1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "image_space.h"
18
19 #include <lz4.h>
20 #include <random>
21 #include <sys/statvfs.h>
22 #include <sys/types.h>
23 #include <unistd.h>
24
25 #include "android-base/stringprintf.h"
26 #include "android-base/strings.h"
27
28 #include "art_field-inl.h"
29 #include "art_method-inl.h"
30 #include "base/enums.h"
31 #include "base/macros.h"
32 #include "base/stl_util.h"
33 #include "base/scoped_flock.h"
34 #include "base/systrace.h"
35 #include "base/time_utils.h"
36 #include "exec_utils.h"
37 #include "gc/accounting/space_bitmap-inl.h"
38 #include "image-inl.h"
39 #include "image_space_fs.h"
40 #include "mirror/class-inl.h"
41 #include "mirror/object-inl.h"
42 #include "mirror/object-refvisitor-inl.h"
43 #include "oat_file.h"
44 #include "os.h"
45 #include "space-inl.h"
46 #include "utils.h"
47
48 namespace art {
49 namespace gc {
50 namespace space {
51
52 using android::base::StringAppendF;
53 using android::base::StringPrintf;
54
55 Atomic<uint32_t> ImageSpace::bitmap_index_(0);
56
ImageSpace(const std::string & image_filename,const char * image_location,MemMap * mem_map,accounting::ContinuousSpaceBitmap * live_bitmap,uint8_t * end)57 ImageSpace::ImageSpace(const std::string& image_filename,
58 const char* image_location,
59 MemMap* mem_map,
60 accounting::ContinuousSpaceBitmap* live_bitmap,
61 uint8_t* end)
62 : MemMapSpace(image_filename,
63 mem_map,
64 mem_map->Begin(),
65 end,
66 end,
67 kGcRetentionPolicyNeverCollect),
68 oat_file_non_owned_(nullptr),
69 image_location_(image_location) {
70 DCHECK(live_bitmap != nullptr);
71 live_bitmap_.reset(live_bitmap);
72 }
73
ChooseRelocationOffsetDelta(int32_t min_delta,int32_t max_delta)74 static int32_t ChooseRelocationOffsetDelta(int32_t min_delta, int32_t max_delta) {
75 CHECK_ALIGNED(min_delta, kPageSize);
76 CHECK_ALIGNED(max_delta, kPageSize);
77 CHECK_LT(min_delta, max_delta);
78
79 int32_t r = GetRandomNumber<int32_t>(min_delta, max_delta);
80 if (r % 2 == 0) {
81 r = RoundUp(r, kPageSize);
82 } else {
83 r = RoundDown(r, kPageSize);
84 }
85 CHECK_LE(min_delta, r);
86 CHECK_GE(max_delta, r);
87 CHECK_ALIGNED(r, kPageSize);
88 return r;
89 }
90
ChooseRelocationOffsetDelta()91 static int32_t ChooseRelocationOffsetDelta() {
92 return ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA, ART_BASE_ADDRESS_MAX_DELTA);
93 }
94
GenerateImage(const std::string & image_filename,InstructionSet image_isa,std::string * error_msg)95 static bool GenerateImage(const std::string& image_filename,
96 InstructionSet image_isa,
97 std::string* error_msg) {
98 const std::string boot_class_path_string(Runtime::Current()->GetBootClassPathString());
99 std::vector<std::string> boot_class_path;
100 Split(boot_class_path_string, ':', &boot_class_path);
101 if (boot_class_path.empty()) {
102 *error_msg = "Failed to generate image because no boot class path specified";
103 return false;
104 }
105 // We should clean up so we are more likely to have room for the image.
106 if (Runtime::Current()->IsZygote()) {
107 LOG(INFO) << "Pruning dalvik-cache since we are generating an image and will need to recompile";
108 PruneDalvikCache(image_isa);
109 }
110
111 std::vector<std::string> arg_vector;
112
113 std::string dex2oat(Runtime::Current()->GetCompilerExecutable());
114 arg_vector.push_back(dex2oat);
115
116 std::string image_option_string("--image=");
117 image_option_string += image_filename;
118 arg_vector.push_back(image_option_string);
119
120 for (size_t i = 0; i < boot_class_path.size(); i++) {
121 arg_vector.push_back(std::string("--dex-file=") + boot_class_path[i]);
122 }
123
124 std::string oat_file_option_string("--oat-file=");
125 oat_file_option_string += ImageHeader::GetOatLocationFromImageLocation(image_filename);
126 arg_vector.push_back(oat_file_option_string);
127
128 // Note: we do not generate a fully debuggable boot image so we do not pass the
129 // compiler flag --debuggable here.
130
131 Runtime::Current()->AddCurrentRuntimeFeaturesAsDex2OatArguments(&arg_vector);
132 CHECK_EQ(image_isa, kRuntimeISA)
133 << "We should always be generating an image for the current isa.";
134
135 int32_t base_offset = ChooseRelocationOffsetDelta();
136 LOG(INFO) << "Using an offset of 0x" << std::hex << base_offset << " from default "
137 << "art base address of 0x" << std::hex << ART_BASE_ADDRESS;
138 arg_vector.push_back(StringPrintf("--base=0x%x", ART_BASE_ADDRESS + base_offset));
139
140 if (!kIsTargetBuild) {
141 arg_vector.push_back("--host");
142 }
143
144 const std::vector<std::string>& compiler_options = Runtime::Current()->GetImageCompilerOptions();
145 for (size_t i = 0; i < compiler_options.size(); ++i) {
146 arg_vector.push_back(compiler_options[i].c_str());
147 }
148
149 std::string command_line(android::base::Join(arg_vector, ' '));
150 LOG(INFO) << "GenerateImage: " << command_line;
151 return Exec(arg_vector, error_msg);
152 }
153
FindImageFilenameImpl(const char * image_location,const InstructionSet image_isa,bool * has_system,std::string * system_filename,bool * dalvik_cache_exists,std::string * dalvik_cache,bool * is_global_cache,bool * has_cache,std::string * cache_filename)154 static bool FindImageFilenameImpl(const char* image_location,
155 const InstructionSet image_isa,
156 bool* has_system,
157 std::string* system_filename,
158 bool* dalvik_cache_exists,
159 std::string* dalvik_cache,
160 bool* is_global_cache,
161 bool* has_cache,
162 std::string* cache_filename) {
163 DCHECK(dalvik_cache != nullptr);
164
165 *has_system = false;
166 *has_cache = false;
167 // image_location = /system/framework/boot.art
168 // system_image_location = /system/framework/<image_isa>/boot.art
169 std::string system_image_filename(GetSystemImageFilename(image_location, image_isa));
170 if (OS::FileExists(system_image_filename.c_str())) {
171 *system_filename = system_image_filename;
172 *has_system = true;
173 }
174
175 bool have_android_data = false;
176 *dalvik_cache_exists = false;
177 GetDalvikCache(GetInstructionSetString(image_isa),
178 true,
179 dalvik_cache,
180 &have_android_data,
181 dalvik_cache_exists,
182 is_global_cache);
183
184 if (have_android_data && *dalvik_cache_exists) {
185 // Always set output location even if it does not exist,
186 // so that the caller knows where to create the image.
187 //
188 // image_location = /system/framework/boot.art
189 // *image_filename = /data/dalvik-cache/<image_isa>/boot.art
190 std::string error_msg;
191 if (!GetDalvikCacheFilename(image_location,
192 dalvik_cache->c_str(),
193 cache_filename,
194 &error_msg)) {
195 LOG(WARNING) << error_msg;
196 return *has_system;
197 }
198 *has_cache = OS::FileExists(cache_filename->c_str());
199 }
200 return *has_system || *has_cache;
201 }
202
FindImageFilename(const char * image_location,const InstructionSet image_isa,std::string * system_filename,bool * has_system,std::string * cache_filename,bool * dalvik_cache_exists,bool * has_cache,bool * is_global_cache)203 bool ImageSpace::FindImageFilename(const char* image_location,
204 const InstructionSet image_isa,
205 std::string* system_filename,
206 bool* has_system,
207 std::string* cache_filename,
208 bool* dalvik_cache_exists,
209 bool* has_cache,
210 bool* is_global_cache) {
211 std::string dalvik_cache_unused;
212 return FindImageFilenameImpl(image_location,
213 image_isa,
214 has_system,
215 system_filename,
216 dalvik_cache_exists,
217 &dalvik_cache_unused,
218 is_global_cache,
219 has_cache,
220 cache_filename);
221 }
222
ReadSpecificImageHeader(const char * filename,ImageHeader * image_header)223 static bool ReadSpecificImageHeader(const char* filename, ImageHeader* image_header) {
224 std::unique_ptr<File> image_file(OS::OpenFileForReading(filename));
225 if (image_file.get() == nullptr) {
226 return false;
227 }
228 const bool success = image_file->ReadFully(image_header, sizeof(ImageHeader));
229 if (!success || !image_header->IsValid()) {
230 return false;
231 }
232 return true;
233 }
234
235 // Relocate the image at image_location to dest_filename and relocate it by a random amount.
RelocateImage(const char * image_location,const char * dest_filename,InstructionSet isa,std::string * error_msg)236 static bool RelocateImage(const char* image_location,
237 const char* dest_filename,
238 InstructionSet isa,
239 std::string* error_msg) {
240 // We should clean up so we are more likely to have room for the image.
241 if (Runtime::Current()->IsZygote()) {
242 LOG(INFO) << "Pruning dalvik-cache since we are relocating an image and will need to recompile";
243 PruneDalvikCache(isa);
244 }
245
246 std::string patchoat(Runtime::Current()->GetPatchoatExecutable());
247
248 std::string input_image_location_arg("--input-image-location=");
249 input_image_location_arg += image_location;
250
251 std::string output_image_filename_arg("--output-image-file=");
252 output_image_filename_arg += dest_filename;
253
254 std::string instruction_set_arg("--instruction-set=");
255 instruction_set_arg += GetInstructionSetString(isa);
256
257 std::string base_offset_arg("--base-offset-delta=");
258 StringAppendF(&base_offset_arg, "%d", ChooseRelocationOffsetDelta());
259
260 std::vector<std::string> argv;
261 argv.push_back(patchoat);
262
263 argv.push_back(input_image_location_arg);
264 argv.push_back(output_image_filename_arg);
265
266 argv.push_back(instruction_set_arg);
267 argv.push_back(base_offset_arg);
268
269 std::string command_line(android::base::Join(argv, ' '));
270 LOG(INFO) << "RelocateImage: " << command_line;
271 return Exec(argv, error_msg);
272 }
273
ReadSpecificImageHeader(const char * filename,std::string * error_msg)274 static ImageHeader* ReadSpecificImageHeader(const char* filename, std::string* error_msg) {
275 std::unique_ptr<ImageHeader> hdr(new ImageHeader);
276 if (!ReadSpecificImageHeader(filename, hdr.get())) {
277 *error_msg = StringPrintf("Unable to read image header for %s", filename);
278 return nullptr;
279 }
280 return hdr.release();
281 }
282
ReadImageHeader(const char * image_location,const InstructionSet image_isa,std::string * error_msg)283 ImageHeader* ImageSpace::ReadImageHeader(const char* image_location,
284 const InstructionSet image_isa,
285 std::string* error_msg) {
286 std::string system_filename;
287 bool has_system = false;
288 std::string cache_filename;
289 bool has_cache = false;
290 bool dalvik_cache_exists = false;
291 bool is_global_cache = false;
292 if (FindImageFilename(image_location, image_isa, &system_filename, &has_system,
293 &cache_filename, &dalvik_cache_exists, &has_cache, &is_global_cache)) {
294 if (Runtime::Current()->ShouldRelocate()) {
295 if (has_system && has_cache) {
296 std::unique_ptr<ImageHeader> sys_hdr(new ImageHeader);
297 std::unique_ptr<ImageHeader> cache_hdr(new ImageHeader);
298 if (!ReadSpecificImageHeader(system_filename.c_str(), sys_hdr.get())) {
299 *error_msg = StringPrintf("Unable to read image header for %s at %s",
300 image_location, system_filename.c_str());
301 return nullptr;
302 }
303 if (!ReadSpecificImageHeader(cache_filename.c_str(), cache_hdr.get())) {
304 *error_msg = StringPrintf("Unable to read image header for %s at %s",
305 image_location, cache_filename.c_str());
306 return nullptr;
307 }
308 if (sys_hdr->GetOatChecksum() != cache_hdr->GetOatChecksum()) {
309 *error_msg = StringPrintf("Unable to find a relocated version of image file %s",
310 image_location);
311 return nullptr;
312 }
313 return cache_hdr.release();
314 } else if (!has_cache) {
315 *error_msg = StringPrintf("Unable to find a relocated version of image file %s",
316 image_location);
317 return nullptr;
318 } else if (!has_system && has_cache) {
319 // This can probably just use the cache one.
320 return ReadSpecificImageHeader(cache_filename.c_str(), error_msg);
321 }
322 } else {
323 // We don't want to relocate, Just pick the appropriate one if we have it and return.
324 if (has_system && has_cache) {
325 // We want the cache if the checksum matches, otherwise the system.
326 std::unique_ptr<ImageHeader> system(ReadSpecificImageHeader(system_filename.c_str(),
327 error_msg));
328 std::unique_ptr<ImageHeader> cache(ReadSpecificImageHeader(cache_filename.c_str(),
329 error_msg));
330 if (system.get() == nullptr ||
331 (cache.get() != nullptr && cache->GetOatChecksum() == system->GetOatChecksum())) {
332 return cache.release();
333 } else {
334 return system.release();
335 }
336 } else if (has_system) {
337 return ReadSpecificImageHeader(system_filename.c_str(), error_msg);
338 } else if (has_cache) {
339 return ReadSpecificImageHeader(cache_filename.c_str(), error_msg);
340 }
341 }
342 }
343
344 *error_msg = StringPrintf("Unable to find image file for %s", image_location);
345 return nullptr;
346 }
347
ChecksumsMatch(const char * image_a,const char * image_b,std::string * error_msg)348 static bool ChecksumsMatch(const char* image_a, const char* image_b, std::string* error_msg) {
349 DCHECK(error_msg != nullptr);
350
351 ImageHeader hdr_a;
352 ImageHeader hdr_b;
353
354 if (!ReadSpecificImageHeader(image_a, &hdr_a)) {
355 *error_msg = StringPrintf("Cannot read header of %s", image_a);
356 return false;
357 }
358 if (!ReadSpecificImageHeader(image_b, &hdr_b)) {
359 *error_msg = StringPrintf("Cannot read header of %s", image_b);
360 return false;
361 }
362
363 if (hdr_a.GetOatChecksum() != hdr_b.GetOatChecksum()) {
364 *error_msg = StringPrintf("Checksum mismatch: %u(%s) vs %u(%s)",
365 hdr_a.GetOatChecksum(),
366 image_a,
367 hdr_b.GetOatChecksum(),
368 image_b);
369 return false;
370 }
371
372 return true;
373 }
374
CanWriteToDalvikCache(const InstructionSet isa)375 static bool CanWriteToDalvikCache(const InstructionSet isa) {
376 const std::string dalvik_cache = GetDalvikCache(GetInstructionSetString(isa));
377 if (access(dalvik_cache.c_str(), O_RDWR) == 0) {
378 return true;
379 } else if (errno != EACCES) {
380 PLOG(WARNING) << "CanWriteToDalvikCache returned error other than EACCES";
381 }
382 return false;
383 }
384
ImageCreationAllowed(bool is_global_cache,const InstructionSet isa,std::string * error_msg)385 static bool ImageCreationAllowed(bool is_global_cache,
386 const InstructionSet isa,
387 std::string* error_msg) {
388 // Anyone can write into a "local" cache.
389 if (!is_global_cache) {
390 return true;
391 }
392
393 // Only the zygote running as root is allowed to create the global boot image.
394 // If the zygote is running as non-root (and cannot write to the dalvik-cache),
395 // then image creation is not allowed..
396 if (Runtime::Current()->IsZygote()) {
397 return CanWriteToDalvikCache(isa);
398 }
399
400 *error_msg = "Only the zygote can create the global boot image.";
401 return false;
402 }
403
VerifyImageAllocations()404 void ImageSpace::VerifyImageAllocations() {
405 uint8_t* current = Begin() + RoundUp(sizeof(ImageHeader), kObjectAlignment);
406 while (current < End()) {
407 CHECK_ALIGNED(current, kObjectAlignment);
408 auto* obj = reinterpret_cast<mirror::Object*>(current);
409 CHECK(obj->GetClass() != nullptr) << "Image object at address " << obj << " has null class";
410 CHECK(live_bitmap_->Test(obj)) << obj->PrettyTypeOf();
411 if (kUseBakerReadBarrier) {
412 obj->AssertReadBarrierState();
413 }
414 current += RoundUp(obj->SizeOf(), kObjectAlignment);
415 }
416 }
417
418 // Helper class for relocating from one range of memory to another.
419 class RelocationRange {
420 public:
421 RelocationRange() = default;
422 RelocationRange(const RelocationRange&) = default;
RelocationRange(uintptr_t source,uintptr_t dest,uintptr_t length)423 RelocationRange(uintptr_t source, uintptr_t dest, uintptr_t length)
424 : source_(source),
425 dest_(dest),
426 length_(length) {}
427
InSource(uintptr_t address) const428 bool InSource(uintptr_t address) const {
429 return address - source_ < length_;
430 }
431
InDest(uintptr_t address) const432 bool InDest(uintptr_t address) const {
433 return address - dest_ < length_;
434 }
435
436 // Translate a source address to the destination space.
ToDest(uintptr_t address) const437 uintptr_t ToDest(uintptr_t address) const {
438 DCHECK(InSource(address));
439 return address + Delta();
440 }
441
442 // Returns the delta between the dest from the source.
Delta() const443 uintptr_t Delta() const {
444 return dest_ - source_;
445 }
446
Source() const447 uintptr_t Source() const {
448 return source_;
449 }
450
Dest() const451 uintptr_t Dest() const {
452 return dest_;
453 }
454
Length() const455 uintptr_t Length() const {
456 return length_;
457 }
458
459 private:
460 const uintptr_t source_;
461 const uintptr_t dest_;
462 const uintptr_t length_;
463 };
464
operator <<(std::ostream & os,const RelocationRange & reloc)465 std::ostream& operator<<(std::ostream& os, const RelocationRange& reloc) {
466 return os << "(" << reinterpret_cast<const void*>(reloc.Source()) << "-"
467 << reinterpret_cast<const void*>(reloc.Source() + reloc.Length()) << ")->("
468 << reinterpret_cast<const void*>(reloc.Dest()) << "-"
469 << reinterpret_cast<const void*>(reloc.Dest() + reloc.Length()) << ")";
470 }
471
472 // Helper class encapsulating loading, so we can access private ImageSpace members (this is a
473 // friend class), but not declare functions in the header.
474 class ImageSpaceLoader {
475 public:
Load(const char * image_location,const std::string & image_filename,bool is_zygote,bool is_global_cache,bool validate_oat_file,std::string * error_msg)476 static std::unique_ptr<ImageSpace> Load(const char* image_location,
477 const std::string& image_filename,
478 bool is_zygote,
479 bool is_global_cache,
480 bool validate_oat_file,
481 std::string* error_msg)
482 REQUIRES_SHARED(Locks::mutator_lock_) {
483 // Note that we must not use the file descriptor associated with
484 // ScopedFlock::GetFile to Init the image file. We want the file
485 // descriptor (and the associated exclusive lock) to be released when
486 // we leave Create.
487 ScopedFlock image_lock;
488 // Should this be a RDWR lock? This is only a defensive measure, as at
489 // this point the image should exist.
490 // However, only the zygote can write into the global dalvik-cache, so
491 // restrict to zygote processes, or any process that isn't using
492 // /data/dalvik-cache (which we assume to be allowed to write there).
493 const bool rw_lock = is_zygote || !is_global_cache;
494 image_lock.Init(image_filename.c_str(),
495 rw_lock ? (O_CREAT | O_RDWR) : O_RDONLY /* flags */,
496 true /* block */,
497 error_msg);
498 VLOG(startup) << "Using image file " << image_filename.c_str() << " for image location "
499 << image_location;
500 // If we are in /system we can assume the image is good. We can also
501 // assume this if we are using a relocated image (i.e. image checksum
502 // matches) since this is only different by the offset. We need this to
503 // make sure that host tests continue to work.
504 // Since we are the boot image, pass null since we load the oat file from the boot image oat
505 // file name.
506 return Init(image_filename.c_str(),
507 image_location,
508 validate_oat_file,
509 /* oat_file */nullptr,
510 error_msg);
511 }
512
Init(const char * image_filename,const char * image_location,bool validate_oat_file,const OatFile * oat_file,std::string * error_msg)513 static std::unique_ptr<ImageSpace> Init(const char* image_filename,
514 const char* image_location,
515 bool validate_oat_file,
516 const OatFile* oat_file,
517 std::string* error_msg)
518 REQUIRES_SHARED(Locks::mutator_lock_) {
519 CHECK(image_filename != nullptr);
520 CHECK(image_location != nullptr);
521
522 TimingLogger logger(__PRETTY_FUNCTION__, true, VLOG_IS_ON(image));
523 VLOG(image) << "ImageSpace::Init entering image_filename=" << image_filename;
524
525 std::unique_ptr<File> file;
526 {
527 TimingLogger::ScopedTiming timing("OpenImageFile", &logger);
528 file.reset(OS::OpenFileForReading(image_filename));
529 if (file == nullptr) {
530 *error_msg = StringPrintf("Failed to open '%s'", image_filename);
531 return nullptr;
532 }
533 }
534 ImageHeader temp_image_header;
535 ImageHeader* image_header = &temp_image_header;
536 {
537 TimingLogger::ScopedTiming timing("ReadImageHeader", &logger);
538 bool success = file->ReadFully(image_header, sizeof(*image_header));
539 if (!success || !image_header->IsValid()) {
540 *error_msg = StringPrintf("Invalid image header in '%s'", image_filename);
541 return nullptr;
542 }
543 }
544 // Check that the file is larger or equal to the header size + data size.
545 const uint64_t image_file_size = static_cast<uint64_t>(file->GetLength());
546 if (image_file_size < sizeof(ImageHeader) + image_header->GetDataSize()) {
547 *error_msg = StringPrintf("Image file truncated: %" PRIu64 " vs. %" PRIu64 ".",
548 image_file_size,
549 sizeof(ImageHeader) + image_header->GetDataSize());
550 return nullptr;
551 }
552
553 if (oat_file != nullptr) {
554 // If we have an oat file, check the oat file checksum. The oat file is only non-null for the
555 // app image case. Otherwise, we open the oat file after the image and check the checksum there.
556 const uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
557 const uint32_t image_oat_checksum = image_header->GetOatChecksum();
558 if (oat_checksum != image_oat_checksum) {
559 *error_msg = StringPrintf("Oat checksum 0x%x does not match the image one 0x%x in image %s",
560 oat_checksum,
561 image_oat_checksum,
562 image_filename);
563 return nullptr;
564 }
565 }
566
567 if (VLOG_IS_ON(startup)) {
568 LOG(INFO) << "Dumping image sections";
569 for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
570 const auto section_idx = static_cast<ImageHeader::ImageSections>(i);
571 auto& section = image_header->GetImageSection(section_idx);
572 LOG(INFO) << section_idx << " start="
573 << reinterpret_cast<void*>(image_header->GetImageBegin() + section.Offset()) << " "
574 << section;
575 }
576 }
577
578 const auto& bitmap_section = image_header->GetImageSection(ImageHeader::kSectionImageBitmap);
579 // The location we want to map from is the first aligned page after the end of the stored
580 // (possibly compressed) data.
581 const size_t image_bitmap_offset = RoundUp(sizeof(ImageHeader) + image_header->GetDataSize(),
582 kPageSize);
583 const size_t end_of_bitmap = image_bitmap_offset + bitmap_section.Size();
584 if (end_of_bitmap != image_file_size) {
585 *error_msg = StringPrintf(
586 "Image file size does not equal end of bitmap: size=%" PRIu64 " vs. %zu.", image_file_size,
587 end_of_bitmap);
588 return nullptr;
589 }
590
591 std::unique_ptr<MemMap> map;
592
593 // GetImageBegin is the preferred address to map the image. If we manage to map the
594 // image at the image begin, the amount of fixup work required is minimized.
595 // If it is pic we will retry with error_msg for the failure case. Pass a null error_msg to
596 // avoid reading proc maps for a mapping failure and slowing everything down.
597 map.reset(LoadImageFile(image_filename,
598 image_location,
599 *image_header,
600 image_header->GetImageBegin(),
601 file->Fd(),
602 logger,
603 image_header->IsPic() ? nullptr : error_msg));
604 // If the header specifies PIC mode, we can also map at a random low_4gb address since we can
605 // relocate in-place.
606 if (map == nullptr && image_header->IsPic()) {
607 map.reset(LoadImageFile(image_filename,
608 image_location,
609 *image_header,
610 /* address */ nullptr,
611 file->Fd(),
612 logger,
613 error_msg));
614 }
615 // Were we able to load something and continue?
616 if (map == nullptr) {
617 DCHECK(!error_msg->empty());
618 return nullptr;
619 }
620 DCHECK_EQ(0, memcmp(image_header, map->Begin(), sizeof(ImageHeader)));
621
622 std::unique_ptr<MemMap> image_bitmap_map(MemMap::MapFileAtAddress(nullptr,
623 bitmap_section.Size(),
624 PROT_READ, MAP_PRIVATE,
625 file->Fd(),
626 image_bitmap_offset,
627 /*low_4gb*/false,
628 /*reuse*/false,
629 image_filename,
630 error_msg));
631 if (image_bitmap_map == nullptr) {
632 *error_msg = StringPrintf("Failed to map image bitmap: %s", error_msg->c_str());
633 return nullptr;
634 }
635 // Loaded the map, use the image header from the file now in case we patch it with
636 // RelocateInPlace.
637 image_header = reinterpret_cast<ImageHeader*>(map->Begin());
638 const uint32_t bitmap_index = ImageSpace::bitmap_index_.FetchAndAddSequentiallyConsistent(1);
639 std::string bitmap_name(StringPrintf("imagespace %s live-bitmap %u",
640 image_filename,
641 bitmap_index));
642 // Bitmap only needs to cover until the end of the mirror objects section.
643 const ImageSection& image_objects = image_header->GetImageSection(ImageHeader::kSectionObjects);
644 // We only want the mirror object, not the ArtFields and ArtMethods.
645 uint8_t* const image_end = map->Begin() + image_objects.End();
646 std::unique_ptr<accounting::ContinuousSpaceBitmap> bitmap;
647 {
648 TimingLogger::ScopedTiming timing("CreateImageBitmap", &logger);
649 bitmap.reset(
650 accounting::ContinuousSpaceBitmap::CreateFromMemMap(
651 bitmap_name,
652 image_bitmap_map.release(),
653 reinterpret_cast<uint8_t*>(map->Begin()),
654 image_objects.End()));
655 if (bitmap == nullptr) {
656 *error_msg = StringPrintf("Could not create bitmap '%s'", bitmap_name.c_str());
657 return nullptr;
658 }
659 }
660 {
661 TimingLogger::ScopedTiming timing("RelocateImage", &logger);
662 if (!RelocateInPlace(*image_header,
663 map->Begin(),
664 bitmap.get(),
665 oat_file,
666 error_msg)) {
667 return nullptr;
668 }
669 }
670 // We only want the mirror object, not the ArtFields and ArtMethods.
671 std::unique_ptr<ImageSpace> space(new ImageSpace(image_filename,
672 image_location,
673 map.release(),
674 bitmap.release(),
675 image_end));
676
677 // VerifyImageAllocations() will be called later in Runtime::Init()
678 // as some class roots like ArtMethod::java_lang_reflect_ArtMethod_
679 // and ArtField::java_lang_reflect_ArtField_, which are used from
680 // Object::SizeOf() which VerifyImageAllocations() calls, are not
681 // set yet at this point.
682 if (oat_file == nullptr) {
683 TimingLogger::ScopedTiming timing("OpenOatFile", &logger);
684 space->oat_file_ = OpenOatFile(*space, image_filename, error_msg);
685 if (space->oat_file_ == nullptr) {
686 DCHECK(!error_msg->empty());
687 return nullptr;
688 }
689 space->oat_file_non_owned_ = space->oat_file_.get();
690 } else {
691 space->oat_file_non_owned_ = oat_file;
692 }
693
694 if (validate_oat_file) {
695 TimingLogger::ScopedTiming timing("ValidateOatFile", &logger);
696 CHECK(space->oat_file_ != nullptr);
697 if (!ImageSpace::ValidateOatFile(*space->oat_file_, error_msg)) {
698 DCHECK(!error_msg->empty());
699 return nullptr;
700 }
701 }
702
703 Runtime* runtime = Runtime::Current();
704
705 // If oat_file is null, then it is the boot image space. Use oat_file_non_owned_ from the space
706 // to set the runtime methods.
707 CHECK_EQ(oat_file != nullptr, image_header->IsAppImage());
708 if (image_header->IsAppImage()) {
709 CHECK_EQ(runtime->GetResolutionMethod(),
710 image_header->GetImageMethod(ImageHeader::kResolutionMethod));
711 CHECK_EQ(runtime->GetImtConflictMethod(),
712 image_header->GetImageMethod(ImageHeader::kImtConflictMethod));
713 CHECK_EQ(runtime->GetImtUnimplementedMethod(),
714 image_header->GetImageMethod(ImageHeader::kImtUnimplementedMethod));
715 CHECK_EQ(runtime->GetCalleeSaveMethod(Runtime::kSaveAllCalleeSaves),
716 image_header->GetImageMethod(ImageHeader::kSaveAllCalleeSavesMethod));
717 CHECK_EQ(runtime->GetCalleeSaveMethod(Runtime::kSaveRefsOnly),
718 image_header->GetImageMethod(ImageHeader::kSaveRefsOnlyMethod));
719 CHECK_EQ(runtime->GetCalleeSaveMethod(Runtime::kSaveRefsAndArgs),
720 image_header->GetImageMethod(ImageHeader::kSaveRefsAndArgsMethod));
721 CHECK_EQ(runtime->GetCalleeSaveMethod(Runtime::kSaveEverything),
722 image_header->GetImageMethod(ImageHeader::kSaveEverythingMethod));
723 } else if (!runtime->HasResolutionMethod()) {
724 runtime->SetInstructionSet(space->oat_file_non_owned_->GetOatHeader().GetInstructionSet());
725 runtime->SetResolutionMethod(image_header->GetImageMethod(ImageHeader::kResolutionMethod));
726 runtime->SetImtConflictMethod(image_header->GetImageMethod(ImageHeader::kImtConflictMethod));
727 runtime->SetImtUnimplementedMethod(
728 image_header->GetImageMethod(ImageHeader::kImtUnimplementedMethod));
729 runtime->SetCalleeSaveMethod(
730 image_header->GetImageMethod(ImageHeader::kSaveAllCalleeSavesMethod),
731 Runtime::kSaveAllCalleeSaves);
732 runtime->SetCalleeSaveMethod(
733 image_header->GetImageMethod(ImageHeader::kSaveRefsOnlyMethod), Runtime::kSaveRefsOnly);
734 runtime->SetCalleeSaveMethod(
735 image_header->GetImageMethod(ImageHeader::kSaveRefsAndArgsMethod),
736 Runtime::kSaveRefsAndArgs);
737 runtime->SetCalleeSaveMethod(
738 image_header->GetImageMethod(ImageHeader::kSaveEverythingMethod), Runtime::kSaveEverything);
739 }
740
741 VLOG(image) << "ImageSpace::Init exiting " << *space.get();
742 if (VLOG_IS_ON(image)) {
743 logger.Dump(LOG_STREAM(INFO));
744 }
745 return space;
746 }
747
748 private:
LoadImageFile(const char * image_filename,const char * image_location,const ImageHeader & image_header,uint8_t * address,int fd,TimingLogger & logger,std::string * error_msg)749 static MemMap* LoadImageFile(const char* image_filename,
750 const char* image_location,
751 const ImageHeader& image_header,
752 uint8_t* address,
753 int fd,
754 TimingLogger& logger,
755 std::string* error_msg) {
756 TimingLogger::ScopedTiming timing("MapImageFile", &logger);
757 const ImageHeader::StorageMode storage_mode = image_header.GetStorageMode();
758 if (storage_mode == ImageHeader::kStorageModeUncompressed) {
759 return MemMap::MapFileAtAddress(address,
760 image_header.GetImageSize(),
761 PROT_READ | PROT_WRITE,
762 MAP_PRIVATE,
763 fd,
764 0,
765 /*low_4gb*/true,
766 /*reuse*/false,
767 image_filename,
768 error_msg);
769 }
770
771 if (storage_mode != ImageHeader::kStorageModeLZ4 &&
772 storage_mode != ImageHeader::kStorageModeLZ4HC) {
773 if (error_msg != nullptr) {
774 *error_msg = StringPrintf("Invalid storage mode in image header %d",
775 static_cast<int>(storage_mode));
776 }
777 return nullptr;
778 }
779
780 // Reserve output and decompress into it.
781 std::unique_ptr<MemMap> map(MemMap::MapAnonymous(image_location,
782 address,
783 image_header.GetImageSize(),
784 PROT_READ | PROT_WRITE,
785 /*low_4gb*/true,
786 /*reuse*/false,
787 error_msg));
788 if (map != nullptr) {
789 const size_t stored_size = image_header.GetDataSize();
790 const size_t decompress_offset = sizeof(ImageHeader); // Skip the header.
791 std::unique_ptr<MemMap> temp_map(MemMap::MapFile(sizeof(ImageHeader) + stored_size,
792 PROT_READ,
793 MAP_PRIVATE,
794 fd,
795 /*offset*/0,
796 /*low_4gb*/false,
797 image_filename,
798 error_msg));
799 if (temp_map == nullptr) {
800 DCHECK(error_msg == nullptr || !error_msg->empty());
801 return nullptr;
802 }
803 memcpy(map->Begin(), &image_header, sizeof(ImageHeader));
804 const uint64_t start = NanoTime();
805 // LZ4HC and LZ4 have same internal format, both use LZ4_decompress.
806 TimingLogger::ScopedTiming timing2("LZ4 decompress image", &logger);
807 const size_t decompressed_size = LZ4_decompress_safe(
808 reinterpret_cast<char*>(temp_map->Begin()) + sizeof(ImageHeader),
809 reinterpret_cast<char*>(map->Begin()) + decompress_offset,
810 stored_size,
811 map->Size() - decompress_offset);
812 const uint64_t time = NanoTime() - start;
813 // Add one 1 ns to prevent possible divide by 0.
814 VLOG(image) << "Decompressing image took " << PrettyDuration(time) << " ("
815 << PrettySize(static_cast<uint64_t>(map->Size()) * MsToNs(1000) / (time + 1))
816 << "/s)";
817 if (decompressed_size + sizeof(ImageHeader) != image_header.GetImageSize()) {
818 if (error_msg != nullptr) {
819 *error_msg = StringPrintf(
820 "Decompressed size does not match expected image size %zu vs %zu",
821 decompressed_size + sizeof(ImageHeader),
822 image_header.GetImageSize());
823 }
824 return nullptr;
825 }
826 }
827
828 return map.release();
829 }
830
831 class FixupVisitor : public ValueObject {
832 public:
FixupVisitor(const RelocationRange & boot_image,const RelocationRange & boot_oat,const RelocationRange & app_image,const RelocationRange & app_oat)833 FixupVisitor(const RelocationRange& boot_image,
834 const RelocationRange& boot_oat,
835 const RelocationRange& app_image,
836 const RelocationRange& app_oat)
837 : boot_image_(boot_image),
838 boot_oat_(boot_oat),
839 app_image_(app_image),
840 app_oat_(app_oat) {}
841
842 // Return the relocated address of a heap object.
843 template <typename T>
ForwardObject(T * src) const844 ALWAYS_INLINE T* ForwardObject(T* src) const {
845 const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src);
846 if (boot_image_.InSource(uint_src)) {
847 return reinterpret_cast<T*>(boot_image_.ToDest(uint_src));
848 }
849 if (app_image_.InSource(uint_src)) {
850 return reinterpret_cast<T*>(app_image_.ToDest(uint_src));
851 }
852 // Since we are fixing up the app image, there should only be pointers to the app image and
853 // boot image.
854 DCHECK(src == nullptr) << reinterpret_cast<const void*>(src);
855 return src;
856 }
857
858 // Return the relocated address of a code pointer (contained by an oat file).
ForwardCode(const void * src) const859 ALWAYS_INLINE const void* ForwardCode(const void* src) const {
860 const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src);
861 if (boot_oat_.InSource(uint_src)) {
862 return reinterpret_cast<const void*>(boot_oat_.ToDest(uint_src));
863 }
864 if (app_oat_.InSource(uint_src)) {
865 return reinterpret_cast<const void*>(app_oat_.ToDest(uint_src));
866 }
867 DCHECK(src == nullptr) << src;
868 return src;
869 }
870
871 // Must be called on pointers that already have been relocated to the destination relocation.
IsInAppImage(mirror::Object * object) const872 ALWAYS_INLINE bool IsInAppImage(mirror::Object* object) const {
873 return app_image_.InDest(reinterpret_cast<uintptr_t>(object));
874 }
875
876 protected:
877 // Source section.
878 const RelocationRange boot_image_;
879 const RelocationRange boot_oat_;
880 const RelocationRange app_image_;
881 const RelocationRange app_oat_;
882 };
883
884 // Adapt for mirror::Class::FixupNativePointers.
885 class FixupObjectAdapter : public FixupVisitor {
886 public:
887 template<typename... Args>
FixupObjectAdapter(Args...args)888 explicit FixupObjectAdapter(Args... args) : FixupVisitor(args...) {}
889
890 template <typename T>
operator ()(T * obj,void ** dest_addr ATTRIBUTE_UNUSED=nullptr) const891 T* operator()(T* obj, void** dest_addr ATTRIBUTE_UNUSED = nullptr) const {
892 return ForwardObject(obj);
893 }
894 };
895
896 class FixupRootVisitor : public FixupVisitor {
897 public:
898 template<typename... Args>
FixupRootVisitor(Args...args)899 explicit FixupRootVisitor(Args... args) : FixupVisitor(args...) {}
900
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const901 ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
902 REQUIRES_SHARED(Locks::mutator_lock_) {
903 if (!root->IsNull()) {
904 VisitRoot(root);
905 }
906 }
907
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const908 ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
909 REQUIRES_SHARED(Locks::mutator_lock_) {
910 mirror::Object* ref = root->AsMirrorPtr();
911 mirror::Object* new_ref = ForwardObject(ref);
912 if (ref != new_ref) {
913 root->Assign(new_ref);
914 }
915 }
916 };
917
918 class FixupObjectVisitor : public FixupVisitor {
919 public:
920 template<typename... Args>
FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap * visited,const PointerSize pointer_size,Args...args)921 explicit FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap* visited,
922 const PointerSize pointer_size,
923 Args... args)
924 : FixupVisitor(args...),
925 pointer_size_(pointer_size),
926 visited_(visited) {}
927
928 // Fix up separately since we also need to fix up method entrypoints.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const929 ALWAYS_INLINE void VisitRootIfNonNull(
930 mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
931
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const932 ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
933 const {}
934
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const935 ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> obj,
936 MemberOffset offset,
937 bool is_static ATTRIBUTE_UNUSED) const
938 NO_THREAD_SAFETY_ANALYSIS {
939 // There could be overlap between ranges, we must avoid visiting the same reference twice.
940 // Avoid the class field since we already fixed it up in FixupClassVisitor.
941 if (offset.Uint32Value() != mirror::Object::ClassOffset().Uint32Value()) {
942 // Space is not yet added to the heap, don't do a read barrier.
943 mirror::Object* ref = obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(
944 offset);
945 // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the
946 // image.
947 obj->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(offset, ForwardObject(ref));
948 }
949 }
950
951 // Visit a pointer array and forward corresponding native data. Ignores pointer arrays in the
952 // boot image. Uses the bitmap to ensure the same array is not visited multiple times.
953 template <typename Visitor>
UpdatePointerArrayContents(mirror::PointerArray * array,const Visitor & visitor) const954 void UpdatePointerArrayContents(mirror::PointerArray* array, const Visitor& visitor) const
955 NO_THREAD_SAFETY_ANALYSIS {
956 DCHECK(array != nullptr);
957 DCHECK(visitor.IsInAppImage(array));
958 // The bit for the array contents is different than the bit for the array. Since we may have
959 // already visited the array as a long / int array from walking the bitmap without knowing it
960 // was a pointer array.
961 static_assert(kObjectAlignment == 8u, "array bit may be in another object");
962 mirror::Object* const contents_bit = reinterpret_cast<mirror::Object*>(
963 reinterpret_cast<uintptr_t>(array) + kObjectAlignment);
964 // If the bit is not set then the contents have not yet been updated.
965 if (!visited_->Test(contents_bit)) {
966 array->Fixup<kVerifyNone, kWithoutReadBarrier>(array, pointer_size_, visitor);
967 visited_->Set(contents_bit);
968 }
969 }
970
971 // java.lang.ref.Reference visitor.
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const972 void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
973 ObjPtr<mirror::Reference> ref) const
974 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
975 mirror::Object* obj = ref->GetReferent<kWithoutReadBarrier>();
976 ref->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
977 mirror::Reference::ReferentOffset(),
978 ForwardObject(obj));
979 }
980
operator ()(mirror::Object * obj) const981 void operator()(mirror::Object* obj) const
982 NO_THREAD_SAFETY_ANALYSIS {
983 if (visited_->Test(obj)) {
984 // Already visited.
985 return;
986 }
987 visited_->Set(obj);
988
989 // Handle class specially first since we need it to be updated to properly visit the rest of
990 // the instance fields.
991 {
992 mirror::Class* klass = obj->GetClass<kVerifyNone, kWithoutReadBarrier>();
993 DCHECK(klass != nullptr) << "Null class in image";
994 // No AsClass since our fields aren't quite fixed up yet.
995 mirror::Class* new_klass = down_cast<mirror::Class*>(ForwardObject(klass));
996 if (klass != new_klass) {
997 obj->SetClass<kVerifyNone>(new_klass);
998 }
999 if (new_klass != klass && IsInAppImage(new_klass)) {
1000 // Make sure the klass contents are fixed up since we depend on it to walk the fields.
1001 operator()(new_klass);
1002 }
1003 }
1004
1005 obj->VisitReferences</*visit native roots*/false, kVerifyNone, kWithoutReadBarrier>(
1006 *this,
1007 *this);
1008 // Note that this code relies on no circular dependencies.
1009 // We want to use our own class loader and not the one in the image.
1010 if (obj->IsClass<kVerifyNone, kWithoutReadBarrier>()) {
1011 mirror::Class* as_klass = obj->AsClass<kVerifyNone, kWithoutReadBarrier>();
1012 FixupObjectAdapter visitor(boot_image_, boot_oat_, app_image_, app_oat_);
1013 as_klass->FixupNativePointers<kVerifyNone, kWithoutReadBarrier>(as_klass,
1014 pointer_size_,
1015 visitor);
1016 // Deal with the pointer arrays. Use the helper function since multiple classes can reference
1017 // the same arrays.
1018 mirror::PointerArray* const vtable = as_klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
1019 if (vtable != nullptr && IsInAppImage(vtable)) {
1020 operator()(vtable);
1021 UpdatePointerArrayContents(vtable, visitor);
1022 }
1023 mirror::IfTable* iftable = as_klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
1024 // Ensure iftable arrays are fixed up since we need GetMethodArray to return the valid
1025 // contents.
1026 if (IsInAppImage(iftable)) {
1027 operator()(iftable);
1028 for (int32_t i = 0, count = iftable->Count(); i < count; ++i) {
1029 if (iftable->GetMethodArrayCount<kVerifyNone, kWithoutReadBarrier>(i) > 0) {
1030 mirror::PointerArray* methods =
1031 iftable->GetMethodArray<kVerifyNone, kWithoutReadBarrier>(i);
1032 if (visitor.IsInAppImage(methods)) {
1033 operator()(methods);
1034 DCHECK(methods != nullptr);
1035 UpdatePointerArrayContents(methods, visitor);
1036 }
1037 }
1038 }
1039 }
1040 }
1041 }
1042
1043 private:
1044 const PointerSize pointer_size_;
1045 gc::accounting::ContinuousSpaceBitmap* const visited_;
1046 };
1047
1048 class ForwardObjectAdapter {
1049 public:
ForwardObjectAdapter(const FixupVisitor * visitor)1050 ALWAYS_INLINE explicit ForwardObjectAdapter(const FixupVisitor* visitor) : visitor_(visitor) {}
1051
1052 template <typename T>
operator ()(T * src) const1053 ALWAYS_INLINE T* operator()(T* src) const {
1054 return visitor_->ForwardObject(src);
1055 }
1056
1057 private:
1058 const FixupVisitor* const visitor_;
1059 };
1060
1061 class ForwardCodeAdapter {
1062 public:
ForwardCodeAdapter(const FixupVisitor * visitor)1063 ALWAYS_INLINE explicit ForwardCodeAdapter(const FixupVisitor* visitor)
1064 : visitor_(visitor) {}
1065
1066 template <typename T>
operator ()(T * src) const1067 ALWAYS_INLINE T* operator()(T* src) const {
1068 return visitor_->ForwardCode(src);
1069 }
1070
1071 private:
1072 const FixupVisitor* const visitor_;
1073 };
1074
1075 class FixupArtMethodVisitor : public FixupVisitor, public ArtMethodVisitor {
1076 public:
1077 template<typename... Args>
FixupArtMethodVisitor(bool fixup_heap_objects,PointerSize pointer_size,Args...args)1078 explicit FixupArtMethodVisitor(bool fixup_heap_objects, PointerSize pointer_size, Args... args)
1079 : FixupVisitor(args...),
1080 fixup_heap_objects_(fixup_heap_objects),
1081 pointer_size_(pointer_size) {}
1082
Visit(ArtMethod * method)1083 virtual void Visit(ArtMethod* method) NO_THREAD_SAFETY_ANALYSIS {
1084 // TODO: Separate visitor for runtime vs normal methods.
1085 if (UNLIKELY(method->IsRuntimeMethod())) {
1086 ImtConflictTable* table = method->GetImtConflictTable(pointer_size_);
1087 if (table != nullptr) {
1088 ImtConflictTable* new_table = ForwardObject(table);
1089 if (table != new_table) {
1090 method->SetImtConflictTable(new_table, pointer_size_);
1091 }
1092 }
1093 const void* old_code = method->GetEntryPointFromQuickCompiledCodePtrSize(pointer_size_);
1094 const void* new_code = ForwardCode(old_code);
1095 if (old_code != new_code) {
1096 method->SetEntryPointFromQuickCompiledCodePtrSize(new_code, pointer_size_);
1097 }
1098 } else {
1099 if (fixup_heap_objects_) {
1100 method->UpdateObjectsForImageRelocation(ForwardObjectAdapter(this), pointer_size_);
1101 }
1102 method->UpdateEntrypoints<kWithoutReadBarrier>(ForwardCodeAdapter(this), pointer_size_);
1103 }
1104 }
1105
1106 private:
1107 const bool fixup_heap_objects_;
1108 const PointerSize pointer_size_;
1109 };
1110
1111 class FixupArtFieldVisitor : public FixupVisitor, public ArtFieldVisitor {
1112 public:
1113 template<typename... Args>
FixupArtFieldVisitor(Args...args)1114 explicit FixupArtFieldVisitor(Args... args) : FixupVisitor(args...) {}
1115
Visit(ArtField * field)1116 virtual void Visit(ArtField* field) NO_THREAD_SAFETY_ANALYSIS {
1117 field->UpdateObjects(ForwardObjectAdapter(this));
1118 }
1119 };
1120
1121 // Relocate an image space mapped at target_base which possibly used to be at a different base
1122 // address. Only needs a single image space, not one for both source and destination.
1123 // In place means modifying a single ImageSpace in place rather than relocating from one ImageSpace
1124 // to another.
RelocateInPlace(ImageHeader & image_header,uint8_t * target_base,accounting::ContinuousSpaceBitmap * bitmap,const OatFile * app_oat_file,std::string * error_msg)1125 static bool RelocateInPlace(ImageHeader& image_header,
1126 uint8_t* target_base,
1127 accounting::ContinuousSpaceBitmap* bitmap,
1128 const OatFile* app_oat_file,
1129 std::string* error_msg) {
1130 DCHECK(error_msg != nullptr);
1131 if (!image_header.IsPic()) {
1132 if (image_header.GetImageBegin() == target_base) {
1133 return true;
1134 }
1135 *error_msg = StringPrintf("Cannot relocate non-pic image for oat file %s",
1136 (app_oat_file != nullptr) ? app_oat_file->GetLocation().c_str() : "");
1137 return false;
1138 }
1139 // Set up sections.
1140 uint32_t boot_image_begin = 0;
1141 uint32_t boot_image_end = 0;
1142 uint32_t boot_oat_begin = 0;
1143 uint32_t boot_oat_end = 0;
1144 const PointerSize pointer_size = image_header.GetPointerSize();
1145 gc::Heap* const heap = Runtime::Current()->GetHeap();
1146 heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end);
1147 if (boot_image_begin == boot_image_end) {
1148 *error_msg = "Can not relocate app image without boot image space";
1149 return false;
1150 }
1151 if (boot_oat_begin == boot_oat_end) {
1152 *error_msg = "Can not relocate app image without boot oat file";
1153 return false;
1154 }
1155 const uint32_t boot_image_size = boot_image_end - boot_image_begin;
1156 const uint32_t boot_oat_size = boot_oat_end - boot_oat_begin;
1157 const uint32_t image_header_boot_image_size = image_header.GetBootImageSize();
1158 const uint32_t image_header_boot_oat_size = image_header.GetBootOatSize();
1159 if (boot_image_size != image_header_boot_image_size) {
1160 *error_msg = StringPrintf("Boot image size %" PRIu64 " does not match expected size %"
1161 PRIu64,
1162 static_cast<uint64_t>(boot_image_size),
1163 static_cast<uint64_t>(image_header_boot_image_size));
1164 return false;
1165 }
1166 if (boot_oat_size != image_header_boot_oat_size) {
1167 *error_msg = StringPrintf("Boot oat size %" PRIu64 " does not match expected size %"
1168 PRIu64,
1169 static_cast<uint64_t>(boot_oat_size),
1170 static_cast<uint64_t>(image_header_boot_oat_size));
1171 return false;
1172 }
1173 TimingLogger logger(__FUNCTION__, true, false);
1174 RelocationRange boot_image(image_header.GetBootImageBegin(),
1175 boot_image_begin,
1176 boot_image_size);
1177 RelocationRange boot_oat(image_header.GetBootOatBegin(),
1178 boot_oat_begin,
1179 boot_oat_size);
1180 RelocationRange app_image(reinterpret_cast<uintptr_t>(image_header.GetImageBegin()),
1181 reinterpret_cast<uintptr_t>(target_base),
1182 image_header.GetImageSize());
1183 // Use the oat data section since this is where the OatFile::Begin is.
1184 RelocationRange app_oat(reinterpret_cast<uintptr_t>(image_header.GetOatDataBegin()),
1185 // Not necessarily in low 4GB.
1186 reinterpret_cast<uintptr_t>(app_oat_file->Begin()),
1187 image_header.GetOatDataEnd() - image_header.GetOatDataBegin());
1188 VLOG(image) << "App image " << app_image;
1189 VLOG(image) << "App oat " << app_oat;
1190 VLOG(image) << "Boot image " << boot_image;
1191 VLOG(image) << "Boot oat " << boot_oat;
1192 // True if we need to fixup any heap pointers, otherwise only code pointers.
1193 const bool fixup_image = boot_image.Delta() != 0 || app_image.Delta() != 0;
1194 const bool fixup_code = boot_oat.Delta() != 0 || app_oat.Delta() != 0;
1195 if (!fixup_image && !fixup_code) {
1196 // Nothing to fix up.
1197 return true;
1198 }
1199 ScopedDebugDisallowReadBarriers sddrb(Thread::Current());
1200 // Need to update the image to be at the target base.
1201 const ImageSection& objects_section = image_header.GetImageSection(ImageHeader::kSectionObjects);
1202 uintptr_t objects_begin = reinterpret_cast<uintptr_t>(target_base + objects_section.Offset());
1203 uintptr_t objects_end = reinterpret_cast<uintptr_t>(target_base + objects_section.End());
1204 FixupObjectAdapter fixup_adapter(boot_image, boot_oat, app_image, app_oat);
1205 if (fixup_image) {
1206 // Two pass approach, fix up all classes first, then fix up non class-objects.
1207 // The visited bitmap is used to ensure that pointer arrays are not forwarded twice.
1208 std::unique_ptr<gc::accounting::ContinuousSpaceBitmap> visited_bitmap(
1209 gc::accounting::ContinuousSpaceBitmap::Create("Relocate bitmap",
1210 target_base,
1211 image_header.GetImageSize()));
1212 FixupObjectVisitor fixup_object_visitor(visited_bitmap.get(),
1213 pointer_size,
1214 boot_image,
1215 boot_oat,
1216 app_image,
1217 app_oat);
1218 TimingLogger::ScopedTiming timing("Fixup classes", &logger);
1219 // Fixup objects may read fields in the boot image, use the mutator lock here for sanity. Though
1220 // its probably not required.
1221 ScopedObjectAccess soa(Thread::Current());
1222 timing.NewTiming("Fixup objects");
1223 bitmap->VisitMarkedRange(objects_begin, objects_end, fixup_object_visitor);
1224 // Fixup image roots.
1225 CHECK(app_image.InSource(reinterpret_cast<uintptr_t>(
1226 image_header.GetImageRoots<kWithoutReadBarrier>())));
1227 image_header.RelocateImageObjects(app_image.Delta());
1228 CHECK_EQ(image_header.GetImageBegin(), target_base);
1229 // Fix up dex cache DexFile pointers.
1230 auto* dex_caches = image_header.GetImageRoot<kWithoutReadBarrier>(ImageHeader::kDexCaches)->
1231 AsObjectArray<mirror::DexCache, kVerifyNone, kWithoutReadBarrier>();
1232 for (int32_t i = 0, count = dex_caches->GetLength(); i < count; ++i) {
1233 mirror::DexCache* dex_cache = dex_caches->Get<kVerifyNone, kWithoutReadBarrier>(i);
1234 // Fix up dex cache pointers.
1235 mirror::StringDexCacheType* strings = dex_cache->GetStrings();
1236 if (strings != nullptr) {
1237 mirror::StringDexCacheType* new_strings = fixup_adapter.ForwardObject(strings);
1238 if (strings != new_strings) {
1239 dex_cache->SetStrings(new_strings);
1240 }
1241 dex_cache->FixupStrings<kWithoutReadBarrier>(new_strings, fixup_adapter);
1242 }
1243 mirror::TypeDexCacheType* types = dex_cache->GetResolvedTypes();
1244 if (types != nullptr) {
1245 mirror::TypeDexCacheType* new_types = fixup_adapter.ForwardObject(types);
1246 if (types != new_types) {
1247 dex_cache->SetResolvedTypes(new_types);
1248 }
1249 dex_cache->FixupResolvedTypes<kWithoutReadBarrier>(new_types, fixup_adapter);
1250 }
1251 ArtMethod** methods = dex_cache->GetResolvedMethods();
1252 if (methods != nullptr) {
1253 ArtMethod** new_methods = fixup_adapter.ForwardObject(methods);
1254 if (methods != new_methods) {
1255 dex_cache->SetResolvedMethods(new_methods);
1256 }
1257 for (size_t j = 0, num = dex_cache->NumResolvedMethods(); j != num; ++j) {
1258 ArtMethod* orig = mirror::DexCache::GetElementPtrSize(new_methods, j, pointer_size);
1259 ArtMethod* copy = fixup_adapter.ForwardObject(orig);
1260 if (orig != copy) {
1261 mirror::DexCache::SetElementPtrSize(new_methods, j, copy, pointer_size);
1262 }
1263 }
1264 }
1265 mirror::FieldDexCacheType* fields = dex_cache->GetResolvedFields();
1266 if (fields != nullptr) {
1267 mirror::FieldDexCacheType* new_fields = fixup_adapter.ForwardObject(fields);
1268 if (fields != new_fields) {
1269 dex_cache->SetResolvedFields(new_fields);
1270 }
1271 for (size_t j = 0, num = dex_cache->NumResolvedFields(); j != num; ++j) {
1272 mirror::FieldDexCachePair orig =
1273 mirror::DexCache::GetNativePairPtrSize(new_fields, j, pointer_size);
1274 mirror::FieldDexCachePair copy(fixup_adapter.ForwardObject(orig.object), orig.index);
1275 if (orig.object != copy.object) {
1276 mirror::DexCache::SetNativePairPtrSize(new_fields, j, copy, pointer_size);
1277 }
1278 }
1279 }
1280
1281 mirror::MethodTypeDexCacheType* method_types = dex_cache->GetResolvedMethodTypes();
1282 if (method_types != nullptr) {
1283 mirror::MethodTypeDexCacheType* new_method_types =
1284 fixup_adapter.ForwardObject(method_types);
1285 if (method_types != new_method_types) {
1286 dex_cache->SetResolvedMethodTypes(new_method_types);
1287 }
1288 dex_cache->FixupResolvedMethodTypes<kWithoutReadBarrier>(new_method_types, fixup_adapter);
1289 }
1290 GcRoot<mirror::CallSite>* call_sites = dex_cache->GetResolvedCallSites();
1291 if (call_sites != nullptr) {
1292 GcRoot<mirror::CallSite>* new_call_sites = fixup_adapter.ForwardObject(call_sites);
1293 if (call_sites != new_call_sites) {
1294 dex_cache->SetResolvedCallSites(new_call_sites);
1295 }
1296 dex_cache->FixupResolvedCallSites<kWithoutReadBarrier>(new_call_sites, fixup_adapter);
1297 }
1298 }
1299 }
1300 {
1301 // Only touches objects in the app image, no need for mutator lock.
1302 TimingLogger::ScopedTiming timing("Fixup methods", &logger);
1303 FixupArtMethodVisitor method_visitor(fixup_image,
1304 pointer_size,
1305 boot_image,
1306 boot_oat,
1307 app_image,
1308 app_oat);
1309 image_header.VisitPackedArtMethods(&method_visitor, target_base, pointer_size);
1310 }
1311 if (fixup_image) {
1312 {
1313 // Only touches objects in the app image, no need for mutator lock.
1314 TimingLogger::ScopedTiming timing("Fixup fields", &logger);
1315 FixupArtFieldVisitor field_visitor(boot_image, boot_oat, app_image, app_oat);
1316 image_header.VisitPackedArtFields(&field_visitor, target_base);
1317 }
1318 {
1319 TimingLogger::ScopedTiming timing("Fixup imt", &logger);
1320 image_header.VisitPackedImTables(fixup_adapter, target_base, pointer_size);
1321 }
1322 {
1323 TimingLogger::ScopedTiming timing("Fixup conflict tables", &logger);
1324 image_header.VisitPackedImtConflictTables(fixup_adapter, target_base, pointer_size);
1325 }
1326 // In the app image case, the image methods are actually in the boot image.
1327 image_header.RelocateImageMethods(boot_image.Delta());
1328 const auto& class_table_section = image_header.GetImageSection(ImageHeader::kSectionClassTable);
1329 if (class_table_section.Size() > 0u) {
1330 // Note that we require that ReadFromMemory does not make an internal copy of the elements.
1331 // This also relies on visit roots not doing any verification which could fail after we update
1332 // the roots to be the image addresses.
1333 ScopedObjectAccess soa(Thread::Current());
1334 WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
1335 ClassTable temp_table;
1336 temp_table.ReadFromMemory(target_base + class_table_section.Offset());
1337 FixupRootVisitor root_visitor(boot_image, boot_oat, app_image, app_oat);
1338 temp_table.VisitRoots(root_visitor);
1339 }
1340 }
1341 if (VLOG_IS_ON(image)) {
1342 logger.Dump(LOG_STREAM(INFO));
1343 }
1344 return true;
1345 }
1346
OpenOatFile(const ImageSpace & image,const char * image_path,std::string * error_msg)1347 static std::unique_ptr<OatFile> OpenOatFile(const ImageSpace& image,
1348 const char* image_path,
1349 std::string* error_msg) {
1350 const ImageHeader& image_header = image.GetImageHeader();
1351 std::string oat_filename = ImageHeader::GetOatLocationFromImageLocation(image_path);
1352
1353 CHECK(image_header.GetOatDataBegin() != nullptr);
1354
1355 std::unique_ptr<OatFile> oat_file(OatFile::Open(oat_filename,
1356 oat_filename,
1357 image_header.GetOatDataBegin(),
1358 image_header.GetOatFileBegin(),
1359 !Runtime::Current()->IsAotCompiler(),
1360 /*low_4gb*/false,
1361 nullptr,
1362 error_msg));
1363 if (oat_file == nullptr) {
1364 *error_msg = StringPrintf("Failed to open oat file '%s' referenced from image %s: %s",
1365 oat_filename.c_str(),
1366 image.GetName(),
1367 error_msg->c_str());
1368 return nullptr;
1369 }
1370 uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
1371 uint32_t image_oat_checksum = image_header.GetOatChecksum();
1372 if (oat_checksum != image_oat_checksum) {
1373 *error_msg = StringPrintf("Failed to match oat file checksum 0x%x to expected oat checksum 0x%x"
1374 " in image %s",
1375 oat_checksum,
1376 image_oat_checksum,
1377 image.GetName());
1378 return nullptr;
1379 }
1380 int32_t image_patch_delta = image_header.GetPatchDelta();
1381 int32_t oat_patch_delta = oat_file->GetOatHeader().GetImagePatchDelta();
1382 if (oat_patch_delta != image_patch_delta && !image_header.CompilePic()) {
1383 // We should have already relocated by this point. Bail out.
1384 *error_msg = StringPrintf("Failed to match oat file patch delta %d to expected patch delta %d "
1385 "in image %s",
1386 oat_patch_delta,
1387 image_patch_delta,
1388 image.GetName());
1389 return nullptr;
1390 }
1391
1392 return oat_file;
1393 }
1394 };
1395
1396 static constexpr uint64_t kLowSpaceValue = 50 * MB;
1397 static constexpr uint64_t kTmpFsSentinelValue = 384 * MB;
1398
1399 // Read the free space of the cache partition and make a decision whether to keep the generated
1400 // image. This is to try to mitigate situations where the system might run out of space later.
CheckSpace(const std::string & cache_filename,std::string * error_msg)1401 static bool CheckSpace(const std::string& cache_filename, std::string* error_msg) {
1402 // Using statvfs vs statvfs64 because of b/18207376, and it is enough for all practical purposes.
1403 struct statvfs buf;
1404
1405 int res = TEMP_FAILURE_RETRY(statvfs(cache_filename.c_str(), &buf));
1406 if (res != 0) {
1407 // Could not stat. Conservatively tell the system to delete the image.
1408 *error_msg = "Could not stat the filesystem, assuming low-memory situation.";
1409 return false;
1410 }
1411
1412 uint64_t fs_overall_size = buf.f_bsize * static_cast<uint64_t>(buf.f_blocks);
1413 // Zygote is privileged, but other things are not. Use bavail.
1414 uint64_t fs_free_size = buf.f_bsize * static_cast<uint64_t>(buf.f_bavail);
1415
1416 // Take the overall size as an indicator for a tmpfs, which is being used for the decryption
1417 // environment. We do not want to fail quickening the boot image there, as it is beneficial
1418 // for time-to-UI.
1419 if (fs_overall_size > kTmpFsSentinelValue) {
1420 if (fs_free_size < kLowSpaceValue) {
1421 *error_msg = StringPrintf("Low-memory situation: only %4.2f megabytes available, need at "
1422 "least %" PRIu64 ".",
1423 static_cast<double>(fs_free_size) / MB,
1424 kLowSpaceValue / MB);
1425 return false;
1426 }
1427 }
1428 return true;
1429 }
1430
CreateBootImage(const char * image_location,const InstructionSet image_isa,bool secondary_image,std::string * error_msg)1431 std::unique_ptr<ImageSpace> ImageSpace::CreateBootImage(const char* image_location,
1432 const InstructionSet image_isa,
1433 bool secondary_image,
1434 std::string* error_msg) {
1435 ScopedTrace trace(__FUNCTION__);
1436
1437 // Step 0: Extra zygote work.
1438
1439 // Step 0.a: If we're the zygote, mark boot.
1440 const bool is_zygote = Runtime::Current()->IsZygote();
1441 if (is_zygote && !secondary_image && CanWriteToDalvikCache(image_isa)) {
1442 MarkZygoteStart(image_isa, Runtime::Current()->GetZygoteMaxFailedBoots());
1443 }
1444
1445 // Step 0.b: If we're the zygote, check for free space, and prune the cache preemptively,
1446 // if necessary. While the runtime may be fine (it is pretty tolerant to
1447 // out-of-disk-space situations), other parts of the platform are not.
1448 //
1449 // The advantage of doing this proactively is that the later steps are simplified,
1450 // i.e., we do not need to code retries.
1451 std::string system_filename;
1452 bool has_system = false;
1453 std::string cache_filename;
1454 bool has_cache = false;
1455 bool dalvik_cache_exists = false;
1456 bool is_global_cache = true;
1457 std::string dalvik_cache;
1458 bool found_image = FindImageFilenameImpl(image_location,
1459 image_isa,
1460 &has_system,
1461 &system_filename,
1462 &dalvik_cache_exists,
1463 &dalvik_cache,
1464 &is_global_cache,
1465 &has_cache,
1466 &cache_filename);
1467
1468 if (is_zygote && dalvik_cache_exists) {
1469 DCHECK(!dalvik_cache.empty());
1470 std::string local_error_msg;
1471 if (!CheckSpace(dalvik_cache, &local_error_msg)) {
1472 LOG(WARNING) << local_error_msg << " Preemptively pruning the dalvik cache.";
1473 PruneDalvikCache(image_isa);
1474
1475 // Re-evaluate the image.
1476 found_image = FindImageFilenameImpl(image_location,
1477 image_isa,
1478 &has_system,
1479 &system_filename,
1480 &dalvik_cache_exists,
1481 &dalvik_cache,
1482 &is_global_cache,
1483 &has_cache,
1484 &cache_filename);
1485 }
1486 }
1487
1488 // Collect all the errors.
1489 std::vector<std::string> error_msgs;
1490
1491 // Step 1: Check if we have an existing and relocated image.
1492
1493 // Step 1.a: Have files in system and cache. Then they need to match.
1494 if (found_image && has_system && has_cache) {
1495 std::string local_error_msg;
1496 // Check that the files are matching.
1497 if (ChecksumsMatch(system_filename.c_str(), cache_filename.c_str(), &local_error_msg)) {
1498 std::unique_ptr<ImageSpace> relocated_space =
1499 ImageSpaceLoader::Load(image_location,
1500 cache_filename,
1501 is_zygote,
1502 is_global_cache,
1503 /* validate_oat_file */ false,
1504 &local_error_msg);
1505 if (relocated_space != nullptr) {
1506 return relocated_space;
1507 }
1508 }
1509 error_msgs.push_back(local_error_msg);
1510 }
1511
1512 // Step 1.b: Only have a cache file.
1513 if (found_image && !has_system && has_cache) {
1514 std::string local_error_msg;
1515 std::unique_ptr<ImageSpace> cache_space =
1516 ImageSpaceLoader::Load(image_location,
1517 cache_filename,
1518 is_zygote,
1519 is_global_cache,
1520 /* validate_oat_file */ true,
1521 &local_error_msg);
1522 if (cache_space != nullptr) {
1523 return cache_space;
1524 }
1525 error_msgs.push_back(local_error_msg);
1526 }
1527
1528 // Step 2: We have an existing image in /system.
1529
1530 // Step 2.a: We are not required to relocate it. Then we can use it directly.
1531 bool relocate = Runtime::Current()->ShouldRelocate();
1532
1533 if (found_image && has_system && !relocate) {
1534 std::string local_error_msg;
1535 std::unique_ptr<ImageSpace> system_space =
1536 ImageSpaceLoader::Load(image_location,
1537 system_filename,
1538 is_zygote,
1539 is_global_cache,
1540 /* validate_oat_file */ false,
1541 &local_error_msg);
1542 if (system_space != nullptr) {
1543 return system_space;
1544 }
1545 error_msgs.push_back(local_error_msg);
1546 }
1547
1548 // Step 2.b: We require a relocated image. Then we must patch it. This step fails if this is a
1549 // secondary image.
1550 if (found_image && has_system && relocate) {
1551 std::string local_error_msg;
1552 if (!Runtime::Current()->IsImageDex2OatEnabled()) {
1553 local_error_msg = "Patching disabled.";
1554 } else if (secondary_image) {
1555 local_error_msg = "Cannot patch a secondary image.";
1556 } else if (ImageCreationAllowed(is_global_cache, image_isa, &local_error_msg)) {
1557 bool patch_success =
1558 RelocateImage(image_location, cache_filename.c_str(), image_isa, &local_error_msg);
1559 if (patch_success) {
1560 std::unique_ptr<ImageSpace> patched_space =
1561 ImageSpaceLoader::Load(image_location,
1562 cache_filename,
1563 is_zygote,
1564 is_global_cache,
1565 /* validate_oat_file */ false,
1566 &local_error_msg);
1567 if (patched_space != nullptr) {
1568 return patched_space;
1569 }
1570 }
1571 }
1572 error_msgs.push_back(StringPrintf("Cannot relocate image %s to %s: %s",
1573 image_location,
1574 cache_filename.c_str(),
1575 local_error_msg.c_str()));
1576 }
1577
1578 // Step 3: We do not have an existing image in /system, so generate an image into the dalvik
1579 // cache. This step fails if this is a secondary image.
1580 if (!has_system) {
1581 std::string local_error_msg;
1582 if (!Runtime::Current()->IsImageDex2OatEnabled()) {
1583 local_error_msg = "Image compilation disabled.";
1584 } else if (secondary_image) {
1585 local_error_msg = "Cannot compile a secondary image.";
1586 } else if (ImageCreationAllowed(is_global_cache, image_isa, &local_error_msg)) {
1587 bool compilation_success = GenerateImage(cache_filename, image_isa, &local_error_msg);
1588 if (compilation_success) {
1589 std::unique_ptr<ImageSpace> compiled_space =
1590 ImageSpaceLoader::Load(image_location,
1591 cache_filename,
1592 is_zygote,
1593 is_global_cache,
1594 /* validate_oat_file */ false,
1595 &local_error_msg);
1596 if (compiled_space != nullptr) {
1597 return compiled_space;
1598 }
1599 }
1600 }
1601 error_msgs.push_back(StringPrintf("Cannot compile image to %s: %s",
1602 cache_filename.c_str(),
1603 local_error_msg.c_str()));
1604 }
1605
1606 // We failed. Prune the cache the free up space, create a compound error message and return no
1607 // image.
1608 PruneDalvikCache(image_isa);
1609
1610 std::ostringstream oss;
1611 bool first = true;
1612 for (const auto& msg : error_msgs) {
1613 if (!first) {
1614 oss << "\n ";
1615 }
1616 oss << msg;
1617 }
1618 *error_msg = oss.str();
1619
1620 return nullptr;
1621 }
1622
LoadBootImage(const std::string & image_file_name,const InstructionSet image_instruction_set,std::vector<space::ImageSpace * > * boot_image_spaces,uint8_t ** oat_file_end)1623 bool ImageSpace::LoadBootImage(const std::string& image_file_name,
1624 const InstructionSet image_instruction_set,
1625 std::vector<space::ImageSpace*>* boot_image_spaces,
1626 uint8_t** oat_file_end) {
1627 DCHECK(boot_image_spaces != nullptr);
1628 DCHECK(boot_image_spaces->empty());
1629 DCHECK(oat_file_end != nullptr);
1630 DCHECK_NE(image_instruction_set, InstructionSet::kNone);
1631
1632 if (image_file_name.empty()) {
1633 return false;
1634 }
1635
1636 // For code reuse, handle this like a work queue.
1637 std::vector<std::string> image_file_names;
1638 image_file_names.push_back(image_file_name);
1639
1640 bool error = false;
1641 uint8_t* oat_file_end_tmp = *oat_file_end;
1642
1643 for (size_t index = 0; index < image_file_names.size(); ++index) {
1644 std::string& image_name = image_file_names[index];
1645 std::string error_msg;
1646 std::unique_ptr<space::ImageSpace> boot_image_space_uptr = CreateBootImage(
1647 image_name.c_str(),
1648 image_instruction_set,
1649 index > 0,
1650 &error_msg);
1651 if (boot_image_space_uptr != nullptr) {
1652 space::ImageSpace* boot_image_space = boot_image_space_uptr.release();
1653 boot_image_spaces->push_back(boot_image_space);
1654 // Oat files referenced by image files immediately follow them in memory, ensure alloc space
1655 // isn't going to get in the middle
1656 uint8_t* oat_file_end_addr = boot_image_space->GetImageHeader().GetOatFileEnd();
1657 CHECK_GT(oat_file_end_addr, boot_image_space->End());
1658 oat_file_end_tmp = AlignUp(oat_file_end_addr, kPageSize);
1659
1660 if (index == 0) {
1661 // If this was the first space, check whether there are more images to load.
1662 const OatFile* boot_oat_file = boot_image_space->GetOatFile();
1663 if (boot_oat_file == nullptr) {
1664 continue;
1665 }
1666
1667 const OatHeader& boot_oat_header = boot_oat_file->GetOatHeader();
1668 const char* boot_classpath =
1669 boot_oat_header.GetStoreValueByKey(OatHeader::kBootClassPathKey);
1670 if (boot_classpath == nullptr) {
1671 continue;
1672 }
1673
1674 ExtractMultiImageLocations(image_file_name, boot_classpath, &image_file_names);
1675 }
1676 } else {
1677 error = true;
1678 LOG(ERROR) << "Could not create image space with image file '" << image_file_name << "'. "
1679 << "Attempting to fall back to imageless running. Error was: " << error_msg
1680 << "\nAttempted image: " << image_name;
1681 break;
1682 }
1683 }
1684
1685 if (error) {
1686 // Remove already loaded spaces.
1687 for (space::Space* loaded_space : *boot_image_spaces) {
1688 delete loaded_space;
1689 }
1690 boot_image_spaces->clear();
1691 return false;
1692 }
1693
1694 *oat_file_end = oat_file_end_tmp;
1695 return true;
1696 }
1697
~ImageSpace()1698 ImageSpace::~ImageSpace() {
1699 Runtime* runtime = Runtime::Current();
1700 if (runtime == nullptr) {
1701 return;
1702 }
1703
1704 if (GetImageHeader().IsAppImage()) {
1705 // This image space did not modify resolution method then in Init.
1706 return;
1707 }
1708
1709 if (!runtime->HasResolutionMethod()) {
1710 // Another image space has already unloaded the below methods.
1711 return;
1712 }
1713
1714 runtime->ClearInstructionSet();
1715 runtime->ClearResolutionMethod();
1716 runtime->ClearImtConflictMethod();
1717 runtime->ClearImtUnimplementedMethod();
1718 runtime->ClearCalleeSaveMethods();
1719 }
1720
CreateFromAppImage(const char * image,const OatFile * oat_file,std::string * error_msg)1721 std::unique_ptr<ImageSpace> ImageSpace::CreateFromAppImage(const char* image,
1722 const OatFile* oat_file,
1723 std::string* error_msg) {
1724 return ImageSpaceLoader::Init(image,
1725 image,
1726 /*validate_oat_file*/false,
1727 oat_file,
1728 /*out*/error_msg);
1729 }
1730
GetOatFile() const1731 const OatFile* ImageSpace::GetOatFile() const {
1732 return oat_file_non_owned_;
1733 }
1734
ReleaseOatFile()1735 std::unique_ptr<const OatFile> ImageSpace::ReleaseOatFile() {
1736 CHECK(oat_file_ != nullptr);
1737 return std::move(oat_file_);
1738 }
1739
Dump(std::ostream & os) const1740 void ImageSpace::Dump(std::ostream& os) const {
1741 os << GetType()
1742 << " begin=" << reinterpret_cast<void*>(Begin())
1743 << ",end=" << reinterpret_cast<void*>(End())
1744 << ",size=" << PrettySize(Size())
1745 << ",name=\"" << GetName() << "\"]";
1746 }
1747
GetMultiImageBootClassPath(const std::vector<const char * > & dex_locations,const std::vector<const char * > & oat_filenames,const std::vector<const char * > & image_filenames)1748 std::string ImageSpace::GetMultiImageBootClassPath(
1749 const std::vector<const char*>& dex_locations,
1750 const std::vector<const char*>& oat_filenames,
1751 const std::vector<const char*>& image_filenames) {
1752 DCHECK_GT(oat_filenames.size(), 1u);
1753 // If the image filename was adapted (e.g., for our tests), we need to change this here,
1754 // too, but need to strip all path components (they will be re-established when loading).
1755 std::ostringstream bootcp_oss;
1756 bool first_bootcp = true;
1757 for (size_t i = 0; i < dex_locations.size(); ++i) {
1758 if (!first_bootcp) {
1759 bootcp_oss << ":";
1760 }
1761
1762 std::string dex_loc = dex_locations[i];
1763 std::string image_filename = image_filenames[i];
1764
1765 // Use the dex_loc path, but the image_filename name (without path elements).
1766 size_t dex_last_slash = dex_loc.rfind('/');
1767
1768 // npos is max(size_t). That makes this a bit ugly.
1769 size_t image_last_slash = image_filename.rfind('/');
1770 size_t image_last_at = image_filename.rfind('@');
1771 size_t image_last_sep = (image_last_slash == std::string::npos)
1772 ? image_last_at
1773 : (image_last_at == std::string::npos)
1774 ? std::string::npos
1775 : std::max(image_last_slash, image_last_at);
1776 // Note: whenever image_last_sep == npos, +1 overflow means using the full string.
1777
1778 if (dex_last_slash == std::string::npos) {
1779 dex_loc = image_filename.substr(image_last_sep + 1);
1780 } else {
1781 dex_loc = dex_loc.substr(0, dex_last_slash + 1) +
1782 image_filename.substr(image_last_sep + 1);
1783 }
1784
1785 // Image filenames already end with .art, no need to replace.
1786
1787 bootcp_oss << dex_loc;
1788 first_bootcp = false;
1789 }
1790 return bootcp_oss.str();
1791 }
1792
ValidateOatFile(const OatFile & oat_file,std::string * error_msg)1793 bool ImageSpace::ValidateOatFile(const OatFile& oat_file, std::string* error_msg) {
1794 for (const OatFile::OatDexFile* oat_dex_file : oat_file.GetOatDexFiles()) {
1795 const std::string& dex_file_location = oat_dex_file->GetDexFileLocation();
1796
1797 // Skip multidex locations - These will be checked when we visit their
1798 // corresponding primary non-multidex location.
1799 if (DexFile::IsMultiDexLocation(dex_file_location.c_str())) {
1800 continue;
1801 }
1802
1803 std::vector<uint32_t> checksums;
1804 if (!DexFile::GetMultiDexChecksums(dex_file_location.c_str(), &checksums, error_msg)) {
1805 *error_msg = StringPrintf("ValidateOatFile failed to get checksums of dex file '%s' "
1806 "referenced by oat file %s: %s",
1807 dex_file_location.c_str(),
1808 oat_file.GetLocation().c_str(),
1809 error_msg->c_str());
1810 return false;
1811 }
1812 CHECK(!checksums.empty());
1813 if (checksums[0] != oat_dex_file->GetDexFileLocationChecksum()) {
1814 *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file "
1815 "'%s' and dex file '%s' (0x%x != 0x%x)",
1816 oat_file.GetLocation().c_str(),
1817 dex_file_location.c_str(),
1818 oat_dex_file->GetDexFileLocationChecksum(),
1819 checksums[0]);
1820 return false;
1821 }
1822
1823 // Verify checksums for any related multidex entries.
1824 for (size_t i = 1; i < checksums.size(); i++) {
1825 std::string multi_dex_location = DexFile::GetMultiDexLocation(i, dex_file_location.c_str());
1826 const OatFile::OatDexFile* multi_dex = oat_file.GetOatDexFile(multi_dex_location.c_str(),
1827 nullptr,
1828 error_msg);
1829 if (multi_dex == nullptr) {
1830 *error_msg = StringPrintf("ValidateOatFile oat file '%s' is missing entry '%s'",
1831 oat_file.GetLocation().c_str(),
1832 multi_dex_location.c_str());
1833 return false;
1834 }
1835
1836 if (checksums[i] != multi_dex->GetDexFileLocationChecksum()) {
1837 *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file "
1838 "'%s' and dex file '%s' (0x%x != 0x%x)",
1839 oat_file.GetLocation().c_str(),
1840 multi_dex_location.c_str(),
1841 multi_dex->GetDexFileLocationChecksum(),
1842 checksums[i]);
1843 return false;
1844 }
1845 }
1846 }
1847 return true;
1848 }
1849
ExtractMultiImageLocations(const std::string & input_image_file_name,const std::string & boot_classpath,std::vector<std::string> * image_file_names)1850 void ImageSpace::ExtractMultiImageLocations(const std::string& input_image_file_name,
1851 const std::string& boot_classpath,
1852 std::vector<std::string>* image_file_names) {
1853 DCHECK(image_file_names != nullptr);
1854
1855 std::vector<std::string> images;
1856 Split(boot_classpath, ':', &images);
1857
1858 // Add the rest into the list. We have to adjust locations, possibly:
1859 //
1860 // For example, image_file_name is /a/b/c/d/e.art
1861 // images[0] is f/c/d/e.art
1862 // ----------------------------------------------
1863 // images[1] is g/h/i/j.art -> /a/b/h/i/j.art
1864 const std::string& first_image = images[0];
1865 // Length of common suffix.
1866 size_t common = 0;
1867 while (common < input_image_file_name.size() &&
1868 common < first_image.size() &&
1869 *(input_image_file_name.end() - common - 1) == *(first_image.end() - common - 1)) {
1870 ++common;
1871 }
1872 // We want to replace the prefix of the input image with the prefix of the boot class path.
1873 // This handles the case where the image file contains @ separators.
1874 // Example image_file_name is oats/system@framework@boot.art
1875 // images[0] is .../arm/boot.art
1876 // means that the image name prefix will be oats/system@framework@
1877 // so that the other images are openable.
1878 const size_t old_prefix_length = first_image.size() - common;
1879 const std::string new_prefix = input_image_file_name.substr(
1880 0,
1881 input_image_file_name.size() - common);
1882
1883 // Apply pattern to images[1] .. images[n].
1884 for (size_t i = 1; i < images.size(); ++i) {
1885 const std::string& image = images[i];
1886 CHECK_GT(image.length(), old_prefix_length);
1887 std::string suffix = image.substr(old_prefix_length);
1888 image_file_names->push_back(new_prefix + suffix);
1889 }
1890 }
1891
DumpSections(std::ostream & os) const1892 void ImageSpace::DumpSections(std::ostream& os) const {
1893 const uint8_t* base = Begin();
1894 const ImageHeader& header = GetImageHeader();
1895 for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
1896 auto section_type = static_cast<ImageHeader::ImageSections>(i);
1897 const ImageSection& section = header.GetImageSection(section_type);
1898 os << section_type << " " << reinterpret_cast<const void*>(base + section.Offset())
1899 << "-" << reinterpret_cast<const void*>(base + section.End()) << "\n";
1900 }
1901 }
1902
1903 } // namespace space
1904 } // namespace gc
1905 } // namespace art
1906