1 // Copyright 2016 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/zone/accounting-allocator.h"
6 
7 #include <cstdlib>
8 
9 #if V8_LIBC_BIONIC
10 #include <malloc.h>  // NOLINT
11 #endif
12 
13 namespace v8 {
14 namespace internal {
15 
AccountingAllocator()16 AccountingAllocator::AccountingAllocator() : unused_segments_mutex_() {
17   static const size_t kDefaultBucketMaxSize = 5;
18 
19   memory_pressure_level_.SetValue(MemoryPressureLevel::kNone);
20   std::fill(unused_segments_heads_, unused_segments_heads_ + kNumberBuckets,
21             nullptr);
22   std::fill(unused_segments_sizes_, unused_segments_sizes_ + kNumberBuckets, 0);
23   std::fill(unused_segments_max_sizes_,
24             unused_segments_max_sizes_ + kNumberBuckets, kDefaultBucketMaxSize);
25 }
26 
~AccountingAllocator()27 AccountingAllocator::~AccountingAllocator() { ClearPool(); }
28 
MemoryPressureNotification(MemoryPressureLevel level)29 void AccountingAllocator::MemoryPressureNotification(
30     MemoryPressureLevel level) {
31   memory_pressure_level_.SetValue(level);
32 
33   if (level != MemoryPressureLevel::kNone) {
34     ClearPool();
35   }
36 }
37 
ConfigureSegmentPool(const size_t max_pool_size)38 void AccountingAllocator::ConfigureSegmentPool(const size_t max_pool_size) {
39   // The sum of the bytes of one segment of each size.
40   static const size_t full_size = (size_t(1) << (kMaxSegmentSizePower + 1)) -
41                                   (size_t(1) << kMinSegmentSizePower);
42   size_t fits_fully = max_pool_size / full_size;
43 
44   base::LockGuard<base::Mutex> lock_guard(&unused_segments_mutex_);
45 
46   // We assume few zones (less than 'fits_fully' many) to be active at the same
47   // time. When zones grow regularly, they will keep requesting segments of
48   // increasing size each time. Therefore we try to get as many segments with an
49   // equal number of segments of each size as possible.
50   // The remaining space is used to make more room for an 'incomplete set' of
51   // segments beginning with the smaller ones.
52   // This code will work best if the max_pool_size is a multiple of the
53   // full_size. If max_pool_size is no sum of segment sizes the actual pool
54   // size might be smaller then max_pool_size. Note that no actual memory gets
55   // wasted though.
56   // TODO(heimbuef): Determine better strategy generating a segment sizes
57   // distribution that is closer to real/benchmark usecases and uses the given
58   // max_pool_size more efficiently.
59   size_t total_size = fits_fully * full_size;
60 
61   for (size_t power = 0; power < kNumberBuckets; ++power) {
62     if (total_size + (size_t(1) << (power + kMinSegmentSizePower)) <=
63         max_pool_size) {
64       unused_segments_max_sizes_[power] = fits_fully + 1;
65       total_size += size_t(1) << power;
66     } else {
67       unused_segments_max_sizes_[power] = fits_fully;
68     }
69   }
70 }
71 
GetSegment(size_t bytes)72 Segment* AccountingAllocator::GetSegment(size_t bytes) {
73   Segment* result = GetSegmentFromPool(bytes);
74   if (result == nullptr) {
75     result = AllocateSegment(bytes);
76     result->Initialize(bytes);
77   }
78 
79   return result;
80 }
81 
AllocateSegment(size_t bytes)82 Segment* AccountingAllocator::AllocateSegment(size_t bytes) {
83   void* memory = malloc(bytes);
84   if (memory) {
85     base::AtomicWord current =
86         base::NoBarrier_AtomicIncrement(&current_memory_usage_, bytes);
87     base::AtomicWord max = base::NoBarrier_Load(&max_memory_usage_);
88     while (current > max) {
89       max = base::NoBarrier_CompareAndSwap(&max_memory_usage_, max, current);
90     }
91   }
92   return reinterpret_cast<Segment*>(memory);
93 }
94 
ReturnSegment(Segment * segment)95 void AccountingAllocator::ReturnSegment(Segment* segment) {
96   segment->ZapContents();
97 
98   if (memory_pressure_level_.Value() != MemoryPressureLevel::kNone) {
99     FreeSegment(segment);
100   } else if (!AddSegmentToPool(segment)) {
101     FreeSegment(segment);
102   }
103 }
104 
FreeSegment(Segment * memory)105 void AccountingAllocator::FreeSegment(Segment* memory) {
106   base::NoBarrier_AtomicIncrement(
107       &current_memory_usage_, -static_cast<base::AtomicWord>(memory->size()));
108   memory->ZapHeader();
109   free(memory);
110 }
111 
GetCurrentMemoryUsage() const112 size_t AccountingAllocator::GetCurrentMemoryUsage() const {
113   return base::NoBarrier_Load(&current_memory_usage_);
114 }
115 
GetMaxMemoryUsage() const116 size_t AccountingAllocator::GetMaxMemoryUsage() const {
117   return base::NoBarrier_Load(&max_memory_usage_);
118 }
119 
GetCurrentPoolSize() const120 size_t AccountingAllocator::GetCurrentPoolSize() const {
121   return base::NoBarrier_Load(&current_pool_size_);
122 }
123 
GetSegmentFromPool(size_t requested_size)124 Segment* AccountingAllocator::GetSegmentFromPool(size_t requested_size) {
125   if (requested_size > (1 << kMaxSegmentSizePower)) {
126     return nullptr;
127   }
128 
129   size_t power = kMinSegmentSizePower;
130   while (requested_size > (static_cast<size_t>(1) << power)) power++;
131 
132   DCHECK_GE(power, kMinSegmentSizePower + 0);
133   power -= kMinSegmentSizePower;
134 
135   Segment* segment;
136   {
137     base::LockGuard<base::Mutex> lock_guard(&unused_segments_mutex_);
138 
139     segment = unused_segments_heads_[power];
140 
141     if (segment != nullptr) {
142       unused_segments_heads_[power] = segment->next();
143       segment->set_next(nullptr);
144 
145       unused_segments_sizes_[power]--;
146       base::NoBarrier_AtomicIncrement(
147           &current_pool_size_, -static_cast<base::AtomicWord>(segment->size()));
148     }
149   }
150 
151   if (segment) {
152     DCHECK_GE(segment->size(), requested_size);
153   }
154   return segment;
155 }
156 
AddSegmentToPool(Segment * segment)157 bool AccountingAllocator::AddSegmentToPool(Segment* segment) {
158   size_t size = segment->size();
159 
160   if (size >= (1 << (kMaxSegmentSizePower + 1))) return false;
161 
162   if (size < (1 << kMinSegmentSizePower)) return false;
163 
164   size_t power = kMaxSegmentSizePower;
165 
166   while (size < (static_cast<size_t>(1) << power)) power--;
167 
168   DCHECK_GE(power, kMinSegmentSizePower + 0);
169   power -= kMinSegmentSizePower;
170 
171   {
172     base::LockGuard<base::Mutex> lock_guard(&unused_segments_mutex_);
173 
174     if (unused_segments_sizes_[power] >= unused_segments_max_sizes_[power]) {
175       return false;
176     }
177 
178     segment->set_next(unused_segments_heads_[power]);
179     unused_segments_heads_[power] = segment;
180     base::NoBarrier_AtomicIncrement(&current_pool_size_, size);
181     unused_segments_sizes_[power]++;
182   }
183 
184   return true;
185 }
186 
ClearPool()187 void AccountingAllocator::ClearPool() {
188   base::LockGuard<base::Mutex> lock_guard(&unused_segments_mutex_);
189 
190   for (size_t power = 0; power <= kMaxSegmentSizePower - kMinSegmentSizePower;
191        power++) {
192     Segment* current = unused_segments_heads_[power];
193     while (current) {
194       Segment* next = current->next();
195       FreeSegment(current);
196       current = next;
197     }
198     unused_segments_heads_[power] = nullptr;
199   }
200 }
201 
202 }  // namespace internal
203 }  // namespace v8
204