1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/isolate.h"
6
7 #include <stdlib.h>
8
9 #include <fstream> // NOLINT(readability/streams)
10 #include <sstream>
11
12 #include "src/ast/context-slot-cache.h"
13 #include "src/base/hashmap.h"
14 #include "src/base/platform/platform.h"
15 #include "src/base/sys-info.h"
16 #include "src/base/utils/random-number-generator.h"
17 #include "src/basic-block-profiler.h"
18 #include "src/bootstrapper.h"
19 #include "src/cancelable-task.h"
20 #include "src/codegen.h"
21 #include "src/compilation-cache.h"
22 #include "src/compilation-statistics.h"
23 #include "src/compiler-dispatcher/compiler-dispatcher-tracer.h"
24 #include "src/compiler-dispatcher/optimizing-compile-dispatcher.h"
25 #include "src/crankshaft/hydrogen.h"
26 #include "src/debug/debug.h"
27 #include "src/deoptimizer.h"
28 #include "src/elements.h"
29 #include "src/external-reference-table.h"
30 #include "src/frames-inl.h"
31 #include "src/ic/access-compiler-data.h"
32 #include "src/ic/stub-cache.h"
33 #include "src/interface-descriptors.h"
34 #include "src/interpreter/interpreter.h"
35 #include "src/isolate-inl.h"
36 #include "src/libsampler/sampler.h"
37 #include "src/log.h"
38 #include "src/messages.h"
39 #include "src/profiler/cpu-profiler.h"
40 #include "src/prototype.h"
41 #include "src/regexp/regexp-stack.h"
42 #include "src/runtime-profiler.h"
43 #include "src/simulator.h"
44 #include "src/snapshot/deserializer.h"
45 #include "src/tracing/tracing-category-observer.h"
46 #include "src/v8.h"
47 #include "src/version.h"
48 #include "src/vm-state-inl.h"
49 #include "src/wasm/wasm-module.h"
50 #include "src/zone/accounting-allocator.h"
51
52 namespace v8 {
53 namespace internal {
54
55 base::Atomic32 ThreadId::highest_thread_id_ = 0;
56
AllocateThreadId()57 int ThreadId::AllocateThreadId() {
58 int new_id = base::NoBarrier_AtomicIncrement(&highest_thread_id_, 1);
59 return new_id;
60 }
61
62
GetCurrentThreadId()63 int ThreadId::GetCurrentThreadId() {
64 int thread_id = base::Thread::GetThreadLocalInt(Isolate::thread_id_key_);
65 if (thread_id == 0) {
66 thread_id = AllocateThreadId();
67 base::Thread::SetThreadLocalInt(Isolate::thread_id_key_, thread_id);
68 }
69 return thread_id;
70 }
71
72
ThreadLocalTop()73 ThreadLocalTop::ThreadLocalTop() {
74 InitializeInternal();
75 }
76
77
InitializeInternal()78 void ThreadLocalTop::InitializeInternal() {
79 c_entry_fp_ = 0;
80 c_function_ = 0;
81 handler_ = 0;
82 #ifdef USE_SIMULATOR
83 simulator_ = NULL;
84 #endif
85 js_entry_sp_ = NULL;
86 external_callback_scope_ = NULL;
87 current_vm_state_ = EXTERNAL;
88 try_catch_handler_ = NULL;
89 context_ = NULL;
90 thread_id_ = ThreadId::Invalid();
91 external_caught_exception_ = false;
92 failed_access_check_callback_ = NULL;
93 save_context_ = NULL;
94 promise_on_stack_ = NULL;
95
96 // These members are re-initialized later after deserialization
97 // is complete.
98 pending_exception_ = NULL;
99 rethrowing_message_ = false;
100 pending_message_obj_ = NULL;
101 scheduled_exception_ = NULL;
102 }
103
104
Initialize()105 void ThreadLocalTop::Initialize() {
106 InitializeInternal();
107 #ifdef USE_SIMULATOR
108 simulator_ = Simulator::current(isolate_);
109 #endif
110 thread_id_ = ThreadId::Current();
111 }
112
113
Free()114 void ThreadLocalTop::Free() {
115 // Match unmatched PopPromise calls.
116 while (promise_on_stack_) isolate_->PopPromise();
117 }
118
119
120 base::Thread::LocalStorageKey Isolate::isolate_key_;
121 base::Thread::LocalStorageKey Isolate::thread_id_key_;
122 base::Thread::LocalStorageKey Isolate::per_isolate_thread_data_key_;
123 base::LazyMutex Isolate::thread_data_table_mutex_ = LAZY_MUTEX_INITIALIZER;
124 Isolate::ThreadDataTable* Isolate::thread_data_table_ = NULL;
125 base::Atomic32 Isolate::isolate_counter_ = 0;
126 #if DEBUG
127 base::Atomic32 Isolate::isolate_key_created_ = 0;
128 #endif
129
130 Isolate::PerIsolateThreadData*
FindOrAllocatePerThreadDataForThisThread()131 Isolate::FindOrAllocatePerThreadDataForThisThread() {
132 ThreadId thread_id = ThreadId::Current();
133 PerIsolateThreadData* per_thread = NULL;
134 {
135 base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer());
136 per_thread = thread_data_table_->Lookup(this, thread_id);
137 if (per_thread == NULL) {
138 per_thread = new PerIsolateThreadData(this, thread_id);
139 thread_data_table_->Insert(per_thread);
140 }
141 DCHECK(thread_data_table_->Lookup(this, thread_id) == per_thread);
142 }
143 return per_thread;
144 }
145
146
DiscardPerThreadDataForThisThread()147 void Isolate::DiscardPerThreadDataForThisThread() {
148 int thread_id_int = base::Thread::GetThreadLocalInt(Isolate::thread_id_key_);
149 if (thread_id_int) {
150 ThreadId thread_id = ThreadId(thread_id_int);
151 DCHECK(!thread_manager_->mutex_owner_.Equals(thread_id));
152 base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer());
153 PerIsolateThreadData* per_thread =
154 thread_data_table_->Lookup(this, thread_id);
155 if (per_thread) {
156 DCHECK(!per_thread->thread_state_);
157 thread_data_table_->Remove(per_thread);
158 }
159 }
160 }
161
162
FindPerThreadDataForThisThread()163 Isolate::PerIsolateThreadData* Isolate::FindPerThreadDataForThisThread() {
164 ThreadId thread_id = ThreadId::Current();
165 return FindPerThreadDataForThread(thread_id);
166 }
167
168
FindPerThreadDataForThread(ThreadId thread_id)169 Isolate::PerIsolateThreadData* Isolate::FindPerThreadDataForThread(
170 ThreadId thread_id) {
171 PerIsolateThreadData* per_thread = NULL;
172 {
173 base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer());
174 per_thread = thread_data_table_->Lookup(this, thread_id);
175 }
176 return per_thread;
177 }
178
179
InitializeOncePerProcess()180 void Isolate::InitializeOncePerProcess() {
181 base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer());
182 CHECK(thread_data_table_ == NULL);
183 isolate_key_ = base::Thread::CreateThreadLocalKey();
184 #if DEBUG
185 base::NoBarrier_Store(&isolate_key_created_, 1);
186 #endif
187 thread_id_key_ = base::Thread::CreateThreadLocalKey();
188 per_isolate_thread_data_key_ = base::Thread::CreateThreadLocalKey();
189 thread_data_table_ = new Isolate::ThreadDataTable();
190 }
191
192
get_address_from_id(Isolate::AddressId id)193 Address Isolate::get_address_from_id(Isolate::AddressId id) {
194 return isolate_addresses_[id];
195 }
196
197
Iterate(ObjectVisitor * v,char * thread_storage)198 char* Isolate::Iterate(ObjectVisitor* v, char* thread_storage) {
199 ThreadLocalTop* thread = reinterpret_cast<ThreadLocalTop*>(thread_storage);
200 Iterate(v, thread);
201 return thread_storage + sizeof(ThreadLocalTop);
202 }
203
204
IterateThread(ThreadVisitor * v,char * t)205 void Isolate::IterateThread(ThreadVisitor* v, char* t) {
206 ThreadLocalTop* thread = reinterpret_cast<ThreadLocalTop*>(t);
207 v->VisitThread(this, thread);
208 }
209
210
Iterate(ObjectVisitor * v,ThreadLocalTop * thread)211 void Isolate::Iterate(ObjectVisitor* v, ThreadLocalTop* thread) {
212 // Visit the roots from the top for a given thread.
213 v->VisitPointer(&thread->pending_exception_);
214 v->VisitPointer(&(thread->pending_message_obj_));
215 v->VisitPointer(bit_cast<Object**>(&(thread->context_)));
216 v->VisitPointer(&thread->scheduled_exception_);
217
218 for (v8::TryCatch* block = thread->try_catch_handler();
219 block != NULL;
220 block = block->next_) {
221 v->VisitPointer(bit_cast<Object**>(&(block->exception_)));
222 v->VisitPointer(bit_cast<Object**>(&(block->message_obj_)));
223 }
224
225 // Iterate over pointers on native execution stack.
226 for (StackFrameIterator it(this, thread); !it.done(); it.Advance()) {
227 it.frame()->Iterate(v);
228 }
229 }
230
231
Iterate(ObjectVisitor * v)232 void Isolate::Iterate(ObjectVisitor* v) {
233 ThreadLocalTop* current_t = thread_local_top();
234 Iterate(v, current_t);
235 }
236
237
IterateDeferredHandles(ObjectVisitor * visitor)238 void Isolate::IterateDeferredHandles(ObjectVisitor* visitor) {
239 for (DeferredHandles* deferred = deferred_handles_head_;
240 deferred != NULL;
241 deferred = deferred->next_) {
242 deferred->Iterate(visitor);
243 }
244 }
245
246
247 #ifdef DEBUG
IsDeferredHandle(Object ** handle)248 bool Isolate::IsDeferredHandle(Object** handle) {
249 // Each DeferredHandles instance keeps the handles to one job in the
250 // concurrent recompilation queue, containing a list of blocks. Each block
251 // contains kHandleBlockSize handles except for the first block, which may
252 // not be fully filled.
253 // We iterate through all the blocks to see whether the argument handle
254 // belongs to one of the blocks. If so, it is deferred.
255 for (DeferredHandles* deferred = deferred_handles_head_;
256 deferred != NULL;
257 deferred = deferred->next_) {
258 List<Object**>* blocks = &deferred->blocks_;
259 for (int i = 0; i < blocks->length(); i++) {
260 Object** block_limit = (i == 0) ? deferred->first_block_limit_
261 : blocks->at(i) + kHandleBlockSize;
262 if (blocks->at(i) <= handle && handle < block_limit) return true;
263 }
264 }
265 return false;
266 }
267 #endif // DEBUG
268
269
RegisterTryCatchHandler(v8::TryCatch * that)270 void Isolate::RegisterTryCatchHandler(v8::TryCatch* that) {
271 thread_local_top()->set_try_catch_handler(that);
272 }
273
274
UnregisterTryCatchHandler(v8::TryCatch * that)275 void Isolate::UnregisterTryCatchHandler(v8::TryCatch* that) {
276 DCHECK(thread_local_top()->try_catch_handler() == that);
277 thread_local_top()->set_try_catch_handler(that->next_);
278 }
279
280
StackTraceString()281 Handle<String> Isolate::StackTraceString() {
282 if (stack_trace_nesting_level_ == 0) {
283 stack_trace_nesting_level_++;
284 HeapStringAllocator allocator;
285 StringStream::ClearMentionedObjectCache(this);
286 StringStream accumulator(&allocator);
287 incomplete_message_ = &accumulator;
288 PrintStack(&accumulator);
289 Handle<String> stack_trace = accumulator.ToString(this);
290 incomplete_message_ = NULL;
291 stack_trace_nesting_level_ = 0;
292 return stack_trace;
293 } else if (stack_trace_nesting_level_ == 1) {
294 stack_trace_nesting_level_++;
295 base::OS::PrintError(
296 "\n\nAttempt to print stack while printing stack (double fault)\n");
297 base::OS::PrintError(
298 "If you are lucky you may find a partial stack dump on stdout.\n\n");
299 incomplete_message_->OutputToStdOut();
300 return factory()->empty_string();
301 } else {
302 base::OS::Abort();
303 // Unreachable
304 return factory()->empty_string();
305 }
306 }
307
308
PushStackTraceAndDie(unsigned int magic,void * ptr1,void * ptr2,unsigned int magic2)309 void Isolate::PushStackTraceAndDie(unsigned int magic, void* ptr1, void* ptr2,
310 unsigned int magic2) {
311 const int kMaxStackTraceSize = 32 * KB;
312 Handle<String> trace = StackTraceString();
313 uint8_t buffer[kMaxStackTraceSize];
314 int length = Min(kMaxStackTraceSize - 1, trace->length());
315 String::WriteToFlat(*trace, buffer, 0, length);
316 buffer[length] = '\0';
317 // TODO(dcarney): convert buffer to utf8?
318 base::OS::PrintError("Stacktrace (%x-%x) %p %p: %s\n", magic, magic2, ptr1,
319 ptr2, reinterpret_cast<char*>(buffer));
320 base::OS::Abort();
321 }
322
323 namespace {
324
325 class StackTraceHelper {
326 public:
StackTraceHelper(Isolate * isolate,FrameSkipMode mode,Handle<Object> caller)327 StackTraceHelper(Isolate* isolate, FrameSkipMode mode, Handle<Object> caller)
328 : isolate_(isolate),
329 mode_(mode),
330 caller_(caller),
331 skip_next_frame_(true) {
332 switch (mode_) {
333 case SKIP_FIRST:
334 skip_next_frame_ = true;
335 break;
336 case SKIP_UNTIL_SEEN:
337 DCHECK(caller_->IsJSFunction());
338 skip_next_frame_ = true;
339 break;
340 case SKIP_NONE:
341 skip_next_frame_ = false;
342 break;
343 }
344 encountered_strict_function_ = false;
345 }
346
347 // Poison stack frames below the first strict mode frame.
348 // The stack trace API should not expose receivers and function
349 // objects on frames deeper than the top-most one with a strict mode
350 // function.
IsStrictFrame(JSFunction * fun)351 bool IsStrictFrame(JSFunction* fun) {
352 if (!encountered_strict_function_) {
353 encountered_strict_function_ = is_strict(fun->shared()->language_mode());
354 }
355 return encountered_strict_function_;
356 }
357
358 // Determines whether the given stack frame should be displayed in a stack
359 // trace.
IsVisibleInStackTrace(JSFunction * fun)360 bool IsVisibleInStackTrace(JSFunction* fun) {
361 return ShouldIncludeFrame(fun) && IsNotInNativeScript(fun) &&
362 IsInSameSecurityContext(fun);
363 }
364
365 private:
366 // This mechanism excludes a number of uninteresting frames from the stack
367 // trace. This can be be the first frame (which will be a builtin-exit frame
368 // for the error constructor builtin) or every frame until encountering a
369 // user-specified function.
ShouldIncludeFrame(JSFunction * fun)370 bool ShouldIncludeFrame(JSFunction* fun) {
371 switch (mode_) {
372 case SKIP_NONE:
373 return true;
374 case SKIP_FIRST:
375 if (!skip_next_frame_) return true;
376 skip_next_frame_ = false;
377 return false;
378 case SKIP_UNTIL_SEEN:
379 if (skip_next_frame_ && (fun == *caller_)) {
380 skip_next_frame_ = false;
381 return false;
382 }
383 return !skip_next_frame_;
384 }
385 UNREACHABLE();
386 return false;
387 }
388
IsNotInNativeScript(JSFunction * fun)389 bool IsNotInNativeScript(JSFunction* fun) {
390 // Functions defined in native scripts are not visible unless directly
391 // exposed, in which case the native flag is set.
392 // The --builtins-in-stack-traces command line flag allows including
393 // internal call sites in the stack trace for debugging purposes.
394 if (!FLAG_builtins_in_stack_traces && fun->shared()->IsBuiltin()) {
395 return fun->shared()->native();
396 }
397 return true;
398 }
399
IsInSameSecurityContext(JSFunction * fun)400 bool IsInSameSecurityContext(JSFunction* fun) {
401 return isolate_->context()->HasSameSecurityTokenAs(fun->context());
402 }
403
404 Isolate* isolate_;
405
406 const FrameSkipMode mode_;
407 const Handle<Object> caller_;
408 bool skip_next_frame_;
409
410 bool encountered_strict_function_;
411 };
412
413 // TODO(jgruber): Fix all cases in which frames give us a hole value (e.g. the
414 // receiver in RegExp constructor frames.
TheHoleToUndefined(Isolate * isolate,Handle<Object> in)415 Handle<Object> TheHoleToUndefined(Isolate* isolate, Handle<Object> in) {
416 return (in->IsTheHole(isolate))
417 ? Handle<Object>::cast(isolate->factory()->undefined_value())
418 : in;
419 }
420
GetStackTraceLimit(Isolate * isolate,int * result)421 bool GetStackTraceLimit(Isolate* isolate, int* result) {
422 Handle<JSObject> error = isolate->error_function();
423
424 Handle<String> key = isolate->factory()->stackTraceLimit_string();
425 Handle<Object> stack_trace_limit = JSReceiver::GetDataProperty(error, key);
426 if (!stack_trace_limit->IsNumber()) return false;
427
428 // Ensure that limit is not negative.
429 *result = Max(FastD2IChecked(stack_trace_limit->Number()), 0);
430 return true;
431 }
432
433 } // namespace
434
CaptureSimpleStackTrace(Handle<JSReceiver> error_object,FrameSkipMode mode,Handle<Object> caller)435 Handle<Object> Isolate::CaptureSimpleStackTrace(Handle<JSReceiver> error_object,
436 FrameSkipMode mode,
437 Handle<Object> caller) {
438 DisallowJavascriptExecution no_js(this);
439
440 int limit;
441 if (!GetStackTraceLimit(this, &limit)) return factory()->undefined_value();
442
443 const int initial_size = Min(limit, 10);
444 Handle<FrameArray> elements = factory()->NewFrameArray(initial_size);
445
446 StackTraceHelper helper(this, mode, caller);
447
448 for (StackFrameIterator iter(this);
449 !iter.done() && elements->FrameCount() < limit; iter.Advance()) {
450 StackFrame* frame = iter.frame();
451
452 switch (frame->type()) {
453 case StackFrame::JAVA_SCRIPT:
454 case StackFrame::OPTIMIZED:
455 case StackFrame::INTERPRETED:
456 case StackFrame::BUILTIN: {
457 JavaScriptFrame* js_frame = JavaScriptFrame::cast(frame);
458 // Set initial size to the maximum inlining level + 1 for the outermost
459 // function.
460 List<FrameSummary> frames(FLAG_max_inlining_levels + 1);
461 js_frame->Summarize(&frames);
462 for (int i = frames.length() - 1; i >= 0; i--) {
463 Handle<JSFunction> fun = frames[i].function();
464
465 // Filter out internal frames that we do not want to show.
466 if (!helper.IsVisibleInStackTrace(*fun)) continue;
467
468 Handle<Object> recv = frames[i].receiver();
469 Handle<AbstractCode> abstract_code = frames[i].abstract_code();
470 const int offset = frames[i].code_offset();
471
472 bool force_constructor = false;
473 if (frame->type() == StackFrame::BUILTIN) {
474 // Help CallSite::IsConstructor correctly detect hand-written
475 // construct stubs.
476 if (Code::cast(*abstract_code)->is_construct_stub()) {
477 force_constructor = true;
478 }
479 }
480
481 int flags = 0;
482 if (helper.IsStrictFrame(*fun)) flags |= FrameArray::kIsStrict;
483 if (force_constructor) flags |= FrameArray::kForceConstructor;
484
485 elements = FrameArray::AppendJSFrame(
486 elements, TheHoleToUndefined(this, recv), fun, abstract_code,
487 offset, flags);
488 }
489 } break;
490
491 case StackFrame::BUILTIN_EXIT: {
492 BuiltinExitFrame* exit_frame = BuiltinExitFrame::cast(frame);
493 Handle<JSFunction> fun = handle(exit_frame->function(), this);
494
495 // Filter out internal frames that we do not want to show.
496 if (!helper.IsVisibleInStackTrace(*fun)) continue;
497
498 Handle<Object> recv(exit_frame->receiver(), this);
499 Handle<Code> code(exit_frame->LookupCode(), this);
500 const int offset =
501 static_cast<int>(exit_frame->pc() - code->instruction_start());
502
503 int flags = 0;
504 if (helper.IsStrictFrame(*fun)) flags |= FrameArray::kIsStrict;
505 if (exit_frame->IsConstructor()) flags |= FrameArray::kForceConstructor;
506
507 elements = FrameArray::AppendJSFrame(elements, recv, fun,
508 Handle<AbstractCode>::cast(code),
509 offset, flags);
510 } break;
511
512 case StackFrame::WASM: {
513 WasmFrame* wasm_frame = WasmFrame::cast(frame);
514 Handle<Object> instance(wasm_frame->wasm_instance(), this);
515 const int wasm_function_index = wasm_frame->function_index();
516 Code* code = wasm_frame->unchecked_code();
517 Handle<AbstractCode> abstract_code(AbstractCode::cast(code), this);
518 const int offset =
519 static_cast<int>(wasm_frame->pc() - code->instruction_start());
520
521 // TODO(wasm): The wasm object returned by the WasmFrame should always
522 // be a wasm object.
523 DCHECK(wasm::IsWasmInstance(*instance) || instance->IsUndefined(this));
524
525 int flags = wasm::WasmIsAsmJs(*instance, this)
526 ? FrameArray::kIsAsmJsWasmFrame
527 : FrameArray::kIsWasmFrame;
528
529 elements =
530 FrameArray::AppendWasmFrame(elements, instance, wasm_function_index,
531 abstract_code, offset, flags);
532 } break;
533
534 default:
535 break;
536 }
537 }
538
539 elements->ShrinkToFit();
540
541 // TODO(yangguo): Queue this structured stack trace for preprocessing on GC.
542 return factory()->NewJSArrayWithElements(elements);
543 }
544
CaptureAndSetDetailedStackTrace(Handle<JSReceiver> error_object)545 MaybeHandle<JSReceiver> Isolate::CaptureAndSetDetailedStackTrace(
546 Handle<JSReceiver> error_object) {
547 if (capture_stack_trace_for_uncaught_exceptions_) {
548 // Capture stack trace for a detailed exception message.
549 Handle<Name> key = factory()->detailed_stack_trace_symbol();
550 Handle<JSArray> stack_trace = CaptureCurrentStackTrace(
551 stack_trace_for_uncaught_exceptions_frame_limit_,
552 stack_trace_for_uncaught_exceptions_options_);
553 RETURN_ON_EXCEPTION(
554 this, JSReceiver::SetProperty(error_object, key, stack_trace, STRICT),
555 JSReceiver);
556 }
557 return error_object;
558 }
559
CaptureAndSetSimpleStackTrace(Handle<JSReceiver> error_object,FrameSkipMode mode,Handle<Object> caller)560 MaybeHandle<JSReceiver> Isolate::CaptureAndSetSimpleStackTrace(
561 Handle<JSReceiver> error_object, FrameSkipMode mode,
562 Handle<Object> caller) {
563 // Capture stack trace for simple stack trace string formatting.
564 Handle<Name> key = factory()->stack_trace_symbol();
565 Handle<Object> stack_trace =
566 CaptureSimpleStackTrace(error_object, mode, caller);
567 RETURN_ON_EXCEPTION(
568 this, JSReceiver::SetProperty(error_object, key, stack_trace, STRICT),
569 JSReceiver);
570 return error_object;
571 }
572
573
GetDetailedStackTrace(Handle<JSObject> error_object)574 Handle<JSArray> Isolate::GetDetailedStackTrace(Handle<JSObject> error_object) {
575 Handle<Name> key_detailed = factory()->detailed_stack_trace_symbol();
576 Handle<Object> stack_trace =
577 JSReceiver::GetDataProperty(error_object, key_detailed);
578 if (stack_trace->IsJSArray()) return Handle<JSArray>::cast(stack_trace);
579 return Handle<JSArray>();
580 }
581
582
583 class CaptureStackTraceHelper {
584 public:
CaptureStackTraceHelper(Isolate * isolate,StackTrace::StackTraceOptions options)585 CaptureStackTraceHelper(Isolate* isolate,
586 StackTrace::StackTraceOptions options)
587 : isolate_(isolate) {
588 if (options & StackTrace::kColumnOffset) {
589 column_key_ =
590 factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("column"));
591 }
592 if (options & StackTrace::kLineNumber) {
593 line_key_ =
594 factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("lineNumber"));
595 }
596 if (options & StackTrace::kScriptId) {
597 script_id_key_ =
598 factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("scriptId"));
599 }
600 if (options & StackTrace::kScriptName) {
601 script_name_key_ =
602 factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("scriptName"));
603 }
604 if (options & StackTrace::kScriptNameOrSourceURL) {
605 script_name_or_source_url_key_ = factory()->InternalizeOneByteString(
606 STATIC_CHAR_VECTOR("scriptNameOrSourceURL"));
607 }
608 if (options & StackTrace::kFunctionName) {
609 function_key_ = factory()->InternalizeOneByteString(
610 STATIC_CHAR_VECTOR("functionName"));
611 }
612 if (options & StackTrace::kIsEval) {
613 eval_key_ =
614 factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("isEval"));
615 }
616 if (options & StackTrace::kIsConstructor) {
617 constructor_key_ = factory()->InternalizeOneByteString(
618 STATIC_CHAR_VECTOR("isConstructor"));
619 }
620 }
621
NewStackFrameObject(FrameSummary & summ)622 Handle<JSObject> NewStackFrameObject(FrameSummary& summ) {
623 int position = summ.abstract_code()->SourcePosition(summ.code_offset());
624 return NewStackFrameObject(summ.function(), position,
625 summ.is_constructor());
626 }
627
NewStackFrameObject(Handle<JSFunction> fun,int position,bool is_constructor)628 Handle<JSObject> NewStackFrameObject(Handle<JSFunction> fun, int position,
629 bool is_constructor) {
630 Handle<JSObject> stack_frame =
631 factory()->NewJSObject(isolate_->object_function());
632 Handle<Script> script(Script::cast(fun->shared()->script()), isolate_);
633
634 if (!line_key_.is_null()) {
635 Script::PositionInfo info;
636 bool valid_pos =
637 Script::GetPositionInfo(script, position, &info, Script::WITH_OFFSET);
638
639 if (!column_key_.is_null() && valid_pos) {
640 JSObject::AddProperty(stack_frame, column_key_,
641 handle(Smi::FromInt(info.column + 1), isolate_),
642 NONE);
643 }
644 JSObject::AddProperty(stack_frame, line_key_,
645 handle(Smi::FromInt(info.line + 1), isolate_),
646 NONE);
647 }
648
649 if (!script_id_key_.is_null()) {
650 JSObject::AddProperty(stack_frame, script_id_key_,
651 handle(Smi::FromInt(script->id()), isolate_), NONE);
652 }
653
654 if (!script_name_key_.is_null()) {
655 JSObject::AddProperty(stack_frame, script_name_key_,
656 handle(script->name(), isolate_), NONE);
657 }
658
659 if (!script_name_or_source_url_key_.is_null()) {
660 Handle<Object> result = Script::GetNameOrSourceURL(script);
661 JSObject::AddProperty(stack_frame, script_name_or_source_url_key_, result,
662 NONE);
663 }
664
665 if (!eval_key_.is_null()) {
666 Handle<Object> is_eval = factory()->ToBoolean(
667 script->compilation_type() == Script::COMPILATION_TYPE_EVAL);
668 JSObject::AddProperty(stack_frame, eval_key_, is_eval, NONE);
669 }
670
671 if (!function_key_.is_null()) {
672 Handle<Object> fun_name = JSFunction::GetDebugName(fun);
673 JSObject::AddProperty(stack_frame, function_key_, fun_name, NONE);
674 }
675
676 if (!constructor_key_.is_null()) {
677 Handle<Object> is_constructor_obj = factory()->ToBoolean(is_constructor);
678 JSObject::AddProperty(stack_frame, constructor_key_, is_constructor_obj,
679 NONE);
680 }
681 return stack_frame;
682 }
683
NewStackFrameObject(BuiltinExitFrame * frame)684 Handle<JSObject> NewStackFrameObject(BuiltinExitFrame* frame) {
685 Handle<JSObject> stack_frame =
686 factory()->NewJSObject(isolate_->object_function());
687 Handle<JSFunction> fun = handle(frame->function(), isolate_);
688 if (!function_key_.is_null()) {
689 Handle<Object> fun_name = JSFunction::GetDebugName(fun);
690 JSObject::AddProperty(stack_frame, function_key_, fun_name, NONE);
691 }
692
693 // We don't have a script and hence cannot set line and col positions.
694 DCHECK(!fun->shared()->script()->IsScript());
695
696 return stack_frame;
697 }
698
NewStackFrameObject(WasmFrame * frame)699 Handle<JSObject> NewStackFrameObject(WasmFrame* frame) {
700 Handle<JSObject> stack_frame =
701 factory()->NewJSObject(isolate_->object_function());
702
703 if (!function_key_.is_null()) {
704 Handle<String> name = wasm::GetWasmFunctionName(
705 isolate_, handle(frame->wasm_instance(), isolate_),
706 frame->function_index());
707 JSObject::AddProperty(stack_frame, function_key_, name, NONE);
708 }
709 // Encode the function index as line number (1-based).
710 if (!line_key_.is_null()) {
711 JSObject::AddProperty(
712 stack_frame, line_key_,
713 isolate_->factory()->NewNumberFromInt(frame->function_index() + 1),
714 NONE);
715 }
716 // Encode the byte offset as column (1-based).
717 if (!column_key_.is_null()) {
718 Code* code = frame->LookupCode();
719 int offset = static_cast<int>(frame->pc() - code->instruction_start());
720 int position = AbstractCode::cast(code)->SourcePosition(offset);
721 // Make position 1-based.
722 if (position >= 0) ++position;
723 JSObject::AddProperty(stack_frame, column_key_,
724 isolate_->factory()->NewNumberFromInt(position),
725 NONE);
726 }
727 if (!script_id_key_.is_null()) {
728 int script_id = frame->script()->id();
729 JSObject::AddProperty(stack_frame, script_id_key_,
730 handle(Smi::FromInt(script_id), isolate_), NONE);
731 }
732
733 return stack_frame;
734 }
735
736 private:
factory()737 inline Factory* factory() { return isolate_->factory(); }
738
739 Isolate* isolate_;
740 Handle<String> column_key_;
741 Handle<String> line_key_;
742 Handle<String> script_id_key_;
743 Handle<String> script_name_key_;
744 Handle<String> script_name_or_source_url_key_;
745 Handle<String> function_key_;
746 Handle<String> eval_key_;
747 Handle<String> constructor_key_;
748 };
749
CaptureCurrentStackTrace(int frame_limit,StackTrace::StackTraceOptions options)750 Handle<JSArray> Isolate::CaptureCurrentStackTrace(
751 int frame_limit, StackTrace::StackTraceOptions options) {
752 DisallowJavascriptExecution no_js(this);
753 CaptureStackTraceHelper helper(this, options);
754
755 // Ensure no negative values.
756 int limit = Max(frame_limit, 0);
757 Handle<JSArray> stack_trace = factory()->NewJSArray(frame_limit);
758 Handle<FixedArray> stack_trace_elems(
759 FixedArray::cast(stack_trace->elements()), this);
760
761 int frames_seen = 0;
762 for (StackTraceFrameIterator it(this); !it.done() && (frames_seen < limit);
763 it.Advance()) {
764 StandardFrame* frame = it.frame();
765 if (frame->is_java_script()) {
766 // Set initial size to the maximum inlining level + 1 for the outermost
767 // function.
768 List<FrameSummary> frames(FLAG_max_inlining_levels + 1);
769 JavaScriptFrame::cast(frame)->Summarize(&frames);
770 for (int i = frames.length() - 1; i >= 0 && frames_seen < limit; i--) {
771 Handle<JSFunction> fun = frames[i].function();
772 // Filter frames from other security contexts.
773 if (!(options & StackTrace::kExposeFramesAcrossSecurityOrigins) &&
774 !this->context()->HasSameSecurityTokenAs(fun->context()))
775 continue;
776 Handle<JSObject> new_frame_obj = helper.NewStackFrameObject(frames[i]);
777 stack_trace_elems->set(frames_seen, *new_frame_obj);
778 frames_seen++;
779 }
780 } else {
781 DCHECK(frame->is_wasm());
782 WasmFrame* wasm_frame = WasmFrame::cast(frame);
783 Handle<JSObject> new_frame_obj = helper.NewStackFrameObject(wasm_frame);
784 stack_trace_elems->set(frames_seen, *new_frame_obj);
785 frames_seen++;
786 }
787 }
788
789 stack_trace->set_length(Smi::FromInt(frames_seen));
790 return stack_trace;
791 }
792
793
PrintStack(FILE * out,PrintStackMode mode)794 void Isolate::PrintStack(FILE* out, PrintStackMode mode) {
795 if (stack_trace_nesting_level_ == 0) {
796 stack_trace_nesting_level_++;
797 StringStream::ClearMentionedObjectCache(this);
798 HeapStringAllocator allocator;
799 StringStream accumulator(&allocator);
800 incomplete_message_ = &accumulator;
801 PrintStack(&accumulator, mode);
802 accumulator.OutputToFile(out);
803 InitializeLoggingAndCounters();
804 accumulator.Log(this);
805 incomplete_message_ = NULL;
806 stack_trace_nesting_level_ = 0;
807 } else if (stack_trace_nesting_level_ == 1) {
808 stack_trace_nesting_level_++;
809 base::OS::PrintError(
810 "\n\nAttempt to print stack while printing stack (double fault)\n");
811 base::OS::PrintError(
812 "If you are lucky you may find a partial stack dump on stdout.\n\n");
813 incomplete_message_->OutputToFile(out);
814 }
815 }
816
817
PrintFrames(Isolate * isolate,StringStream * accumulator,StackFrame::PrintMode mode)818 static void PrintFrames(Isolate* isolate,
819 StringStream* accumulator,
820 StackFrame::PrintMode mode) {
821 StackFrameIterator it(isolate);
822 for (int i = 0; !it.done(); it.Advance()) {
823 it.frame()->Print(accumulator, mode, i++);
824 }
825 }
826
827
PrintStack(StringStream * accumulator,PrintStackMode mode)828 void Isolate::PrintStack(StringStream* accumulator, PrintStackMode mode) {
829 // The MentionedObjectCache is not GC-proof at the moment.
830 DisallowHeapAllocation no_gc;
831 HandleScope scope(this);
832 DCHECK(accumulator->IsMentionedObjectCacheClear(this));
833
834 // Avoid printing anything if there are no frames.
835 if (c_entry_fp(thread_local_top()) == 0) return;
836
837 accumulator->Add(
838 "\n==== JS stack trace =========================================\n\n");
839 PrintFrames(this, accumulator, StackFrame::OVERVIEW);
840 if (mode == kPrintStackVerbose) {
841 accumulator->Add(
842 "\n==== Details ================================================\n\n");
843 PrintFrames(this, accumulator, StackFrame::DETAILS);
844 accumulator->PrintMentionedObjectCache(this);
845 }
846 accumulator->Add("=====================\n\n");
847 }
848
849
SetFailedAccessCheckCallback(v8::FailedAccessCheckCallback callback)850 void Isolate::SetFailedAccessCheckCallback(
851 v8::FailedAccessCheckCallback callback) {
852 thread_local_top()->failed_access_check_callback_ = callback;
853 }
854
855
ReportFailedAccessCheck(Handle<JSObject> receiver)856 void Isolate::ReportFailedAccessCheck(Handle<JSObject> receiver) {
857 if (!thread_local_top()->failed_access_check_callback_) {
858 return ScheduleThrow(*factory()->NewTypeError(MessageTemplate::kNoAccess));
859 }
860
861 DCHECK(receiver->IsAccessCheckNeeded());
862 DCHECK(context());
863
864 // Get the data object from access check info.
865 HandleScope scope(this);
866 Handle<Object> data;
867 { DisallowHeapAllocation no_gc;
868 AccessCheckInfo* access_check_info = AccessCheckInfo::Get(this, receiver);
869 if (!access_check_info) {
870 AllowHeapAllocation doesnt_matter_anymore;
871 return ScheduleThrow(
872 *factory()->NewTypeError(MessageTemplate::kNoAccess));
873 }
874 data = handle(access_check_info->data(), this);
875 }
876
877 // Leaving JavaScript.
878 VMState<EXTERNAL> state(this);
879 thread_local_top()->failed_access_check_callback_(
880 v8::Utils::ToLocal(receiver), v8::ACCESS_HAS, v8::Utils::ToLocal(data));
881 }
882
883
MayAccess(Handle<Context> accessing_context,Handle<JSObject> receiver)884 bool Isolate::MayAccess(Handle<Context> accessing_context,
885 Handle<JSObject> receiver) {
886 DCHECK(receiver->IsJSGlobalProxy() || receiver->IsAccessCheckNeeded());
887
888 // Check for compatibility between the security tokens in the
889 // current lexical context and the accessed object.
890
891 // During bootstrapping, callback functions are not enabled yet.
892 if (bootstrapper()->IsActive()) return true;
893 {
894 DisallowHeapAllocation no_gc;
895
896 if (receiver->IsJSGlobalProxy()) {
897 Object* receiver_context =
898 JSGlobalProxy::cast(*receiver)->native_context();
899 if (!receiver_context->IsContext()) return false;
900
901 // Get the native context of current top context.
902 // avoid using Isolate::native_context() because it uses Handle.
903 Context* native_context =
904 accessing_context->global_object()->native_context();
905 if (receiver_context == native_context) return true;
906
907 if (Context::cast(receiver_context)->security_token() ==
908 native_context->security_token())
909 return true;
910 }
911 }
912
913 HandleScope scope(this);
914 Handle<Object> data;
915 v8::AccessCheckCallback callback = nullptr;
916 { DisallowHeapAllocation no_gc;
917 AccessCheckInfo* access_check_info = AccessCheckInfo::Get(this, receiver);
918 if (!access_check_info) return false;
919 Object* fun_obj = access_check_info->callback();
920 callback = v8::ToCData<v8::AccessCheckCallback>(fun_obj);
921 data = handle(access_check_info->data(), this);
922 }
923
924 LOG(this, ApiSecurityCheck());
925
926 {
927 // Leaving JavaScript.
928 VMState<EXTERNAL> state(this);
929 return callback(v8::Utils::ToLocal(accessing_context),
930 v8::Utils::ToLocal(receiver), v8::Utils::ToLocal(data));
931 }
932 }
933
934
StackOverflow()935 Object* Isolate::StackOverflow() {
936 if (FLAG_abort_on_stack_overflow) {
937 FATAL("Aborting on stack overflow");
938 }
939
940 DisallowJavascriptExecution no_js(this);
941 HandleScope scope(this);
942
943 Handle<JSFunction> fun = range_error_function();
944 Handle<Object> msg = factory()->NewStringFromAsciiChecked(
945 MessageTemplate::TemplateString(MessageTemplate::kStackOverflow));
946 Handle<Object> no_caller;
947 Handle<Object> exception;
948 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
949 this, exception,
950 ErrorUtils::Construct(this, fun, fun, msg, SKIP_NONE, no_caller, true));
951
952 Throw(*exception, nullptr);
953
954 #ifdef VERIFY_HEAP
955 if (FLAG_verify_heap && FLAG_stress_compaction) {
956 heap()->CollectAllGarbage(Heap::kNoGCFlags,
957 GarbageCollectionReason::kTesting);
958 }
959 #endif // VERIFY_HEAP
960
961 return heap()->exception();
962 }
963
964
TerminateExecution()965 Object* Isolate::TerminateExecution() {
966 return Throw(heap_.termination_exception(), nullptr);
967 }
968
969
CancelTerminateExecution()970 void Isolate::CancelTerminateExecution() {
971 if (try_catch_handler()) {
972 try_catch_handler()->has_terminated_ = false;
973 }
974 if (has_pending_exception() &&
975 pending_exception() == heap_.termination_exception()) {
976 thread_local_top()->external_caught_exception_ = false;
977 clear_pending_exception();
978 }
979 if (has_scheduled_exception() &&
980 scheduled_exception() == heap_.termination_exception()) {
981 thread_local_top()->external_caught_exception_ = false;
982 clear_scheduled_exception();
983 }
984 }
985
986
RequestInterrupt(InterruptCallback callback,void * data)987 void Isolate::RequestInterrupt(InterruptCallback callback, void* data) {
988 ExecutionAccess access(this);
989 api_interrupts_queue_.push(InterruptEntry(callback, data));
990 stack_guard()->RequestApiInterrupt();
991 }
992
993
InvokeApiInterruptCallbacks()994 void Isolate::InvokeApiInterruptCallbacks() {
995 RuntimeCallTimerScope runtimeTimer(
996 this, &RuntimeCallStats::InvokeApiInterruptCallbacks);
997 // Note: callback below should be called outside of execution access lock.
998 while (true) {
999 InterruptEntry entry;
1000 {
1001 ExecutionAccess access(this);
1002 if (api_interrupts_queue_.empty()) return;
1003 entry = api_interrupts_queue_.front();
1004 api_interrupts_queue_.pop();
1005 }
1006 VMState<EXTERNAL> state(this);
1007 HandleScope handle_scope(this);
1008 entry.first(reinterpret_cast<v8::Isolate*>(this), entry.second);
1009 }
1010 }
1011
1012
ReportBootstrappingException(Handle<Object> exception,MessageLocation * location)1013 void ReportBootstrappingException(Handle<Object> exception,
1014 MessageLocation* location) {
1015 base::OS::PrintError("Exception thrown during bootstrapping\n");
1016 if (location == NULL || location->script().is_null()) return;
1017 // We are bootstrapping and caught an error where the location is set
1018 // and we have a script for the location.
1019 // In this case we could have an extension (or an internal error
1020 // somewhere) and we print out the line number at which the error occured
1021 // to the console for easier debugging.
1022 int line_number =
1023 location->script()->GetLineNumber(location->start_pos()) + 1;
1024 if (exception->IsString() && location->script()->name()->IsString()) {
1025 base::OS::PrintError(
1026 "Extension or internal compilation error: %s in %s at line %d.\n",
1027 String::cast(*exception)->ToCString().get(),
1028 String::cast(location->script()->name())->ToCString().get(),
1029 line_number);
1030 } else if (location->script()->name()->IsString()) {
1031 base::OS::PrintError(
1032 "Extension or internal compilation error in %s at line %d.\n",
1033 String::cast(location->script()->name())->ToCString().get(),
1034 line_number);
1035 } else if (exception->IsString()) {
1036 base::OS::PrintError("Extension or internal compilation error: %s.\n",
1037 String::cast(*exception)->ToCString().get());
1038 } else {
1039 base::OS::PrintError("Extension or internal compilation error.\n");
1040 }
1041 #ifdef OBJECT_PRINT
1042 // Since comments and empty lines have been stripped from the source of
1043 // builtins, print the actual source here so that line numbers match.
1044 if (location->script()->source()->IsString()) {
1045 Handle<String> src(String::cast(location->script()->source()));
1046 PrintF("Failing script:");
1047 int len = src->length();
1048 if (len == 0) {
1049 PrintF(" <not available>\n");
1050 } else {
1051 PrintF("\n");
1052 int line_number = 1;
1053 PrintF("%5d: ", line_number);
1054 for (int i = 0; i < len; i++) {
1055 uint16_t character = src->Get(i);
1056 PrintF("%c", character);
1057 if (character == '\n' && i < len - 2) {
1058 PrintF("%5d: ", ++line_number);
1059 }
1060 }
1061 PrintF("\n");
1062 }
1063 }
1064 #endif
1065 }
1066
1067
Throw(Object * exception,MessageLocation * location)1068 Object* Isolate::Throw(Object* exception, MessageLocation* location) {
1069 DCHECK(!has_pending_exception());
1070
1071 HandleScope scope(this);
1072 Handle<Object> exception_handle(exception, this);
1073
1074 if (FLAG_print_all_exceptions) {
1075 printf("=========================================================\n");
1076 printf("Exception thrown:\n");
1077 if (location) {
1078 Handle<Script> script = location->script();
1079 Handle<Object> name = Script::GetNameOrSourceURL(script);
1080 printf("at ");
1081 if (name->IsString() && String::cast(*name)->length() > 0)
1082 String::cast(*name)->PrintOn(stdout);
1083 else
1084 printf("<anonymous>");
1085 // Script::GetLineNumber and Script::GetColumnNumber can allocate on the heap to
1086 // initialize the line_ends array, so be careful when calling them.
1087 #ifdef DEBUG
1088 if (AllowHeapAllocation::IsAllowed()) {
1089 #else
1090 if (false) {
1091 #endif
1092 printf(", %d:%d - %d:%d\n",
1093 Script::GetLineNumber(script, location->start_pos()) + 1,
1094 Script::GetColumnNumber(script, location->start_pos()),
1095 Script::GetLineNumber(script, location->end_pos()) + 1,
1096 Script::GetColumnNumber(script, location->end_pos()));
1097 } else {
1098 printf(", line %d\n", script->GetLineNumber(location->start_pos()) + 1);
1099 }
1100 }
1101 exception->Print();
1102 printf("Stack Trace:\n");
1103 PrintStack(stdout);
1104 printf("=========================================================\n");
1105 }
1106
1107 // Determine whether a message needs to be created for the given exception
1108 // depending on the following criteria:
1109 // 1) External v8::TryCatch missing: Always create a message because any
1110 // JavaScript handler for a finally-block might re-throw to top-level.
1111 // 2) External v8::TryCatch exists: Only create a message if the handler
1112 // captures messages or is verbose (which reports despite the catch).
1113 // 3) ReThrow from v8::TryCatch: The message from a previous throw still
1114 // exists and we preserve it instead of creating a new message.
1115 bool requires_message = try_catch_handler() == nullptr ||
1116 try_catch_handler()->is_verbose_ ||
1117 try_catch_handler()->capture_message_;
1118 bool rethrowing_message = thread_local_top()->rethrowing_message_;
1119
1120 thread_local_top()->rethrowing_message_ = false;
1121
1122 // Notify debugger of exception.
1123 if (is_catchable_by_javascript(exception)) {
1124 debug()->OnThrow(exception_handle);
1125 }
1126
1127 // Generate the message if required.
1128 if (requires_message && !rethrowing_message) {
1129 MessageLocation computed_location;
1130 // If no location was specified we try to use a computed one instead.
1131 if (location == NULL && ComputeLocation(&computed_location)) {
1132 location = &computed_location;
1133 }
1134
1135 if (bootstrapper()->IsActive()) {
1136 // It's not safe to try to make message objects or collect stack traces
1137 // while the bootstrapper is active since the infrastructure may not have
1138 // been properly initialized.
1139 ReportBootstrappingException(exception_handle, location);
1140 } else {
1141 Handle<Object> message_obj = CreateMessage(exception_handle, location);
1142 thread_local_top()->pending_message_obj_ = *message_obj;
1143
1144 // For any exception not caught by JavaScript, even when an external
1145 // handler is present:
1146 // If the abort-on-uncaught-exception flag is specified, and if the
1147 // embedder didn't specify a custom uncaught exception callback,
1148 // or if the custom callback determined that V8 should abort, then
1149 // abort.
1150 if (FLAG_abort_on_uncaught_exception) {
1151 CatchType prediction = PredictExceptionCatcher();
1152 if ((prediction == NOT_CAUGHT || prediction == CAUGHT_BY_EXTERNAL) &&
1153 (!abort_on_uncaught_exception_callback_ ||
1154 abort_on_uncaught_exception_callback_(
1155 reinterpret_cast<v8::Isolate*>(this)))) {
1156 // Prevent endless recursion.
1157 FLAG_abort_on_uncaught_exception = false;
1158 // This flag is intended for use by JavaScript developers, so
1159 // print a user-friendly stack trace (not an internal one).
1160 PrintF(stderr, "%s\n\nFROM\n",
1161 MessageHandler::GetLocalizedMessage(this, message_obj).get());
1162 PrintCurrentStackTrace(stderr);
1163 base::OS::Abort();
1164 }
1165 }
1166 }
1167 }
1168
1169 // Set the exception being thrown.
1170 set_pending_exception(*exception_handle);
1171 return heap()->exception();
1172 }
1173
1174
1175 Object* Isolate::ReThrow(Object* exception) {
1176 DCHECK(!has_pending_exception());
1177
1178 // Set the exception being re-thrown.
1179 set_pending_exception(exception);
1180 return heap()->exception();
1181 }
1182
1183
1184 Object* Isolate::UnwindAndFindHandler() {
1185 Object* exception = pending_exception();
1186
1187 Code* code = nullptr;
1188 Context* context = nullptr;
1189 intptr_t offset = 0;
1190 Address handler_sp = nullptr;
1191 Address handler_fp = nullptr;
1192
1193 // Special handling of termination exceptions, uncatchable by JavaScript and
1194 // Wasm code, we unwind the handlers until the top ENTRY handler is found.
1195 bool catchable_by_js = is_catchable_by_javascript(exception);
1196
1197 // Compute handler and stack unwinding information by performing a full walk
1198 // over the stack and dispatching according to the frame type.
1199 for (StackFrameIterator iter(this); !iter.done(); iter.Advance()) {
1200 StackFrame* frame = iter.frame();
1201
1202 // For JSEntryStub frames we always have a handler.
1203 if (frame->is_entry() || frame->is_entry_construct()) {
1204 StackHandler* handler = frame->top_handler();
1205
1206 // Restore the next handler.
1207 thread_local_top()->handler_ = handler->next()->address();
1208
1209 // Gather information from the handler.
1210 code = frame->LookupCode();
1211 handler_sp = handler->address() + StackHandlerConstants::kSize;
1212 offset = Smi::cast(code->handler_table()->get(0))->value();
1213 break;
1214 }
1215
1216 if (FLAG_wasm_eh_prototype) {
1217 if (frame->is_wasm() && is_catchable_by_wasm(exception)) {
1218 int stack_slots = 0; // Will contain stack slot count of frame.
1219 WasmFrame* wasm_frame = static_cast<WasmFrame*>(frame);
1220 offset = wasm_frame->LookupExceptionHandlerInTable(&stack_slots);
1221 if (offset >= 0) {
1222 // Compute the stack pointer from the frame pointer. This ensures that
1223 // argument slots on the stack are dropped as returning would.
1224 Address return_sp = frame->fp() +
1225 StandardFrameConstants::kFixedFrameSizeAboveFp -
1226 stack_slots * kPointerSize;
1227
1228 // Gather information from the frame.
1229 code = frame->LookupCode();
1230
1231 handler_sp = return_sp;
1232 handler_fp = frame->fp();
1233 break;
1234 }
1235 }
1236 }
1237
1238 // For optimized frames we perform a lookup in the handler table.
1239 if (frame->is_optimized() && catchable_by_js) {
1240 OptimizedFrame* js_frame = static_cast<OptimizedFrame*>(frame);
1241 int stack_slots = 0; // Will contain stack slot count of frame.
1242 offset = js_frame->LookupExceptionHandlerInTable(&stack_slots, nullptr);
1243 if (offset >= 0) {
1244 // Compute the stack pointer from the frame pointer. This ensures that
1245 // argument slots on the stack are dropped as returning would.
1246 Address return_sp = frame->fp() +
1247 StandardFrameConstants::kFixedFrameSizeAboveFp -
1248 stack_slots * kPointerSize;
1249
1250 // Gather information from the frame.
1251 code = frame->LookupCode();
1252
1253 // TODO(bmeurer): Turbofanned BUILTIN frames appear as OPTIMIZED, but
1254 // do not have a code kind of OPTIMIZED_FUNCTION.
1255 if (code->kind() == Code::OPTIMIZED_FUNCTION &&
1256 code->marked_for_deoptimization()) {
1257 // If the target code is lazy deoptimized, we jump to the original
1258 // return address, but we make a note that we are throwing, so that
1259 // the deoptimizer can do the right thing.
1260 offset = static_cast<int>(frame->pc() - code->entry());
1261 set_deoptimizer_lazy_throw(true);
1262 }
1263 handler_sp = return_sp;
1264 handler_fp = frame->fp();
1265 break;
1266 }
1267 }
1268
1269 // For interpreted frame we perform a range lookup in the handler table.
1270 if (frame->is_interpreted() && catchable_by_js) {
1271 InterpretedFrame* js_frame = static_cast<InterpretedFrame*>(frame);
1272 int register_slots = js_frame->GetBytecodeArray()->register_count();
1273 int context_reg = 0; // Will contain register index holding context.
1274 offset = js_frame->LookupExceptionHandlerInTable(&context_reg, nullptr);
1275 if (offset >= 0) {
1276 // Compute the stack pointer from the frame pointer. This ensures that
1277 // argument slots on the stack are dropped as returning would.
1278 // Note: This is only needed for interpreted frames that have been
1279 // materialized by the deoptimizer. If there is a handler frame
1280 // in between then {frame->sp()} would already be correct.
1281 Address return_sp = frame->fp() -
1282 InterpreterFrameConstants::kFixedFrameSizeFromFp -
1283 register_slots * kPointerSize;
1284
1285 // Patch the bytecode offset in the interpreted frame to reflect the
1286 // position of the exception handler. The special builtin below will
1287 // take care of continuing to dispatch at that position. Also restore
1288 // the correct context for the handler from the interpreter register.
1289 context = Context::cast(js_frame->ReadInterpreterRegister(context_reg));
1290 js_frame->PatchBytecodeOffset(static_cast<int>(offset));
1291 offset = 0;
1292
1293 // Gather information from the frame.
1294 code = *builtins()->InterpreterEnterBytecodeDispatch();
1295 handler_sp = return_sp;
1296 handler_fp = frame->fp();
1297 break;
1298 }
1299 }
1300
1301 // For JavaScript frames we perform a range lookup in the handler table.
1302 if (frame->is_java_script() && catchable_by_js) {
1303 JavaScriptFrame* js_frame = static_cast<JavaScriptFrame*>(frame);
1304 int stack_depth = 0; // Will contain operand stack depth of handler.
1305 offset = js_frame->LookupExceptionHandlerInTable(&stack_depth, nullptr);
1306 if (offset >= 0) {
1307 // Compute the stack pointer from the frame pointer. This ensures that
1308 // operand stack slots are dropped for nested statements. Also restore
1309 // correct context for the handler which is pushed within the try-block.
1310 Address return_sp = frame->fp() -
1311 StandardFrameConstants::kFixedFrameSizeFromFp -
1312 stack_depth * kPointerSize;
1313 STATIC_ASSERT(TryBlockConstant::kElementCount == 1);
1314 context = Context::cast(Memory::Object_at(return_sp - kPointerSize));
1315
1316 // Gather information from the frame.
1317 code = frame->LookupCode();
1318 handler_sp = return_sp;
1319 handler_fp = frame->fp();
1320 break;
1321 }
1322 }
1323
1324 RemoveMaterializedObjectsOnUnwind(frame);
1325 }
1326
1327 // Handler must exist.
1328 CHECK(code != nullptr);
1329
1330 // Store information to be consumed by the CEntryStub.
1331 thread_local_top()->pending_handler_context_ = context;
1332 thread_local_top()->pending_handler_code_ = code;
1333 thread_local_top()->pending_handler_offset_ = offset;
1334 thread_local_top()->pending_handler_fp_ = handler_fp;
1335 thread_local_top()->pending_handler_sp_ = handler_sp;
1336
1337 // Return and clear pending exception.
1338 clear_pending_exception();
1339 return exception;
1340 }
1341
1342 namespace {
1343 HandlerTable::CatchPrediction PredictException(JavaScriptFrame* frame) {
1344 HandlerTable::CatchPrediction prediction;
1345 if (frame->is_optimized()) {
1346 if (frame->LookupExceptionHandlerInTable(nullptr, nullptr) > 0) {
1347 // This optimized frame will catch. It's handler table does not include
1348 // exception prediction, and we need to use the corresponding handler
1349 // tables on the unoptimized code objects.
1350 List<FrameSummary> summaries;
1351 frame->Summarize(&summaries);
1352 for (const FrameSummary& summary : summaries) {
1353 Handle<AbstractCode> code = summary.abstract_code();
1354 if (code->kind() == AbstractCode::OPTIMIZED_FUNCTION) {
1355 DCHECK(summary.function()->shared()->asm_function());
1356 DCHECK(!FLAG_turbo_asm_deoptimization);
1357 // asm code cannot contain try-catch.
1358 continue;
1359 }
1360 int code_offset = summary.code_offset();
1361 int index =
1362 code->LookupRangeInHandlerTable(code_offset, nullptr, &prediction);
1363 if (index <= 0) continue;
1364 if (prediction == HandlerTable::UNCAUGHT) continue;
1365 return prediction;
1366 }
1367 }
1368 } else if (frame->LookupExceptionHandlerInTable(nullptr, &prediction) > 0) {
1369 return prediction;
1370 }
1371 return HandlerTable::UNCAUGHT;
1372 }
1373 } // anonymous namespace
1374
1375 Isolate::CatchType Isolate::PredictExceptionCatcher() {
1376 Address external_handler = thread_local_top()->try_catch_handler_address();
1377 Address entry_handler = Isolate::handler(thread_local_top());
1378 if (IsExternalHandlerOnTop(nullptr)) return CAUGHT_BY_EXTERNAL;
1379
1380 // Search for an exception handler by performing a full walk over the stack.
1381 for (StackFrameIterator iter(this); !iter.done(); iter.Advance()) {
1382 StackFrame* frame = iter.frame();
1383
1384 // For JSEntryStub frames we update the JS_ENTRY handler.
1385 if (frame->is_entry() || frame->is_entry_construct()) {
1386 entry_handler = frame->top_handler()->next()->address();
1387 }
1388
1389 // For JavaScript frames we perform a lookup in the handler table.
1390 if (frame->is_java_script()) {
1391 JavaScriptFrame* js_frame = static_cast<JavaScriptFrame*>(frame);
1392 HandlerTable::CatchPrediction prediction = PredictException(js_frame);
1393 if (prediction == HandlerTable::DESUGARING) return CAUGHT_BY_DESUGARING;
1394 if (prediction == HandlerTable::ASYNC_AWAIT) return CAUGHT_BY_ASYNC_AWAIT;
1395 if (prediction == HandlerTable::PROMISE) return CAUGHT_BY_PROMISE;
1396 if (prediction != HandlerTable::UNCAUGHT) return CAUGHT_BY_JAVASCRIPT;
1397 }
1398
1399 // The exception has been externally caught if and only if there is an
1400 // external handler which is on top of the top-most JS_ENTRY handler.
1401 if (external_handler != nullptr && !try_catch_handler()->is_verbose_) {
1402 if (entry_handler == nullptr || entry_handler > external_handler) {
1403 return CAUGHT_BY_EXTERNAL;
1404 }
1405 }
1406 }
1407
1408 // Handler not found.
1409 return NOT_CAUGHT;
1410 }
1411
1412
1413 void Isolate::RemoveMaterializedObjectsOnUnwind(StackFrame* frame) {
1414 if (frame->is_optimized()) {
1415 bool removed = materialized_object_store_->Remove(frame->fp());
1416 USE(removed);
1417 // If there were any materialized objects, the code should be
1418 // marked for deopt.
1419 DCHECK(!removed || frame->LookupCode()->marked_for_deoptimization());
1420 }
1421 }
1422
1423
1424 Object* Isolate::ThrowIllegalOperation() {
1425 if (FLAG_stack_trace_on_illegal) PrintStack(stdout);
1426 return Throw(heap()->illegal_access_string());
1427 }
1428
1429
1430 void Isolate::ScheduleThrow(Object* exception) {
1431 // When scheduling a throw we first throw the exception to get the
1432 // error reporting if it is uncaught before rescheduling it.
1433 Throw(exception);
1434 PropagatePendingExceptionToExternalTryCatch();
1435 if (has_pending_exception()) {
1436 thread_local_top()->scheduled_exception_ = pending_exception();
1437 thread_local_top()->external_caught_exception_ = false;
1438 clear_pending_exception();
1439 }
1440 }
1441
1442
1443 void Isolate::RestorePendingMessageFromTryCatch(v8::TryCatch* handler) {
1444 DCHECK(handler == try_catch_handler());
1445 DCHECK(handler->HasCaught());
1446 DCHECK(handler->rethrow_);
1447 DCHECK(handler->capture_message_);
1448 Object* message = reinterpret_cast<Object*>(handler->message_obj_);
1449 DCHECK(message->IsJSMessageObject() || message->IsTheHole(this));
1450 thread_local_top()->pending_message_obj_ = message;
1451 }
1452
1453
1454 void Isolate::CancelScheduledExceptionFromTryCatch(v8::TryCatch* handler) {
1455 DCHECK(has_scheduled_exception());
1456 if (scheduled_exception() == handler->exception_) {
1457 DCHECK(scheduled_exception() != heap()->termination_exception());
1458 clear_scheduled_exception();
1459 }
1460 }
1461
1462
1463 Object* Isolate::PromoteScheduledException() {
1464 Object* thrown = scheduled_exception();
1465 clear_scheduled_exception();
1466 // Re-throw the exception to avoid getting repeated error reporting.
1467 return ReThrow(thrown);
1468 }
1469
1470
1471 void Isolate::PrintCurrentStackTrace(FILE* out) {
1472 for (StackTraceFrameIterator it(this); !it.done(); it.Advance()) {
1473 if (!it.is_javascript()) continue;
1474
1475 HandleScope scope(this);
1476 JavaScriptFrame* frame = it.javascript_frame();
1477
1478 Handle<Object> receiver(frame->receiver(), this);
1479 Handle<JSFunction> function(frame->function(), this);
1480 Handle<AbstractCode> code(AbstractCode::cast(frame->LookupCode()), this);
1481 const int offset =
1482 static_cast<int>(frame->pc() - code->instruction_start());
1483
1484 JSStackFrame site(this, receiver, function, code, offset);
1485 Handle<String> line = site.ToString().ToHandleChecked();
1486 if (line->length() > 0) {
1487 line->PrintOn(out);
1488 PrintF(out, "\n");
1489 }
1490 }
1491 }
1492
1493 bool Isolate::ComputeLocation(MessageLocation* target) {
1494 StackTraceFrameIterator it(this);
1495 if (it.done()) return false;
1496 StandardFrame* frame = it.frame();
1497 // TODO(clemensh): handle wasm frames
1498 if (!frame->is_java_script()) return false;
1499 JSFunction* fun = JavaScriptFrame::cast(frame)->function();
1500 Object* script = fun->shared()->script();
1501 if (!script->IsScript() ||
1502 (Script::cast(script)->source()->IsUndefined(this))) {
1503 return false;
1504 }
1505 Handle<Script> casted_script(Script::cast(script), this);
1506 // Compute the location from the function and the relocation info of the
1507 // baseline code. For optimized code this will use the deoptimization
1508 // information to get canonical location information.
1509 List<FrameSummary> frames(FLAG_max_inlining_levels + 1);
1510 JavaScriptFrame::cast(frame)->Summarize(&frames);
1511 FrameSummary& summary = frames.last();
1512 int pos = summary.abstract_code()->SourcePosition(summary.code_offset());
1513 *target = MessageLocation(casted_script, pos, pos + 1, handle(fun, this));
1514 return true;
1515 }
1516
1517 bool Isolate::ComputeLocationFromException(MessageLocation* target,
1518 Handle<Object> exception) {
1519 if (!exception->IsJSObject()) return false;
1520
1521 Handle<Name> start_pos_symbol = factory()->error_start_pos_symbol();
1522 Handle<Object> start_pos = JSReceiver::GetDataProperty(
1523 Handle<JSObject>::cast(exception), start_pos_symbol);
1524 if (!start_pos->IsSmi()) return false;
1525 int start_pos_value = Handle<Smi>::cast(start_pos)->value();
1526
1527 Handle<Name> end_pos_symbol = factory()->error_end_pos_symbol();
1528 Handle<Object> end_pos = JSReceiver::GetDataProperty(
1529 Handle<JSObject>::cast(exception), end_pos_symbol);
1530 if (!end_pos->IsSmi()) return false;
1531 int end_pos_value = Handle<Smi>::cast(end_pos)->value();
1532
1533 Handle<Name> script_symbol = factory()->error_script_symbol();
1534 Handle<Object> script = JSReceiver::GetDataProperty(
1535 Handle<JSObject>::cast(exception), script_symbol);
1536 if (!script->IsScript()) return false;
1537
1538 Handle<Script> cast_script(Script::cast(*script));
1539 *target = MessageLocation(cast_script, start_pos_value, end_pos_value);
1540 return true;
1541 }
1542
1543
1544 bool Isolate::ComputeLocationFromStackTrace(MessageLocation* target,
1545 Handle<Object> exception) {
1546 if (!exception->IsJSObject()) return false;
1547 Handle<Name> key = factory()->stack_trace_symbol();
1548 Handle<Object> property =
1549 JSReceiver::GetDataProperty(Handle<JSObject>::cast(exception), key);
1550 if (!property->IsJSArray()) return false;
1551 Handle<JSArray> simple_stack_trace = Handle<JSArray>::cast(property);
1552
1553 Handle<FrameArray> elements(FrameArray::cast(simple_stack_trace->elements()));
1554
1555 const int frame_count = elements->FrameCount();
1556 for (int i = 0; i < frame_count; i++) {
1557 if (elements->IsWasmFrame(i)) {
1558 // TODO(clemensh): handle wasm frames
1559 return false;
1560 }
1561
1562 Handle<JSFunction> fun = handle(elements->Function(i), this);
1563 if (!fun->shared()->IsSubjectToDebugging()) continue;
1564
1565 Object* script = fun->shared()->script();
1566 if (script->IsScript() &&
1567 !(Script::cast(script)->source()->IsUndefined(this))) {
1568 AbstractCode* abstract_code = elements->Code(i);
1569 const int code_offset = elements->Offset(i)->value();
1570 const int pos = abstract_code->SourcePosition(code_offset);
1571
1572 Handle<Script> casted_script(Script::cast(script));
1573 *target = MessageLocation(casted_script, pos, pos + 1);
1574 return true;
1575 }
1576 }
1577 return false;
1578 }
1579
1580
1581 Handle<JSMessageObject> Isolate::CreateMessage(Handle<Object> exception,
1582 MessageLocation* location) {
1583 Handle<JSArray> stack_trace_object;
1584 if (capture_stack_trace_for_uncaught_exceptions_) {
1585 if (exception->IsJSError()) {
1586 // We fetch the stack trace that corresponds to this error object.
1587 // If the lookup fails, the exception is probably not a valid Error
1588 // object. In that case, we fall through and capture the stack trace
1589 // at this throw site.
1590 stack_trace_object =
1591 GetDetailedStackTrace(Handle<JSObject>::cast(exception));
1592 }
1593 if (stack_trace_object.is_null()) {
1594 // Not an error object, we capture stack and location at throw site.
1595 stack_trace_object = CaptureCurrentStackTrace(
1596 stack_trace_for_uncaught_exceptions_frame_limit_,
1597 stack_trace_for_uncaught_exceptions_options_);
1598 }
1599 }
1600 MessageLocation computed_location;
1601 if (location == NULL &&
1602 (ComputeLocationFromException(&computed_location, exception) ||
1603 ComputeLocationFromStackTrace(&computed_location, exception) ||
1604 ComputeLocation(&computed_location))) {
1605 location = &computed_location;
1606 }
1607
1608 return MessageHandler::MakeMessageObject(
1609 this, MessageTemplate::kUncaughtException, location, exception,
1610 stack_trace_object);
1611 }
1612
1613
1614 bool Isolate::IsJavaScriptHandlerOnTop(Object* exception) {
1615 DCHECK_NE(heap()->the_hole_value(), exception);
1616
1617 // For uncatchable exceptions, the JavaScript handler cannot be on top.
1618 if (!is_catchable_by_javascript(exception)) return false;
1619
1620 // Get the top-most JS_ENTRY handler, cannot be on top if it doesn't exist.
1621 Address entry_handler = Isolate::handler(thread_local_top());
1622 if (entry_handler == nullptr) return false;
1623
1624 // Get the address of the external handler so we can compare the address to
1625 // determine which one is closer to the top of the stack.
1626 Address external_handler = thread_local_top()->try_catch_handler_address();
1627 if (external_handler == nullptr) return true;
1628
1629 // The exception has been externally caught if and only if there is an
1630 // external handler which is on top of the top-most JS_ENTRY handler.
1631 //
1632 // Note, that finally clauses would re-throw an exception unless it's aborted
1633 // by jumps in control flow (like return, break, etc.) and we'll have another
1634 // chance to set proper v8::TryCatch later.
1635 return (entry_handler < external_handler);
1636 }
1637
1638
1639 bool Isolate::IsExternalHandlerOnTop(Object* exception) {
1640 DCHECK_NE(heap()->the_hole_value(), exception);
1641
1642 // Get the address of the external handler so we can compare the address to
1643 // determine which one is closer to the top of the stack.
1644 Address external_handler = thread_local_top()->try_catch_handler_address();
1645 if (external_handler == nullptr) return false;
1646
1647 // For uncatchable exceptions, the external handler is always on top.
1648 if (!is_catchable_by_javascript(exception)) return true;
1649
1650 // Get the top-most JS_ENTRY handler, cannot be on top if it doesn't exist.
1651 Address entry_handler = Isolate::handler(thread_local_top());
1652 if (entry_handler == nullptr) return true;
1653
1654 // The exception has been externally caught if and only if there is an
1655 // external handler which is on top of the top-most JS_ENTRY handler.
1656 //
1657 // Note, that finally clauses would re-throw an exception unless it's aborted
1658 // by jumps in control flow (like return, break, etc.) and we'll have another
1659 // chance to set proper v8::TryCatch later.
1660 return (entry_handler > external_handler);
1661 }
1662
1663
1664 void Isolate::ReportPendingMessages() {
1665 Object* exception = pending_exception();
1666
1667 // Try to propagate the exception to an external v8::TryCatch handler. If
1668 // propagation was unsuccessful, then we will get another chance at reporting
1669 // the pending message if the exception is re-thrown.
1670 bool has_been_propagated = PropagatePendingExceptionToExternalTryCatch();
1671 if (!has_been_propagated) return;
1672
1673 // Clear the pending message object early to avoid endless recursion.
1674 Object* message_obj = thread_local_top_.pending_message_obj_;
1675 clear_pending_message();
1676
1677 // For uncatchable exceptions we do nothing. If needed, the exception and the
1678 // message have already been propagated to v8::TryCatch.
1679 if (!is_catchable_by_javascript(exception)) return;
1680
1681 // Determine whether the message needs to be reported to all message handlers
1682 // depending on whether and external v8::TryCatch or an internal JavaScript
1683 // handler is on top.
1684 bool should_report_exception;
1685 if (IsExternalHandlerOnTop(exception)) {
1686 // Only report the exception if the external handler is verbose.
1687 should_report_exception = try_catch_handler()->is_verbose_;
1688 } else {
1689 // Report the exception if it isn't caught by JavaScript code.
1690 should_report_exception = !IsJavaScriptHandlerOnTop(exception);
1691 }
1692
1693 // Actually report the pending message to all message handlers.
1694 if (!message_obj->IsTheHole(this) && should_report_exception) {
1695 HandleScope scope(this);
1696 Handle<JSMessageObject> message(JSMessageObject::cast(message_obj), this);
1697 Handle<JSValue> script_wrapper(JSValue::cast(message->script()), this);
1698 Handle<Script> script(Script::cast(script_wrapper->value()), this);
1699 int start_pos = message->start_position();
1700 int end_pos = message->end_position();
1701 MessageLocation location(script, start_pos, end_pos);
1702 MessageHandler::ReportMessage(this, &location, message);
1703 }
1704 }
1705
1706
1707 MessageLocation Isolate::GetMessageLocation() {
1708 DCHECK(has_pending_exception());
1709
1710 if (thread_local_top_.pending_exception_ != heap()->termination_exception() &&
1711 !thread_local_top_.pending_message_obj_->IsTheHole(this)) {
1712 Handle<JSMessageObject> message_obj(
1713 JSMessageObject::cast(thread_local_top_.pending_message_obj_), this);
1714 Handle<JSValue> script_wrapper(JSValue::cast(message_obj->script()), this);
1715 Handle<Script> script(Script::cast(script_wrapper->value()), this);
1716 int start_pos = message_obj->start_position();
1717 int end_pos = message_obj->end_position();
1718 return MessageLocation(script, start_pos, end_pos);
1719 }
1720
1721 return MessageLocation();
1722 }
1723
1724
1725 bool Isolate::OptionalRescheduleException(bool is_bottom_call) {
1726 DCHECK(has_pending_exception());
1727 PropagatePendingExceptionToExternalTryCatch();
1728
1729 bool is_termination_exception =
1730 pending_exception() == heap_.termination_exception();
1731
1732 // Do not reschedule the exception if this is the bottom call.
1733 bool clear_exception = is_bottom_call;
1734
1735 if (is_termination_exception) {
1736 if (is_bottom_call) {
1737 thread_local_top()->external_caught_exception_ = false;
1738 clear_pending_exception();
1739 return false;
1740 }
1741 } else if (thread_local_top()->external_caught_exception_) {
1742 // If the exception is externally caught, clear it if there are no
1743 // JavaScript frames on the way to the C++ frame that has the
1744 // external handler.
1745 DCHECK(thread_local_top()->try_catch_handler_address() != NULL);
1746 Address external_handler_address =
1747 thread_local_top()->try_catch_handler_address();
1748 JavaScriptFrameIterator it(this);
1749 if (it.done() || (it.frame()->sp() > external_handler_address)) {
1750 clear_exception = true;
1751 }
1752 }
1753
1754 // Clear the exception if needed.
1755 if (clear_exception) {
1756 thread_local_top()->external_caught_exception_ = false;
1757 clear_pending_exception();
1758 return false;
1759 }
1760
1761 // Reschedule the exception.
1762 thread_local_top()->scheduled_exception_ = pending_exception();
1763 clear_pending_exception();
1764 return true;
1765 }
1766
1767 void Isolate::PushPromise(Handle<JSObject> promise) {
1768 ThreadLocalTop* tltop = thread_local_top();
1769 PromiseOnStack* prev = tltop->promise_on_stack_;
1770 Handle<JSObject> global_promise =
1771 Handle<JSObject>::cast(global_handles()->Create(*promise));
1772 tltop->promise_on_stack_ = new PromiseOnStack(global_promise, prev);
1773 }
1774
1775
1776 void Isolate::PopPromise() {
1777 ThreadLocalTop* tltop = thread_local_top();
1778 if (tltop->promise_on_stack_ == NULL) return;
1779 PromiseOnStack* prev = tltop->promise_on_stack_->prev();
1780 Handle<Object> global_promise = tltop->promise_on_stack_->promise();
1781 delete tltop->promise_on_stack_;
1782 tltop->promise_on_stack_ = prev;
1783 global_handles()->Destroy(global_promise.location());
1784 }
1785
1786 bool Isolate::PromiseHasUserDefinedRejectHandler(Handle<Object> promise) {
1787 Handle<JSFunction> fun = promise_has_user_defined_reject_handler();
1788 Handle<Object> has_reject_handler;
1789 // If we are, e.g., overflowing the stack, don't try to call out to JS
1790 if (!AllowJavascriptExecution::IsAllowed(this)) return false;
1791 // Call the registered function to check for a handler
1792 if (Execution::TryCall(this, fun, promise, 0, NULL)
1793 .ToHandle(&has_reject_handler)) {
1794 return has_reject_handler->IsTrue(this);
1795 }
1796 // If an exception is thrown in the course of execution of this built-in
1797 // function, it indicates either a bug, or a synthetic uncatchable
1798 // exception in the shutdown path. In either case, it's OK to predict either
1799 // way in DevTools.
1800 return false;
1801 }
1802
1803 Handle<Object> Isolate::GetPromiseOnStackOnThrow() {
1804 Handle<Object> undefined = factory()->undefined_value();
1805 ThreadLocalTop* tltop = thread_local_top();
1806 if (tltop->promise_on_stack_ == NULL) return undefined;
1807 // Find the top-most try-catch or try-finally handler.
1808 CatchType prediction = PredictExceptionCatcher();
1809 if (prediction == NOT_CAUGHT || prediction == CAUGHT_BY_EXTERNAL) {
1810 return undefined;
1811 }
1812 Handle<Object> retval = undefined;
1813 PromiseOnStack* promise_on_stack = tltop->promise_on_stack_;
1814 for (JavaScriptFrameIterator it(this); !it.done(); it.Advance()) {
1815 switch (PredictException(it.frame())) {
1816 case HandlerTable::UNCAUGHT:
1817 continue;
1818 case HandlerTable::CAUGHT:
1819 case HandlerTable::DESUGARING:
1820 if (retval->IsJSObject()) {
1821 // Caught the result of an inner async/await invocation.
1822 // Mark the inner promise as caught in the "synchronous case" so
1823 // that Debug::OnException will see. In the synchronous case,
1824 // namely in the code in an async function before the first
1825 // await, the function which has this exception event has not yet
1826 // returned, so the generated Promise has not yet been marked
1827 // by AsyncFunctionAwaitCaught with promiseHandledHintSymbol.
1828 Handle<Symbol> key = factory()->promise_handled_hint_symbol();
1829 JSObject::SetProperty(Handle<JSObject>::cast(retval), key,
1830 factory()->true_value(), STRICT)
1831 .Assert();
1832 }
1833 return retval;
1834 case HandlerTable::PROMISE:
1835 return promise_on_stack
1836 ? Handle<Object>::cast(promise_on_stack->promise())
1837 : undefined;
1838 case HandlerTable::ASYNC_AWAIT: {
1839 // If in the initial portion of async/await, continue the loop to pop up
1840 // successive async/await stack frames until an asynchronous one with
1841 // dependents is found, or a non-async stack frame is encountered, in
1842 // order to handle the synchronous async/await catch prediction case:
1843 // assume that async function calls are awaited.
1844 if (!promise_on_stack) return retval;
1845 retval = promise_on_stack->promise();
1846 if (PromiseHasUserDefinedRejectHandler(retval)) {
1847 return retval;
1848 }
1849 promise_on_stack = promise_on_stack->prev();
1850 continue;
1851 }
1852 }
1853 }
1854 return retval;
1855 }
1856
1857
1858 void Isolate::SetCaptureStackTraceForUncaughtExceptions(
1859 bool capture,
1860 int frame_limit,
1861 StackTrace::StackTraceOptions options) {
1862 capture_stack_trace_for_uncaught_exceptions_ = capture;
1863 stack_trace_for_uncaught_exceptions_frame_limit_ = frame_limit;
1864 stack_trace_for_uncaught_exceptions_options_ = options;
1865 }
1866
1867
1868 void Isolate::SetAbortOnUncaughtExceptionCallback(
1869 v8::Isolate::AbortOnUncaughtExceptionCallback callback) {
1870 abort_on_uncaught_exception_callback_ = callback;
1871 }
1872
1873
1874 Handle<Context> Isolate::GetCallingNativeContext() {
1875 JavaScriptFrameIterator it(this);
1876 if (debug_->in_debug_scope()) {
1877 while (!it.done()) {
1878 JavaScriptFrame* frame = it.frame();
1879 Context* context = Context::cast(frame->context());
1880 if (context->native_context() == *debug_->debug_context()) {
1881 it.Advance();
1882 } else {
1883 break;
1884 }
1885 }
1886 }
1887 if (it.done()) return Handle<Context>::null();
1888 JavaScriptFrame* frame = it.frame();
1889 Context* context = Context::cast(frame->context());
1890 return Handle<Context>(context->native_context(), this);
1891 }
1892
1893
1894 char* Isolate::ArchiveThread(char* to) {
1895 MemCopy(to, reinterpret_cast<char*>(thread_local_top()),
1896 sizeof(ThreadLocalTop));
1897 InitializeThreadLocal();
1898 clear_pending_exception();
1899 clear_pending_message();
1900 clear_scheduled_exception();
1901 return to + sizeof(ThreadLocalTop);
1902 }
1903
1904
1905 char* Isolate::RestoreThread(char* from) {
1906 MemCopy(reinterpret_cast<char*>(thread_local_top()), from,
1907 sizeof(ThreadLocalTop));
1908 // This might be just paranoia, but it seems to be needed in case a
1909 // thread_local_top_ is restored on a separate OS thread.
1910 #ifdef USE_SIMULATOR
1911 thread_local_top()->simulator_ = Simulator::current(this);
1912 #endif
1913 DCHECK(context() == NULL || context()->IsContext());
1914 return from + sizeof(ThreadLocalTop);
1915 }
1916
1917
1918 Isolate::ThreadDataTable::ThreadDataTable()
1919 : list_(NULL) {
1920 }
1921
1922
1923 Isolate::ThreadDataTable::~ThreadDataTable() {
1924 // TODO(svenpanne) The assertion below would fire if an embedder does not
1925 // cleanly dispose all Isolates before disposing v8, so we are conservative
1926 // and leave it out for now.
1927 // DCHECK_NULL(list_);
1928 }
1929
1930
1931 Isolate::PerIsolateThreadData::~PerIsolateThreadData() {
1932 #if defined(USE_SIMULATOR)
1933 delete simulator_;
1934 #endif
1935 }
1936
1937
1938 Isolate::PerIsolateThreadData*
1939 Isolate::ThreadDataTable::Lookup(Isolate* isolate,
1940 ThreadId thread_id) {
1941 for (PerIsolateThreadData* data = list_; data != NULL; data = data->next_) {
1942 if (data->Matches(isolate, thread_id)) return data;
1943 }
1944 return NULL;
1945 }
1946
1947
1948 void Isolate::ThreadDataTable::Insert(Isolate::PerIsolateThreadData* data) {
1949 if (list_ != NULL) list_->prev_ = data;
1950 data->next_ = list_;
1951 list_ = data;
1952 }
1953
1954
1955 void Isolate::ThreadDataTable::Remove(PerIsolateThreadData* data) {
1956 if (list_ == data) list_ = data->next_;
1957 if (data->next_ != NULL) data->next_->prev_ = data->prev_;
1958 if (data->prev_ != NULL) data->prev_->next_ = data->next_;
1959 delete data;
1960 }
1961
1962
1963 void Isolate::ThreadDataTable::RemoveAllThreads(Isolate* isolate) {
1964 PerIsolateThreadData* data = list_;
1965 while (data != NULL) {
1966 PerIsolateThreadData* next = data->next_;
1967 if (data->isolate() == isolate) Remove(data);
1968 data = next;
1969 }
1970 }
1971
1972
1973 #ifdef DEBUG
1974 #define TRACE_ISOLATE(tag) \
1975 do { \
1976 if (FLAG_trace_isolates) { \
1977 PrintF("Isolate %p (id %d)" #tag "\n", \
1978 reinterpret_cast<void*>(this), id()); \
1979 } \
1980 } while (false)
1981 #else
1982 #define TRACE_ISOLATE(tag)
1983 #endif
1984
1985 class VerboseAccountingAllocator : public AccountingAllocator {
1986 public:
1987 VerboseAccountingAllocator(Heap* heap, size_t allocation_sample_bytes,
1988 size_t pool_sample_bytes)
1989 : heap_(heap),
1990 last_memory_usage_(0),
1991 last_pool_size_(0),
1992 nesting_deepth_(0),
1993 allocation_sample_bytes_(allocation_sample_bytes),
1994 pool_sample_bytes_(pool_sample_bytes) {}
1995
1996 v8::internal::Segment* GetSegment(size_t size) override {
1997 v8::internal::Segment* memory = AccountingAllocator::GetSegment(size);
1998 if (memory) {
1999 size_t malloced_current = GetCurrentMemoryUsage();
2000 size_t pooled_current = GetCurrentPoolSize();
2001
2002 if (last_memory_usage_.Value() + allocation_sample_bytes_ <
2003 malloced_current ||
2004 last_pool_size_.Value() + pool_sample_bytes_ < pooled_current) {
2005 PrintMemoryJSON(malloced_current, pooled_current);
2006 last_memory_usage_.SetValue(malloced_current);
2007 last_pool_size_.SetValue(pooled_current);
2008 }
2009 }
2010 return memory;
2011 }
2012
2013 void ReturnSegment(v8::internal::Segment* memory) override {
2014 AccountingAllocator::ReturnSegment(memory);
2015 size_t malloced_current = GetCurrentMemoryUsage();
2016 size_t pooled_current = GetCurrentPoolSize();
2017
2018 if (malloced_current + allocation_sample_bytes_ <
2019 last_memory_usage_.Value() ||
2020 pooled_current + pool_sample_bytes_ < last_pool_size_.Value()) {
2021 PrintMemoryJSON(malloced_current, pooled_current);
2022 last_memory_usage_.SetValue(malloced_current);
2023 last_pool_size_.SetValue(pooled_current);
2024 }
2025 }
2026
2027 void ZoneCreation(const Zone* zone) override {
2028 double time = heap_->isolate()->time_millis_since_init();
2029 PrintF(
2030 "{"
2031 "\"type\": \"zonecreation\", "
2032 "\"isolate\": \"%p\", "
2033 "\"time\": %f, "
2034 "\"ptr\": \"%p\", "
2035 "\"name\": \"%s\","
2036 "\"nesting\": %zu"
2037 "}\n",
2038 reinterpret_cast<void*>(heap_->isolate()), time,
2039 reinterpret_cast<const void*>(zone), zone->name(),
2040 nesting_deepth_.Value());
2041 nesting_deepth_.Increment(1);
2042 }
2043
2044 void ZoneDestruction(const Zone* zone) override {
2045 nesting_deepth_.Decrement(1);
2046 double time = heap_->isolate()->time_millis_since_init();
2047 PrintF(
2048 "{"
2049 "\"type\": \"zonedestruction\", "
2050 "\"isolate\": \"%p\", "
2051 "\"time\": %f, "
2052 "\"ptr\": \"%p\", "
2053 "\"name\": \"%s\", "
2054 "\"size\": %zu,"
2055 "\"nesting\": %zu"
2056 "}\n",
2057 reinterpret_cast<void*>(heap_->isolate()), time,
2058 reinterpret_cast<const void*>(zone), zone->name(),
2059 zone->allocation_size(), nesting_deepth_.Value());
2060 }
2061
2062 private:
2063 void PrintMemoryJSON(size_t malloced, size_t pooled) {
2064 // Note: Neither isolate, nor heap is locked, so be careful with accesses
2065 // as the allocator is potentially used on a concurrent thread.
2066 double time = heap_->isolate()->time_millis_since_init();
2067 PrintF(
2068 "{"
2069 "\"type\": \"zone\", "
2070 "\"isolate\": \"%p\", "
2071 "\"time\": %f, "
2072 "\"allocated\": %zu,"
2073 "\"pooled\": %zu"
2074 "}\n",
2075 reinterpret_cast<void*>(heap_->isolate()), time, malloced, pooled);
2076 }
2077
2078 Heap* heap_;
2079 base::AtomicNumber<size_t> last_memory_usage_;
2080 base::AtomicNumber<size_t> last_pool_size_;
2081 base::AtomicNumber<size_t> nesting_deepth_;
2082 size_t allocation_sample_bytes_, pool_sample_bytes_;
2083 };
2084
2085 Isolate::Isolate(bool enable_serializer)
2086 : embedder_data_(),
2087 entry_stack_(NULL),
2088 stack_trace_nesting_level_(0),
2089 incomplete_message_(NULL),
2090 bootstrapper_(NULL),
2091 runtime_profiler_(NULL),
2092 compilation_cache_(NULL),
2093 counters_(NULL),
2094 logger_(NULL),
2095 stats_table_(NULL),
2096 load_stub_cache_(NULL),
2097 store_stub_cache_(NULL),
2098 code_aging_helper_(NULL),
2099 deoptimizer_data_(NULL),
2100 deoptimizer_lazy_throw_(false),
2101 materialized_object_store_(NULL),
2102 capture_stack_trace_for_uncaught_exceptions_(false),
2103 stack_trace_for_uncaught_exceptions_frame_limit_(0),
2104 stack_trace_for_uncaught_exceptions_options_(StackTrace::kOverview),
2105 context_slot_cache_(NULL),
2106 descriptor_lookup_cache_(NULL),
2107 handle_scope_implementer_(NULL),
2108 unicode_cache_(NULL),
2109 allocator_(FLAG_trace_gc_object_stats ? new VerboseAccountingAllocator(
2110 &heap_, 256 * KB, 128 * KB)
2111 : new AccountingAllocator()),
2112 inner_pointer_to_code_cache_(NULL),
2113 global_handles_(NULL),
2114 eternal_handles_(NULL),
2115 thread_manager_(NULL),
2116 has_installed_extensions_(false),
2117 regexp_stack_(NULL),
2118 date_cache_(NULL),
2119 call_descriptor_data_(NULL),
2120 // TODO(bmeurer) Initialized lazily because it depends on flags; can
2121 // be fixed once the default isolate cleanup is done.
2122 random_number_generator_(NULL),
2123 rail_mode_(PERFORMANCE_ANIMATION),
2124 serializer_enabled_(enable_serializer),
2125 has_fatal_error_(false),
2126 initialized_from_snapshot_(false),
2127 is_tail_call_elimination_enabled_(true),
2128 is_isolate_in_background_(false),
2129 cpu_profiler_(NULL),
2130 heap_profiler_(NULL),
2131 code_event_dispatcher_(new CodeEventDispatcher()),
2132 function_entry_hook_(NULL),
2133 deferred_handles_head_(NULL),
2134 optimizing_compile_dispatcher_(NULL),
2135 stress_deopt_count_(0),
2136 next_optimization_id_(0),
2137 #if TRACE_MAPS
2138 next_unique_sfi_id_(0),
2139 #endif
2140 is_running_microtasks_(false),
2141 use_counter_callback_(NULL),
2142 basic_block_profiler_(NULL),
2143 cancelable_task_manager_(new CancelableTaskManager()),
2144 abort_on_uncaught_exception_callback_(NULL) {
2145 {
2146 base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer());
2147 CHECK(thread_data_table_);
2148 }
2149 id_ = base::NoBarrier_AtomicIncrement(&isolate_counter_, 1);
2150 TRACE_ISOLATE(constructor);
2151
2152 memset(isolate_addresses_, 0,
2153 sizeof(isolate_addresses_[0]) * (kIsolateAddressCount + 1));
2154
2155 heap_.isolate_ = this;
2156 stack_guard_.isolate_ = this;
2157
2158 // ThreadManager is initialized early to support locking an isolate
2159 // before it is entered.
2160 thread_manager_ = new ThreadManager();
2161 thread_manager_->isolate_ = this;
2162
2163 #ifdef DEBUG
2164 // heap_histograms_ initializes itself.
2165 memset(&js_spill_information_, 0, sizeof(js_spill_information_));
2166 #endif
2167
2168 handle_scope_data_.Initialize();
2169
2170 #define ISOLATE_INIT_EXECUTE(type, name, initial_value) \
2171 name##_ = (initial_value);
2172 ISOLATE_INIT_LIST(ISOLATE_INIT_EXECUTE)
2173 #undef ISOLATE_INIT_EXECUTE
2174
2175 #define ISOLATE_INIT_ARRAY_EXECUTE(type, name, length) \
2176 memset(name##_, 0, sizeof(type) * length);
2177 ISOLATE_INIT_ARRAY_LIST(ISOLATE_INIT_ARRAY_EXECUTE)
2178 #undef ISOLATE_INIT_ARRAY_EXECUTE
2179
2180 InitializeLoggingAndCounters();
2181 debug_ = new Debug(this);
2182
2183 init_memcopy_functions(this);
2184 }
2185
2186
2187 void Isolate::TearDown() {
2188 TRACE_ISOLATE(tear_down);
2189
2190 // Temporarily set this isolate as current so that various parts of
2191 // the isolate can access it in their destructors without having a
2192 // direct pointer. We don't use Enter/Exit here to avoid
2193 // initializing the thread data.
2194 PerIsolateThreadData* saved_data = CurrentPerIsolateThreadData();
2195 DCHECK(base::NoBarrier_Load(&isolate_key_created_) == 1);
2196 Isolate* saved_isolate =
2197 reinterpret_cast<Isolate*>(base::Thread::GetThreadLocal(isolate_key_));
2198 SetIsolateThreadLocals(this, NULL);
2199
2200 Deinit();
2201
2202 {
2203 base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer());
2204 thread_data_table_->RemoveAllThreads(this);
2205 }
2206
2207 delete this;
2208
2209 // Restore the previous current isolate.
2210 SetIsolateThreadLocals(saved_isolate, saved_data);
2211 }
2212
2213
2214 void Isolate::GlobalTearDown() {
2215 delete thread_data_table_;
2216 thread_data_table_ = NULL;
2217 }
2218
2219
2220 void Isolate::ClearSerializerData() {
2221 delete external_reference_table_;
2222 external_reference_table_ = NULL;
2223 delete external_reference_map_;
2224 external_reference_map_ = NULL;
2225 }
2226
2227
2228 void Isolate::Deinit() {
2229 TRACE_ISOLATE(deinit);
2230
2231 debug()->Unload();
2232
2233 FreeThreadResources();
2234
2235 if (concurrent_recompilation_enabled()) {
2236 optimizing_compile_dispatcher_->Stop();
2237 delete optimizing_compile_dispatcher_;
2238 optimizing_compile_dispatcher_ = NULL;
2239 }
2240
2241 if (heap_.mark_compact_collector()->sweeping_in_progress()) {
2242 heap_.mark_compact_collector()->EnsureSweepingCompleted();
2243 }
2244
2245 DumpAndResetCompilationStats();
2246
2247 if (FLAG_print_deopt_stress) {
2248 PrintF(stdout, "=== Stress deopt counter: %u\n", stress_deopt_count_);
2249 }
2250
2251 if (cpu_profiler_) {
2252 cpu_profiler_->DeleteAllProfiles();
2253 }
2254
2255 // We must stop the logger before we tear down other components.
2256 sampler::Sampler* sampler = logger_->sampler();
2257 if (sampler && sampler->IsActive()) sampler->Stop();
2258
2259 delete deoptimizer_data_;
2260 deoptimizer_data_ = NULL;
2261 builtins_.TearDown();
2262 bootstrapper_->TearDown();
2263
2264 if (runtime_profiler_ != NULL) {
2265 delete runtime_profiler_;
2266 runtime_profiler_ = NULL;
2267 }
2268
2269 delete basic_block_profiler_;
2270 basic_block_profiler_ = NULL;
2271
2272 delete heap_profiler_;
2273 heap_profiler_ = NULL;
2274
2275 cancelable_task_manager()->CancelAndWait();
2276
2277 heap_.TearDown();
2278 logger_->TearDown();
2279
2280 delete interpreter_;
2281 interpreter_ = NULL;
2282
2283 delete compiler_dispatcher_tracer_;
2284 compiler_dispatcher_tracer_ = nullptr;
2285
2286 delete cpu_profiler_;
2287 cpu_profiler_ = NULL;
2288
2289 code_event_dispatcher_.reset();
2290
2291 delete root_index_map_;
2292 root_index_map_ = NULL;
2293
2294 ClearSerializerData();
2295 }
2296
2297
2298 void Isolate::SetIsolateThreadLocals(Isolate* isolate,
2299 PerIsolateThreadData* data) {
2300 base::Thread::SetThreadLocal(isolate_key_, isolate);
2301 base::Thread::SetThreadLocal(per_isolate_thread_data_key_, data);
2302 }
2303
2304
2305 Isolate::~Isolate() {
2306 TRACE_ISOLATE(destructor);
2307
2308 // The entry stack must be empty when we get here.
2309 DCHECK(entry_stack_ == NULL || entry_stack_->previous_item == NULL);
2310
2311 delete entry_stack_;
2312 entry_stack_ = NULL;
2313
2314 delete unicode_cache_;
2315 unicode_cache_ = NULL;
2316
2317 delete date_cache_;
2318 date_cache_ = NULL;
2319
2320 delete[] call_descriptor_data_;
2321 call_descriptor_data_ = NULL;
2322
2323 delete access_compiler_data_;
2324 access_compiler_data_ = NULL;
2325
2326 delete regexp_stack_;
2327 regexp_stack_ = NULL;
2328
2329 delete descriptor_lookup_cache_;
2330 descriptor_lookup_cache_ = NULL;
2331 delete context_slot_cache_;
2332 context_slot_cache_ = NULL;
2333
2334 delete load_stub_cache_;
2335 load_stub_cache_ = NULL;
2336 delete store_stub_cache_;
2337 store_stub_cache_ = NULL;
2338 delete code_aging_helper_;
2339 code_aging_helper_ = NULL;
2340 delete stats_table_;
2341 stats_table_ = NULL;
2342
2343 delete materialized_object_store_;
2344 materialized_object_store_ = NULL;
2345
2346 delete logger_;
2347 logger_ = NULL;
2348
2349 delete counters_;
2350 counters_ = NULL;
2351
2352 delete handle_scope_implementer_;
2353 handle_scope_implementer_ = NULL;
2354
2355 delete code_tracer();
2356 set_code_tracer(NULL);
2357
2358 delete compilation_cache_;
2359 compilation_cache_ = NULL;
2360 delete bootstrapper_;
2361 bootstrapper_ = NULL;
2362 delete inner_pointer_to_code_cache_;
2363 inner_pointer_to_code_cache_ = NULL;
2364
2365 delete thread_manager_;
2366 thread_manager_ = NULL;
2367
2368 delete global_handles_;
2369 global_handles_ = NULL;
2370 delete eternal_handles_;
2371 eternal_handles_ = NULL;
2372
2373 delete string_stream_debug_object_cache_;
2374 string_stream_debug_object_cache_ = NULL;
2375
2376 delete random_number_generator_;
2377 random_number_generator_ = NULL;
2378
2379 delete debug_;
2380 debug_ = NULL;
2381
2382 delete cancelable_task_manager_;
2383 cancelable_task_manager_ = nullptr;
2384
2385 delete allocator_;
2386 allocator_ = nullptr;
2387
2388 #if USE_SIMULATOR
2389 Simulator::TearDown(simulator_i_cache_, simulator_redirection_);
2390 simulator_i_cache_ = nullptr;
2391 simulator_redirection_ = nullptr;
2392 #endif
2393 }
2394
2395
2396 void Isolate::InitializeThreadLocal() {
2397 thread_local_top_.isolate_ = this;
2398 thread_local_top_.Initialize();
2399 }
2400
2401
2402 bool Isolate::PropagatePendingExceptionToExternalTryCatch() {
2403 Object* exception = pending_exception();
2404
2405 if (IsJavaScriptHandlerOnTop(exception)) {
2406 thread_local_top_.external_caught_exception_ = false;
2407 return false;
2408 }
2409
2410 if (!IsExternalHandlerOnTop(exception)) {
2411 thread_local_top_.external_caught_exception_ = false;
2412 return true;
2413 }
2414
2415 thread_local_top_.external_caught_exception_ = true;
2416 if (!is_catchable_by_javascript(exception)) {
2417 try_catch_handler()->can_continue_ = false;
2418 try_catch_handler()->has_terminated_ = true;
2419 try_catch_handler()->exception_ = heap()->null_value();
2420 } else {
2421 v8::TryCatch* handler = try_catch_handler();
2422 DCHECK(thread_local_top_.pending_message_obj_->IsJSMessageObject() ||
2423 thread_local_top_.pending_message_obj_->IsTheHole(this));
2424 handler->can_continue_ = true;
2425 handler->has_terminated_ = false;
2426 handler->exception_ = pending_exception();
2427 // Propagate to the external try-catch only if we got an actual message.
2428 if (thread_local_top_.pending_message_obj_->IsTheHole(this)) return true;
2429
2430 handler->message_obj_ = thread_local_top_.pending_message_obj_;
2431 }
2432 return true;
2433 }
2434
2435
2436 void Isolate::InitializeLoggingAndCounters() {
2437 if (logger_ == NULL) {
2438 logger_ = new Logger(this);
2439 }
2440 if (counters_ == NULL) {
2441 counters_ = new Counters(this);
2442 }
2443 }
2444
2445
2446 bool Isolate::Init(Deserializer* des) {
2447 TRACE_ISOLATE(init);
2448
2449 stress_deopt_count_ = FLAG_deopt_every_n_times;
2450
2451 has_fatal_error_ = false;
2452
2453 if (function_entry_hook() != NULL) {
2454 // When function entry hooking is in effect, we have to create the code
2455 // stubs from scratch to get entry hooks, rather than loading the previously
2456 // generated stubs from disk.
2457 // If this assert fires, the initialization path has regressed.
2458 DCHECK(des == NULL);
2459 }
2460
2461 // The initialization process does not handle memory exhaustion.
2462 AlwaysAllocateScope always_allocate(this);
2463
2464 // Safe after setting Heap::isolate_, and initializing StackGuard
2465 heap_.SetStackLimits();
2466
2467 #define ASSIGN_ELEMENT(CamelName, hacker_name) \
2468 isolate_addresses_[Isolate::k##CamelName##Address] = \
2469 reinterpret_cast<Address>(hacker_name##_address());
2470 FOR_EACH_ISOLATE_ADDRESS_NAME(ASSIGN_ELEMENT)
2471 #undef ASSIGN_ELEMENT
2472
2473 compilation_cache_ = new CompilationCache(this);
2474 context_slot_cache_ = new ContextSlotCache();
2475 descriptor_lookup_cache_ = new DescriptorLookupCache();
2476 unicode_cache_ = new UnicodeCache();
2477 inner_pointer_to_code_cache_ = new InnerPointerToCodeCache(this);
2478 global_handles_ = new GlobalHandles(this);
2479 eternal_handles_ = new EternalHandles();
2480 bootstrapper_ = new Bootstrapper(this);
2481 handle_scope_implementer_ = new HandleScopeImplementer(this);
2482 load_stub_cache_ = new StubCache(this, Code::LOAD_IC);
2483 store_stub_cache_ = new StubCache(this, Code::STORE_IC);
2484 materialized_object_store_ = new MaterializedObjectStore(this);
2485 regexp_stack_ = new RegExpStack();
2486 regexp_stack_->isolate_ = this;
2487 date_cache_ = new DateCache();
2488 call_descriptor_data_ =
2489 new CallInterfaceDescriptorData[CallDescriptors::NUMBER_OF_DESCRIPTORS];
2490 access_compiler_data_ = new AccessCompilerData();
2491 cpu_profiler_ = new CpuProfiler(this);
2492 heap_profiler_ = new HeapProfiler(heap());
2493 interpreter_ = new interpreter::Interpreter(this);
2494 compiler_dispatcher_tracer_ = new CompilerDispatcherTracer(this);
2495
2496 // Enable logging before setting up the heap
2497 logger_->SetUp(this);
2498
2499 // Initialize other runtime facilities
2500 #if defined(USE_SIMULATOR)
2501 #if V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_MIPS || \
2502 V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_S390
2503 Simulator::Initialize(this);
2504 #endif
2505 #endif
2506
2507 code_aging_helper_ = new CodeAgingHelper(this);
2508
2509 { // NOLINT
2510 // Ensure that the thread has a valid stack guard. The v8::Locker object
2511 // will ensure this too, but we don't have to use lockers if we are only
2512 // using one thread.
2513 ExecutionAccess lock(this);
2514 stack_guard_.InitThread(lock);
2515 }
2516
2517 // SetUp the object heap.
2518 DCHECK(!heap_.HasBeenSetUp());
2519 if (!heap_.SetUp()) {
2520 V8::FatalProcessOutOfMemory("heap setup");
2521 return false;
2522 }
2523
2524 // Initialize the interface descriptors ahead of time.
2525 #define INTERFACE_DESCRIPTOR(V) \
2526 { V##Descriptor(this); }
2527 INTERFACE_DESCRIPTOR_LIST(INTERFACE_DESCRIPTOR)
2528 #undef INTERFACE_DESCRIPTOR
2529
2530 deoptimizer_data_ = new DeoptimizerData(heap()->memory_allocator());
2531
2532 const bool create_heap_objects = (des == NULL);
2533 if (create_heap_objects && !heap_.CreateHeapObjects()) {
2534 V8::FatalProcessOutOfMemory("heap object creation");
2535 return false;
2536 }
2537
2538 if (create_heap_objects) {
2539 // Terminate the partial snapshot cache so we can iterate.
2540 partial_snapshot_cache_.Add(heap_.undefined_value());
2541 }
2542
2543 InitializeThreadLocal();
2544
2545 bootstrapper_->Initialize(create_heap_objects);
2546 builtins_.SetUp(this, create_heap_objects);
2547 if (create_heap_objects) {
2548 heap_.CreateFixedStubs();
2549 }
2550
2551 if (FLAG_log_internal_timer_events) {
2552 set_event_logger(Logger::DefaultEventLoggerSentinel);
2553 }
2554
2555 if (FLAG_trace_hydrogen || FLAG_trace_hydrogen_stubs || FLAG_trace_turbo ||
2556 FLAG_trace_turbo_graph) {
2557 PrintF("Concurrent recompilation has been disabled for tracing.\n");
2558 } else if (OptimizingCompileDispatcher::Enabled()) {
2559 optimizing_compile_dispatcher_ = new OptimizingCompileDispatcher(this);
2560 }
2561
2562 // Initialize runtime profiler before deserialization, because collections may
2563 // occur, clearing/updating ICs.
2564 runtime_profiler_ = new RuntimeProfiler(this);
2565
2566 // If we are deserializing, read the state into the now-empty heap.
2567 {
2568 AlwaysAllocateScope always_allocate(this);
2569
2570 if (!create_heap_objects) {
2571 des->Deserialize(this);
2572 }
2573 load_stub_cache_->Initialize();
2574 store_stub_cache_->Initialize();
2575 interpreter_->Initialize();
2576
2577 heap_.NotifyDeserializationComplete();
2578 }
2579
2580 // Finish initialization of ThreadLocal after deserialization is done.
2581 clear_pending_exception();
2582 clear_pending_message();
2583 clear_scheduled_exception();
2584
2585 // Deserializing may put strange things in the root array's copy of the
2586 // stack guard.
2587 heap_.SetStackLimits();
2588
2589 // Quiet the heap NaN if needed on target platform.
2590 if (!create_heap_objects) Assembler::QuietNaN(heap_.nan_value());
2591
2592 if (FLAG_trace_turbo) {
2593 // Create an empty file.
2594 std::ofstream(GetTurboCfgFileName().c_str(), std::ios_base::trunc);
2595 }
2596
2597 CHECK_EQ(static_cast<int>(OFFSET_OF(Isolate, embedder_data_)),
2598 Internals::kIsolateEmbedderDataOffset);
2599 CHECK_EQ(static_cast<int>(OFFSET_OF(Isolate, heap_.roots_)),
2600 Internals::kIsolateRootsOffset);
2601 CHECK_EQ(static_cast<int>(OFFSET_OF(Isolate, heap_.external_memory_)),
2602 Internals::kExternalMemoryOffset);
2603 CHECK_EQ(static_cast<int>(OFFSET_OF(Isolate, heap_.external_memory_limit_)),
2604 Internals::kExternalMemoryLimitOffset);
2605
2606 time_millis_at_init_ = heap_.MonotonicallyIncreasingTimeInMs();
2607
2608 if (!create_heap_objects) {
2609 // Now that the heap is consistent, it's OK to generate the code for the
2610 // deopt entry table that might have been referred to by optimized code in
2611 // the snapshot.
2612 HandleScope scope(this);
2613 Deoptimizer::EnsureCodeForDeoptimizationEntry(
2614 this, Deoptimizer::LAZY,
2615 ExternalReferenceTable::kDeoptTableSerializeEntryCount - 1);
2616 }
2617
2618 if (!serializer_enabled()) {
2619 // Ensure that all stubs which need to be generated ahead of time, but
2620 // cannot be serialized into the snapshot have been generated.
2621 HandleScope scope(this);
2622 CodeStub::GenerateFPStubs(this);
2623 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(this);
2624 StubFailureTrampolineStub::GenerateAheadOfTime(this);
2625 }
2626
2627 initialized_from_snapshot_ = (des != NULL);
2628
2629 if (!FLAG_inline_new) heap_.DisableInlineAllocation();
2630
2631 return true;
2632 }
2633
2634
2635 // Initialized lazily to allow early
2636 // v8::V8::SetAddHistogramSampleFunction calls.
2637 StatsTable* Isolate::stats_table() {
2638 if (stats_table_ == NULL) {
2639 stats_table_ = new StatsTable;
2640 }
2641 return stats_table_;
2642 }
2643
2644
2645 void Isolate::Enter() {
2646 Isolate* current_isolate = NULL;
2647 PerIsolateThreadData* current_data = CurrentPerIsolateThreadData();
2648 if (current_data != NULL) {
2649 current_isolate = current_data->isolate_;
2650 DCHECK(current_isolate != NULL);
2651 if (current_isolate == this) {
2652 DCHECK(Current() == this);
2653 DCHECK(entry_stack_ != NULL);
2654 DCHECK(entry_stack_->previous_thread_data == NULL ||
2655 entry_stack_->previous_thread_data->thread_id().Equals(
2656 ThreadId::Current()));
2657 // Same thread re-enters the isolate, no need to re-init anything.
2658 entry_stack_->entry_count++;
2659 return;
2660 }
2661 }
2662
2663 PerIsolateThreadData* data = FindOrAllocatePerThreadDataForThisThread();
2664 DCHECK(data != NULL);
2665 DCHECK(data->isolate_ == this);
2666
2667 EntryStackItem* item = new EntryStackItem(current_data,
2668 current_isolate,
2669 entry_stack_);
2670 entry_stack_ = item;
2671
2672 SetIsolateThreadLocals(this, data);
2673
2674 // In case it's the first time some thread enters the isolate.
2675 set_thread_id(data->thread_id());
2676 }
2677
2678
2679 void Isolate::Exit() {
2680 DCHECK(entry_stack_ != NULL);
2681 DCHECK(entry_stack_->previous_thread_data == NULL ||
2682 entry_stack_->previous_thread_data->thread_id().Equals(
2683 ThreadId::Current()));
2684
2685 if (--entry_stack_->entry_count > 0) return;
2686
2687 DCHECK(CurrentPerIsolateThreadData() != NULL);
2688 DCHECK(CurrentPerIsolateThreadData()->isolate_ == this);
2689
2690 // Pop the stack.
2691 EntryStackItem* item = entry_stack_;
2692 entry_stack_ = item->previous_item;
2693
2694 PerIsolateThreadData* previous_thread_data = item->previous_thread_data;
2695 Isolate* previous_isolate = item->previous_isolate;
2696
2697 delete item;
2698
2699 // Reinit the current thread for the isolate it was running before this one.
2700 SetIsolateThreadLocals(previous_isolate, previous_thread_data);
2701 }
2702
2703
2704 void Isolate::LinkDeferredHandles(DeferredHandles* deferred) {
2705 deferred->next_ = deferred_handles_head_;
2706 if (deferred_handles_head_ != NULL) {
2707 deferred_handles_head_->previous_ = deferred;
2708 }
2709 deferred_handles_head_ = deferred;
2710 }
2711
2712
2713 void Isolate::UnlinkDeferredHandles(DeferredHandles* deferred) {
2714 #ifdef DEBUG
2715 // In debug mode assert that the linked list is well-formed.
2716 DeferredHandles* deferred_iterator = deferred;
2717 while (deferred_iterator->previous_ != NULL) {
2718 deferred_iterator = deferred_iterator->previous_;
2719 }
2720 DCHECK(deferred_handles_head_ == deferred_iterator);
2721 #endif
2722 if (deferred_handles_head_ == deferred) {
2723 deferred_handles_head_ = deferred_handles_head_->next_;
2724 }
2725 if (deferred->next_ != NULL) {
2726 deferred->next_->previous_ = deferred->previous_;
2727 }
2728 if (deferred->previous_ != NULL) {
2729 deferred->previous_->next_ = deferred->next_;
2730 }
2731 }
2732
2733
2734 void Isolate::DumpAndResetCompilationStats() {
2735 if (turbo_statistics() != nullptr) {
2736 DCHECK(FLAG_turbo_stats || FLAG_turbo_stats_nvp);
2737
2738 OFStream os(stdout);
2739 if (FLAG_turbo_stats) {
2740 AsPrintableStatistics ps = {*turbo_statistics(), false};
2741 os << ps << std::endl;
2742 }
2743 if (FLAG_turbo_stats_nvp) {
2744 AsPrintableStatistics ps = {*turbo_statistics(), true};
2745 os << ps << std::endl;
2746 }
2747 }
2748 if (hstatistics() != nullptr) hstatistics()->Print();
2749 delete turbo_statistics_;
2750 turbo_statistics_ = nullptr;
2751 delete hstatistics_;
2752 hstatistics_ = nullptr;
2753 if (V8_UNLIKELY(FLAG_runtime_stats ==
2754 v8::tracing::TracingCategoryObserver::ENABLED_BY_NATIVE)) {
2755 OFStream os(stdout);
2756 counters()->runtime_call_stats()->Print(os);
2757 counters()->runtime_call_stats()->Reset();
2758 }
2759 }
2760
2761
2762 HStatistics* Isolate::GetHStatistics() {
2763 if (hstatistics() == NULL) set_hstatistics(new HStatistics());
2764 return hstatistics();
2765 }
2766
2767
2768 CompilationStatistics* Isolate::GetTurboStatistics() {
2769 if (turbo_statistics() == NULL)
2770 set_turbo_statistics(new CompilationStatistics());
2771 return turbo_statistics();
2772 }
2773
2774
2775 HTracer* Isolate::GetHTracer() {
2776 if (htracer() == NULL) set_htracer(new HTracer(id()));
2777 return htracer();
2778 }
2779
2780
2781 CodeTracer* Isolate::GetCodeTracer() {
2782 if (code_tracer() == NULL) set_code_tracer(new CodeTracer(id()));
2783 return code_tracer();
2784 }
2785
2786 Map* Isolate::get_initial_js_array_map(ElementsKind kind) {
2787 if (IsFastElementsKind(kind)) {
2788 DisallowHeapAllocation no_gc;
2789 Object* const initial_js_array_map =
2790 context()->native_context()->get(Context::ArrayMapIndex(kind));
2791 if (!initial_js_array_map->IsUndefined(this)) {
2792 return Map::cast(initial_js_array_map);
2793 }
2794 }
2795 return nullptr;
2796 }
2797
2798
2799 bool Isolate::use_crankshaft() const {
2800 return FLAG_crankshaft &&
2801 !serializer_enabled_ &&
2802 CpuFeatures::SupportsCrankshaft();
2803 }
2804
2805 bool Isolate::IsArrayOrObjectPrototype(Object* object) {
2806 Object* context = heap()->native_contexts_list();
2807 while (!context->IsUndefined(this)) {
2808 Context* current_context = Context::cast(context);
2809 if (current_context->initial_object_prototype() == object ||
2810 current_context->initial_array_prototype() == object) {
2811 return true;
2812 }
2813 context = current_context->next_context_link();
2814 }
2815 return false;
2816 }
2817
2818 bool Isolate::IsInAnyContext(Object* object, uint32_t index) {
2819 DisallowHeapAllocation no_gc;
2820 Object* context = heap()->native_contexts_list();
2821 while (!context->IsUndefined(this)) {
2822 Context* current_context = Context::cast(context);
2823 if (current_context->get(index) == object) {
2824 return true;
2825 }
2826 context = current_context->next_context_link();
2827 }
2828 return false;
2829 }
2830
2831 bool Isolate::IsFastArrayConstructorPrototypeChainIntact() {
2832 PropertyCell* no_elements_cell = heap()->array_protector();
2833 bool cell_reports_intact =
2834 no_elements_cell->value()->IsSmi() &&
2835 Smi::cast(no_elements_cell->value())->value() == kProtectorValid;
2836
2837 #ifdef DEBUG
2838 Map* root_array_map =
2839 get_initial_js_array_map(GetInitialFastElementsKind());
2840 Context* native_context = context()->native_context();
2841 JSObject* initial_array_proto = JSObject::cast(
2842 native_context->get(Context::INITIAL_ARRAY_PROTOTYPE_INDEX));
2843 JSObject* initial_object_proto = JSObject::cast(
2844 native_context->get(Context::INITIAL_OBJECT_PROTOTYPE_INDEX));
2845
2846 if (root_array_map == NULL || initial_array_proto == initial_object_proto) {
2847 // We are in the bootstrapping process, and the entire check sequence
2848 // shouldn't be performed.
2849 return cell_reports_intact;
2850 }
2851
2852 // Check that the array prototype hasn't been altered WRT empty elements.
2853 if (root_array_map->prototype() != initial_array_proto) {
2854 DCHECK_EQ(false, cell_reports_intact);
2855 return cell_reports_intact;
2856 }
2857
2858 FixedArrayBase* elements = initial_array_proto->elements();
2859 if (elements != heap()->empty_fixed_array() &&
2860 elements != heap()->empty_slow_element_dictionary()) {
2861 DCHECK_EQ(false, cell_reports_intact);
2862 return cell_reports_intact;
2863 }
2864
2865 // Check that the object prototype hasn't been altered WRT empty elements.
2866 PrototypeIterator iter(this, initial_array_proto);
2867 if (iter.IsAtEnd() || iter.GetCurrent() != initial_object_proto) {
2868 DCHECK_EQ(false, cell_reports_intact);
2869 return cell_reports_intact;
2870 }
2871
2872 elements = initial_object_proto->elements();
2873 if (elements != heap()->empty_fixed_array() &&
2874 elements != heap()->empty_slow_element_dictionary()) {
2875 DCHECK_EQ(false, cell_reports_intact);
2876 return cell_reports_intact;
2877 }
2878
2879 iter.Advance();
2880 if (!iter.IsAtEnd()) {
2881 DCHECK_EQ(false, cell_reports_intact);
2882 return cell_reports_intact;
2883 }
2884
2885 #endif
2886
2887 return cell_reports_intact;
2888 }
2889
2890 bool Isolate::IsIsConcatSpreadableLookupChainIntact() {
2891 Cell* is_concat_spreadable_cell = heap()->is_concat_spreadable_protector();
2892 bool is_is_concat_spreadable_set =
2893 Smi::cast(is_concat_spreadable_cell->value())->value() ==
2894 kProtectorInvalid;
2895 #ifdef DEBUG
2896 Map* root_array_map = get_initial_js_array_map(GetInitialFastElementsKind());
2897 if (root_array_map == NULL) {
2898 // Ignore the value of is_concat_spreadable during bootstrap.
2899 return !is_is_concat_spreadable_set;
2900 }
2901 Handle<Object> array_prototype(array_function()->prototype(), this);
2902 Handle<Symbol> key = factory()->is_concat_spreadable_symbol();
2903 Handle<Object> value;
2904 LookupIterator it(array_prototype, key);
2905 if (it.IsFound() && !JSReceiver::GetDataProperty(&it)->IsUndefined(this)) {
2906 // TODO(cbruni): Currently we do not revert if we unset the
2907 // @@isConcatSpreadable property on Array.prototype or Object.prototype
2908 // hence the reverse implication doesn't hold.
2909 DCHECK(is_is_concat_spreadable_set);
2910 return false;
2911 }
2912 #endif // DEBUG
2913
2914 return !is_is_concat_spreadable_set;
2915 }
2916
2917 bool Isolate::IsIsConcatSpreadableLookupChainIntact(JSReceiver* receiver) {
2918 if (!IsIsConcatSpreadableLookupChainIntact()) return false;
2919 return !receiver->HasProxyInPrototype(this);
2920 }
2921
2922 void Isolate::UpdateArrayProtectorOnSetElement(Handle<JSObject> object) {
2923 DisallowHeapAllocation no_gc;
2924 if (!object->map()->is_prototype_map()) return;
2925 if (!IsFastArrayConstructorPrototypeChainIntact()) return;
2926 if (!IsArrayOrObjectPrototype(*object)) return;
2927 PropertyCell::SetValueWithInvalidation(
2928 factory()->array_protector(),
2929 handle(Smi::FromInt(kProtectorInvalid), this));
2930 }
2931
2932 void Isolate::InvalidateHasInstanceProtector() {
2933 DCHECK(factory()->has_instance_protector()->value()->IsSmi());
2934 DCHECK(IsHasInstanceLookupChainIntact());
2935 PropertyCell::SetValueWithInvalidation(
2936 factory()->has_instance_protector(),
2937 handle(Smi::FromInt(kProtectorInvalid), this));
2938 DCHECK(!IsHasInstanceLookupChainIntact());
2939 }
2940
2941 void Isolate::InvalidateIsConcatSpreadableProtector() {
2942 DCHECK(factory()->is_concat_spreadable_protector()->value()->IsSmi());
2943 DCHECK(IsIsConcatSpreadableLookupChainIntact());
2944 factory()->is_concat_spreadable_protector()->set_value(
2945 Smi::FromInt(kProtectorInvalid));
2946 DCHECK(!IsIsConcatSpreadableLookupChainIntact());
2947 }
2948
2949 void Isolate::InvalidateArraySpeciesProtector() {
2950 DCHECK(factory()->species_protector()->value()->IsSmi());
2951 DCHECK(IsArraySpeciesLookupChainIntact());
2952 factory()->species_protector()->set_value(Smi::FromInt(kProtectorInvalid));
2953 DCHECK(!IsArraySpeciesLookupChainIntact());
2954 }
2955
2956 void Isolate::InvalidateStringLengthOverflowProtector() {
2957 DCHECK(factory()->string_length_protector()->value()->IsSmi());
2958 DCHECK(IsStringLengthOverflowIntact());
2959 PropertyCell::SetValueWithInvalidation(
2960 factory()->string_length_protector(),
2961 handle(Smi::FromInt(kProtectorInvalid), this));
2962 DCHECK(!IsStringLengthOverflowIntact());
2963 }
2964
2965 void Isolate::InvalidateArrayIteratorProtector() {
2966 DCHECK(factory()->array_iterator_protector()->value()->IsSmi());
2967 DCHECK(IsArrayIteratorLookupChainIntact());
2968 factory()->array_iterator_protector()->set_value(
2969 Smi::FromInt(kProtectorInvalid));
2970 DCHECK(!IsArrayIteratorLookupChainIntact());
2971 }
2972
2973 bool Isolate::IsAnyInitialArrayPrototype(Handle<JSArray> array) {
2974 DisallowHeapAllocation no_gc;
2975 return IsInAnyContext(*array, Context::INITIAL_ARRAY_PROTOTYPE_INDEX);
2976 }
2977
2978
2979 CallInterfaceDescriptorData* Isolate::call_descriptor_data(int index) {
2980 DCHECK(0 <= index && index < CallDescriptors::NUMBER_OF_DESCRIPTORS);
2981 return &call_descriptor_data_[index];
2982 }
2983
2984
2985 base::RandomNumberGenerator* Isolate::random_number_generator() {
2986 if (random_number_generator_ == NULL) {
2987 if (FLAG_random_seed != 0) {
2988 random_number_generator_ =
2989 new base::RandomNumberGenerator(FLAG_random_seed);
2990 } else {
2991 random_number_generator_ = new base::RandomNumberGenerator();
2992 }
2993 }
2994 return random_number_generator_;
2995 }
2996
2997 int Isolate::GenerateIdentityHash(uint32_t mask) {
2998 int hash;
2999 int attempts = 0;
3000 do {
3001 hash = random_number_generator()->NextInt() & mask;
3002 } while (hash == 0 && attempts++ < 30);
3003 return hash != 0 ? hash : 1;
3004 }
3005
3006 Object* Isolate::FindCodeObject(Address a) {
3007 return inner_pointer_to_code_cache()->GcSafeFindCodeForInnerPointer(a);
3008 }
3009
3010
3011 #ifdef DEBUG
3012 #define ISOLATE_FIELD_OFFSET(type, name, ignored) \
3013 const intptr_t Isolate::name##_debug_offset_ = OFFSET_OF(Isolate, name##_);
3014 ISOLATE_INIT_LIST(ISOLATE_FIELD_OFFSET)
3015 ISOLATE_INIT_ARRAY_LIST(ISOLATE_FIELD_OFFSET)
3016 #undef ISOLATE_FIELD_OFFSET
3017 #endif
3018
3019
3020 Handle<JSObject> Isolate::SetUpSubregistry(Handle<JSObject> registry,
3021 Handle<Map> map, const char* cname) {
3022 Handle<String> name = factory()->InternalizeUtf8String(cname);
3023 Handle<JSObject> obj = factory()->NewJSObjectFromMap(map);
3024 JSObject::NormalizeProperties(obj, CLEAR_INOBJECT_PROPERTIES, 0,
3025 "SetupSymbolRegistry");
3026 JSObject::AddProperty(registry, name, obj, NONE);
3027 return obj;
3028 }
3029
3030
3031 Handle<JSObject> Isolate::GetSymbolRegistry() {
3032 if (heap()->symbol_registry()->IsSmi()) {
3033 Handle<Map> map = factory()->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
3034 Handle<JSObject> registry = factory()->NewJSObjectFromMap(map);
3035 heap()->set_symbol_registry(*registry);
3036
3037 SetUpSubregistry(registry, map, "for");
3038 SetUpSubregistry(registry, map, "for_api");
3039 SetUpSubregistry(registry, map, "keyFor");
3040 SetUpSubregistry(registry, map, "private_api");
3041 }
3042 return Handle<JSObject>::cast(factory()->symbol_registry());
3043 }
3044
3045
3046 void Isolate::AddBeforeCallEnteredCallback(BeforeCallEnteredCallback callback) {
3047 for (int i = 0; i < before_call_entered_callbacks_.length(); i++) {
3048 if (callback == before_call_entered_callbacks_.at(i)) return;
3049 }
3050 before_call_entered_callbacks_.Add(callback);
3051 }
3052
3053
3054 void Isolate::RemoveBeforeCallEnteredCallback(
3055 BeforeCallEnteredCallback callback) {
3056 for (int i = 0; i < before_call_entered_callbacks_.length(); i++) {
3057 if (callback == before_call_entered_callbacks_.at(i)) {
3058 before_call_entered_callbacks_.Remove(i);
3059 }
3060 }
3061 }
3062
3063
3064 void Isolate::AddCallCompletedCallback(CallCompletedCallback callback) {
3065 for (int i = 0; i < call_completed_callbacks_.length(); i++) {
3066 if (callback == call_completed_callbacks_.at(i)) return;
3067 }
3068 call_completed_callbacks_.Add(callback);
3069 }
3070
3071
3072 void Isolate::RemoveCallCompletedCallback(CallCompletedCallback callback) {
3073 for (int i = 0; i < call_completed_callbacks_.length(); i++) {
3074 if (callback == call_completed_callbacks_.at(i)) {
3075 call_completed_callbacks_.Remove(i);
3076 }
3077 }
3078 }
3079
3080
3081 void Isolate::FireCallCompletedCallback() {
3082 if (!handle_scope_implementer()->CallDepthIsZero()) return;
3083
3084 bool run_microtasks =
3085 pending_microtask_count() &&
3086 !handle_scope_implementer()->HasMicrotasksSuppressions() &&
3087 handle_scope_implementer()->microtasks_policy() ==
3088 v8::MicrotasksPolicy::kAuto;
3089
3090 if (run_microtasks) RunMicrotasks();
3091 // Prevent stepping from spilling into the next call made by the embedder.
3092 if (debug()->is_active()) debug()->ClearStepping();
3093
3094 if (call_completed_callbacks_.is_empty()) return;
3095 // Fire callbacks. Increase call depth to prevent recursive callbacks.
3096 v8::Isolate* isolate = reinterpret_cast<v8::Isolate*>(this);
3097 v8::Isolate::SuppressMicrotaskExecutionScope suppress(isolate);
3098 for (int i = 0; i < call_completed_callbacks_.length(); i++) {
3099 call_completed_callbacks_.at(i)(isolate);
3100 }
3101 }
3102
3103
3104 void Isolate::SetPromiseRejectCallback(PromiseRejectCallback callback) {
3105 promise_reject_callback_ = callback;
3106 }
3107
3108
3109 void Isolate::ReportPromiseReject(Handle<JSObject> promise,
3110 Handle<Object> value,
3111 v8::PromiseRejectEvent event) {
3112 if (promise_reject_callback_ == NULL) return;
3113 Handle<JSArray> stack_trace;
3114 if (event == v8::kPromiseRejectWithNoHandler && value->IsJSObject()) {
3115 stack_trace = GetDetailedStackTrace(Handle<JSObject>::cast(value));
3116 }
3117 promise_reject_callback_(v8::PromiseRejectMessage(
3118 v8::Utils::PromiseToLocal(promise), event, v8::Utils::ToLocal(value),
3119 v8::Utils::StackTraceToLocal(stack_trace)));
3120 }
3121
3122 namespace {
3123 class PromiseDebugEventScope {
3124 public:
3125 PromiseDebugEventScope(Isolate* isolate, Object* id, Object* name)
3126 : isolate_(isolate),
3127 id_(id, isolate_),
3128 name_(name, isolate_),
3129 is_debug_active_(isolate_->debug()->is_active() && id_->IsNumber() &&
3130 name_->IsString()) {
3131 if (is_debug_active_) {
3132 isolate_->debug()->OnAsyncTaskEvent(
3133 isolate_->factory()->will_handle_string(), id_,
3134 Handle<String>::cast(name_));
3135 }
3136 }
3137
3138 ~PromiseDebugEventScope() {
3139 if (is_debug_active_) {
3140 isolate_->debug()->OnAsyncTaskEvent(
3141 isolate_->factory()->did_handle_string(), id_,
3142 Handle<String>::cast(name_));
3143 }
3144 }
3145
3146 private:
3147 Isolate* isolate_;
3148 Handle<Object> id_;
3149 Handle<Object> name_;
3150 bool is_debug_active_;
3151 };
3152 } // namespace
3153
3154 void Isolate::PromiseReactionJob(Handle<PromiseReactionJobInfo> info,
3155 MaybeHandle<Object>* result,
3156 MaybeHandle<Object>* maybe_exception) {
3157 PromiseDebugEventScope helper(this, info->debug_id(), info->debug_name());
3158
3159 Handle<Object> value(info->value(), this);
3160 Handle<Object> tasks(info->tasks(), this);
3161 Handle<JSFunction> promise_handle_fn = promise_handle();
3162 Handle<Object> undefined = factory()->undefined_value();
3163
3164 // If tasks is an array we have multiple onFulfilled/onRejected callbacks
3165 // associated with the promise. The deferred object for each callback
3166 // is attached to this array as well.
3167 // Otherwise, there is a single callback and the deferred object is attached
3168 // directly to PromiseReactionJobInfo.
3169 if (tasks->IsJSArray()) {
3170 Handle<JSArray> array = Handle<JSArray>::cast(tasks);
3171 DCHECK(array->length()->IsSmi());
3172 int length = Smi::cast(array->length())->value();
3173 ElementsAccessor* accessor = array->GetElementsAccessor();
3174 DCHECK(length % 2 == 0);
3175 for (int i = 0; i < length; i += 2) {
3176 DCHECK(accessor->HasElement(array, i));
3177 DCHECK(accessor->HasElement(array, i + 1));
3178 Handle<Object> argv[] = {value, accessor->Get(array, i),
3179 accessor->Get(array, i + 1)};
3180 *result = Execution::TryCall(this, promise_handle_fn, undefined,
3181 arraysize(argv), argv, maybe_exception);
3182 // If execution is terminating, just bail out.
3183 if (result->is_null() && maybe_exception->is_null()) {
3184 return;
3185 }
3186 }
3187 } else {
3188 Handle<Object> deferred(info->deferred(), this);
3189 Handle<Object> argv[] = {value, tasks, deferred};
3190 *result = Execution::TryCall(this, promise_handle_fn, undefined,
3191 arraysize(argv), argv, maybe_exception);
3192 }
3193 }
3194
3195 void Isolate::PromiseResolveThenableJob(
3196 Handle<PromiseResolveThenableJobInfo> info, MaybeHandle<Object>* result,
3197 MaybeHandle<Object>* maybe_exception) {
3198 PromiseDebugEventScope helper(this, info->debug_id(), info->debug_name());
3199
3200 Handle<JSReceiver> thenable(info->thenable(), this);
3201 Handle<JSFunction> resolve(info->resolve(), this);
3202 Handle<JSFunction> reject(info->reject(), this);
3203 Handle<JSReceiver> then(info->then(), this);
3204 Handle<Object> argv[] = {resolve, reject};
3205 *result = Execution::TryCall(this, then, thenable, arraysize(argv), argv,
3206 maybe_exception);
3207
3208 Handle<Object> reason;
3209 if (maybe_exception->ToHandle(&reason)) {
3210 DCHECK(result->is_null());
3211 Handle<Object> reason_arg[] = {reason};
3212 *result =
3213 Execution::TryCall(this, reject, factory()->undefined_value(),
3214 arraysize(reason_arg), reason_arg, maybe_exception);
3215 }
3216 }
3217
3218 void Isolate::EnqueueMicrotask(Handle<Object> microtask) {
3219 DCHECK(microtask->IsJSFunction() || microtask->IsCallHandlerInfo() ||
3220 microtask->IsPromiseResolveThenableJobInfo() ||
3221 microtask->IsPromiseReactionJobInfo());
3222 Handle<FixedArray> queue(heap()->microtask_queue(), this);
3223 int num_tasks = pending_microtask_count();
3224 DCHECK(num_tasks <= queue->length());
3225 if (num_tasks == 0) {
3226 queue = factory()->NewFixedArray(8);
3227 heap()->set_microtask_queue(*queue);
3228 } else if (num_tasks == queue->length()) {
3229 queue = factory()->CopyFixedArrayAndGrow(queue, num_tasks);
3230 heap()->set_microtask_queue(*queue);
3231 }
3232 DCHECK(queue->get(num_tasks)->IsUndefined(this));
3233 queue->set(num_tasks, *microtask);
3234 set_pending_microtask_count(num_tasks + 1);
3235 }
3236
3237
3238 void Isolate::RunMicrotasks() {
3239 // Increase call depth to prevent recursive callbacks.
3240 v8::Isolate::SuppressMicrotaskExecutionScope suppress(
3241 reinterpret_cast<v8::Isolate*>(this));
3242 is_running_microtasks_ = true;
3243 RunMicrotasksInternal();
3244 is_running_microtasks_ = false;
3245 FireMicrotasksCompletedCallback();
3246 }
3247
3248
3249 void Isolate::RunMicrotasksInternal() {
3250 if (!pending_microtask_count()) return;
3251 TRACE_EVENT0("v8.execute", "RunMicrotasks");
3252 while (pending_microtask_count() > 0) {
3253 HandleScope scope(this);
3254 int num_tasks = pending_microtask_count();
3255 Handle<FixedArray> queue(heap()->microtask_queue(), this);
3256 DCHECK(num_tasks <= queue->length());
3257 set_pending_microtask_count(0);
3258 heap()->set_microtask_queue(heap()->empty_fixed_array());
3259
3260 Isolate* isolate = this;
3261 FOR_WITH_HANDLE_SCOPE(isolate, int, i = 0, i, i < num_tasks, i++, {
3262 Handle<Object> microtask(queue->get(i), this);
3263
3264 if (microtask->IsCallHandlerInfo()) {
3265 Handle<CallHandlerInfo> callback_info =
3266 Handle<CallHandlerInfo>::cast(microtask);
3267 v8::MicrotaskCallback callback =
3268 v8::ToCData<v8::MicrotaskCallback>(callback_info->callback());
3269 void* data = v8::ToCData<void*>(callback_info->data());
3270 callback(data);
3271 } else {
3272 SaveContext save(this);
3273 Context* context;
3274 if (microtask->IsJSFunction()) {
3275 context = Handle<JSFunction>::cast(microtask)->context();
3276 } else if (microtask->IsPromiseResolveThenableJobInfo()) {
3277 context =
3278 Handle<PromiseResolveThenableJobInfo>::cast(microtask)->context();
3279 } else {
3280 context = Handle<PromiseReactionJobInfo>::cast(microtask)->context();
3281 }
3282
3283 set_context(context->native_context());
3284 handle_scope_implementer_->EnterMicrotaskContext(
3285 Handle<Context>(context, this));
3286
3287 MaybeHandle<Object> result;
3288 MaybeHandle<Object> maybe_exception;
3289
3290 if (microtask->IsJSFunction()) {
3291 Handle<JSFunction> microtask_function =
3292 Handle<JSFunction>::cast(microtask);
3293 result = Execution::TryCall(this, microtask_function,
3294 factory()->undefined_value(), 0, NULL,
3295 &maybe_exception);
3296 } else if (microtask->IsPromiseResolveThenableJobInfo()) {
3297 PromiseResolveThenableJob(
3298 Handle<PromiseResolveThenableJobInfo>::cast(microtask), &result,
3299 &maybe_exception);
3300 } else {
3301 PromiseReactionJob(Handle<PromiseReactionJobInfo>::cast(microtask),
3302 &result, &maybe_exception);
3303 }
3304
3305 handle_scope_implementer_->LeaveMicrotaskContext();
3306
3307 // If execution is terminating, just bail out.
3308 if (result.is_null() && maybe_exception.is_null()) {
3309 // Clear out any remaining callbacks in the queue.
3310 heap()->set_microtask_queue(heap()->empty_fixed_array());
3311 set_pending_microtask_count(0);
3312 return;
3313 }
3314 }
3315 });
3316 }
3317 }
3318
3319
3320 void Isolate::AddMicrotasksCompletedCallback(
3321 MicrotasksCompletedCallback callback) {
3322 for (int i = 0; i < microtasks_completed_callbacks_.length(); i++) {
3323 if (callback == microtasks_completed_callbacks_.at(i)) return;
3324 }
3325 microtasks_completed_callbacks_.Add(callback);
3326 }
3327
3328
3329 void Isolate::RemoveMicrotasksCompletedCallback(
3330 MicrotasksCompletedCallback callback) {
3331 for (int i = 0; i < microtasks_completed_callbacks_.length(); i++) {
3332 if (callback == microtasks_completed_callbacks_.at(i)) {
3333 microtasks_completed_callbacks_.Remove(i);
3334 }
3335 }
3336 }
3337
3338
3339 void Isolate::FireMicrotasksCompletedCallback() {
3340 for (int i = 0; i < microtasks_completed_callbacks_.length(); i++) {
3341 microtasks_completed_callbacks_.at(i)(reinterpret_cast<v8::Isolate*>(this));
3342 }
3343 }
3344
3345
3346 void Isolate::SetUseCounterCallback(v8::Isolate::UseCounterCallback callback) {
3347 DCHECK(!use_counter_callback_);
3348 use_counter_callback_ = callback;
3349 }
3350
3351
3352 void Isolate::CountUsage(v8::Isolate::UseCounterFeature feature) {
3353 // The counter callback may cause the embedder to call into V8, which is not
3354 // generally possible during GC.
3355 if (heap_.gc_state() == Heap::NOT_IN_GC) {
3356 if (use_counter_callback_) {
3357 HandleScope handle_scope(this);
3358 use_counter_callback_(reinterpret_cast<v8::Isolate*>(this), feature);
3359 }
3360 } else {
3361 heap_.IncrementDeferredCount(feature);
3362 }
3363 }
3364
3365
3366 BasicBlockProfiler* Isolate::GetOrCreateBasicBlockProfiler() {
3367 if (basic_block_profiler_ == NULL) {
3368 basic_block_profiler_ = new BasicBlockProfiler();
3369 }
3370 return basic_block_profiler_;
3371 }
3372
3373
3374 std::string Isolate::GetTurboCfgFileName() {
3375 if (FLAG_trace_turbo_cfg_file == NULL) {
3376 std::ostringstream os;
3377 os << "turbo-" << base::OS::GetCurrentProcessId() << "-" << id() << ".cfg";
3378 return os.str();
3379 } else {
3380 return FLAG_trace_turbo_cfg_file;
3381 }
3382 }
3383
3384 void Isolate::SetTailCallEliminationEnabled(bool enabled) {
3385 if (is_tail_call_elimination_enabled_ == enabled) return;
3386 is_tail_call_elimination_enabled_ = enabled;
3387 // TODO(ishell): Introduce DependencyGroup::kTailCallChangedGroup to
3388 // deoptimize only those functions that are affected by the change of this
3389 // flag.
3390 internal::Deoptimizer::DeoptimizeAll(this);
3391 }
3392
3393 // Heap::detached_contexts tracks detached contexts as pairs
3394 // (number of GC since the context was detached, the context).
3395 void Isolate::AddDetachedContext(Handle<Context> context) {
3396 HandleScope scope(this);
3397 Handle<WeakCell> cell = factory()->NewWeakCell(context);
3398 Handle<FixedArray> detached_contexts = factory()->detached_contexts();
3399 int length = detached_contexts->length();
3400 detached_contexts = factory()->CopyFixedArrayAndGrow(detached_contexts, 2);
3401 detached_contexts->set(length, Smi::kZero);
3402 detached_contexts->set(length + 1, *cell);
3403 heap()->set_detached_contexts(*detached_contexts);
3404 }
3405
3406
3407 void Isolate::CheckDetachedContextsAfterGC() {
3408 HandleScope scope(this);
3409 Handle<FixedArray> detached_contexts = factory()->detached_contexts();
3410 int length = detached_contexts->length();
3411 if (length == 0) return;
3412 int new_length = 0;
3413 for (int i = 0; i < length; i += 2) {
3414 int mark_sweeps = Smi::cast(detached_contexts->get(i))->value();
3415 DCHECK(detached_contexts->get(i + 1)->IsWeakCell());
3416 WeakCell* cell = WeakCell::cast(detached_contexts->get(i + 1));
3417 if (!cell->cleared()) {
3418 detached_contexts->set(new_length, Smi::FromInt(mark_sweeps + 1));
3419 detached_contexts->set(new_length + 1, cell);
3420 new_length += 2;
3421 }
3422 counters()->detached_context_age_in_gc()->AddSample(mark_sweeps + 1);
3423 }
3424 if (FLAG_trace_detached_contexts) {
3425 PrintF("%d detached contexts are collected out of %d\n",
3426 length - new_length, length);
3427 for (int i = 0; i < new_length; i += 2) {
3428 int mark_sweeps = Smi::cast(detached_contexts->get(i))->value();
3429 DCHECK(detached_contexts->get(i + 1)->IsWeakCell());
3430 WeakCell* cell = WeakCell::cast(detached_contexts->get(i + 1));
3431 if (mark_sweeps > 3) {
3432 PrintF("detached context %p\n survived %d GCs (leak?)\n",
3433 static_cast<void*>(cell->value()), mark_sweeps);
3434 }
3435 }
3436 }
3437 if (new_length == 0) {
3438 heap()->set_detached_contexts(heap()->empty_fixed_array());
3439 } else if (new_length < length) {
3440 heap()->RightTrimFixedArray<Heap::CONCURRENT_TO_SWEEPER>(
3441 *detached_contexts, length - new_length);
3442 }
3443 }
3444
3445 void Isolate::SetRAILMode(RAILMode rail_mode) {
3446 rail_mode_.SetValue(rail_mode);
3447 if (FLAG_trace_rail) {
3448 PrintIsolate(this, "RAIL mode: %s\n", RAILModeName(rail_mode));
3449 }
3450 }
3451
3452 void Isolate::IsolateInBackgroundNotification() {
3453 is_isolate_in_background_ = true;
3454 heap()->ActivateMemoryReducerIfNeeded();
3455 }
3456
3457 void Isolate::IsolateInForegroundNotification() {
3458 is_isolate_in_background_ = false;
3459 }
3460
3461 void Isolate::PrintWithTimestamp(const char* format, ...) {
3462 base::OS::Print("[%d:%p] %8.0f ms: ", base::OS::GetCurrentProcessId(),
3463 static_cast<void*>(this), time_millis_since_init());
3464 va_list arguments;
3465 va_start(arguments, format);
3466 base::OS::VPrint(format, arguments);
3467 va_end(arguments);
3468 }
3469
3470 bool StackLimitCheck::JsHasOverflowed(uintptr_t gap) const {
3471 StackGuard* stack_guard = isolate_->stack_guard();
3472 #ifdef USE_SIMULATOR
3473 // The simulator uses a separate JS stack.
3474 Address jssp_address = Simulator::current(isolate_)->get_sp();
3475 uintptr_t jssp = reinterpret_cast<uintptr_t>(jssp_address);
3476 if (jssp - gap < stack_guard->real_jslimit()) return true;
3477 #endif // USE_SIMULATOR
3478 return GetCurrentStackPosition() - gap < stack_guard->real_climit();
3479 }
3480
3481 SaveContext::SaveContext(Isolate* isolate)
3482 : isolate_(isolate), prev_(isolate->save_context()) {
3483 if (isolate->context() != NULL) {
3484 context_ = Handle<Context>(isolate->context());
3485 }
3486 isolate->set_save_context(this);
3487
3488 c_entry_fp_ = isolate->c_entry_fp(isolate->thread_local_top());
3489 }
3490
3491 SaveContext::~SaveContext() {
3492 isolate_->set_context(context_.is_null() ? NULL : *context_);
3493 isolate_->set_save_context(prev_);
3494 }
3495
3496 #ifdef DEBUG
3497 AssertNoContextChange::AssertNoContextChange(Isolate* isolate)
3498 : isolate_(isolate), context_(isolate->context(), isolate) {}
3499 #endif // DEBUG
3500
3501
3502 bool PostponeInterruptsScope::Intercept(StackGuard::InterruptFlag flag) {
3503 // First check whether the previous scope intercepts.
3504 if (prev_ && prev_->Intercept(flag)) return true;
3505 // Then check whether this scope intercepts.
3506 if ((flag & intercept_mask_)) {
3507 intercepted_flags_ |= flag;
3508 return true;
3509 }
3510 return false;
3511 }
3512
3513 } // namespace internal
3514 } // namespace v8
3515