1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "ssa_builder.h"
18 
19 #include "bytecode_utils.h"
20 #include "mirror/class-inl.h"
21 #include "nodes.h"
22 #include "reference_type_propagation.h"
23 #include "scoped_thread_state_change-inl.h"
24 #include "ssa_phi_elimination.h"
25 
26 namespace art {
27 
FixNullConstantType()28 void SsaBuilder::FixNullConstantType() {
29   // The order doesn't matter here.
30   for (HBasicBlock* block : graph_->GetReversePostOrder()) {
31     for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
32       HInstruction* equality_instr = it.Current();
33       if (!equality_instr->IsEqual() && !equality_instr->IsNotEqual()) {
34         continue;
35       }
36       HInstruction* left = equality_instr->InputAt(0);
37       HInstruction* right = equality_instr->InputAt(1);
38       HInstruction* int_operand = nullptr;
39 
40       if ((left->GetType() == Primitive::kPrimNot) && (right->GetType() == Primitive::kPrimInt)) {
41         int_operand = right;
42       } else if ((right->GetType() == Primitive::kPrimNot)
43                  && (left->GetType() == Primitive::kPrimInt)) {
44         int_operand = left;
45       } else {
46         continue;
47       }
48 
49       // If we got here, we are comparing against a reference and the int constant
50       // should be replaced with a null constant.
51       // Both type propagation and redundant phi elimination ensure `int_operand`
52       // can only be the 0 constant.
53       DCHECK(int_operand->IsIntConstant()) << int_operand->DebugName();
54       DCHECK_EQ(0, int_operand->AsIntConstant()->GetValue());
55       equality_instr->ReplaceInput(graph_->GetNullConstant(), int_operand == right ? 1 : 0);
56     }
57   }
58 }
59 
EquivalentPhisCleanup()60 void SsaBuilder::EquivalentPhisCleanup() {
61   // The order doesn't matter here.
62   for (HBasicBlock* block : graph_->GetReversePostOrder()) {
63     for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
64       HPhi* phi = it.Current()->AsPhi();
65       HPhi* next = phi->GetNextEquivalentPhiWithSameType();
66       if (next != nullptr) {
67         // Make sure we do not replace a live phi with a dead phi. A live phi
68         // has been handled by the type propagation phase, unlike a dead phi.
69         if (next->IsLive()) {
70           phi->ReplaceWith(next);
71           phi->SetDead();
72         } else {
73           next->ReplaceWith(phi);
74         }
75         DCHECK(next->GetNextEquivalentPhiWithSameType() == nullptr)
76             << "More then one phi equivalent with type " << phi->GetType()
77             << " found for phi" << phi->GetId();
78       }
79     }
80   }
81 }
82 
FixEnvironmentPhis()83 void SsaBuilder::FixEnvironmentPhis() {
84   for (HBasicBlock* block : graph_->GetReversePostOrder()) {
85     for (HInstructionIterator it_phis(block->GetPhis()); !it_phis.Done(); it_phis.Advance()) {
86       HPhi* phi = it_phis.Current()->AsPhi();
87       // If the phi is not dead, or has no environment uses, there is nothing to do.
88       if (!phi->IsDead() || !phi->HasEnvironmentUses()) continue;
89       HInstruction* next = phi->GetNext();
90       if (!phi->IsVRegEquivalentOf(next)) continue;
91       if (next->AsPhi()->IsDead()) {
92         // If the phi equivalent is dead, check if there is another one.
93         next = next->GetNext();
94         if (!phi->IsVRegEquivalentOf(next)) continue;
95         // There can be at most two phi equivalents.
96         DCHECK(!phi->IsVRegEquivalentOf(next->GetNext()));
97         if (next->AsPhi()->IsDead()) continue;
98       }
99       // We found a live phi equivalent. Update the environment uses of `phi` with it.
100       phi->ReplaceWith(next);
101     }
102   }
103 }
104 
AddDependentInstructionsToWorklist(HInstruction * instruction,ArenaVector<HPhi * > * worklist)105 static void AddDependentInstructionsToWorklist(HInstruction* instruction,
106                                                ArenaVector<HPhi*>* worklist) {
107   // If `instruction` is a dead phi, type conflict was just identified. All its
108   // live phi users, and transitively users of those users, therefore need to be
109   // marked dead/conflicting too, so we add them to the worklist. Otherwise we
110   // add users whose type does not match and needs to be updated.
111   bool add_all_live_phis = instruction->IsPhi() && instruction->AsPhi()->IsDead();
112   for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
113     HInstruction* user = use.GetUser();
114     if (user->IsPhi() && user->AsPhi()->IsLive()) {
115       if (add_all_live_phis || user->GetType() != instruction->GetType()) {
116         worklist->push_back(user->AsPhi());
117       }
118     }
119   }
120 }
121 
122 // Find a candidate primitive type for `phi` by merging the type of its inputs.
123 // Return false if conflict is identified.
TypePhiFromInputs(HPhi * phi)124 static bool TypePhiFromInputs(HPhi* phi) {
125   Primitive::Type common_type = phi->GetType();
126 
127   for (HInstruction* input : phi->GetInputs()) {
128     if (input->IsPhi() && input->AsPhi()->IsDead()) {
129       // Phis are constructed live so if an input is a dead phi, it must have
130       // been made dead due to type conflict. Mark this phi conflicting too.
131       return false;
132     }
133 
134     Primitive::Type input_type = HPhi::ToPhiType(input->GetType());
135     if (common_type == input_type) {
136       // No change in type.
137     } else if (Primitive::Is64BitType(common_type) != Primitive::Is64BitType(input_type)) {
138       // Types are of different sizes, e.g. int vs. long. Must be a conflict.
139       return false;
140     } else if (Primitive::IsIntegralType(common_type)) {
141       // Previous inputs were integral, this one is not but is of the same size.
142       // This does not imply conflict since some bytecode instruction types are
143       // ambiguous. TypeInputsOfPhi will either type them or detect a conflict.
144       DCHECK(Primitive::IsFloatingPointType(input_type) || input_type == Primitive::kPrimNot);
145       common_type = input_type;
146     } else if (Primitive::IsIntegralType(input_type)) {
147       // Input is integral, common type is not. Same as in the previous case, if
148       // there is a conflict, it will be detected during TypeInputsOfPhi.
149       DCHECK(Primitive::IsFloatingPointType(common_type) || common_type == Primitive::kPrimNot);
150     } else {
151       // Combining float and reference types. Clearly a conflict.
152       DCHECK((common_type == Primitive::kPrimFloat && input_type == Primitive::kPrimNot) ||
153              (common_type == Primitive::kPrimNot && input_type == Primitive::kPrimFloat));
154       return false;
155     }
156   }
157 
158   // We have found a candidate type for the phi. Set it and return true. We may
159   // still discover conflict whilst typing the individual inputs in TypeInputsOfPhi.
160   phi->SetType(common_type);
161   return true;
162 }
163 
164 // Replace inputs of `phi` to match its type. Return false if conflict is identified.
TypeInputsOfPhi(HPhi * phi,ArenaVector<HPhi * > * worklist)165 bool SsaBuilder::TypeInputsOfPhi(HPhi* phi, ArenaVector<HPhi*>* worklist) {
166   Primitive::Type common_type = phi->GetType();
167   if (Primitive::IsIntegralType(common_type)) {
168     // We do not need to retype ambiguous inputs because they are always constructed
169     // with the integral type candidate.
170     if (kIsDebugBuild) {
171       for (HInstruction* input : phi->GetInputs()) {
172         DCHECK(HPhi::ToPhiType(input->GetType()) == common_type);
173       }
174     }
175     // Inputs did not need to be replaced, hence no conflict. Report success.
176     return true;
177   } else {
178     DCHECK(common_type == Primitive::kPrimNot || Primitive::IsFloatingPointType(common_type));
179     HInputsRef inputs = phi->GetInputs();
180     for (size_t i = 0; i < inputs.size(); ++i) {
181       HInstruction* input = inputs[i];
182       if (input->GetType() != common_type) {
183         // Input type does not match phi's type. Try to retype the input or
184         // generate a suitably typed equivalent.
185         HInstruction* equivalent = (common_type == Primitive::kPrimNot)
186             ? GetReferenceTypeEquivalent(input)
187             : GetFloatOrDoubleEquivalent(input, common_type);
188         if (equivalent == nullptr) {
189           // Input could not be typed. Report conflict.
190           return false;
191         }
192         // Make sure the input did not change its type and we do not need to
193         // update its users.
194         DCHECK_NE(input, equivalent);
195 
196         phi->ReplaceInput(equivalent, i);
197         if (equivalent->IsPhi()) {
198           worklist->push_back(equivalent->AsPhi());
199         }
200       }
201     }
202     // All inputs either matched the type of the phi or we successfully replaced
203     // them with a suitable equivalent. Report success.
204     return true;
205   }
206 }
207 
208 // Attempt to set the primitive type of `phi` to match its inputs. Return whether
209 // it was changed by the algorithm or not.
UpdatePrimitiveType(HPhi * phi,ArenaVector<HPhi * > * worklist)210 bool SsaBuilder::UpdatePrimitiveType(HPhi* phi, ArenaVector<HPhi*>* worklist) {
211   DCHECK(phi->IsLive());
212   Primitive::Type original_type = phi->GetType();
213 
214   // Try to type the phi in two stages:
215   // (1) find a candidate type for the phi by merging types of all its inputs,
216   // (2) try to type the phi's inputs to that candidate type.
217   // Either of these stages may detect a type conflict and fail, in which case
218   // we immediately abort.
219   if (!TypePhiFromInputs(phi) || !TypeInputsOfPhi(phi, worklist)) {
220     // Conflict detected. Mark the phi dead and return true because it changed.
221     phi->SetDead();
222     return true;
223   }
224 
225   // Return true if the type of the phi has changed.
226   return phi->GetType() != original_type;
227 }
228 
RunPrimitiveTypePropagation()229 void SsaBuilder::RunPrimitiveTypePropagation() {
230   ArenaVector<HPhi*> worklist(graph_->GetArena()->Adapter(kArenaAllocGraphBuilder));
231 
232   for (HBasicBlock* block : graph_->GetReversePostOrder()) {
233     if (block->IsLoopHeader()) {
234       for (HInstructionIterator phi_it(block->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
235         HPhi* phi = phi_it.Current()->AsPhi();
236         if (phi->IsLive()) {
237           worklist.push_back(phi);
238         }
239       }
240     } else {
241       for (HInstructionIterator phi_it(block->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
242         // Eagerly compute the type of the phi, for quicker convergence. Note
243         // that we don't need to add users to the worklist because we are
244         // doing a reverse post-order visit, therefore either the phi users are
245         // non-loop phi and will be visited later in the visit, or are loop-phis,
246         // and they are already in the work list.
247         HPhi* phi = phi_it.Current()->AsPhi();
248         if (phi->IsLive()) {
249           UpdatePrimitiveType(phi, &worklist);
250         }
251       }
252     }
253   }
254 
255   ProcessPrimitiveTypePropagationWorklist(&worklist);
256   EquivalentPhisCleanup();
257 }
258 
ProcessPrimitiveTypePropagationWorklist(ArenaVector<HPhi * > * worklist)259 void SsaBuilder::ProcessPrimitiveTypePropagationWorklist(ArenaVector<HPhi*>* worklist) {
260   // Process worklist
261   while (!worklist->empty()) {
262     HPhi* phi = worklist->back();
263     worklist->pop_back();
264     // The phi could have been made dead as a result of conflicts while in the
265     // worklist. If it is now dead, there is no point in updating its type.
266     if (phi->IsLive() && UpdatePrimitiveType(phi, worklist)) {
267       AddDependentInstructionsToWorklist(phi, worklist);
268     }
269   }
270 }
271 
FindFloatOrDoubleEquivalentOfArrayGet(HArrayGet * aget)272 static HArrayGet* FindFloatOrDoubleEquivalentOfArrayGet(HArrayGet* aget) {
273   Primitive::Type type = aget->GetType();
274   DCHECK(Primitive::IsIntOrLongType(type));
275   HInstruction* next = aget->GetNext();
276   if (next != nullptr && next->IsArrayGet()) {
277     HArrayGet* next_aget = next->AsArrayGet();
278     if (next_aget->IsEquivalentOf(aget)) {
279       return next_aget;
280     }
281   }
282   return nullptr;
283 }
284 
CreateFloatOrDoubleEquivalentOfArrayGet(HArrayGet * aget)285 static HArrayGet* CreateFloatOrDoubleEquivalentOfArrayGet(HArrayGet* aget) {
286   Primitive::Type type = aget->GetType();
287   DCHECK(Primitive::IsIntOrLongType(type));
288   DCHECK(FindFloatOrDoubleEquivalentOfArrayGet(aget) == nullptr);
289 
290   HArrayGet* equivalent = new (aget->GetBlock()->GetGraph()->GetArena()) HArrayGet(
291       aget->GetArray(),
292       aget->GetIndex(),
293       type == Primitive::kPrimInt ? Primitive::kPrimFloat : Primitive::kPrimDouble,
294       aget->GetDexPc());
295   aget->GetBlock()->InsertInstructionAfter(equivalent, aget);
296   return equivalent;
297 }
298 
GetPrimitiveArrayComponentType(HInstruction * array)299 static Primitive::Type GetPrimitiveArrayComponentType(HInstruction* array)
300     REQUIRES_SHARED(Locks::mutator_lock_) {
301   ReferenceTypeInfo array_type = array->GetReferenceTypeInfo();
302   DCHECK(array_type.IsPrimitiveArrayClass());
303   return array_type.GetTypeHandle()->GetComponentType()->GetPrimitiveType();
304 }
305 
FixAmbiguousArrayOps()306 bool SsaBuilder::FixAmbiguousArrayOps() {
307   if (ambiguous_agets_.empty() && ambiguous_asets_.empty()) {
308     return true;
309   }
310 
311   // The wrong ArrayGet equivalent may still have Phi uses coming from ArraySet
312   // uses (because they are untyped) and environment uses (if --debuggable).
313   // After resolving all ambiguous ArrayGets, we will re-run primitive type
314   // propagation on the Phis which need to be updated.
315   ArenaVector<HPhi*> worklist(graph_->GetArena()->Adapter(kArenaAllocGraphBuilder));
316 
317   {
318     ScopedObjectAccess soa(Thread::Current());
319 
320     for (HArrayGet* aget_int : ambiguous_agets_) {
321       HInstruction* array = aget_int->GetArray();
322       if (!array->GetReferenceTypeInfo().IsPrimitiveArrayClass()) {
323         // RTP did not type the input array. Bail.
324         return false;
325       }
326 
327       HArrayGet* aget_float = FindFloatOrDoubleEquivalentOfArrayGet(aget_int);
328       Primitive::Type array_type = GetPrimitiveArrayComponentType(array);
329       DCHECK_EQ(Primitive::Is64BitType(aget_int->GetType()), Primitive::Is64BitType(array_type));
330 
331       if (Primitive::IsIntOrLongType(array_type)) {
332         if (aget_float != nullptr) {
333           // There is a float/double equivalent. We must replace it and re-run
334           // primitive type propagation on all dependent instructions.
335           aget_float->ReplaceWith(aget_int);
336           aget_float->GetBlock()->RemoveInstruction(aget_float);
337           AddDependentInstructionsToWorklist(aget_int, &worklist);
338         }
339       } else {
340         DCHECK(Primitive::IsFloatingPointType(array_type));
341         if (aget_float == nullptr) {
342           // This is a float/double ArrayGet but there were no typed uses which
343           // would create the typed equivalent. Create it now.
344           aget_float = CreateFloatOrDoubleEquivalentOfArrayGet(aget_int);
345         }
346         // Replace the original int/long instruction. Note that it may have phi
347         // uses, environment uses, as well as real uses (from untyped ArraySets).
348         // We need to re-run primitive type propagation on its dependent instructions.
349         aget_int->ReplaceWith(aget_float);
350         aget_int->GetBlock()->RemoveInstruction(aget_int);
351         AddDependentInstructionsToWorklist(aget_float, &worklist);
352       }
353     }
354 
355     // Set a flag stating that types of ArrayGets have been resolved. Requesting
356     // equivalent of the wrong type with GetFloatOrDoubleEquivalentOfArrayGet
357     // will fail from now on.
358     agets_fixed_ = true;
359 
360     for (HArraySet* aset : ambiguous_asets_) {
361       HInstruction* array = aset->GetArray();
362       if (!array->GetReferenceTypeInfo().IsPrimitiveArrayClass()) {
363         // RTP did not type the input array. Bail.
364         return false;
365       }
366 
367       HInstruction* value = aset->GetValue();
368       Primitive::Type value_type = value->GetType();
369       Primitive::Type array_type = GetPrimitiveArrayComponentType(array);
370       DCHECK_EQ(Primitive::Is64BitType(value_type), Primitive::Is64BitType(array_type));
371 
372       if (Primitive::IsFloatingPointType(array_type)) {
373         if (!Primitive::IsFloatingPointType(value_type)) {
374           DCHECK(Primitive::IsIntegralType(value_type));
375           // Array elements are floating-point but the value has not been replaced
376           // with its floating-point equivalent. The replacement must always
377           // succeed in code validated by the verifier.
378           HInstruction* equivalent = GetFloatOrDoubleEquivalent(value, array_type);
379           DCHECK(equivalent != nullptr);
380           aset->ReplaceInput(equivalent, /* input_index */ 2);
381           if (equivalent->IsPhi()) {
382             // Returned equivalent is a phi which may not have had its inputs
383             // replaced yet. We need to run primitive type propagation on it.
384             worklist.push_back(equivalent->AsPhi());
385           }
386         }
387         // Refine the side effects of this floating point aset. Note that we do this even if
388         // no replacement occurs, since the right-hand-side may have been corrected already.
389         aset->ComputeSideEffects();
390       } else {
391         // Array elements are integral and the value assigned to it initially
392         // was integral too. Nothing to do.
393         DCHECK(Primitive::IsIntegralType(array_type));
394         DCHECK(Primitive::IsIntegralType(value_type));
395       }
396     }
397   }
398 
399   if (!worklist.empty()) {
400     ProcessPrimitiveTypePropagationWorklist(&worklist);
401     EquivalentPhisCleanup();
402   }
403 
404   return true;
405 }
406 
HasAliasInEnvironments(HInstruction * instruction)407 static bool HasAliasInEnvironments(HInstruction* instruction) {
408   HEnvironment* last_user = nullptr;
409   for (const HUseListNode<HEnvironment*>& use : instruction->GetEnvUses()) {
410     DCHECK(use.GetUser() != nullptr);
411     // Note: The first comparison (== null) always fails.
412     if (use.GetUser() == last_user) {
413       return true;
414     }
415     last_user = use.GetUser();
416   }
417 
418   if (kIsDebugBuild) {
419     // Do a quadratic search to ensure same environment uses are next
420     // to each other.
421     const HUseList<HEnvironment*>& env_uses = instruction->GetEnvUses();
422     for (auto current = env_uses.begin(), end = env_uses.end(); current != end; ++current) {
423       auto next = current;
424       for (++next; next != end; ++next) {
425         DCHECK(next->GetUser() != current->GetUser());
426       }
427     }
428   }
429   return false;
430 }
431 
RemoveRedundantUninitializedStrings()432 void SsaBuilder::RemoveRedundantUninitializedStrings() {
433   if (graph_->IsDebuggable()) {
434     // Do not perform the optimization for consistency with the interpreter
435     // which always allocates an object for new-instance of String.
436     return;
437   }
438 
439   for (HNewInstance* new_instance : uninitialized_strings_) {
440     DCHECK(new_instance->IsInBlock());
441     DCHECK(new_instance->IsStringAlloc());
442 
443     // Replace NewInstance of String with NullConstant if not used prior to
444     // calling StringFactory. In case of deoptimization, the interpreter is
445     // expected to skip null check on the `this` argument of the StringFactory call.
446     if (!new_instance->HasNonEnvironmentUses() && !HasAliasInEnvironments(new_instance)) {
447       new_instance->ReplaceWith(graph_->GetNullConstant());
448       new_instance->GetBlock()->RemoveInstruction(new_instance);
449 
450       // Remove LoadClass if not needed any more.
451       HInstruction* input = new_instance->InputAt(0);
452       HLoadClass* load_class = nullptr;
453 
454       // If the class was not present in the dex cache at the point of building
455       // the graph, the builder inserted a HClinitCheck in between. Since the String
456       // class is always initialized at the point of running Java code, we can remove
457       // that check.
458       if (input->IsClinitCheck()) {
459         load_class = input->InputAt(0)->AsLoadClass();
460         input->ReplaceWith(load_class);
461         input->GetBlock()->RemoveInstruction(input);
462       } else {
463         load_class = input->AsLoadClass();
464         DCHECK(new_instance->IsStringAlloc());
465         DCHECK(!load_class->NeedsAccessCheck()) << "String class is always accessible";
466       }
467       DCHECK(load_class != nullptr);
468       if (!load_class->HasUses()) {
469         // Even if the HLoadClass needs access check, we can remove it, as we know the
470         // String class does not need it.
471         load_class->GetBlock()->RemoveInstruction(load_class);
472       }
473     }
474   }
475 }
476 
BuildSsa()477 GraphAnalysisResult SsaBuilder::BuildSsa() {
478   DCHECK(!graph_->IsInSsaForm());
479 
480   // 1) Propagate types of phis. At this point, phis are typed void in the general
481   // case, or float/double/reference if we created an equivalent phi. So we need
482   // to propagate the types across phis to give them a correct type. If a type
483   // conflict is detected in this stage, the phi is marked dead.
484   RunPrimitiveTypePropagation();
485 
486   // 2) Now that the correct primitive types have been assigned, we can get rid
487   // of redundant phis. Note that we cannot do this phase before type propagation,
488   // otherwise we could get rid of phi equivalents, whose presence is a requirement
489   // for the type propagation phase. Note that this is to satisfy statement (a)
490   // of the SsaBuilder (see ssa_builder.h).
491   SsaRedundantPhiElimination(graph_).Run();
492 
493   // 3) Fix the type for null constants which are part of an equality comparison.
494   // We need to do this after redundant phi elimination, to ensure the only cases
495   // that we can see are reference comparison against 0. The redundant phi
496   // elimination ensures we do not see a phi taking two 0 constants in a HEqual
497   // or HNotEqual.
498   FixNullConstantType();
499 
500   // 4) Compute type of reference type instructions. The pass assumes that
501   // NullConstant has been fixed up.
502   ReferenceTypePropagation(graph_,
503                            class_loader_,
504                            dex_cache_,
505                            handles_,
506                            /* is_first_run */ true).Run();
507 
508   // 5) HInstructionBuilder duplicated ArrayGet instructions with ambiguous type
509   // (int/float or long/double) and marked ArraySets with ambiguous input type.
510   // Now that RTP computed the type of the array input, the ambiguity can be
511   // resolved and the correct equivalents kept.
512   if (!FixAmbiguousArrayOps()) {
513     return kAnalysisFailAmbiguousArrayOp;
514   }
515 
516   // 6) Mark dead phis. This will mark phis which are not used by instructions
517   // or other live phis. If compiling as debuggable code, phis will also be kept
518   // live if they have an environment use.
519   SsaDeadPhiElimination dead_phi_elimimation(graph_);
520   dead_phi_elimimation.MarkDeadPhis();
521 
522   // 7) Make sure environments use the right phi equivalent: a phi marked dead
523   // can have a phi equivalent that is not dead. In that case we have to replace
524   // it with the live equivalent because deoptimization and try/catch rely on
525   // environments containing values of all live vregs at that point. Note that
526   // there can be multiple phis for the same Dex register that are live
527   // (for example when merging constants), in which case it is okay for the
528   // environments to just reference one.
529   FixEnvironmentPhis();
530 
531   // 8) Now that the right phis are used for the environments, we can eliminate
532   // phis we do not need. Regardless of the debuggable status, this phase is
533   /// necessary for statement (b) of the SsaBuilder (see ssa_builder.h), as well
534   // as for the code generation, which does not deal with phis of conflicting
535   // input types.
536   dead_phi_elimimation.EliminateDeadPhis();
537 
538   // 9) HInstructionBuidler replaced uses of NewInstances of String with the
539   // results of their corresponding StringFactory calls. Unless the String
540   // objects are used before they are initialized, they can be replaced with
541   // NullConstant. Note that this optimization is valid only if unsimplified
542   // code does not use the uninitialized value because we assume execution can
543   // be deoptimized at any safepoint. We must therefore perform it before any
544   // other optimizations.
545   RemoveRedundantUninitializedStrings();
546 
547   graph_->SetInSsaForm();
548   return kAnalysisSuccess;
549 }
550 
551 /**
552  * Constants in the Dex format are not typed. So the builder types them as
553  * integers, but when doing the SSA form, we might realize the constant
554  * is used for floating point operations. We create a floating-point equivalent
555  * constant to make the operations correctly typed.
556  */
GetFloatEquivalent(HIntConstant * constant)557 HFloatConstant* SsaBuilder::GetFloatEquivalent(HIntConstant* constant) {
558   // We place the floating point constant next to this constant.
559   HFloatConstant* result = constant->GetNext()->AsFloatConstant();
560   if (result == nullptr) {
561     float value = bit_cast<float, int32_t>(constant->GetValue());
562     result = new (graph_->GetArena()) HFloatConstant(value);
563     constant->GetBlock()->InsertInstructionBefore(result, constant->GetNext());
564     graph_->CacheFloatConstant(result);
565   } else {
566     // If there is already a constant with the expected type, we know it is
567     // the floating point equivalent of this constant.
568     DCHECK_EQ((bit_cast<int32_t, float>(result->GetValue())), constant->GetValue());
569   }
570   return result;
571 }
572 
573 /**
574  * Wide constants in the Dex format are not typed. So the builder types them as
575  * longs, but when doing the SSA form, we might realize the constant
576  * is used for floating point operations. We create a floating-point equivalent
577  * constant to make the operations correctly typed.
578  */
GetDoubleEquivalent(HLongConstant * constant)579 HDoubleConstant* SsaBuilder::GetDoubleEquivalent(HLongConstant* constant) {
580   // We place the floating point constant next to this constant.
581   HDoubleConstant* result = constant->GetNext()->AsDoubleConstant();
582   if (result == nullptr) {
583     double value = bit_cast<double, int64_t>(constant->GetValue());
584     result = new (graph_->GetArena()) HDoubleConstant(value);
585     constant->GetBlock()->InsertInstructionBefore(result, constant->GetNext());
586     graph_->CacheDoubleConstant(result);
587   } else {
588     // If there is already a constant with the expected type, we know it is
589     // the floating point equivalent of this constant.
590     DCHECK_EQ((bit_cast<int64_t, double>(result->GetValue())), constant->GetValue());
591   }
592   return result;
593 }
594 
595 /**
596  * Because of Dex format, we might end up having the same phi being
597  * used for non floating point operations and floating point / reference operations.
598  * Because we want the graph to be correctly typed (and thereafter avoid moves between
599  * floating point registers and core registers), we need to create a copy of the
600  * phi with a floating point / reference type.
601  */
GetFloatDoubleOrReferenceEquivalentOfPhi(HPhi * phi,Primitive::Type type)602 HPhi* SsaBuilder::GetFloatDoubleOrReferenceEquivalentOfPhi(HPhi* phi, Primitive::Type type) {
603   DCHECK(phi->IsLive()) << "Cannot get equivalent of a dead phi since it would create a live one.";
604 
605   // We place the floating point /reference phi next to this phi.
606   HInstruction* next = phi->GetNext();
607   if (next != nullptr
608       && next->AsPhi()->GetRegNumber() == phi->GetRegNumber()
609       && next->GetType() != type) {
610     // Move to the next phi to see if it is the one we are looking for.
611     next = next->GetNext();
612   }
613 
614   if (next == nullptr
615       || (next->AsPhi()->GetRegNumber() != phi->GetRegNumber())
616       || (next->GetType() != type)) {
617     ArenaAllocator* allocator = graph_->GetArena();
618     HInputsRef inputs = phi->GetInputs();
619     HPhi* new_phi =
620         new (allocator) HPhi(allocator, phi->GetRegNumber(), inputs.size(), type);
621     // Copy the inputs. Note that the graph may not be correctly typed
622     // by doing this copy, but the type propagation phase will fix it.
623     ArrayRef<HUserRecord<HInstruction*>> new_input_records = new_phi->GetInputRecords();
624     for (size_t i = 0; i < inputs.size(); ++i) {
625       new_input_records[i] = HUserRecord<HInstruction*>(inputs[i]);
626     }
627     phi->GetBlock()->InsertPhiAfter(new_phi, phi);
628     DCHECK(new_phi->IsLive());
629     return new_phi;
630   } else {
631     // An existing equivalent was found. If it is dead, conflict was previously
632     // identified and we return nullptr instead.
633     HPhi* next_phi = next->AsPhi();
634     DCHECK_EQ(next_phi->GetType(), type);
635     return next_phi->IsLive() ? next_phi : nullptr;
636   }
637 }
638 
GetFloatOrDoubleEquivalentOfArrayGet(HArrayGet * aget)639 HArrayGet* SsaBuilder::GetFloatOrDoubleEquivalentOfArrayGet(HArrayGet* aget) {
640   DCHECK(Primitive::IsIntegralType(aget->GetType()));
641 
642   if (!Primitive::IsIntOrLongType(aget->GetType())) {
643     // Cannot type boolean, char, byte, short to float/double.
644     return nullptr;
645   }
646 
647   DCHECK(ContainsElement(ambiguous_agets_, aget));
648   if (agets_fixed_) {
649     // This used to be an ambiguous ArrayGet but its type has been resolved to
650     // int/long. Requesting a float/double equivalent should lead to a conflict.
651     if (kIsDebugBuild) {
652       ScopedObjectAccess soa(Thread::Current());
653       DCHECK(Primitive::IsIntOrLongType(GetPrimitiveArrayComponentType(aget->GetArray())));
654     }
655     return nullptr;
656   } else {
657     // This is an ambiguous ArrayGet which has not been resolved yet. Return an
658     // equivalent float/double instruction to use until it is resolved.
659     HArrayGet* equivalent = FindFloatOrDoubleEquivalentOfArrayGet(aget);
660     return (equivalent == nullptr) ? CreateFloatOrDoubleEquivalentOfArrayGet(aget) : equivalent;
661   }
662 }
663 
GetFloatOrDoubleEquivalent(HInstruction * value,Primitive::Type type)664 HInstruction* SsaBuilder::GetFloatOrDoubleEquivalent(HInstruction* value, Primitive::Type type) {
665   if (value->IsArrayGet()) {
666     return GetFloatOrDoubleEquivalentOfArrayGet(value->AsArrayGet());
667   } else if (value->IsLongConstant()) {
668     return GetDoubleEquivalent(value->AsLongConstant());
669   } else if (value->IsIntConstant()) {
670     return GetFloatEquivalent(value->AsIntConstant());
671   } else if (value->IsPhi()) {
672     return GetFloatDoubleOrReferenceEquivalentOfPhi(value->AsPhi(), type);
673   } else {
674     return nullptr;
675   }
676 }
677 
GetReferenceTypeEquivalent(HInstruction * value)678 HInstruction* SsaBuilder::GetReferenceTypeEquivalent(HInstruction* value) {
679   if (value->IsIntConstant() && value->AsIntConstant()->GetValue() == 0) {
680     return graph_->GetNullConstant();
681   } else if (value->IsPhi()) {
682     return GetFloatDoubleOrReferenceEquivalentOfPhi(value->AsPhi(), Primitive::kPrimNot);
683   } else {
684     return nullptr;
685   }
686 }
687 
688 }  // namespace art
689