1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "loop_optimization.h"
18
19 #include "arch/instruction_set.h"
20 #include "arch/arm/instruction_set_features_arm.h"
21 #include "arch/arm64/instruction_set_features_arm64.h"
22 #include "arch/mips/instruction_set_features_mips.h"
23 #include "arch/mips64/instruction_set_features_mips64.h"
24 #include "arch/x86/instruction_set_features_x86.h"
25 #include "arch/x86_64/instruction_set_features_x86_64.h"
26 #include "driver/compiler_driver.h"
27 #include "linear_order.h"
28
29 namespace art {
30
31 // Enables vectorization (SIMDization) in the loop optimizer.
32 static constexpr bool kEnableVectorization = true;
33
34 // Remove the instruction from the graph. A bit more elaborate than the usual
35 // instruction removal, since there may be a cycle in the use structure.
RemoveFromCycle(HInstruction * instruction)36 static void RemoveFromCycle(HInstruction* instruction) {
37 instruction->RemoveAsUserOfAllInputs();
38 instruction->RemoveEnvironmentUsers();
39 instruction->GetBlock()->RemoveInstructionOrPhi(instruction, /*ensure_safety=*/ false);
40 }
41
42 // Detect a goto block and sets succ to the single successor.
IsGotoBlock(HBasicBlock * block,HBasicBlock ** succ)43 static bool IsGotoBlock(HBasicBlock* block, /*out*/ HBasicBlock** succ) {
44 if (block->GetPredecessors().size() == 1 &&
45 block->GetSuccessors().size() == 1 &&
46 block->IsSingleGoto()) {
47 *succ = block->GetSingleSuccessor();
48 return true;
49 }
50 return false;
51 }
52
53 // Detect an early exit loop.
IsEarlyExit(HLoopInformation * loop_info)54 static bool IsEarlyExit(HLoopInformation* loop_info) {
55 HBlocksInLoopReversePostOrderIterator it_loop(*loop_info);
56 for (it_loop.Advance(); !it_loop.Done(); it_loop.Advance()) {
57 for (HBasicBlock* successor : it_loop.Current()->GetSuccessors()) {
58 if (!loop_info->Contains(*successor)) {
59 return true;
60 }
61 }
62 }
63 return false;
64 }
65
66 // Detect a sign extension from the given type. Returns the promoted operand on success.
IsSignExtensionAndGet(HInstruction * instruction,Primitive::Type type,HInstruction ** operand)67 static bool IsSignExtensionAndGet(HInstruction* instruction,
68 Primitive::Type type,
69 /*out*/ HInstruction** operand) {
70 // Accept any already wider constant that would be handled properly by sign
71 // extension when represented in the *width* of the given narrower data type
72 // (the fact that char normally zero extends does not matter here).
73 int64_t value = 0;
74 if (IsInt64AndGet(instruction, &value)) {
75 switch (type) {
76 case Primitive::kPrimByte:
77 if (std::numeric_limits<int8_t>::min() <= value &&
78 std::numeric_limits<int8_t>::max() >= value) {
79 *operand = instruction;
80 return true;
81 }
82 return false;
83 case Primitive::kPrimChar:
84 case Primitive::kPrimShort:
85 if (std::numeric_limits<int16_t>::min() <= value &&
86 std::numeric_limits<int16_t>::max() <= value) {
87 *operand = instruction;
88 return true;
89 }
90 return false;
91 default:
92 return false;
93 }
94 }
95 // An implicit widening conversion of a signed integer to an integral type sign-extends
96 // the two's-complement representation of the integer value to fill the wider format.
97 if (instruction->GetType() == type && (instruction->IsArrayGet() ||
98 instruction->IsStaticFieldGet() ||
99 instruction->IsInstanceFieldGet())) {
100 switch (type) {
101 case Primitive::kPrimByte:
102 case Primitive::kPrimShort:
103 *operand = instruction;
104 return true;
105 default:
106 return false;
107 }
108 }
109 // TODO: perhaps explicit conversions later too?
110 // (this may return something different from instruction)
111 return false;
112 }
113
114 // Detect a zero extension from the given type. Returns the promoted operand on success.
IsZeroExtensionAndGet(HInstruction * instruction,Primitive::Type type,HInstruction ** operand)115 static bool IsZeroExtensionAndGet(HInstruction* instruction,
116 Primitive::Type type,
117 /*out*/ HInstruction** operand) {
118 // Accept any already wider constant that would be handled properly by zero
119 // extension when represented in the *width* of the given narrower data type
120 // (the fact that byte/short normally sign extend does not matter here).
121 int64_t value = 0;
122 if (IsInt64AndGet(instruction, &value)) {
123 switch (type) {
124 case Primitive::kPrimByte:
125 if (std::numeric_limits<uint8_t>::min() <= value &&
126 std::numeric_limits<uint8_t>::max() >= value) {
127 *operand = instruction;
128 return true;
129 }
130 return false;
131 case Primitive::kPrimChar:
132 case Primitive::kPrimShort:
133 if (std::numeric_limits<uint16_t>::min() <= value &&
134 std::numeric_limits<uint16_t>::max() <= value) {
135 *operand = instruction;
136 return true;
137 }
138 return false;
139 default:
140 return false;
141 }
142 }
143 // An implicit widening conversion of a char to an integral type zero-extends
144 // the representation of the char value to fill the wider format.
145 if (instruction->GetType() == type && (instruction->IsArrayGet() ||
146 instruction->IsStaticFieldGet() ||
147 instruction->IsInstanceFieldGet())) {
148 if (type == Primitive::kPrimChar) {
149 *operand = instruction;
150 return true;
151 }
152 }
153 // A sign (or zero) extension followed by an explicit removal of just the
154 // higher sign bits is equivalent to a zero extension of the underlying operand.
155 if (instruction->IsAnd()) {
156 int64_t mask = 0;
157 HInstruction* a = instruction->InputAt(0);
158 HInstruction* b = instruction->InputAt(1);
159 // In (a & b) find (mask & b) or (a & mask) with sign or zero extension on the non-mask.
160 if ((IsInt64AndGet(a, /*out*/ &mask) && (IsSignExtensionAndGet(b, type, /*out*/ operand) ||
161 IsZeroExtensionAndGet(b, type, /*out*/ operand))) ||
162 (IsInt64AndGet(b, /*out*/ &mask) && (IsSignExtensionAndGet(a, type, /*out*/ operand) ||
163 IsZeroExtensionAndGet(a, type, /*out*/ operand)))) {
164 switch ((*operand)->GetType()) {
165 case Primitive::kPrimByte: return mask == std::numeric_limits<uint8_t>::max();
166 case Primitive::kPrimChar:
167 case Primitive::kPrimShort: return mask == std::numeric_limits<uint16_t>::max();
168 default: return false;
169 }
170 }
171 }
172 // TODO: perhaps explicit conversions later too?
173 return false;
174 }
175
176 // Test vector restrictions.
HasVectorRestrictions(uint64_t restrictions,uint64_t tested)177 static bool HasVectorRestrictions(uint64_t restrictions, uint64_t tested) {
178 return (restrictions & tested) != 0;
179 }
180
181 // Insert an instruction.
Insert(HBasicBlock * block,HInstruction * instruction)182 static HInstruction* Insert(HBasicBlock* block, HInstruction* instruction) {
183 DCHECK(block != nullptr);
184 DCHECK(instruction != nullptr);
185 block->InsertInstructionBefore(instruction, block->GetLastInstruction());
186 return instruction;
187 }
188
189 //
190 // Class methods.
191 //
192
HLoopOptimization(HGraph * graph,CompilerDriver * compiler_driver,HInductionVarAnalysis * induction_analysis)193 HLoopOptimization::HLoopOptimization(HGraph* graph,
194 CompilerDriver* compiler_driver,
195 HInductionVarAnalysis* induction_analysis)
196 : HOptimization(graph, kLoopOptimizationPassName),
197 compiler_driver_(compiler_driver),
198 induction_range_(induction_analysis),
199 loop_allocator_(nullptr),
200 global_allocator_(graph_->GetArena()),
201 top_loop_(nullptr),
202 last_loop_(nullptr),
203 iset_(nullptr),
204 induction_simplication_count_(0),
205 simplified_(false),
206 vector_length_(0),
207 vector_refs_(nullptr),
208 vector_map_(nullptr) {
209 }
210
Run()211 void HLoopOptimization::Run() {
212 // Skip if there is no loop or the graph has try-catch/irreducible loops.
213 // TODO: make this less of a sledgehammer.
214 if (!graph_->HasLoops() || graph_->HasTryCatch() || graph_->HasIrreducibleLoops()) {
215 return;
216 }
217
218 // Phase-local allocator that draws from the global pool. Since the allocator
219 // itself resides on the stack, it is destructed on exiting Run(), which
220 // implies its underlying memory is released immediately.
221 ArenaAllocator allocator(global_allocator_->GetArenaPool());
222 loop_allocator_ = &allocator;
223
224 // Perform loop optimizations.
225 LocalRun();
226 if (top_loop_ == nullptr) {
227 graph_->SetHasLoops(false); // no more loops
228 }
229
230 // Detach.
231 loop_allocator_ = nullptr;
232 last_loop_ = top_loop_ = nullptr;
233 }
234
LocalRun()235 void HLoopOptimization::LocalRun() {
236 // Build the linear order using the phase-local allocator. This step enables building
237 // a loop hierarchy that properly reflects the outer-inner and previous-next relation.
238 ArenaVector<HBasicBlock*> linear_order(loop_allocator_->Adapter(kArenaAllocLinearOrder));
239 LinearizeGraph(graph_, loop_allocator_, &linear_order);
240
241 // Build the loop hierarchy.
242 for (HBasicBlock* block : linear_order) {
243 if (block->IsLoopHeader()) {
244 AddLoop(block->GetLoopInformation());
245 }
246 }
247
248 // Traverse the loop hierarchy inner-to-outer and optimize. Traversal can use
249 // temporary data structures using the phase-local allocator. All new HIR
250 // should use the global allocator.
251 if (top_loop_ != nullptr) {
252 ArenaSet<HInstruction*> iset(loop_allocator_->Adapter(kArenaAllocLoopOptimization));
253 ArenaSet<ArrayReference> refs(loop_allocator_->Adapter(kArenaAllocLoopOptimization));
254 ArenaSafeMap<HInstruction*, HInstruction*> map(
255 std::less<HInstruction*>(), loop_allocator_->Adapter(kArenaAllocLoopOptimization));
256 // Attach.
257 iset_ = &iset;
258 vector_refs_ = &refs;
259 vector_map_ = ↦
260 // Traverse.
261 TraverseLoopsInnerToOuter(top_loop_);
262 // Detach.
263 iset_ = nullptr;
264 vector_refs_ = nullptr;
265 vector_map_ = nullptr;
266 }
267 }
268
AddLoop(HLoopInformation * loop_info)269 void HLoopOptimization::AddLoop(HLoopInformation* loop_info) {
270 DCHECK(loop_info != nullptr);
271 LoopNode* node = new (loop_allocator_) LoopNode(loop_info);
272 if (last_loop_ == nullptr) {
273 // First loop.
274 DCHECK(top_loop_ == nullptr);
275 last_loop_ = top_loop_ = node;
276 } else if (loop_info->IsIn(*last_loop_->loop_info)) {
277 // Inner loop.
278 node->outer = last_loop_;
279 DCHECK(last_loop_->inner == nullptr);
280 last_loop_ = last_loop_->inner = node;
281 } else {
282 // Subsequent loop.
283 while (last_loop_->outer != nullptr && !loop_info->IsIn(*last_loop_->outer->loop_info)) {
284 last_loop_ = last_loop_->outer;
285 }
286 node->outer = last_loop_->outer;
287 node->previous = last_loop_;
288 DCHECK(last_loop_->next == nullptr);
289 last_loop_ = last_loop_->next = node;
290 }
291 }
292
RemoveLoop(LoopNode * node)293 void HLoopOptimization::RemoveLoop(LoopNode* node) {
294 DCHECK(node != nullptr);
295 DCHECK(node->inner == nullptr);
296 if (node->previous != nullptr) {
297 // Within sequence.
298 node->previous->next = node->next;
299 if (node->next != nullptr) {
300 node->next->previous = node->previous;
301 }
302 } else {
303 // First of sequence.
304 if (node->outer != nullptr) {
305 node->outer->inner = node->next;
306 } else {
307 top_loop_ = node->next;
308 }
309 if (node->next != nullptr) {
310 node->next->outer = node->outer;
311 node->next->previous = nullptr;
312 }
313 }
314 }
315
TraverseLoopsInnerToOuter(LoopNode * node)316 void HLoopOptimization::TraverseLoopsInnerToOuter(LoopNode* node) {
317 for ( ; node != nullptr; node = node->next) {
318 // Visit inner loops first.
319 uint32_t current_induction_simplification_count = induction_simplication_count_;
320 if (node->inner != nullptr) {
321 TraverseLoopsInnerToOuter(node->inner);
322 }
323 // Recompute induction information of this loop if the induction
324 // of any inner loop has been simplified.
325 if (current_induction_simplification_count != induction_simplication_count_) {
326 induction_range_.ReVisit(node->loop_info);
327 }
328 // Repeat simplifications in the loop-body until no more changes occur.
329 // Note that since each simplification consists of eliminating code (without
330 // introducing new code), this process is always finite.
331 do {
332 simplified_ = false;
333 SimplifyInduction(node);
334 SimplifyBlocks(node);
335 } while (simplified_);
336 // Optimize inner loop.
337 if (node->inner == nullptr) {
338 OptimizeInnerLoop(node);
339 }
340 }
341 }
342
343 //
344 // Optimization.
345 //
346
CanRemoveCycle()347 bool HLoopOptimization::CanRemoveCycle() {
348 for (HInstruction* i : *iset_) {
349 // We can never remove instructions that have environment
350 // uses when we compile 'debuggable'.
351 if (i->HasEnvironmentUses() && graph_->IsDebuggable()) {
352 return false;
353 }
354 // A deoptimization should never have an environment input removed.
355 for (const HUseListNode<HEnvironment*>& use : i->GetEnvUses()) {
356 if (use.GetUser()->GetHolder()->IsDeoptimize()) {
357 return false;
358 }
359 }
360 }
361 return true;
362 }
363
SimplifyInduction(LoopNode * node)364 void HLoopOptimization::SimplifyInduction(LoopNode* node) {
365 HBasicBlock* header = node->loop_info->GetHeader();
366 HBasicBlock* preheader = node->loop_info->GetPreHeader();
367 // Scan the phis in the header to find opportunities to simplify an induction
368 // cycle that is only used outside the loop. Replace these uses, if any, with
369 // the last value and remove the induction cycle.
370 // Examples: for (int i = 0; x != null; i++) { .... no i .... }
371 // for (int i = 0; i < 10; i++, k++) { .... no k .... } return k;
372 for (HInstructionIterator it(header->GetPhis()); !it.Done(); it.Advance()) {
373 HPhi* phi = it.Current()->AsPhi();
374 iset_->clear(); // prepare phi induction
375 if (TrySetPhiInduction(phi, /*restrict_uses*/ true) &&
376 TryAssignLastValue(node->loop_info, phi, preheader, /*collect_loop_uses*/ false)) {
377 // Note that it's ok to have replaced uses after the loop with the last value, without
378 // being able to remove the cycle. Environment uses (which are the reason we may not be
379 // able to remove the cycle) within the loop will still hold the right value.
380 if (CanRemoveCycle()) {
381 for (HInstruction* i : *iset_) {
382 RemoveFromCycle(i);
383 }
384 simplified_ = true;
385 }
386 }
387 }
388 }
389
SimplifyBlocks(LoopNode * node)390 void HLoopOptimization::SimplifyBlocks(LoopNode* node) {
391 // Iterate over all basic blocks in the loop-body.
392 for (HBlocksInLoopIterator it(*node->loop_info); !it.Done(); it.Advance()) {
393 HBasicBlock* block = it.Current();
394 // Remove dead instructions from the loop-body.
395 RemoveDeadInstructions(block->GetPhis());
396 RemoveDeadInstructions(block->GetInstructions());
397 // Remove trivial control flow blocks from the loop-body.
398 if (block->GetPredecessors().size() == 1 &&
399 block->GetSuccessors().size() == 1 &&
400 block->GetSingleSuccessor()->GetPredecessors().size() == 1) {
401 simplified_ = true;
402 block->MergeWith(block->GetSingleSuccessor());
403 } else if (block->GetSuccessors().size() == 2) {
404 // Trivial if block can be bypassed to either branch.
405 HBasicBlock* succ0 = block->GetSuccessors()[0];
406 HBasicBlock* succ1 = block->GetSuccessors()[1];
407 HBasicBlock* meet0 = nullptr;
408 HBasicBlock* meet1 = nullptr;
409 if (succ0 != succ1 &&
410 IsGotoBlock(succ0, &meet0) &&
411 IsGotoBlock(succ1, &meet1) &&
412 meet0 == meet1 && // meets again
413 meet0 != block && // no self-loop
414 meet0->GetPhis().IsEmpty()) { // not used for merging
415 simplified_ = true;
416 succ0->DisconnectAndDelete();
417 if (block->Dominates(meet0)) {
418 block->RemoveDominatedBlock(meet0);
419 succ1->AddDominatedBlock(meet0);
420 meet0->SetDominator(succ1);
421 }
422 }
423 }
424 }
425 }
426
OptimizeInnerLoop(LoopNode * node)427 void HLoopOptimization::OptimizeInnerLoop(LoopNode* node) {
428 HBasicBlock* header = node->loop_info->GetHeader();
429 HBasicBlock* preheader = node->loop_info->GetPreHeader();
430 // Ensure loop header logic is finite.
431 int64_t trip_count = 0;
432 if (!induction_range_.IsFinite(node->loop_info, &trip_count)) {
433 return;
434 }
435
436 // Ensure there is only a single loop-body (besides the header).
437 HBasicBlock* body = nullptr;
438 for (HBlocksInLoopIterator it(*node->loop_info); !it.Done(); it.Advance()) {
439 if (it.Current() != header) {
440 if (body != nullptr) {
441 return;
442 }
443 body = it.Current();
444 }
445 }
446 // Ensure there is only a single exit point.
447 if (header->GetSuccessors().size() != 2) {
448 return;
449 }
450 HBasicBlock* exit = (header->GetSuccessors()[0] == body)
451 ? header->GetSuccessors()[1]
452 : header->GetSuccessors()[0];
453 // Ensure exit can only be reached by exiting loop.
454 if (exit->GetPredecessors().size() != 1) {
455 return;
456 }
457 // Detect either an empty loop (no side effects other than plain iteration) or
458 // a trivial loop (just iterating once). Replace subsequent index uses, if any,
459 // with the last value and remove the loop, possibly after unrolling its body.
460 HInstruction* phi = header->GetFirstPhi();
461 iset_->clear(); // prepare phi induction
462 if (TrySetSimpleLoopHeader(header)) {
463 bool is_empty = IsEmptyBody(body);
464 if ((is_empty || trip_count == 1) &&
465 TryAssignLastValue(node->loop_info, phi, preheader, /*collect_loop_uses*/ true)) {
466 if (!is_empty) {
467 // Unroll the loop-body, which sees initial value of the index.
468 phi->ReplaceWith(phi->InputAt(0));
469 preheader->MergeInstructionsWith(body);
470 }
471 body->DisconnectAndDelete();
472 exit->RemovePredecessor(header);
473 header->RemoveSuccessor(exit);
474 header->RemoveDominatedBlock(exit);
475 header->DisconnectAndDelete();
476 preheader->AddSuccessor(exit);
477 preheader->AddInstruction(new (global_allocator_) HGoto());
478 preheader->AddDominatedBlock(exit);
479 exit->SetDominator(preheader);
480 RemoveLoop(node); // update hierarchy
481 return;
482 }
483 }
484
485 // Vectorize loop, if possible and valid.
486 if (kEnableVectorization) {
487 iset_->clear(); // prepare phi induction
488 if (TrySetSimpleLoopHeader(header) &&
489 CanVectorize(node, body, trip_count) &&
490 TryAssignLastValue(node->loop_info, phi, preheader, /*collect_loop_uses*/ true)) {
491 Vectorize(node, body, exit, trip_count);
492 graph_->SetHasSIMD(true); // flag SIMD usage
493 return;
494 }
495 }
496 }
497
498 //
499 // Loop vectorization. The implementation is based on the book by Aart J.C. Bik:
500 // "The Software Vectorization Handbook. Applying Multimedia Extensions for Maximum Performance."
501 // Intel Press, June, 2004 (http://www.aartbik.com/).
502 //
503
CanVectorize(LoopNode * node,HBasicBlock * block,int64_t trip_count)504 bool HLoopOptimization::CanVectorize(LoopNode* node, HBasicBlock* block, int64_t trip_count) {
505 // Reset vector bookkeeping.
506 vector_length_ = 0;
507 vector_refs_->clear();
508 vector_runtime_test_a_ =
509 vector_runtime_test_b_= nullptr;
510
511 // Phis in the loop-body prevent vectorization.
512 if (!block->GetPhis().IsEmpty()) {
513 return false;
514 }
515
516 // Scan the loop-body, starting a right-hand-side tree traversal at each left-hand-side
517 // occurrence, which allows passing down attributes down the use tree.
518 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
519 if (!VectorizeDef(node, it.Current(), /*generate_code*/ false)) {
520 return false; // failure to vectorize a left-hand-side
521 }
522 }
523
524 // Heuristics. Does vectorization seem profitable?
525 // TODO: refine
526 if (vector_length_ == 0) {
527 return false; // nothing found
528 } else if (0 < trip_count && trip_count < vector_length_) {
529 return false; // insufficient iterations
530 }
531
532 // Data dependence analysis. Find each pair of references with same type, where
533 // at least one is a write. Each such pair denotes a possible data dependence.
534 // This analysis exploits the property that differently typed arrays cannot be
535 // aliased, as well as the property that references either point to the same
536 // array or to two completely disjoint arrays, i.e., no partial aliasing.
537 // Other than a few simply heuristics, no detailed subscript analysis is done.
538 for (auto i = vector_refs_->begin(); i != vector_refs_->end(); ++i) {
539 for (auto j = i; ++j != vector_refs_->end(); ) {
540 if (i->type == j->type && (i->lhs || j->lhs)) {
541 // Found same-typed a[i+x] vs. b[i+y], where at least one is a write.
542 HInstruction* a = i->base;
543 HInstruction* b = j->base;
544 HInstruction* x = i->offset;
545 HInstruction* y = j->offset;
546 if (a == b) {
547 // Found a[i+x] vs. a[i+y]. Accept if x == y (loop-independent data dependence).
548 // Conservatively assume a loop-carried data dependence otherwise, and reject.
549 if (x != y) {
550 return false;
551 }
552 } else {
553 // Found a[i+x] vs. b[i+y]. Accept if x == y (at worst loop-independent data dependence).
554 // Conservatively assume a potential loop-carried data dependence otherwise, avoided by
555 // generating an explicit a != b disambiguation runtime test on the two references.
556 if (x != y) {
557 // For now, we reject after one test to avoid excessive overhead.
558 if (vector_runtime_test_a_ != nullptr) {
559 return false;
560 }
561 vector_runtime_test_a_ = a;
562 vector_runtime_test_b_ = b;
563 }
564 }
565 }
566 }
567 }
568
569 // Success!
570 return true;
571 }
572
Vectorize(LoopNode * node,HBasicBlock * block,HBasicBlock * exit,int64_t trip_count)573 void HLoopOptimization::Vectorize(LoopNode* node,
574 HBasicBlock* block,
575 HBasicBlock* exit,
576 int64_t trip_count) {
577 Primitive::Type induc_type = Primitive::kPrimInt;
578 HBasicBlock* header = node->loop_info->GetHeader();
579 HBasicBlock* preheader = node->loop_info->GetPreHeader();
580
581 // A cleanup is needed for any unknown trip count or for a known trip count
582 // with remainder iterations after vectorization.
583 bool needs_cleanup = trip_count == 0 || (trip_count % vector_length_) != 0;
584
585 // Adjust vector bookkeeping.
586 iset_->clear(); // prepare phi induction
587 bool is_simple_loop_header = TrySetSimpleLoopHeader(header); // fills iset_
588 DCHECK(is_simple_loop_header);
589
590 // Generate preheader:
591 // stc = <trip-count>;
592 // vtc = stc - stc % VL;
593 HInstruction* stc = induction_range_.GenerateTripCount(node->loop_info, graph_, preheader);
594 HInstruction* vtc = stc;
595 if (needs_cleanup) {
596 DCHECK(IsPowerOfTwo(vector_length_));
597 HInstruction* rem = Insert(
598 preheader, new (global_allocator_) HAnd(induc_type,
599 stc,
600 graph_->GetIntConstant(vector_length_ - 1)));
601 vtc = Insert(preheader, new (global_allocator_) HSub(induc_type, stc, rem));
602 }
603
604 // Generate runtime disambiguation test:
605 // vtc = a != b ? vtc : 0;
606 if (vector_runtime_test_a_ != nullptr) {
607 HInstruction* rt = Insert(
608 preheader,
609 new (global_allocator_) HNotEqual(vector_runtime_test_a_, vector_runtime_test_b_));
610 vtc = Insert(preheader,
611 new (global_allocator_) HSelect(rt, vtc, graph_->GetIntConstant(0), kNoDexPc));
612 needs_cleanup = true;
613 }
614
615 // Generate vector loop:
616 // for (i = 0; i < vtc; i += VL)
617 // <vectorized-loop-body>
618 vector_mode_ = kVector;
619 GenerateNewLoop(node,
620 block,
621 graph_->TransformLoopForVectorization(header, block, exit),
622 graph_->GetIntConstant(0),
623 vtc,
624 graph_->GetIntConstant(vector_length_));
625 HLoopInformation* vloop = vector_header_->GetLoopInformation();
626
627 // Generate cleanup loop, if needed:
628 // for ( ; i < stc; i += 1)
629 // <loop-body>
630 if (needs_cleanup) {
631 vector_mode_ = kSequential;
632 GenerateNewLoop(node,
633 block,
634 graph_->TransformLoopForVectorization(vector_header_, vector_body_, exit),
635 vector_phi_,
636 stc,
637 graph_->GetIntConstant(1));
638 }
639
640 // Remove the original loop by disconnecting the body block
641 // and removing all instructions from the header.
642 block->DisconnectAndDelete();
643 while (!header->GetFirstInstruction()->IsGoto()) {
644 header->RemoveInstruction(header->GetFirstInstruction());
645 }
646 // Update loop hierarchy: the old header now resides in the
647 // same outer loop as the old preheader.
648 header->SetLoopInformation(preheader->GetLoopInformation()); // outward
649 node->loop_info = vloop;
650 }
651
GenerateNewLoop(LoopNode * node,HBasicBlock * block,HBasicBlock * new_preheader,HInstruction * lo,HInstruction * hi,HInstruction * step)652 void HLoopOptimization::GenerateNewLoop(LoopNode* node,
653 HBasicBlock* block,
654 HBasicBlock* new_preheader,
655 HInstruction* lo,
656 HInstruction* hi,
657 HInstruction* step) {
658 Primitive::Type induc_type = Primitive::kPrimInt;
659 // Prepare new loop.
660 vector_map_->clear();
661 vector_preheader_ = new_preheader,
662 vector_header_ = vector_preheader_->GetSingleSuccessor();
663 vector_body_ = vector_header_->GetSuccessors()[1];
664 vector_phi_ = new (global_allocator_) HPhi(global_allocator_,
665 kNoRegNumber,
666 0,
667 HPhi::ToPhiType(induc_type));
668 // Generate header and prepare body.
669 // for (i = lo; i < hi; i += step)
670 // <loop-body>
671 HInstruction* cond = new (global_allocator_) HAboveOrEqual(vector_phi_, hi);
672 vector_header_->AddPhi(vector_phi_);
673 vector_header_->AddInstruction(cond);
674 vector_header_->AddInstruction(new (global_allocator_) HIf(cond));
675 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
676 bool vectorized_def = VectorizeDef(node, it.Current(), /*generate_code*/ true);
677 DCHECK(vectorized_def);
678 }
679 // Generate body from the instruction map, but in original program order.
680 HEnvironment* env = vector_header_->GetFirstInstruction()->GetEnvironment();
681 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
682 auto i = vector_map_->find(it.Current());
683 if (i != vector_map_->end() && !i->second->IsInBlock()) {
684 Insert(vector_body_, i->second);
685 // Deal with instructions that need an environment, such as the scalar intrinsics.
686 if (i->second->NeedsEnvironment()) {
687 i->second->CopyEnvironmentFromWithLoopPhiAdjustment(env, vector_header_);
688 }
689 }
690 }
691 // Finalize increment and phi.
692 HInstruction* inc = new (global_allocator_) HAdd(induc_type, vector_phi_, step);
693 vector_phi_->AddInput(lo);
694 vector_phi_->AddInput(Insert(vector_body_, inc));
695 }
696
697 // TODO: accept reductions at left-hand-side, mixed-type store idioms, etc.
VectorizeDef(LoopNode * node,HInstruction * instruction,bool generate_code)698 bool HLoopOptimization::VectorizeDef(LoopNode* node,
699 HInstruction* instruction,
700 bool generate_code) {
701 // Accept a left-hand-side array base[index] for
702 // (1) supported vector type,
703 // (2) loop-invariant base,
704 // (3) unit stride index,
705 // (4) vectorizable right-hand-side value.
706 uint64_t restrictions = kNone;
707 if (instruction->IsArraySet()) {
708 Primitive::Type type = instruction->AsArraySet()->GetComponentType();
709 HInstruction* base = instruction->InputAt(0);
710 HInstruction* index = instruction->InputAt(1);
711 HInstruction* value = instruction->InputAt(2);
712 HInstruction* offset = nullptr;
713 if (TrySetVectorType(type, &restrictions) &&
714 node->loop_info->IsDefinedOutOfTheLoop(base) &&
715 induction_range_.IsUnitStride(instruction, index, &offset) &&
716 VectorizeUse(node, value, generate_code, type, restrictions)) {
717 if (generate_code) {
718 GenerateVecSub(index, offset);
719 GenerateVecMem(instruction, vector_map_->Get(index), vector_map_->Get(value), type);
720 } else {
721 vector_refs_->insert(ArrayReference(base, offset, type, /*lhs*/ true));
722 }
723 return true;
724 }
725 return false;
726 }
727 // Branch back okay.
728 if (instruction->IsGoto()) {
729 return true;
730 }
731 // Otherwise accept only expressions with no effects outside the immediate loop-body.
732 // Note that actual uses are inspected during right-hand-side tree traversal.
733 return !IsUsedOutsideLoop(node->loop_info, instruction) && !instruction->DoesAnyWrite();
734 }
735
736 // TODO: more operations and intrinsics, detect saturation arithmetic, etc.
VectorizeUse(LoopNode * node,HInstruction * instruction,bool generate_code,Primitive::Type type,uint64_t restrictions)737 bool HLoopOptimization::VectorizeUse(LoopNode* node,
738 HInstruction* instruction,
739 bool generate_code,
740 Primitive::Type type,
741 uint64_t restrictions) {
742 // Accept anything for which code has already been generated.
743 if (generate_code) {
744 if (vector_map_->find(instruction) != vector_map_->end()) {
745 return true;
746 }
747 }
748 // Continue the right-hand-side tree traversal, passing in proper
749 // types and vector restrictions along the way. During code generation,
750 // all new nodes are drawn from the global allocator.
751 if (node->loop_info->IsDefinedOutOfTheLoop(instruction)) {
752 // Accept invariant use, using scalar expansion.
753 if (generate_code) {
754 GenerateVecInv(instruction, type);
755 }
756 return true;
757 } else if (instruction->IsArrayGet()) {
758 // Strings are different, with a different offset to the actual data
759 // and some compressed to save memory. For now, all cases are rejected
760 // to avoid the complexity.
761 if (instruction->AsArrayGet()->IsStringCharAt()) {
762 return false;
763 }
764 // Accept a right-hand-side array base[index] for
765 // (1) exact matching vector type,
766 // (2) loop-invariant base,
767 // (3) unit stride index,
768 // (4) vectorizable right-hand-side value.
769 HInstruction* base = instruction->InputAt(0);
770 HInstruction* index = instruction->InputAt(1);
771 HInstruction* offset = nullptr;
772 if (type == instruction->GetType() &&
773 node->loop_info->IsDefinedOutOfTheLoop(base) &&
774 induction_range_.IsUnitStride(instruction, index, &offset)) {
775 if (generate_code) {
776 GenerateVecSub(index, offset);
777 GenerateVecMem(instruction, vector_map_->Get(index), nullptr, type);
778 } else {
779 vector_refs_->insert(ArrayReference(base, offset, type, /*lhs*/ false));
780 }
781 return true;
782 }
783 } else if (instruction->IsTypeConversion()) {
784 // Accept particular type conversions.
785 HTypeConversion* conversion = instruction->AsTypeConversion();
786 HInstruction* opa = conversion->InputAt(0);
787 Primitive::Type from = conversion->GetInputType();
788 Primitive::Type to = conversion->GetResultType();
789 if ((to == Primitive::kPrimByte ||
790 to == Primitive::kPrimChar ||
791 to == Primitive::kPrimShort) && from == Primitive::kPrimInt) {
792 // Accept a "narrowing" type conversion from a "wider" computation for
793 // (1) conversion into final required type,
794 // (2) vectorizable operand,
795 // (3) "wider" operations cannot bring in higher order bits.
796 if (to == type && VectorizeUse(node, opa, generate_code, type, restrictions | kNoHiBits)) {
797 if (generate_code) {
798 if (vector_mode_ == kVector) {
799 vector_map_->Put(instruction, vector_map_->Get(opa)); // operand pass-through
800 } else {
801 GenerateVecOp(instruction, vector_map_->Get(opa), nullptr, type);
802 }
803 }
804 return true;
805 }
806 } else if (to == Primitive::kPrimFloat && from == Primitive::kPrimInt) {
807 DCHECK_EQ(to, type);
808 // Accept int to float conversion for
809 // (1) supported int,
810 // (2) vectorizable operand.
811 if (TrySetVectorType(from, &restrictions) &&
812 VectorizeUse(node, opa, generate_code, from, restrictions)) {
813 if (generate_code) {
814 GenerateVecOp(instruction, vector_map_->Get(opa), nullptr, type);
815 }
816 return true;
817 }
818 }
819 return false;
820 } else if (instruction->IsNeg() || instruction->IsNot() || instruction->IsBooleanNot()) {
821 // Accept unary operator for vectorizable operand.
822 HInstruction* opa = instruction->InputAt(0);
823 if (VectorizeUse(node, opa, generate_code, type, restrictions)) {
824 if (generate_code) {
825 GenerateVecOp(instruction, vector_map_->Get(opa), nullptr, type);
826 }
827 return true;
828 }
829 } else if (instruction->IsAdd() || instruction->IsSub() ||
830 instruction->IsMul() || instruction->IsDiv() ||
831 instruction->IsAnd() || instruction->IsOr() || instruction->IsXor()) {
832 // Deal with vector restrictions.
833 if ((instruction->IsMul() && HasVectorRestrictions(restrictions, kNoMul)) ||
834 (instruction->IsDiv() && HasVectorRestrictions(restrictions, kNoDiv))) {
835 return false;
836 }
837 // Accept binary operator for vectorizable operands.
838 HInstruction* opa = instruction->InputAt(0);
839 HInstruction* opb = instruction->InputAt(1);
840 if (VectorizeUse(node, opa, generate_code, type, restrictions) &&
841 VectorizeUse(node, opb, generate_code, type, restrictions)) {
842 if (generate_code) {
843 GenerateVecOp(instruction, vector_map_->Get(opa), vector_map_->Get(opb), type);
844 }
845 return true;
846 }
847 } else if (instruction->IsShl() || instruction->IsShr() || instruction->IsUShr()) {
848 // Recognize vectorization idioms.
849 if (VectorizeHalvingAddIdiom(node, instruction, generate_code, type, restrictions)) {
850 return true;
851 }
852 // Deal with vector restrictions.
853 if ((HasVectorRestrictions(restrictions, kNoShift)) ||
854 (instruction->IsShr() && HasVectorRestrictions(restrictions, kNoShr))) {
855 return false; // unsupported instruction
856 } else if ((instruction->IsShr() || instruction->IsUShr()) &&
857 HasVectorRestrictions(restrictions, kNoHiBits)) {
858 return false; // hibits may impact lobits; TODO: we can do better!
859 }
860 // Accept shift operator for vectorizable/invariant operands.
861 // TODO: accept symbolic, albeit loop invariant shift factors.
862 HInstruction* opa = instruction->InputAt(0);
863 HInstruction* opb = instruction->InputAt(1);
864 int64_t value = 0;
865 if (VectorizeUse(node, opa, generate_code, type, restrictions) && IsInt64AndGet(opb, &value)) {
866 // Make sure shift distance only looks at lower bits, as defined for sequential shifts.
867 int64_t mask = (instruction->GetType() == Primitive::kPrimLong)
868 ? kMaxLongShiftDistance
869 : kMaxIntShiftDistance;
870 int64_t distance = value & mask;
871 // Restrict shift distance to packed data type width.
872 int64_t max_distance = Primitive::ComponentSize(type) * 8;
873 if (0 <= distance && distance < max_distance) {
874 if (generate_code) {
875 HInstruction* s = graph_->GetIntConstant(distance);
876 GenerateVecOp(instruction, vector_map_->Get(opa), s, type);
877 }
878 return true;
879 }
880 }
881 } else if (instruction->IsInvokeStaticOrDirect()) {
882 // Accept particular intrinsics.
883 HInvokeStaticOrDirect* invoke = instruction->AsInvokeStaticOrDirect();
884 switch (invoke->GetIntrinsic()) {
885 case Intrinsics::kMathAbsInt:
886 case Intrinsics::kMathAbsLong:
887 case Intrinsics::kMathAbsFloat:
888 case Intrinsics::kMathAbsDouble: {
889 // Deal with vector restrictions.
890 if (HasVectorRestrictions(restrictions, kNoAbs) ||
891 HasVectorRestrictions(restrictions, kNoHiBits)) {
892 // TODO: we can do better for some hibits cases.
893 return false;
894 }
895 // Accept ABS(x) for vectorizable operand.
896 HInstruction* opa = instruction->InputAt(0);
897 if (VectorizeUse(node, opa, generate_code, type, restrictions)) {
898 if (generate_code) {
899 GenerateVecOp(instruction, vector_map_->Get(opa), nullptr, type);
900 }
901 return true;
902 }
903 return false;
904 }
905 default:
906 return false;
907 } // switch
908 }
909 return false;
910 }
911
TrySetVectorType(Primitive::Type type,uint64_t * restrictions)912 bool HLoopOptimization::TrySetVectorType(Primitive::Type type, uint64_t* restrictions) {
913 const InstructionSetFeatures* features = compiler_driver_->GetInstructionSetFeatures();
914 switch (compiler_driver_->GetInstructionSet()) {
915 case kArm:
916 case kThumb2:
917 return false;
918 case kArm64:
919 // Allow vectorization for all ARM devices, because Android assumes that
920 // ARMv8 AArch64 always supports advanced SIMD.
921 switch (type) {
922 case Primitive::kPrimBoolean:
923 case Primitive::kPrimByte:
924 *restrictions |= kNoDiv | kNoAbs;
925 return TrySetVectorLength(16);
926 case Primitive::kPrimChar:
927 case Primitive::kPrimShort:
928 *restrictions |= kNoDiv | kNoAbs;
929 return TrySetVectorLength(8);
930 case Primitive::kPrimInt:
931 *restrictions |= kNoDiv;
932 return TrySetVectorLength(4);
933 case Primitive::kPrimLong:
934 *restrictions |= kNoDiv | kNoMul;
935 return TrySetVectorLength(2);
936 case Primitive::kPrimFloat:
937 return TrySetVectorLength(4);
938 case Primitive::kPrimDouble:
939 return TrySetVectorLength(2);
940 default:
941 return false;
942 }
943 case kX86:
944 case kX86_64:
945 // Allow vectorization for SSE4-enabled X86 devices only (128-bit vectors).
946 if (features->AsX86InstructionSetFeatures()->HasSSE4_1()) {
947 switch (type) {
948 case Primitive::kPrimBoolean:
949 case Primitive::kPrimByte:
950 *restrictions |= kNoMul | kNoDiv | kNoShift | kNoAbs | kNoSignedHAdd | kNoUnroundedHAdd;
951 return TrySetVectorLength(16);
952 case Primitive::kPrimChar:
953 case Primitive::kPrimShort:
954 *restrictions |= kNoDiv | kNoAbs | kNoSignedHAdd | kNoUnroundedHAdd;
955 return TrySetVectorLength(8);
956 case Primitive::kPrimInt:
957 *restrictions |= kNoDiv;
958 return TrySetVectorLength(4);
959 case Primitive::kPrimLong:
960 *restrictions |= kNoMul | kNoDiv | kNoShr | kNoAbs;
961 return TrySetVectorLength(2);
962 case Primitive::kPrimFloat:
963 return TrySetVectorLength(4);
964 case Primitive::kPrimDouble:
965 return TrySetVectorLength(2);
966 default:
967 break;
968 } // switch type
969 }
970 return false;
971 case kMips:
972 case kMips64:
973 // TODO: implement MIPS SIMD.
974 return false;
975 default:
976 return false;
977 } // switch instruction set
978 }
979
TrySetVectorLength(uint32_t length)980 bool HLoopOptimization::TrySetVectorLength(uint32_t length) {
981 DCHECK(IsPowerOfTwo(length) && length >= 2u);
982 // First time set?
983 if (vector_length_ == 0) {
984 vector_length_ = length;
985 }
986 // Different types are acceptable within a loop-body, as long as all the corresponding vector
987 // lengths match exactly to obtain a uniform traversal through the vector iteration space
988 // (idiomatic exceptions to this rule can be handled by further unrolling sub-expressions).
989 return vector_length_ == length;
990 }
991
GenerateVecInv(HInstruction * org,Primitive::Type type)992 void HLoopOptimization::GenerateVecInv(HInstruction* org, Primitive::Type type) {
993 if (vector_map_->find(org) == vector_map_->end()) {
994 // In scalar code, just use a self pass-through for scalar invariants
995 // (viz. expression remains itself).
996 if (vector_mode_ == kSequential) {
997 vector_map_->Put(org, org);
998 return;
999 }
1000 // In vector code, explicit scalar expansion is needed.
1001 HInstruction* vector = new (global_allocator_) HVecReplicateScalar(
1002 global_allocator_, org, type, vector_length_);
1003 vector_map_->Put(org, Insert(vector_preheader_, vector));
1004 }
1005 }
1006
GenerateVecSub(HInstruction * org,HInstruction * offset)1007 void HLoopOptimization::GenerateVecSub(HInstruction* org, HInstruction* offset) {
1008 if (vector_map_->find(org) == vector_map_->end()) {
1009 HInstruction* subscript = vector_phi_;
1010 if (offset != nullptr) {
1011 subscript = new (global_allocator_) HAdd(Primitive::kPrimInt, subscript, offset);
1012 if (org->IsPhi()) {
1013 Insert(vector_body_, subscript); // lacks layout placeholder
1014 }
1015 }
1016 vector_map_->Put(org, subscript);
1017 }
1018 }
1019
GenerateVecMem(HInstruction * org,HInstruction * opa,HInstruction * opb,Primitive::Type type)1020 void HLoopOptimization::GenerateVecMem(HInstruction* org,
1021 HInstruction* opa,
1022 HInstruction* opb,
1023 Primitive::Type type) {
1024 HInstruction* vector = nullptr;
1025 if (vector_mode_ == kVector) {
1026 // Vector store or load.
1027 if (opb != nullptr) {
1028 vector = new (global_allocator_) HVecStore(
1029 global_allocator_, org->InputAt(0), opa, opb, type, vector_length_);
1030 } else {
1031 bool is_string_char_at = org->AsArrayGet()->IsStringCharAt();
1032 vector = new (global_allocator_) HVecLoad(
1033 global_allocator_, org->InputAt(0), opa, type, vector_length_, is_string_char_at);
1034 }
1035 } else {
1036 // Scalar store or load.
1037 DCHECK(vector_mode_ == kSequential);
1038 if (opb != nullptr) {
1039 vector = new (global_allocator_) HArraySet(org->InputAt(0), opa, opb, type, kNoDexPc);
1040 } else {
1041 bool is_string_char_at = org->AsArrayGet()->IsStringCharAt();
1042 vector = new (global_allocator_) HArrayGet(
1043 org->InputAt(0), opa, type, kNoDexPc, is_string_char_at);
1044 }
1045 }
1046 vector_map_->Put(org, vector);
1047 }
1048
1049 #define GENERATE_VEC(x, y) \
1050 if (vector_mode_ == kVector) { \
1051 vector = (x); \
1052 } else { \
1053 DCHECK(vector_mode_ == kSequential); \
1054 vector = (y); \
1055 } \
1056 break;
1057
GenerateVecOp(HInstruction * org,HInstruction * opa,HInstruction * opb,Primitive::Type type)1058 void HLoopOptimization::GenerateVecOp(HInstruction* org,
1059 HInstruction* opa,
1060 HInstruction* opb,
1061 Primitive::Type type) {
1062 if (vector_mode_ == kSequential) {
1063 // Scalar code follows implicit integral promotion.
1064 if (type == Primitive::kPrimBoolean ||
1065 type == Primitive::kPrimByte ||
1066 type == Primitive::kPrimChar ||
1067 type == Primitive::kPrimShort) {
1068 type = Primitive::kPrimInt;
1069 }
1070 }
1071 HInstruction* vector = nullptr;
1072 switch (org->GetKind()) {
1073 case HInstruction::kNeg:
1074 DCHECK(opb == nullptr);
1075 GENERATE_VEC(
1076 new (global_allocator_) HVecNeg(global_allocator_, opa, type, vector_length_),
1077 new (global_allocator_) HNeg(type, opa));
1078 case HInstruction::kNot:
1079 DCHECK(opb == nullptr);
1080 GENERATE_VEC(
1081 new (global_allocator_) HVecNot(global_allocator_, opa, type, vector_length_),
1082 new (global_allocator_) HNot(type, opa));
1083 case HInstruction::kBooleanNot:
1084 DCHECK(opb == nullptr);
1085 GENERATE_VEC(
1086 new (global_allocator_) HVecNot(global_allocator_, opa, type, vector_length_),
1087 new (global_allocator_) HBooleanNot(opa));
1088 case HInstruction::kTypeConversion:
1089 DCHECK(opb == nullptr);
1090 GENERATE_VEC(
1091 new (global_allocator_) HVecCnv(global_allocator_, opa, type, vector_length_),
1092 new (global_allocator_) HTypeConversion(type, opa, kNoDexPc));
1093 case HInstruction::kAdd:
1094 GENERATE_VEC(
1095 new (global_allocator_) HVecAdd(global_allocator_, opa, opb, type, vector_length_),
1096 new (global_allocator_) HAdd(type, opa, opb));
1097 case HInstruction::kSub:
1098 GENERATE_VEC(
1099 new (global_allocator_) HVecSub(global_allocator_, opa, opb, type, vector_length_),
1100 new (global_allocator_) HSub(type, opa, opb));
1101 case HInstruction::kMul:
1102 GENERATE_VEC(
1103 new (global_allocator_) HVecMul(global_allocator_, opa, opb, type, vector_length_),
1104 new (global_allocator_) HMul(type, opa, opb));
1105 case HInstruction::kDiv:
1106 GENERATE_VEC(
1107 new (global_allocator_) HVecDiv(global_allocator_, opa, opb, type, vector_length_),
1108 new (global_allocator_) HDiv(type, opa, opb, kNoDexPc));
1109 case HInstruction::kAnd:
1110 GENERATE_VEC(
1111 new (global_allocator_) HVecAnd(global_allocator_, opa, opb, type, vector_length_),
1112 new (global_allocator_) HAnd(type, opa, opb));
1113 case HInstruction::kOr:
1114 GENERATE_VEC(
1115 new (global_allocator_) HVecOr(global_allocator_, opa, opb, type, vector_length_),
1116 new (global_allocator_) HOr(type, opa, opb));
1117 case HInstruction::kXor:
1118 GENERATE_VEC(
1119 new (global_allocator_) HVecXor(global_allocator_, opa, opb, type, vector_length_),
1120 new (global_allocator_) HXor(type, opa, opb));
1121 case HInstruction::kShl:
1122 GENERATE_VEC(
1123 new (global_allocator_) HVecShl(global_allocator_, opa, opb, type, vector_length_),
1124 new (global_allocator_) HShl(type, opa, opb));
1125 case HInstruction::kShr:
1126 GENERATE_VEC(
1127 new (global_allocator_) HVecShr(global_allocator_, opa, opb, type, vector_length_),
1128 new (global_allocator_) HShr(type, opa, opb));
1129 case HInstruction::kUShr:
1130 GENERATE_VEC(
1131 new (global_allocator_) HVecUShr(global_allocator_, opa, opb, type, vector_length_),
1132 new (global_allocator_) HUShr(type, opa, opb));
1133 case HInstruction::kInvokeStaticOrDirect: {
1134 HInvokeStaticOrDirect* invoke = org->AsInvokeStaticOrDirect();
1135 if (vector_mode_ == kVector) {
1136 switch (invoke->GetIntrinsic()) {
1137 case Intrinsics::kMathAbsInt:
1138 case Intrinsics::kMathAbsLong:
1139 case Intrinsics::kMathAbsFloat:
1140 case Intrinsics::kMathAbsDouble:
1141 DCHECK(opb == nullptr);
1142 vector = new (global_allocator_) HVecAbs(global_allocator_, opa, type, vector_length_);
1143 break;
1144 default:
1145 LOG(FATAL) << "Unsupported SIMD intrinsic";
1146 UNREACHABLE();
1147 } // switch invoke
1148 } else {
1149 // In scalar code, simply clone the method invoke, and replace its operands with the
1150 // corresponding new scalar instructions in the loop. The instruction will get an
1151 // environment while being inserted from the instruction map in original program order.
1152 DCHECK(vector_mode_ == kSequential);
1153 HInvokeStaticOrDirect* new_invoke = new (global_allocator_) HInvokeStaticOrDirect(
1154 global_allocator_,
1155 invoke->GetNumberOfArguments(),
1156 invoke->GetType(),
1157 invoke->GetDexPc(),
1158 invoke->GetDexMethodIndex(),
1159 invoke->GetResolvedMethod(),
1160 invoke->GetDispatchInfo(),
1161 invoke->GetInvokeType(),
1162 invoke->GetTargetMethod(),
1163 invoke->GetClinitCheckRequirement());
1164 HInputsRef inputs = invoke->GetInputs();
1165 for (size_t index = 0; index < inputs.size(); ++index) {
1166 new_invoke->SetArgumentAt(index, vector_map_->Get(inputs[index]));
1167 }
1168 new_invoke->SetIntrinsic(invoke->GetIntrinsic(),
1169 kNeedsEnvironmentOrCache,
1170 kNoSideEffects,
1171 kNoThrow);
1172 vector = new_invoke;
1173 }
1174 break;
1175 }
1176 default:
1177 break;
1178 } // switch
1179 CHECK(vector != nullptr) << "Unsupported SIMD operator";
1180 vector_map_->Put(org, vector);
1181 }
1182
1183 #undef GENERATE_VEC
1184
1185 //
1186 // Vectorization idioms.
1187 //
1188
1189 // Method recognizes the following idioms:
1190 // rounding halving add (a + b + 1) >> 1 for unsigned/signed operands a, b
1191 // regular halving add (a + b) >> 1 for unsigned/signed operands a, b
1192 // Provided that the operands are promoted to a wider form to do the arithmetic and
1193 // then cast back to narrower form, the idioms can be mapped into efficient SIMD
1194 // implementation that operates directly in narrower form (plus one extra bit).
1195 // TODO: current version recognizes implicit byte/short/char widening only;
1196 // explicit widening from int to long could be added later.
VectorizeHalvingAddIdiom(LoopNode * node,HInstruction * instruction,bool generate_code,Primitive::Type type,uint64_t restrictions)1197 bool HLoopOptimization::VectorizeHalvingAddIdiom(LoopNode* node,
1198 HInstruction* instruction,
1199 bool generate_code,
1200 Primitive::Type type,
1201 uint64_t restrictions) {
1202 // Test for top level arithmetic shift right x >> 1 or logical shift right x >>> 1
1203 // (note whether the sign bit in higher precision is shifted in has no effect
1204 // on the narrow precision computed by the idiom).
1205 int64_t value = 0;
1206 if ((instruction->IsShr() ||
1207 instruction->IsUShr()) &&
1208 IsInt64AndGet(instruction->InputAt(1), &value) && value == 1) {
1209 //
1210 // TODO: make following code less sensitive to associativity and commutativity differences.
1211 //
1212 HInstruction* x = instruction->InputAt(0);
1213 // Test for an optional rounding part (x + 1) >> 1.
1214 bool is_rounded = false;
1215 if (x->IsAdd() && IsInt64AndGet(x->InputAt(1), &value) && value == 1) {
1216 x = x->InputAt(0);
1217 is_rounded = true;
1218 }
1219 // Test for a core addition (a + b) >> 1 (possibly rounded), either unsigned or signed.
1220 if (x->IsAdd()) {
1221 HInstruction* a = x->InputAt(0);
1222 HInstruction* b = x->InputAt(1);
1223 HInstruction* r = nullptr;
1224 HInstruction* s = nullptr;
1225 bool is_unsigned = false;
1226 if (IsZeroExtensionAndGet(a, type, &r) && IsZeroExtensionAndGet(b, type, &s)) {
1227 is_unsigned = true;
1228 } else if (IsSignExtensionAndGet(a, type, &r) && IsSignExtensionAndGet(b, type, &s)) {
1229 is_unsigned = false;
1230 } else {
1231 return false;
1232 }
1233 // Deal with vector restrictions.
1234 if ((!is_unsigned && HasVectorRestrictions(restrictions, kNoSignedHAdd)) ||
1235 (!is_rounded && HasVectorRestrictions(restrictions, kNoUnroundedHAdd))) {
1236 return false;
1237 }
1238 // Accept recognized halving add for vectorizable operands. Vectorized code uses the
1239 // shorthand idiomatic operation. Sequential code uses the original scalar expressions.
1240 DCHECK(r != nullptr && s != nullptr);
1241 if (VectorizeUse(node, r, generate_code, type, restrictions) &&
1242 VectorizeUse(node, s, generate_code, type, restrictions)) {
1243 if (generate_code) {
1244 if (vector_mode_ == kVector) {
1245 vector_map_->Put(instruction, new (global_allocator_) HVecHalvingAdd(
1246 global_allocator_,
1247 vector_map_->Get(r),
1248 vector_map_->Get(s),
1249 type,
1250 vector_length_,
1251 is_unsigned,
1252 is_rounded));
1253 } else {
1254 VectorizeUse(node, instruction->InputAt(0), generate_code, type, restrictions);
1255 VectorizeUse(node, instruction->InputAt(1), generate_code, type, restrictions);
1256 GenerateVecOp(instruction,
1257 vector_map_->Get(instruction->InputAt(0)),
1258 vector_map_->Get(instruction->InputAt(1)),
1259 type);
1260 }
1261 }
1262 return true;
1263 }
1264 }
1265 }
1266 return false;
1267 }
1268
1269 //
1270 // Helpers.
1271 //
1272
TrySetPhiInduction(HPhi * phi,bool restrict_uses)1273 bool HLoopOptimization::TrySetPhiInduction(HPhi* phi, bool restrict_uses) {
1274 DCHECK(iset_->empty());
1275 ArenaSet<HInstruction*>* set = induction_range_.LookupCycle(phi);
1276 if (set != nullptr) {
1277 for (HInstruction* i : *set) {
1278 // Check that, other than instructions that are no longer in the graph (removed earlier)
1279 // each instruction is removable and, when restrict uses are requested, other than for phi,
1280 // all uses are contained within the cycle.
1281 if (!i->IsInBlock()) {
1282 continue;
1283 } else if (!i->IsRemovable()) {
1284 return false;
1285 } else if (i != phi && restrict_uses) {
1286 for (const HUseListNode<HInstruction*>& use : i->GetUses()) {
1287 if (set->find(use.GetUser()) == set->end()) {
1288 return false;
1289 }
1290 }
1291 }
1292 iset_->insert(i); // copy
1293 }
1294 return true;
1295 }
1296 return false;
1297 }
1298
1299 // Find: phi: Phi(init, addsub)
1300 // s: SuspendCheck
1301 // c: Condition(phi, bound)
1302 // i: If(c)
1303 // TODO: Find a less pattern matching approach?
TrySetSimpleLoopHeader(HBasicBlock * block)1304 bool HLoopOptimization::TrySetSimpleLoopHeader(HBasicBlock* block) {
1305 DCHECK(iset_->empty());
1306 HInstruction* phi = block->GetFirstPhi();
1307 if (phi != nullptr &&
1308 phi->GetNext() == nullptr &&
1309 TrySetPhiInduction(phi->AsPhi(), /*restrict_uses*/ false)) {
1310 HInstruction* s = block->GetFirstInstruction();
1311 if (s != nullptr && s->IsSuspendCheck()) {
1312 HInstruction* c = s->GetNext();
1313 if (c != nullptr &&
1314 c->IsCondition() &&
1315 c->GetUses().HasExactlyOneElement() && // only used for termination
1316 !c->HasEnvironmentUses()) { // unlikely, but not impossible
1317 HInstruction* i = c->GetNext();
1318 if (i != nullptr && i->IsIf() && i->InputAt(0) == c) {
1319 iset_->insert(c);
1320 iset_->insert(s);
1321 return true;
1322 }
1323 }
1324 }
1325 }
1326 return false;
1327 }
1328
IsEmptyBody(HBasicBlock * block)1329 bool HLoopOptimization::IsEmptyBody(HBasicBlock* block) {
1330 if (!block->GetPhis().IsEmpty()) {
1331 return false;
1332 }
1333 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
1334 HInstruction* instruction = it.Current();
1335 if (!instruction->IsGoto() && iset_->find(instruction) == iset_->end()) {
1336 return false;
1337 }
1338 }
1339 return true;
1340 }
1341
IsUsedOutsideLoop(HLoopInformation * loop_info,HInstruction * instruction)1342 bool HLoopOptimization::IsUsedOutsideLoop(HLoopInformation* loop_info,
1343 HInstruction* instruction) {
1344 for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
1345 if (use.GetUser()->GetBlock()->GetLoopInformation() != loop_info) {
1346 return true;
1347 }
1348 }
1349 return false;
1350 }
1351
IsOnlyUsedAfterLoop(HLoopInformation * loop_info,HInstruction * instruction,bool collect_loop_uses,int32_t * use_count)1352 bool HLoopOptimization::IsOnlyUsedAfterLoop(HLoopInformation* loop_info,
1353 HInstruction* instruction,
1354 bool collect_loop_uses,
1355 /*out*/ int32_t* use_count) {
1356 for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
1357 HInstruction* user = use.GetUser();
1358 if (iset_->find(user) == iset_->end()) { // not excluded?
1359 HLoopInformation* other_loop_info = user->GetBlock()->GetLoopInformation();
1360 if (other_loop_info != nullptr && other_loop_info->IsIn(*loop_info)) {
1361 // If collect_loop_uses is set, simply keep adding those uses to the set.
1362 // Otherwise, reject uses inside the loop that were not already in the set.
1363 if (collect_loop_uses) {
1364 iset_->insert(user);
1365 continue;
1366 }
1367 return false;
1368 }
1369 ++*use_count;
1370 }
1371 }
1372 return true;
1373 }
1374
TryReplaceWithLastValue(HLoopInformation * loop_info,HInstruction * instruction,HBasicBlock * block)1375 bool HLoopOptimization::TryReplaceWithLastValue(HLoopInformation* loop_info,
1376 HInstruction* instruction,
1377 HBasicBlock* block) {
1378 // Try to replace outside uses with the last value.
1379 if (induction_range_.CanGenerateLastValue(instruction)) {
1380 HInstruction* replacement = induction_range_.GenerateLastValue(instruction, graph_, block);
1381 const HUseList<HInstruction*>& uses = instruction->GetUses();
1382 for (auto it = uses.begin(), end = uses.end(); it != end;) {
1383 HInstruction* user = it->GetUser();
1384 size_t index = it->GetIndex();
1385 ++it; // increment before replacing
1386 if (iset_->find(user) == iset_->end()) { // not excluded?
1387 if (kIsDebugBuild) {
1388 // We have checked earlier in 'IsOnlyUsedAfterLoop' that the use is after the loop.
1389 HLoopInformation* other_loop_info = user->GetBlock()->GetLoopInformation();
1390 CHECK(other_loop_info == nullptr || !other_loop_info->IsIn(*loop_info));
1391 }
1392 user->ReplaceInput(replacement, index);
1393 induction_range_.Replace(user, instruction, replacement); // update induction
1394 }
1395 }
1396 const HUseList<HEnvironment*>& env_uses = instruction->GetEnvUses();
1397 for (auto it = env_uses.begin(), end = env_uses.end(); it != end;) {
1398 HEnvironment* user = it->GetUser();
1399 size_t index = it->GetIndex();
1400 ++it; // increment before replacing
1401 if (iset_->find(user->GetHolder()) == iset_->end()) { // not excluded?
1402 HLoopInformation* other_loop_info = user->GetHolder()->GetBlock()->GetLoopInformation();
1403 // Only update environment uses after the loop.
1404 if (other_loop_info == nullptr || !other_loop_info->IsIn(*loop_info)) {
1405 user->RemoveAsUserOfInput(index);
1406 user->SetRawEnvAt(index, replacement);
1407 replacement->AddEnvUseAt(user, index);
1408 }
1409 }
1410 }
1411 induction_simplication_count_++;
1412 return true;
1413 }
1414 return false;
1415 }
1416
TryAssignLastValue(HLoopInformation * loop_info,HInstruction * instruction,HBasicBlock * block,bool collect_loop_uses)1417 bool HLoopOptimization::TryAssignLastValue(HLoopInformation* loop_info,
1418 HInstruction* instruction,
1419 HBasicBlock* block,
1420 bool collect_loop_uses) {
1421 // Assigning the last value is always successful if there are no uses.
1422 // Otherwise, it succeeds in a no early-exit loop by generating the
1423 // proper last value assignment.
1424 int32_t use_count = 0;
1425 return IsOnlyUsedAfterLoop(loop_info, instruction, collect_loop_uses, &use_count) &&
1426 (use_count == 0 ||
1427 (!IsEarlyExit(loop_info) && TryReplaceWithLastValue(loop_info, instruction, block)));
1428 }
1429
RemoveDeadInstructions(const HInstructionList & list)1430 void HLoopOptimization::RemoveDeadInstructions(const HInstructionList& list) {
1431 for (HBackwardInstructionIterator i(list); !i.Done(); i.Advance()) {
1432 HInstruction* instruction = i.Current();
1433 if (instruction->IsDeadAndRemovable()) {
1434 simplified_ = true;
1435 instruction->GetBlock()->RemoveInstructionOrPhi(instruction);
1436 }
1437 }
1438 }
1439
1440 } // namespace art
1441