductionVarRange::Value SimplifyMin(InductionVarRange::Value v) {
122 if (v.is_known && v.a_constant == 1 && v.b_constant <= 0) {
123 // If a == 1, instruction >= 0 and b <= 0, just return the constant b.
124 // No arithmetic wrap-around can occur.
125 if (IsGEZero(v.instruction)) {
126 return InductionVarRange::Value(v.b_constant);
127 }
128 }
129 return v;
130 }
131
132 /** Post-analysis simplification of a maximum value that makes the bound more useful to clients. */
SimplifyMax(InductionVarRange::Value v,HInstruction * hint)133 static InductionVarRange::Value SimplifyMax(InductionVarRange::Value v, HInstruction* hint) {
134 if (v.is_known && v.a_constant >= 1) {
135 // An upper bound a * (length / a) + b, where a >= 1, can be conservatively rewritten as
136 // length + b because length >= 0 is true.
137 int64_t value;
138 if (v.instruction->IsDiv() &&
139 v.instruction->InputAt(0)->IsArrayLength() &&
140 IsInt64AndGet(v.instruction->InputAt(1), &value) && v.a_constant == value) {
141 return InductionVarRange::Value(v.instruction->InputAt(0), 1, v.b_constant);
142 }
143 // If a == 1, the most suitable one suffices as maximum value.
144 HInstruction* suitable = nullptr;
145 if (v.a_constant == 1 && IsMaxAtHint(v.instruction, hint, &suitable)) {
146 return InductionVarRange::Value(suitable, 1, v.b_constant);
147 }
148 }
149 return v;
150 }
151
152 /** Tests for a constant value. */
IsConstantValue(InductionVarRange::Value v)153 static bool IsConstantValue(InductionVarRange::Value v) {
154 return v.is_known && v.a_constant == 0;
155 }
156
157 /** Corrects a value for type to account for arithmetic wrap-around in lower precision. */
CorrectForType(InductionVarRange::Value v,Primitive::Type type)158 static InductionVarRange::Value CorrectForType(InductionVarRange::Value v, Primitive::Type type) {
159 switch (type) {
160 case Primitive::kPrimShort:
161 case Primitive::kPrimChar:
162 case Primitive::kPrimByte: {
163 // Constants within range only.
164 // TODO: maybe some room for improvement, like allowing widening conversions
165 int32_t min = Primitive::MinValueOfIntegralType(type);
166 int32_t max = Primitive::MaxValueOfIntegralType(type);
167 return (IsConstantValue(v) && min <= v.b_constant && v.b_constant <= max)
168 ? v
169 : InductionVarRange::Value();
170 }
171 default:
172 return v;
173 }
174 }
175
176 /** Inserts an instruction. */
Insert(HBasicBlock * block,HInstruction * instruction)177 static HInstruction* Insert(HBasicBlock* block, HInstruction* instruction) {
178 DCHECK(block != nullptr);
179 DCHECK(block->GetLastInstruction() != nullptr) << block->GetBlockId();
180 DCHECK(instruction != nullptr);
181 block->InsertInstructionBefore(instruction, block->GetLastInstruction());
182 return instruction;
183 }
184
185 /** Obtains loop's control instruction. */
GetLoopControl(HLoopInformation * loop)186 static HInstruction* GetLoopControl(HLoopInformation* loop) {
187 DCHECK(loop != nullptr);
188 return loop->GetHeader()->GetLastInstruction();
189 }
190
191 //
192 // Public class methods.
193 //
194
InductionVarRange(HInductionVarAnalysis * induction_analysis)195 InductionVarRange::InductionVarRange(HInductionVarAnalysis* induction_analysis)
196 : induction_analysis_(induction_analysis),
197 chase_hint_(nullptr) {
198 DCHECK(induction_analysis != nullptr);
199 }
200
GetInductionRange(HInstruction * context,HInstruction * instruction,HInstruction * chase_hint,Value * min_val,Value * max_val,bool * needs_finite_test)201 bool InductionVarRange::GetInductionRange(HInstruction* context,
202 HInstruction* instruction,
203 HInstruction* chase_hint,
204 /*out*/Value* min_val,
205 /*out*/Value* max_val,
206 /*out*/bool* needs_finite_test) {
207 HLoopInformation* loop = nullptr;
208 HInductionVarAnalysis::InductionInfo* info = nullptr;
209 HInductionVarAnalysis::InductionInfo* trip = nullptr;
210 if (!HasInductionInfo(context, instruction, &loop, &info, &trip)) {
211 return false;
212 }
213 // Type int or lower (this is not too restrictive since intended clients, like
214 // bounds check elimination, will have truncated higher precision induction
215 // at their use point already).
216 switch (info->type) {
217 case Primitive::kPrimInt:
218 case Primitive::kPrimShort:
219 case Primitive::kPrimChar:
220 case Primitive::kPrimByte:
221 break;
222 default:
223 return false;
224 }
225 // Find range.
226 chase_hint_ = chase_hint;
227 bool in_body = context->GetBlock() != loop->GetHeader();
228 int64_t stride_value = 0;
229 *min_val = SimplifyMin(GetVal(info, trip, in_body, /* is_min */ true));
230 *max_val = SimplifyMax(GetVal(info, trip, in_body, /* is_min */ false), chase_hint);
231 *needs_finite_test = NeedsTripCount(info, &stride_value) && IsUnsafeTripCount(trip);
232 chase_hint_ = nullptr;
233 // Retry chasing constants for wrap-around (merge sensitive).
234 if (!min_val->is_known && info->induction_class == HInductionVarAnalysis::kWrapAround) {
235 *min_val = SimplifyMin(GetVal(info, trip, in_body, /* is_min */ true));
236 }
237 return true;
238 }
239
CanGenerateRange(HInstruction * context,HInstruction * instruction,bool * needs_finite_test,bool * needs_taken_test)240 bool InductionVarRange::CanGenerateRange(HInstruction* context,
241 HInstruction* instruction,
242 /*out*/bool* needs_finite_test,
243 /*out*/bool* needs_taken_test) {
244 bool is_last_value = false;
245 int64_t stride_value = 0;
246 return GenerateRangeOrLastValue(context,
247 instruction,
248 is_last_value,
249 nullptr,
250 nullptr,
251 nullptr,
252 nullptr,
253 nullptr, // nothing generated yet
254 &stride_value,
255 needs_finite_test,
256 needs_taken_test)
257 && (stride_value == -1 ||
258 stride_value == 0 ||
259 stride_value == 1); // avoid arithmetic wrap-around anomalies.
260 }
261
GenerateRange(HInstruction * context,HInstruction * instruction,HGraph * graph,HBasicBlock * block,HInstruction ** lower,HInstruction ** upper)262 void InductionVarRange::GenerateRange(HInstruction* context,
263 HInstruction* instruction,
264 HGraph* graph,
265 HBasicBlock* block,
266 /*out*/HInstruction** lower,
267 /*out*/HInstruction** upper) {
268 bool is_last_value = false;
269 int64_t stride_value = 0;
270 bool b1, b2; // unused
271 if (!GenerateRangeOrLastValue(context,
272 instruction,
273 is_last_value,
274 graph,
275 block,
276 lower,
277 upper,
278 nullptr,
279 &stride_value,
280 &b1,
281 &b2)) {
282 LOG(FATAL) << "Failed precondition: CanGenerateRange()";
283 }
284 }
285
GenerateTakenTest(HInstruction * context,HGraph * graph,HBasicBlock * block)286 HInstruction* InductionVarRange::GenerateTakenTest(HInstruction* context,
287 HGraph* graph,
288 HBasicBlock* block) {
289 HInstruction* taken_test = nullptr;
290 bool is_last_value = false;
291 int64_t stride_value = 0;
292 bool b1, b2; // unused
293 if (!GenerateRangeOrLastValue(context,
294 context,
295 is_last_value,
296 graph,
297 block,
298 nullptr,
299 nullptr,
300 &taken_test,
301 &stride_value,
302 &b1,
303 &b2)) {
304 LOG(FATAL) << "Failed precondition: CanGenerateRange()";
305 }
306 return taken_test;
307 }
308
CanGenerateLastValue(HInstruction * instruction)309 bool InductionVarRange::CanGenerateLastValue(HInstruction* instruction) {
310 bool is_last_value = true;
311 int64_t stride_value = 0;
312 bool needs_finite_test = false;
313 bool needs_taken_test = false;
314 return GenerateRangeOrLastValue(instruction,
315 instruction,
316 is_last_value,
317 nullptr,
318 nullptr,
319 nullptr,
320 nullptr,
321 nullptr, // nothing generated yet
322 &stride_value,
323 &needs_finite_test,
324 &needs_taken_test)
325 && !needs_finite_test && !needs_taken_test;
326 }
327
GenerateLastValue(HInstruction * instruction,HGraph * graph,HBasicBlock * block)328 HInstruction* InductionVarRange::GenerateLastValue(HInstruction* instruction,
329 HGraph* graph,
330 HBasicBlock* block) {
331 HInstruction* last_value = nullptr;
332 bool is_last_value = true;
333 int64_t stride_value = 0;
334 bool b1, b2; // unused
335 if (!GenerateRangeOrLastValue(instruction,
336 instruction,
337 is_last_value,
338 graph,
339 block,
340 &last_value,
341 &last_value,
342 nullptr,
343 &stride_value,
344 &b1,
345 &b2)) {
346 LOG(FATAL) << "Failed precondition: CanGenerateLastValue()";
347 }
348 return last_value;
349 }
350
Replace(HInstruction * instruction,HInstruction * fetch,HInstruction * replacement)351 void InductionVarRange::Replace(HInstruction* instruction,
352 HInstruction* fetch,
353 HInstruction* replacement) {
354 for (HLoopInformation* lp = instruction->GetBlock()->GetLoopInformation(); // closest enveloping loop
355 lp != nullptr;
356 lp = lp->GetPreHeader()->GetLoopInformation()) {
357 // Update instruction's information.
358 ReplaceInduction(induction_analysis_->LookupInfo(lp, instruction), fetch, replacement);
359 // Update loop's trip-count information.
360 ReplaceInduction(induction_analysis_->LookupInfo(lp, GetLoopControl(lp)), fetch, replacement);
361 }
362 }
363
IsFinite(HLoopInformation * loop,int64_t * tc) const364 bool InductionVarRange::IsFinite(HLoopInformation* loop, /*out*/ int64_t* tc) const {
365 HInductionVarAnalysis::InductionInfo *trip =
366 induction_analysis_->LookupInfo(loop, GetLoopControl(loop));
367 if (trip != nullptr && !IsUnsafeTripCount(trip)) {
368 IsConstant(trip->op_a, kExact, tc);
369 return true;
370 }
371 return false;
372 }
373
IsUnitStride(HInstruction * context,HInstruction * instruction,HInstruction ** offset) const374 bool InductionVarRange::IsUnitStride(HInstruction* context,
375 HInstruction* instruction,
376 /*out*/ HInstruction** offset) const {
377 HLoopInformation* loop = nullptr;
378 HInductionVarAnalysis::InductionInfo* info = nullptr;
379 HInductionVarAnalysis::InductionInfo* trip = nullptr;
380 if (HasInductionInfo(context, instruction, &loop, &info, &trip)) {
381 if (info->induction_class == HInductionVarAnalysis::kLinear &&
382 info->op_b->operation == HInductionVarAnalysis::kFetch &&
383 !HInductionVarAnalysis::IsNarrowingLinear(info)) {
384 int64_t stride_value = 0;
385 if (IsConstant(info->op_a, kExact, &stride_value) && stride_value == 1) {
386 int64_t off_value = 0;
387 if (IsConstant(info->op_b, kExact, &off_value) && off_value == 0) {
388 *offset = nullptr;
389 } else {
390 *offset = info->op_b->fetch;
391 }
392 return true;
393 }
394 }
395 }
396 return false;
397 }
398
GenerateTripCount(HLoopInformation * loop,HGraph * graph,HBasicBlock * block)399 HInstruction* InductionVarRange::GenerateTripCount(HLoopInformation* loop,
400 HGraph* graph,
401 HBasicBlock* block) {
402 HInductionVarAnalysis::InductionInfo *trip =
403 induction_analysis_->LookupInfo(loop, GetLoopControl(loop));
404 if (trip != nullptr && !IsUnsafeTripCount(trip)) {
405 HInstruction* taken_test = nullptr;
406 HInstruction* trip_expr = nullptr;
407 if (IsBodyTripCount(trip)) {
408 if (!GenerateCode(trip->op_b, nullptr, graph, block, &taken_test, false, false)) {
409 return nullptr;
410 }
411 }
412 if (GenerateCode(trip->op_a, nullptr, graph, block, &trip_expr, false, false)) {
413 if (taken_test != nullptr) {
414 HInstruction* zero = graph->GetConstant(trip->type, 0);
415 trip_expr = Insert(block, new (graph->GetArena()) HSelect(taken_test, trip_expr, zero, kNoDexPc));
416 }
417 return trip_expr;
418 }
419 }
420 return nullptr;
421 }
422
423 //
424 // Private class methods.
425 //
426
IsConstant(HInductionVarAnalysis::InductionInfo * info,ConstantRequest request,int64_t * value) const427 bool InductionVarRange::IsConstant(HInductionVarAnalysis::InductionInfo* info,
428 ConstantRequest request,
429 /*out*/ int64_t* value) const {
430 if (info != nullptr) {
431 // A direct 32-bit or 64-bit constant fetch. This immediately satisfies
432 // any of the three requests (kExact, kAtMost, and KAtLeast).
433 if (info->induction_class == HInductionVarAnalysis::kInvariant &&
434 info->operation == HInductionVarAnalysis::kFetch) {
435 if (IsInt64AndGet(info->fetch, value)) {
436 return true;
437 }
438 }
439 // Try range analysis on the invariant, only accept a proper range
440 // to avoid arithmetic wrap-around anomalies.
441 Value min_val = GetVal(info, nullptr, /* in_body */ true, /* is_min */ true);
442 Value max_val = GetVal(info, nullptr, /* in_body */ true, /* is_min */ false);
443 if (IsConstantValue(min_val) &&
444 IsConstantValue(max_val) && min_val.b_constant <= max_val.b_constant) {
445 if ((request == kExact && min_val.b_constant == max_val.b_constant) || request == kAtMost) {
446 *value = max_val.b_constant;
447 return true;
448 } else if (request == kAtLeast) {
449 *value = min_val.b_constant;
450 return true;
451 }
452 }
453 }
454 return false;
455 }
456
HasInductionInfo(HInstruction * context,HInstruction * instruction,HLoopInformation ** loop,HInductionVarAnalysis::InductionInfo ** info,HInductionVarAnalysis::InductionInfo ** trip) const457 bool InductionVarRange::HasInductionInfo(
458 HInstruction* context,
459 HInstruction* instruction,
460 /*out*/ HLoopInformation** loop,
461 /*out*/ HInductionVarAnalysis::InductionInfo** info,
462 /*out*/ HInductionVarAnalysis::InductionInfo** trip) const {
463 DCHECK(context != nullptr);
464 DCHECK(context->GetBlock() != nullptr);
465 HLoopInformation* lp = context->GetBlock()->GetLoopInformation(); // closest enveloping loop
466 if (lp != nullptr) {
467 HInductionVarAnalysis::InductionInfo* i = induction_analysis_->LookupInfo(lp, instruction);
468 if (i != nullptr) {
469 *loop = lp;
470 *info = i;
471 *trip = induction_analysis_->LookupInfo(lp, GetLoopControl(lp));
472 return true;
473 }
474 }
475 return false;
476 }
477
IsWellBehavedTripCount(HInductionVarAnalysis::InductionInfo * trip) const478 bool InductionVarRange::IsWellBehavedTripCount(HInductionVarAnalysis::InductionInfo* trip) const {
479 if (trip != nullptr) {
480 // Both bounds that define a trip-count are well-behaved if they either are not defined
481 // in any loop, or are contained in a proper interval. This allows finding the min/max
482 // of an expression by chasing outward.
483 InductionVarRange range(induction_analysis_);
484 HInductionVarAnalysis::InductionInfo* lower = trip->op_b->op_a;
485 HInductionVarAnalysis::InductionInfo* upper = trip->op_b->op_b;
486 int64_t not_used = 0;
487 return (!HasFetchInLoop(lower) || range.IsConstant(lower, kAtLeast, ¬_used)) &&
488 (!HasFetchInLoop(upper) || range.IsConstant(upper, kAtLeast, ¬_used));
489 }
490 return true;
491 }
492
HasFetchInLoop(HInductionVarAnalysis::InductionInfo * info) const493 bool InductionVarRange::HasFetchInLoop(HInductionVarAnalysis::InductionInfo* info) const {
494 if (info != nullptr) {
495 if (info->induction_class == HInductionVarAnalysis::kInvariant &&
496 info->operation == HInductionVarAnalysis::kFetch) {
497 return info->fetch->GetBlock()->GetLoopInformation() != nullptr;
498 }
499 return HasFetchInLoop(info->op_a) || HasFetchInLoop(info->op_b);
500 }
501 return false;
502 }
503
NeedsTripCount(HInductionVarAnalysis::InductionInfo * info,int64_t * stride_value) const504 bool InductionVarRange::NeedsTripCount(HInductionVarAnalysis::InductionInfo* info,
505 int64_t* stride_value) const {
506 if (info != nullptr) {
507 if (info->induction_class == HInductionVarAnalysis::kLinear) {
508 return IsConstant(info->op_a, kExact, stride_value);
509 } else if (info->induction_class == HInductionVarAnalysis::kPolynomial) {
510 return NeedsTripCount(info->op_a, stride_value);
511 } else if (info->induction_class == HInductionVarAnalysis::kWrapAround) {
512 return NeedsTripCount(info->op_b, stride_value);
513 }
514 }
515 return false;
516 }
517
IsBodyTripCount(HInductionVarAnalysis::InductionInfo * trip) const518 bool InductionVarRange::IsBodyTripCount(HInductionVarAnalysis::InductionInfo* trip) const {
519 if (trip != nullptr) {
520 if (trip->induction_class == HInductionVarAnalysis::kInvariant) {
521 return trip->operation == HInductionVarAnalysis::kTripCountInBody ||
522 trip->operation == HInductionVarAnalysis::kTripCountInBodyUnsafe;
523 }
524 }
525 return false;
526 }
527
IsUnsafeTripCount(HInductionVarAnalysis::InductionInfo * trip) const528 bool InductionVarRange::IsUnsafeTripCount(HInductionVarAnalysis::InductionInfo* trip) const {
529 if (trip != nullptr) {
530 if (trip->induction_class == HInductionVarAnalysis::kInvariant) {
531 return trip->operation == HInductionVarAnalysis::kTripCountInBodyUnsafe ||
532 trip->operation == HInductionVarAnalysis::kTripCountInLoopUnsafe;
533 }
534 }
535 return false;
536 }
537
GetLinear(HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,bool in_body,bool is_min) const538 InductionVarRange::Value InductionVarRange::GetLinear(HInductionVarAnalysis::InductionInfo* info,
539 HInductionVarAnalysis::InductionInfo* trip,
540 bool in_body,
541 bool is_min) const {
542 DCHECK(info != nullptr);
543 DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kLinear);
544 // Detect common situation where an offset inside the trip-count cancels out during range
545 // analysis (finding max a * (TC - 1) + OFFSET for a == 1 and TC = UPPER - OFFSET or finding
546 // min a * (TC - 1) + OFFSET for a == -1 and TC = OFFSET - UPPER) to avoid losing information
547 // with intermediate results that only incorporate single instructions.
548 if (trip != nullptr) {
549 HInductionVarAnalysis::InductionInfo* trip_expr = trip->op_a;
550 if (trip_expr->type == info->type && trip_expr->operation == HInductionVarAnalysis::kSub) {
551 int64_t stride_value = 0;
552 if (IsConstant(info->op_a, kExact, &stride_value)) {
553 if (!is_min && stride_value == 1) {
554 // Test original trip's negative operand (trip_expr->op_b) against offset of induction.
555 if (HInductionVarAnalysis::InductionEqual(trip_expr->op_b, info->op_b)) {
556 // Analyze cancelled trip with just the positive operand (trip_expr->op_a).
557 HInductionVarAnalysis::InductionInfo cancelled_trip(
558 trip->induction_class,
559 trip->operation,
560 trip_expr->op_a,
561 trip->op_b,
562 nullptr,
563 trip->type);
564 return GetVal(&cancelled_trip, trip, in_body, is_min);
565 }
566 } else if (is_min && stride_value == -1) {
567 // Test original trip's positive operand (trip_expr->op_a) against offset of induction.
568 if (HInductionVarAnalysis::InductionEqual(trip_expr->op_a, info->op_b)) {
569 // Analyze cancelled trip with just the negative operand (trip_expr->op_b).
570 HInductionVarAnalysis::InductionInfo neg(
571 HInductionVarAnalysis::kInvariant,
572 HInductionVarAnalysis::kNeg,
573 nullptr,
574 trip_expr->op_b,
575 nullptr,
576 trip->type);
577 HInductionVarAnalysis::InductionInfo cancelled_trip(
578 trip->induction_class, trip->operation, &neg, trip->op_b, nullptr, trip->type);
579 return SubValue(Value(0), GetVal(&cancelled_trip, trip, in_body, !is_min));
580 }
581 }
582 }
583 }
584 }
585 // General rule of linear induction a * i + b, for normalized 0 <= i < TC.
586 return AddValue(GetMul(info->op_a, trip, trip, in_body, is_min),
587 GetVal(info->op_b, trip, in_body, is_min));
588 }
589
GetPolynomial(HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,bool in_body,bool is_min) const590 InductionVarRange::Value InductionVarRange::GetPolynomial(HInductionVarAnalysis::InductionInfo* info,
591 HInductionVarAnalysis::InductionInfo* trip,
592 bool in_body,
593 bool is_min) const {
594 DCHECK(info != nullptr);
595 DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kPolynomial);
596 int64_t a = 0;
597 int64_t b = 0;
598 if (IsConstant(info->op_a->op_a, kExact, &a) && CanLongValueFitIntoInt(a) && a >= 0 &&
599 IsConstant(info->op_a->op_b, kExact, &b) && CanLongValueFitIntoInt(b) && b >= 0) {
600 // Evaluate bounds on sum_i=0^m-1(a * i + b) + c with a,b >= 0 for
601 // maximum index value m as a * (m * (m-1)) / 2 + b * m + c.
602 Value c = GetVal(info->op_b, trip, in_body, is_min);
603 if (is_min) {
604 return c;
605 } else {
606 Value m = GetVal(trip, trip, in_body, is_min);
607 Value t = DivValue(MulValue(m, SubValue(m, Value(1))), Value(2));
608 Value x = MulValue(Value(a), t);
609 Value y = MulValue(Value(b), m);
610 return AddValue(AddValue(x, y), c);
611 }
612 }
613 return Value();
614 }
615
GetGeometric(HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,bool in_body,bool is_min) const616 InductionVarRange::Value InductionVarRange::GetGeometric(HInductionVarAnalysis::InductionInfo* info,
617 HInductionVarAnalysis::InductionInfo* trip,
618 bool in_body,
619 bool is_min) const {
620 DCHECK(info != nullptr);
621 DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kGeometric);
622 int64_t a = 0;
623 int64_t f = 0;
624 if (IsConstant(info->op_a, kExact, &a) &&
625 CanLongValueFitIntoInt(a) &&
626 IsInt64AndGet(info->fetch, &f) && f >= 1) {
627 // Conservative bounds on a * f^-i + b with f >= 1 can be computed without
628 // trip count. Other forms would require a much more elaborate evaluation.
629 const bool is_min_a = a >= 0 ? is_min : !is_min;
630 if (info->operation == HInductionVarAnalysis::kDiv) {
631 Value b = GetVal(info->op_b, trip, in_body, is_min);
632 return is_min_a ? b : AddValue(Value(a), b);
633 }
634 }
635 return Value();
636 }
637
GetFetch(HInstruction * instruction,HInductionVarAnalysis::InductionInfo * trip,bool in_body,bool is_min) const638 InductionVarRange::Value InductionVarRange::GetFetch(HInstruction* instruction,
639 HInductionVarAnalysis::InductionInfo* trip,
640 bool in_body,
641 bool is_min) const {
642 // Special case when chasing constants: single instruction that denotes trip count in the
643 // loop-body is minimal 1 and maximal, with safe trip-count, max int,
644 if (chase_hint_ == nullptr && in_body && trip != nullptr && instruction == trip->op_a->fetch) {
645 if (is_min) {
646 return Value(1);
647 } else if (!instruction->IsConstant() && !IsUnsafeTripCount(trip)) {
648 return Value(std::numeric_limits<int32_t>::max());
649 }
650 }
651 // Unless at a constant or hint, chase the instruction a bit deeper into the HIR tree, so that
652 // it becomes more likely range analysis will compare the same instructions as terminal nodes.
653 int64_t value;
654 if (IsInt64AndGet(instruction, &value) && CanLongValueFitIntoInt(value)) {
655 // Proper constant reveals best information.
656 return Value(static_cast<int32_t>(value));
657 } else if (instruction == chase_hint_) {
658 // At hint, fetch is represented by itself.
659 return Value(instruction, 1, 0);
660 } else if (instruction->IsAdd()) {
661 // Incorporate suitable constants in the chased value.
662 if (IsInt64AndGet(instruction->InputAt(0), &value) && CanLongValueFitIntoInt(value)) {
663 return AddValue(Value(static_cast<int32_t>(value)),
664 GetFetch(instruction->InputAt(1), trip, in_body, is_min));
665 } else if (IsInt64AndGet(instruction->InputAt(1), &value) && CanLongValueFitIntoInt(value)) {
666 return AddValue(GetFetch(instruction->InputAt(0), trip, in_body, is_min),
667 Value(static_cast<int32_t>(value)));
668 }
669 } else if (instruction->IsArrayLength()) {
670 // Exploit length properties when chasing constants or chase into a new array declaration.
671 if (chase_hint_ == nullptr) {
672 return is_min ? Value(0) : Value(std::numeric_limits<int32_t>::max());
673 } else if (instruction->InputAt(0)->IsNewArray()) {
674 return GetFetch(instruction->InputAt(0)->AsNewArray()->GetLength(), trip, in_body, is_min);
675 }
676 } else if (instruction->IsTypeConversion()) {
677 // Since analysis is 32-bit (or narrower), chase beyond widening along the path.
678 // For example, this discovers the length in: for (long i = 0; i < a.length; i++);
679 if (instruction->AsTypeConversion()->GetInputType() == Primitive::kPrimInt &&
680 instruction->AsTypeConversion()->GetResultType() == Primitive::kPrimLong) {
681 return GetFetch(instruction->InputAt(0), trip, in_body, is_min);
682 }
683 }
684 // Chase an invariant fetch that is defined by an outer loop if the trip-count used
685 // so far is well-behaved in both bounds and the next trip-count is safe.
686 // Example:
687 // for (int i = 0; i <= 100; i++) // safe
688 // for (int j = 0; j <= i; j++) // well-behaved
689 // j is in range [0, i ] (if i is chase hint)
690 // or in range [0, 100] (otherwise)
691 HLoopInformation* next_loop = nullptr;
692 HInductionVarAnalysis::InductionInfo* next_info = nullptr;
693 HInductionVarAnalysis::InductionInfo* next_trip = nullptr;
694 bool next_in_body = true; // inner loop is always in body of outer loop
695 if (HasInductionInfo(instruction, instruction, &next_loop, &next_info, &next_trip) &&
696 IsWellBehavedTripCount(trip) &&
697 !IsUnsafeTripCount(next_trip)) {
698 return GetVal(next_info, next_trip, next_in_body, is_min);
699 }
700 // Fetch is represented by itself.
701 return Value(instruction, 1, 0);
702 }
703
GetVal(HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,bool in_body,bool is_min) const704 InductionVarRange::Value InductionVarRange::GetVal(HInductionVarAnalysis::InductionInfo* info,
705 HInductionVarAnalysis::InductionInfo* trip,
706 bool in_body,
707 bool is_min) const {
708 if (info != nullptr) {
709 switch (info->induction_class) {
710 case HInductionVarAnalysis::kInvariant:
711 // Invariants.
712 switch (info->operation) {
713 case HInductionVarAnalysis::kAdd:
714 return AddValue(GetVal(info->op_a, trip, in_body, is_min),
715 GetVal(info->op_b, trip, in_body, is_min));
716 case HInductionVarAnalysis::kSub: // second reversed!
717 return SubValue(GetVal(info->op_a, trip, in_body, is_min),
718 GetVal(info->op_b, trip, in_body, !is_min));
719 case HInductionVarAnalysis::kNeg: // second reversed!
720 return SubValue(Value(0),
721 GetVal(info->op_b, trip, in_body, !is_min));
722 case HInductionVarAnalysis::kMul:
723 return GetMul(info->op_a, info->op_b, trip, in_body, is_min);
724 case HInductionVarAnalysis::kDiv:
725 return GetDiv(info->op_a, info->op_b, trip, in_body, is_min);
726 case HInductionVarAnalysis::kRem:
727 return GetRem(info->op_a, info->op_b);
728 case HInductionVarAnalysis::kXor:
729 return GetXor(info->op_a, info->op_b);
730 case HInductionVarAnalysis::kFetch:
731 return GetFetch(info->fetch, trip, in_body, is_min);
732 case HInductionVarAnalysis::kTripCountInLoop:
733 case HInductionVarAnalysis::kTripCountInLoopUnsafe:
734 if (!in_body && !is_min) { // one extra!
735 return GetVal(info->op_a, trip, in_body, is_min);
736 }
737 FALLTHROUGH_INTENDED;
738 case HInductionVarAnalysis::kTripCountInBody:
739 case HInductionVarAnalysis::kTripCountInBodyUnsafe:
740 if (is_min) {
741 return Value(0);
742 } else if (in_body) {
743 return SubValue(GetVal(info->op_a, trip, in_body, is_min), Value(1));
744 }
745 break;
746 default:
747 break;
748 }
749 break;
750 case HInductionVarAnalysis::kLinear:
751 return CorrectForType(GetLinear(info, trip, in_body, is_min), info->type);
752 case HInductionVarAnalysis::kPolynomial:
753 return GetPolynomial(info, trip, in_body, is_min);
754 case HInductionVarAnalysis::kGeometric:
755 return GetGeometric(info, trip, in_body, is_min);
756 case HInductionVarAnalysis::kWrapAround:
757 case HInductionVarAnalysis::kPeriodic:
758 return MergeVal(GetVal(info->op_a, trip, in_body, is_min),
759 GetVal(info->op_b, trip, in_body, is_min), is_min);
760 }
761 }
762 return Value();
763 }
764
GetMul(HInductionVarAnalysis::InductionInfo * info1,HInductionVarAnalysis::InductionInfo * info2,HInductionVarAnalysis::InductionInfo * trip,bool in_body,bool is_min) const765 InductionVarRange::Value InductionVarRange::GetMul(HInductionVarAnalysis::InductionInfo* info1,
766 HInductionVarAnalysis::InductionInfo* info2,
767 HInductionVarAnalysis::InductionInfo* trip,
768 bool in_body,
769 bool is_min) const {
770 // Constant times range.
771 int64_t value = 0;
772 if (IsConstant(info1, kExact, &value)) {
773 return MulRangeAndConstant(value, info2, trip, in_body, is_min);
774 } else if (IsConstant(info2, kExact, &value)) {
775 return MulRangeAndConstant(value, info1, trip, in_body, is_min);
776 }
777 // Interval ranges.
778 Value v1_min = GetVal(info1, trip, in_body, /* is_min */ true);
779 Value v1_max = GetVal(info1, trip, in_body, /* is_min */ false);
780 Value v2_min = GetVal(info2, trip, in_body, /* is_min */ true);
781 Value v2_max = GetVal(info2, trip, in_body, /* is_min */ false);
782 // Positive range vs. positive or negative range.
783 if (IsConstantValue(v1_min) && v1_min.b_constant >= 0) {
784 if (IsConstantValue(v2_min) && v2_min.b_constant >= 0) {
785 return is_min ? MulValue(v1_min, v2_min) : MulValue(v1_max, v2_max);
786 } else if (IsConstantValue(v2_max) && v2_max.b_constant <= 0) {
787 return is_min ? MulValue(v1_max, v2_min) : MulValue(v1_min, v2_max);
788 }
789 }
790 // Negative range vs. positive or negative range.
791 if (IsConstantValue(v1_max) && v1_max.b_constant <= 0) {
792 if (IsConstantValue(v2_min) && v2_min.b_constant >= 0) {
793 return is_min ? MulValue(v1_min, v2_max) : MulValue(v1_max, v2_min);
794 } else if (IsConstantValue(v2_max) && v2_max.b_constant <= 0) {
795 return is_min ? MulValue(v1_max, v2_max) : MulValue(v1_min, v2_min);
796 }
797 }
798 return Value();
799 }
800
GetDiv(HInductionVarAnalysis::InductionInfo * info1,HInductionVarAnalysis::InductionInfo * info2,HInductionVarAnalysis::InductionInfo * trip,bool in_body,bool is_min) const801 InductionVarRange::Value InductionVarRange::GetDiv(HInductionVarAnalysis::InductionInfo* info1,
802 HInductionVarAnalysis::InductionInfo* info2,
803 HInductionVarAnalysis::InductionInfo* trip,
804 bool in_body,
805 bool is_min) const {
806 // Range divided by constant.
807 int64_t value = 0;
808 if (IsConstant(info2, kExact, &value)) {
809 return DivRangeAndConstant(value, info1, trip, in_body, is_min);
810 }
811 // Interval ranges.
812 Value v1_min = GetVal(info1, trip, in_body, /* is_min */ true);
813 Value v1_max = GetVal(info1, trip, in_body, /* is_min */ false);
814 Value v2_min = GetVal(info2, trip, in_body, /* is_min */ true);
815 Value v2_max = GetVal(info2, trip, in_body, /* is_min */ false);
816 // Positive range vs. positive or negative range.
817 if (IsConstantValue(v1_min) && v1_min.b_constant >= 0) {
818 if (IsConstantValue(v2_min) && v2_min.b_constant >= 0) {
819 return is_min ? DivValue(v1_min, v2_max) : DivValue(v1_max, v2_min);
820 } else if (IsConstantValue(v2_max) && v2_max.b_constant <= 0) {
821 return is_min ? DivValue(v1_max, v2_max) : DivValue(v1_min, v2_min);
822 }
823 }
824 // Negative range vs. positive or negative range.
825 if (IsConstantValue(v1_max) && v1_max.b_constant <= 0) {
826 if (IsConstantValue(v2_min) && v2_min.b_constant >= 0) {
827 return is_min ? DivValue(v1_min, v2_min) : DivValue(v1_max, v2_max);
828 } else if (IsConstantValue(v2_max) && v2_max.b_constant <= 0) {
829 return is_min ? DivValue(v1_max, v2_min) : DivValue(v1_min, v2_max);
830 }
831 }
832 return Value();
833 }
834
GetRem(HInductionVarAnalysis::InductionInfo * info1,HInductionVarAnalysis::InductionInfo * info2) const835 InductionVarRange::Value InductionVarRange::GetRem(
836 HInductionVarAnalysis::InductionInfo* info1,
837 HInductionVarAnalysis::InductionInfo* info2) const {
838 int64_t v1 = 0;
839 int64_t v2 = 0;
840 // Only accept exact values.
841 if (IsConstant(info1, kExact, &v1) && IsConstant(info2, kExact, &v2) && v2 != 0) {
842 int64_t value = v1 % v2;
843 if (CanLongValueFitIntoInt(value)) {
844 return Value(static_cast<int32_t>(value));
845 }
846 }
847 return Value();
848 }
849
GetXor(HInductionVarAnalysis::InductionInfo * info1,HInductionVarAnalysis::InductionInfo * info2) const850 InductionVarRange::Value InductionVarRange::GetXor(
851 HInductionVarAnalysis::InductionInfo* info1,
852 HInductionVarAnalysis::InductionInfo* info2) const {
853 int64_t v1 = 0;
854 int64_t v2 = 0;
855 // Only accept exact values.
856 if (IsConstant(info1, kExact, &v1) && IsConstant(info2, kExact, &v2)) {
857 int64_t value = v1 ^ v2;
858 if (CanLongValueFitIntoInt(value)) {
859 return Value(static_cast<int32_t>(value));
860 }
861 }
862 return Value();
863 }
864
MulRangeAndConstant(int64_t value,HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,bool in_body,bool is_min) const865 InductionVarRange::Value InductionVarRange::MulRangeAndConstant(
866 int64_t value,
867 HInductionVarAnalysis::InductionInfo* info,
868 HInductionVarAnalysis::InductionInfo* trip,
869 bool in_body,
870 bool is_min) const {
871 if (CanLongValueFitIntoInt(value)) {
872 Value c(static_cast<int32_t>(value));
873 return MulValue(GetVal(info, trip, in_body, is_min == value >= 0), c);
874 }
875 return Value();
876 }
877
DivRangeAndConstant(int64_t value,HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,bool in_body,bool is_min) const878 InductionVarRange::Value InductionVarRange::DivRangeAndConstant(
879 int64_t value,
880 HInductionVarAnalysis::InductionInfo* info,
881 HInductionVarAnalysis::InductionInfo* trip,
882 bool in_body,
883 bool is_min) const {
884 if (CanLongValueFitIntoInt(value)) {
885 Value c(static_cast<int32_t>(value));
886 return DivValue(GetVal(info, trip, in_body, is_min == value >= 0), c);
887 }
888 return Value();
889 }
890
AddValue(Value v1,Value v2) const891 InductionVarRange::Value InductionVarRange::AddValue(Value v1, Value v2) const {
892 if (v1.is_known && v2.is_known && IsSafeAdd(v1.b_constant, v2.b_constant)) {
893 int32_t b = v1.b_constant + v2.b_constant;
894 if (v1.a_constant == 0) {
895 return Value(v2.instruction, v2.a_constant, b);
896 } else if (v2.a_constant == 0) {
897 return Value(v1.instruction, v1.a_constant, b);
898 } else if (v1.instruction == v2.instruction && IsSafeAdd(v1.a_constant, v2.a_constant)) {
899 return Value(v1.instruction, v1.a_constant + v2.a_constant, b);
900 }
901 }
902 return Value();
903 }
904
SubValue(Value v1,Value v2) const905 InductionVarRange::Value InductionVarRange::SubValue(Value v1, Value v2) const {
906 if (v1.is_known && v2.is_known && IsSafeSub(v1.b_constant, v2.b_constant)) {
907 int32_t b = v1.b_constant - v2.b_constant;
908 if (v1.a_constant == 0 && IsSafeSub(0, v2.a_constant)) {
909 return Value(v2.instruction, -v2.a_constant, b);
910 } else if (v2.a_constant == 0) {
911 return Value(v1.instruction, v1.a_constant, b);
912 } else if (v1.instruction == v2.instruction && IsSafeSub(v1.a_constant, v2.a_constant)) {
913 return Value(v1.instruction, v1.a_constant - v2.a_constant, b);
914 }
915 }
916 return Value();
917 }
918
MulValue(Value v1,Value v2) const919 InductionVarRange::Value InductionVarRange::MulValue(Value v1, Value v2) const {
920 if (v1.is_known && v2.is_known) {
921 if (v1.a_constant == 0) {
922 if (IsSafeMul(v1.b_constant, v2.a_constant) && IsSafeMul(v1.b_constant, v2.b_constant)) {
923 return Value(v2.instruction, v1.b_constant * v2.a_constant, v1.b_constant * v2.b_constant);
924 }
925 } else if (v2.a_constant == 0) {
926 if (IsSafeMul(v1.a_constant, v2.b_constant) && IsSafeMul(v1.b_constant, v2.b_constant)) {
927 return Value(v1.instruction, v1.a_constant * v2.b_constant, v1.b_constant * v2.b_constant);
928 }
929 }
930 }
931 return Value();
932 }
933
DivValue(Value v1,Value v2) const934 InductionVarRange::Value InductionVarRange::DivValue(Value v1, Value v2) const {
935 if (v1.is_known && v2.is_known && v1.a_constant == 0 && v2.a_constant == 0) {
936 if (IsSafeDiv(v1.b_constant, v2.b_constant)) {
937 return Value(v1.b_constant / v2.b_constant);
938 }
939 }
940 return Value();
941 }
942
MergeVal(Value v1,Value v2,bool is_min) const943 InductionVarRange::Value InductionVarRange::MergeVal(Value v1, Value v2, bool is_min) const {
944 if (v1.is_known && v2.is_known) {
945 if (v1.instruction == v2.instruction && v1.a_constant == v2.a_constant) {
946 return Value(v1.instruction, v1.a_constant,
947 is_min ? std::min(v1.b_constant, v2.b_constant)
948 : std::max(v1.b_constant, v2.b_constant));
949 }
950 }
951 return Value();
952 }
953
GenerateRangeOrLastValue(HInstruction * context,HInstruction * instruction,bool is_last_value,HGraph * graph,HBasicBlock * block,HInstruction ** lower,HInstruction ** upper,HInstruction ** taken_test,int64_t * stride_value,bool * needs_finite_test,bool * needs_taken_test) const954 bool InductionVarRange::GenerateRangeOrLastValue(HInstruction* context,
955 HInstruction* instruction,
956 bool is_last_value,
957 HGraph* graph,
958 HBasicBlock* block,
959 /*out*/HInstruction** lower,
960 /*out*/HInstruction** upper,
961 /*out*/HInstruction** taken_test,
962 /*out*/int64_t* stride_value,
963 /*out*/bool* needs_finite_test,
964 /*out*/bool* needs_taken_test) const {
965 HLoopInformation* loop = nullptr;
966 HInductionVarAnalysis::InductionInfo* info = nullptr;
967 HInductionVarAnalysis::InductionInfo* trip = nullptr;
968 if (!HasInductionInfo(context, instruction, &loop, &info, &trip) || trip == nullptr) {
969 return false; // codegen needs all information, including tripcount
970 }
971 // Determine what tests are needed. A finite test is needed if the evaluation code uses the
972 // trip-count and the loop maybe unsafe (because in such cases, the index could "overshoot"
973 // the computed range). A taken test is needed for any unknown trip-count, even if evaluation
974 // code does not use the trip-count explicitly (since there could be an implicit relation
975 // between e.g. an invariant subscript and a not-taken condition).
976 bool in_body = context->GetBlock() != loop->GetHeader();
977 *stride_value = 0;
978 *needs_finite_test = NeedsTripCount(info, stride_value) && IsUnsafeTripCount(trip);
979 *needs_taken_test = IsBodyTripCount(trip);
980 // Handle last value request.
981 if (is_last_value) {
982 DCHECK(!in_body);
983 switch (info->induction_class) {
984 case HInductionVarAnalysis::kLinear:
985 if (*stride_value > 0) {
986 lower = nullptr;
987 } else {
988 upper = nullptr;
989 }
990 break;
991 case HInductionVarAnalysis::kPolynomial:
992 return GenerateLastValuePolynomial(info, trip, graph, block, lower);
993 case HInductionVarAnalysis::kGeometric:
994 return GenerateLastValueGeometric(info, trip, graph, block, lower);
995 case HInductionVarAnalysis::kWrapAround:
996 return GenerateLastValueWrapAround(info, trip, graph, block, lower);
997 case HInductionVarAnalysis::kPeriodic:
998 return GenerateLastValuePeriodic(info, trip, graph, block, lower, needs_taken_test);
999 default:
1000 return false;
1001 }
1002 }
1003 // Code generation for taken test: generate the code when requested or otherwise analyze
1004 // if code generation is feasible when taken test is needed.
1005 if (taken_test != nullptr) {
1006 return GenerateCode(trip->op_b, nullptr, graph, block, taken_test, in_body, /* is_min */ false);
1007 } else if (*needs_taken_test) {
1008 if (!GenerateCode(
1009 trip->op_b, nullptr, nullptr, nullptr, nullptr, in_body, /* is_min */ false)) {
1010 return false;
1011 }
1012 }
1013 // Code generation for lower and upper.
1014 return
1015 // Success on lower if invariant (not set), or code can be generated.
1016 ((info->induction_class == HInductionVarAnalysis::kInvariant) ||
1017 GenerateCode(info, trip, graph, block, lower, in_body, /* is_min */ true)) &&
1018 // And success on upper.
1019 GenerateCode(info, trip, graph, block, upper, in_body, /* is_min */ false);
1020 }
1021
GenerateLastValuePolynomial(HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,HGraph * graph,HBasicBlock * block,HInstruction ** result) const1022 bool InductionVarRange::GenerateLastValuePolynomial(HInductionVarAnalysis::InductionInfo* info,
1023 HInductionVarAnalysis::InductionInfo* trip,
1024 HGraph* graph,
1025 HBasicBlock* block,
1026 /*out*/HInstruction** result) const {
1027 DCHECK(info != nullptr);
1028 DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kPolynomial);
1029 // Detect known coefficients and trip count (always taken).
1030 int64_t a = 0;
1031 int64_t b = 0;
1032 int64_t m = 0;
1033 if (IsConstant(info->op_a->op_a, kExact, &a) &&
1034 IsConstant(info->op_a->op_b, kExact, &b) &&
1035 IsConstant(trip->op_a, kExact, &m) && m >= 1) {
1036 // Evaluate bounds on sum_i=0^m-1(a * i + b) + c for known
1037 // maximum index value m as a * (m * (m-1)) / 2 + b * m + c.
1038 HInstruction* c = nullptr;
1039 if (GenerateCode(info->op_b, nullptr, graph, block, graph ? &c : nullptr, false, false)) {
1040 if (graph != nullptr) {
1041 Primitive::Type type = info->type;
1042 int64_t sum = a * ((m * (m - 1)) / 2) + b * m;
1043 if (type != Primitive::kPrimLong) {
1044 sum = static_cast<int32_t>(sum); // okay to truncate
1045 }
1046 *result =
1047 Insert(block, new (graph->GetArena()) HAdd(type, graph->GetConstant(type, sum), c));
1048 }
1049 return true;
1050 }
1051 }
1052 return false;
1053 }
1054
GenerateLastValueGeometric(HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,HGraph * graph,HBasicBlock * block,HInstruction ** result) const1055 bool InductionVarRange::GenerateLastValueGeometric(HInductionVarAnalysis::InductionInfo* info,
1056 HInductionVarAnalysis::InductionInfo* trip,
1057 HGraph* graph,
1058 HBasicBlock* block,
1059 /*out*/HInstruction** result) const {
1060 DCHECK(info != nullptr);
1061 DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kGeometric);
1062 // Detect known base and trip count (always taken).
1063 int64_t f = 0;
1064 int64_t m = 0;
1065 if (IsInt64AndGet(info->fetch, &f) && f >= 1 && IsConstant(trip->op_a, kExact, &m) && m >= 1) {
1066 HInstruction* opa = nullptr;
1067 HInstruction* opb = nullptr;
1068 if (GenerateCode(info->op_a, nullptr, graph, block, &opa, false, false) &&
1069 GenerateCode(info->op_b, nullptr, graph, block, &opb, false, false)) {
1070 if (graph != nullptr) {
1071 Primitive::Type type = info->type;
1072 // Compute f ^ m for known maximum index value m.
1073 bool overflow = false;
1074 int64_t fpow = IntPow(f, m, &overflow);
1075 if (info->operation == HInductionVarAnalysis::kDiv) {
1076 // For division, any overflow truncates to zero.
1077 if (overflow || (type != Primitive::kPrimLong && !CanLongValueFitIntoInt(fpow))) {
1078 fpow = 0;
1079 }
1080 } else if (type != Primitive::kPrimLong) {
1081 // For multiplication, okay to truncate to required precision.
1082 DCHECK(info->operation == HInductionVarAnalysis::kMul);
1083 fpow = static_cast<int32_t>(fpow);
1084 }
1085 // Generate code.
1086 if (fpow == 0) {
1087 // Special case: repeated mul/div always yields zero.
1088 *result = graph->GetConstant(type, 0);
1089 } else {
1090 // Last value: a * f ^ m + b or a * f ^ -m + b.
1091 HInstruction* e = nullptr;
1092 if (info->operation == HInductionVarAnalysis::kMul) {
1093 e = new (graph->GetArena()) HMul(type, opa, graph->GetConstant(type, fpow));
1094 } else {
1095 e = new (graph->GetArena()) HDiv(type, opa, graph->GetConstant(type, fpow), kNoDexPc);
1096 }
1097 *result = Insert(block, new (graph->GetArena()) HAdd(type, Insert(block, e), opb));
1098 }
1099 }
1100 return true;
1101 }
1102 }
1103 return false;
1104 }
1105
GenerateLastValueWrapAround(HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,HGraph * graph,HBasicBlock * block,HInstruction ** result) const1106 bool InductionVarRange::GenerateLastValueWrapAround(HInductionVarAnalysis::InductionInfo* info,
1107 HInductionVarAnalysis::InductionInfo* trip,
1108 HGraph* graph,
1109 HBasicBlock* block,
1110 /*out*/HInstruction** result) const {
1111 DCHECK(info != nullptr);
1112 DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kWrapAround);
1113 // Count depth.
1114 int32_t depth = 0;
1115 for (; info->induction_class == HInductionVarAnalysis::kWrapAround;
1116 info = info->op_b, ++depth) {}
1117 // Handle wrap(x, wrap(.., y)) if trip count reaches an invariant at end.
1118 // TODO: generalize, but be careful to adjust the terminal.
1119 int64_t m = 0;
1120 if (info->induction_class == HInductionVarAnalysis::kInvariant &&
1121 IsConstant(trip->op_a, kExact, &m) && m >= depth) {
1122 return GenerateCode(info, nullptr, graph, block, result, false, false);
1123 }
1124 return false;
1125 }
1126
GenerateLastValuePeriodic(HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,HGraph * graph,HBasicBlock * block,HInstruction ** result,bool * needs_taken_test) const1127 bool InductionVarRange::GenerateLastValuePeriodic(HInductionVarAnalysis::InductionInfo* info,
1128 HInductionVarAnalysis::InductionInfo* trip,
1129 HGraph* graph,
1130 HBasicBlock* block,
1131 /*out*/HInstruction** result,
1132 /*out*/bool* needs_taken_test) const {
1133 DCHECK(info != nullptr);
1134 DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kPeriodic);
1135 // Count period and detect all-invariants.
1136 int64_t period = 1;
1137 bool all_invariants = true;
1138 HInductionVarAnalysis::InductionInfo* p = info;
1139 for (; p->induction_class == HInductionVarAnalysis::kPeriodic; p = p->op_b, ++period) {
1140 DCHECK_EQ(p->op_a->induction_class, HInductionVarAnalysis::kInvariant);
1141 if (p->op_a->operation != HInductionVarAnalysis::kFetch) {
1142 all_invariants = false;
1143 }
1144 }
1145 DCHECK_EQ(p->induction_class, HInductionVarAnalysis::kInvariant);
1146 if (p->operation != HInductionVarAnalysis::kFetch) {
1147 all_invariants = false;
1148 }
1149 // Don't rely on FP arithmetic to be precise, unless the full period
1150 // consist of pre-computed expressions only.
1151 if (info->type == Primitive::kPrimFloat || info->type == Primitive::kPrimDouble) {
1152 if (!all_invariants) {
1153 return false;
1154 }
1155 }
1156 // Handle any periodic(x, periodic(.., y)) for known maximum index value m.
1157 int64_t m = 0;
1158 if (IsConstant(trip->op_a, kExact, &m) && m >= 1) {
1159 int64_t li = m % period;
1160 for (int64_t i = 0; i < li; info = info->op_b, i++) {}
1161 if (info->induction_class == HInductionVarAnalysis::kPeriodic) {
1162 info = info->op_a;
1163 }
1164 return GenerateCode(info, nullptr, graph, block, result, false, false);
1165 }
1166 // Handle periodic(x, y) using even/odd-select on trip count. Enter trip count expression
1167 // directly to obtain the maximum index value t even if taken test is needed.
1168 HInstruction* x = nullptr;
1169 HInstruction* y = nullptr;
1170 HInstruction* t = nullptr;
1171 if (period == 2 &&
1172 GenerateCode(info->op_a, nullptr, graph, block, graph ? &x : nullptr, false, false) &&
1173 GenerateCode(info->op_b, nullptr, graph, block, graph ? &y : nullptr, false, false) &&
1174 GenerateCode(trip->op_a, nullptr, graph, block, graph ? &t : nullptr, false, false)) {
1175 // During actual code generation (graph != nullptr), generate is_even ? x : y.
1176 if (graph != nullptr) {
1177 Primitive::Type type = trip->type;
1178 HInstruction* msk =
1179 Insert(block, new (graph->GetArena()) HAnd(type, t, graph->GetConstant(type, 1)));
1180 HInstruction* is_even =
1181 Insert(block, new (graph->GetArena()) HEqual(msk, graph->GetConstant(type, 0), kNoDexPc));
1182 *result = Insert(block, new (graph->GetArena()) HSelect(is_even, x, y, kNoDexPc));
1183 }
1184 // Guard select with taken test if needed.
1185 if (*needs_taken_test) {
1186 HInstruction* is_taken = nullptr;
1187 if (GenerateCode(trip->op_b, nullptr, graph, block, graph ? &is_taken : nullptr, false, false)) {
1188 if (graph != nullptr) {
1189 *result = Insert(block, new (graph->GetArena()) HSelect(is_taken, *result, x, kNoDexPc));
1190 }
1191 *needs_taken_test = false; // taken care of
1192 } else {
1193 return false;
1194 }
1195 }
1196 return true;
1197 }
1198 return false;
1199 }
1200
GenerateCode(HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,HGraph * graph,HBasicBlock * block,HInstruction ** result,bool in_body,bool is_min) const1201 bool InductionVarRange::GenerateCode(HInductionVarAnalysis::InductionInfo* info,
1202 HInductionVarAnalysis::InductionInfo* trip,
1203 HGraph* graph, // when set, code is generated
1204 HBasicBlock* block,
1205 /*out*/HInstruction** result,
1206 bool in_body,
1207 bool is_min) const {
1208 if (info != nullptr) {
1209 // If during codegen, the result is not needed (nullptr), simply return success.
1210 if (graph != nullptr && result == nullptr) {
1211 return true;
1212 }
1213 // Handle current operation.
1214 Primitive::Type type = info->type;
1215 HInstruction* opa = nullptr;
1216 HInstruction* opb = nullptr;
1217 switch (info->induction_class) {
1218 case HInductionVarAnalysis::kInvariant:
1219 // Invariants (note that since invariants only have other invariants as
1220 // sub expressions, viz. no induction, there is no need to adjust is_min).
1221 switch (info->operation) {
1222 case HInductionVarAnalysis::kAdd:
1223 case HInductionVarAnalysis::kSub:
1224 case HInductionVarAnalysis::kMul:
1225 case HInductionVarAnalysis::kDiv:
1226 case HInductionVarAnalysis::kRem:
1227 case HInductionVarAnalysis::kXor:
1228 case HInductionVarAnalysis::kLT:
1229 case HInductionVarAnalysis::kLE:
1230 case HInductionVarAnalysis::kGT:
1231 case HInductionVarAnalysis::kGE:
1232 if (GenerateCode(info->op_a, trip, graph, block, &opa, in_body, is_min) &&
1233 GenerateCode(info->op_b, trip, graph, block, &opb, in_body, is_min)) {
1234 if (graph != nullptr) {
1235 HInstruction* operation = nullptr;
1236 switch (info->operation) {
1237 case HInductionVarAnalysis::kAdd:
1238 operation = new (graph->GetArena()) HAdd(type, opa, opb); break;
1239 case HInductionVarAnalysis::kSub:
1240 operation = new (graph->GetArena()) HSub(type, opa, opb); break;
1241 case HInductionVarAnalysis::kMul:
1242 operation = new (graph->GetArena()) HMul(type, opa, opb, kNoDexPc); break;
1243 case HInductionVarAnalysis::kDiv:
1244 operation = new (graph->GetArena()) HDiv(type, opa, opb, kNoDexPc); break;
1245 case HInductionVarAnalysis::kRem:
1246 operation = new (graph->GetArena()) HRem(type, opa, opb, kNoDexPc); break;
1247 case HInductionVarAnalysis::kXor:
1248 operation = new (graph->GetArena()) HXor(type, opa, opb); break;
1249 case HInductionVarAnalysis::kLT:
1250 operation = new (graph->GetArena()) HLessThan(opa, opb); break;
1251 case HInductionVarAnalysis::kLE:
1252 operation = new (graph->GetArena()) HLessThanOrEqual(opa, opb); break;
1253 case HInductionVarAnalysis::kGT:
1254 operation = new (graph->GetArena()) HGreaterThan(opa, opb); break;
1255 case HInductionVarAnalysis::kGE:
1256 operation = new (graph->GetArena()) HGreaterThanOrEqual(opa, opb); break;
1257 default:
1258 LOG(FATAL) << "unknown operation";
1259 }
1260 *result = Insert(block, operation);
1261 }
1262 return true;
1263 }
1264 break;
1265 case HInductionVarAnalysis::kNeg:
1266 if (GenerateCode(info->op_b, trip, graph, block, &opb, in_body, !is_min)) {
1267 if (graph != nullptr) {
1268 *result = Insert(block, new (graph->GetArena()) HNeg(type, opb));
1269 }
1270 return true;
1271 }
1272 break;
1273 case HInductionVarAnalysis::kFetch:
1274 if (graph != nullptr) {
1275 *result = info->fetch; // already in HIR
1276 }
1277 return true;
1278 case HInductionVarAnalysis::kTripCountInLoop:
1279 case HInductionVarAnalysis::kTripCountInLoopUnsafe:
1280 if (!in_body && !is_min) { // one extra!
1281 return GenerateCode(info->op_a, trip, graph, block, result, in_body, is_min);
1282 }
1283 FALLTHROUGH_INTENDED;
1284 case HInductionVarAnalysis::kTripCountInBody:
1285 case HInductionVarAnalysis::kTripCountInBodyUnsafe:
1286 if (is_min) {
1287 if (graph != nullptr) {
1288 *result = graph->GetConstant(type, 0);
1289 }
1290 return true;
1291 } else if (in_body) {
1292 if (GenerateCode(info->op_a, trip, graph, block, &opb, in_body, is_min)) {
1293 if (graph != nullptr) {
1294 *result =
1295 Insert(block,
1296 new (graph->GetArena()) HSub(type, opb, graph->GetConstant(type, 1)));
1297 }
1298 return true;
1299 }
1300 }
1301 break;
1302 case HInductionVarAnalysis::kNop:
1303 LOG(FATAL) << "unexpected invariant nop";
1304 } // switch invariant operation
1305 break;
1306 case HInductionVarAnalysis::kLinear: {
1307 // Linear induction a * i + b, for normalized 0 <= i < TC. For ranges, this should
1308 // be restricted to a unit stride to avoid arithmetic wrap-around situations that
1309 // are harder to guard against. For a last value, requesting min/max based on any
1310 // known stride yields right value. Always avoid any narrowing linear induction or
1311 // any type mismatch between the linear induction and the trip count expression.
1312 // TODO: careful runtime type conversions could generalize this latter restriction.
1313 if (!HInductionVarAnalysis::IsNarrowingLinear(info) && trip->type == type) {
1314 int64_t stride_value = 0;
1315 if (IsConstant(info->op_a, kExact, &stride_value) &&
1316 CanLongValueFitIntoInt(stride_value)) {
1317 const bool is_min_a = stride_value >= 0 ? is_min : !is_min;
1318 if (GenerateCode(trip, trip, graph, block, &opa, in_body, is_min_a) &&
1319 GenerateCode(info->op_b, trip, graph, block, &opb, in_body, is_min)) {
1320 if (graph != nullptr) {
1321 HInstruction* oper;
1322 if (stride_value == 1) {
1323 oper = new (graph->GetArena()) HAdd(type, opa, opb);
1324 } else if (stride_value == -1) {
1325 oper = new (graph->GetArena()) HSub(type, opb, opa);
1326 } else {
1327 HInstruction* mul =
1328 new (graph->GetArena()) HMul(type, graph->GetConstant(type, stride_value), opa);
1329 oper = new (graph->GetArena()) HAdd(type, Insert(block, mul), opb);
1330 }
1331 *result = Insert(block, oper);
1332 }
1333 return true;
1334 }
1335 }
1336 }
1337 break;
1338 }
1339 case HInductionVarAnalysis::kPolynomial:
1340 case HInductionVarAnalysis::kGeometric:
1341 break;
1342 case HInductionVarAnalysis::kWrapAround:
1343 case HInductionVarAnalysis::kPeriodic: {
1344 // Wrap-around and periodic inductions are restricted to constants only, so that extreme
1345 // values are easy to test at runtime without complications of arithmetic wrap-around.
1346 Value extreme = GetVal(info, trip, in_body, is_min);
1347 if (IsConstantValue(extreme)) {
1348 if (graph != nullptr) {
1349 *result = graph->GetConstant(type, extreme.b_constant);
1350 }
1351 return true;
1352 }
1353 break;
1354 }
1355 } // switch induction class
1356 }
1357 return false;
1358 }
1359
ReplaceInduction(HInductionVarAnalysis::InductionInfo * info,HInstruction * fetch,HInstruction * replacement)1360 void InductionVarRange::ReplaceInduction(HInductionVarAnalysis::InductionInfo* info,
1361 HInstruction* fetch,
1362 HInstruction* replacement) {
1363 if (info != nullptr) {
1364 if (info->induction_class == HInductionVarAnalysis::kInvariant &&
1365 info->operation == HInductionVarAnalysis::kFetch &&
1366 info->fetch == fetch) {
1367 info->fetch = replacement;
1368 }
1369 ReplaceInduction(info->op_a, fetch, replacement);
1370 ReplaceInduction(info->op_b, fetch, replacement);
1371 }
1372 }
1373
1374 } // namespace art
1375