1 /*
2 * Copyright 2016 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "Sk4fGradientBase.h"
9
10 #include <functional>
11
12 namespace {
13
pack_color(SkColor c,bool premul,const Sk4f & component_scale)14 Sk4f pack_color(SkColor c, bool premul, const Sk4f& component_scale) {
15 const SkColor4f c4f = SkColor4f::FromColor(c);
16 const Sk4f pm4f = premul
17 ? c4f.premul().to4f()
18 : Sk4f{c4f.fR, c4f.fG, c4f.fB, c4f.fA};
19
20 return pm4f * component_scale;
21 }
22
23 class IntervalIterator {
24 public:
IntervalIterator(const SkColor * colors,const SkScalar * pos,int count,bool reverse)25 IntervalIterator(const SkColor* colors, const SkScalar* pos, int count, bool reverse)
26 : fColors(colors)
27 , fPos(pos)
28 , fCount(count)
29 , fFirstPos(reverse ? SK_Scalar1 : 0)
30 , fBegin(reverse ? count - 1 : 0)
31 , fAdvance(reverse ? -1 : 1) {
32 SkASSERT(colors);
33 SkASSERT(count > 0);
34 }
35
iterate(std::function<void (SkColor,SkColor,SkScalar,SkScalar)> func) const36 void iterate(std::function<void(SkColor, SkColor, SkScalar, SkScalar)> func) const {
37 if (!fPos) {
38 this->iterateImplicitPos(func);
39 return;
40 }
41
42 const int end = fBegin + fAdvance * (fCount - 1);
43 const SkScalar lastPos = 1 - fFirstPos;
44 int prev = fBegin;
45 SkScalar prevPos = fFirstPos;
46
47 do {
48 const int curr = prev + fAdvance;
49 SkASSERT(curr >= 0 && curr < fCount);
50
51 // TODO: this sanitization should be done in SkGradientShaderBase
52 const SkScalar currPos = (fAdvance > 0)
53 ? SkTPin(fPos[curr], prevPos, lastPos)
54 : SkTPin(fPos[curr], lastPos, prevPos);
55
56 if (currPos != prevPos) {
57 SkASSERT((currPos - prevPos > 0) == (fAdvance > 0));
58 func(fColors[prev], fColors[curr], prevPos, currPos);
59 }
60
61 prev = curr;
62 prevPos = currPos;
63 } while (prev != end);
64 }
65
66 private:
iterateImplicitPos(std::function<void (SkColor,SkColor,SkScalar,SkScalar)> func) const67 void iterateImplicitPos(std::function<void(SkColor, SkColor, SkScalar, SkScalar)> func) const {
68 // When clients don't provide explicit color stop positions (fPos == nullptr),
69 // the color stops are distributed evenly across the unit interval
70 // (implicit positioning).
71 const SkScalar dt = fAdvance * SK_Scalar1 / (fCount - 1);
72 const int end = fBegin + fAdvance * (fCount - 2);
73 int prev = fBegin;
74 SkScalar prevPos = fFirstPos;
75
76 while (prev != end) {
77 const int curr = prev + fAdvance;
78 SkASSERT(curr >= 0 && curr < fCount);
79
80 const SkScalar currPos = prevPos + dt;
81 func(fColors[prev], fColors[curr], prevPos, currPos);
82 prev = curr;
83 prevPos = currPos;
84 }
85
86 // emit the last interval with a pinned end position, to avoid precision issues
87 func(fColors[prev], fColors[prev + fAdvance], prevPos, 1 - fFirstPos);
88 }
89
90 const SkColor* fColors;
91 const SkScalar* fPos;
92 const int fCount;
93 const SkScalar fFirstPos;
94 const int fBegin;
95 const int fAdvance;
96 };
97
addMirrorIntervals(const SkColor colors[],const SkScalar pos[],int count,const Sk4f & componentScale,bool premulColors,bool reverse,Sk4fGradientIntervalBuffer::BufferType * buffer)98 void addMirrorIntervals(const SkColor colors[],
99 const SkScalar pos[], int count,
100 const Sk4f& componentScale,
101 bool premulColors, bool reverse,
102 Sk4fGradientIntervalBuffer::BufferType* buffer) {
103 const IntervalIterator iter(colors, pos, count, reverse);
104 iter.iterate([&] (SkColor c0, SkColor c1, SkScalar p0, SkScalar p1) {
105 SkASSERT(buffer->empty() || buffer->back().fP1 == 2 - p0);
106
107 const auto mirror_p0 = 2 - p0;
108 const auto mirror_p1 = 2 - p1;
109 // mirror_p1 & mirror_p1 may collapse for very small values - recheck to avoid
110 // triggering Interval asserts.
111 if (mirror_p0 != mirror_p1) {
112 buffer->emplace_back(pack_color(c0, premulColors, componentScale), mirror_p0,
113 pack_color(c1, premulColors, componentScale), mirror_p1);
114 }
115 });
116 }
117
118 } // anonymous namespace
119
Sk4fGradientInterval(const Sk4f & c0,SkScalar p0,const Sk4f & c1,SkScalar p1)120 Sk4fGradientInterval::Sk4fGradientInterval(const Sk4f& c0, SkScalar p0,
121 const Sk4f& c1, SkScalar p1)
122 : fP0(p0)
123 , fP1(p1)
124 , fZeroRamp((c0 == c1).allTrue()) {
125 SkASSERT(p0 != p1);
126 // Either p0 or p1 can be (-)inf for synthetic clamp edge intervals.
127 SkASSERT(SkScalarIsFinite(p0) || SkScalarIsFinite(p1));
128
129 const auto dp = p1 - p0;
130
131 // Clamp edge intervals are always zero-ramp.
132 SkASSERT(SkScalarIsFinite(dp) || fZeroRamp);
133 const Sk4f dc = SkScalarIsFinite(dp) ? (c1 - c0) / dp : 0;
134
135 c0.store(&fC0.fVec);
136 dc.store(&fDc.fVec);
137 }
138
init(const SkColor colors[],const SkScalar pos[],int count,SkShader::TileMode tileMode,bool premulColors,SkScalar alpha,bool reverse)139 void Sk4fGradientIntervalBuffer::init(const SkColor colors[], const SkScalar pos[], int count,
140 SkShader::TileMode tileMode, bool premulColors,
141 SkScalar alpha, bool reverse) {
142 // The main job here is to build a specialized interval list: a different
143 // representation of the color stops data, optimized for efficient scan line
144 // access during shading.
145 //
146 // [{P0,C0} , {P1,C1}) [{P1,C2} , {P2,c3}) ... [{Pn,C2n} , {Pn+1,C2n+1})
147 //
148 // The list may be inverted when requested (such that e.g. points are sorted
149 // in increasing x order when dx < 0).
150 //
151 // Note: the current representation duplicates pos data; we could refactor to
152 // avoid this if interval storage size becomes a concern.
153 //
154 // Aside from reordering, we also perform two more pre-processing steps at
155 // this stage:
156 //
157 // 1) scale the color components depending on paint alpha and the requested
158 // interpolation space (note: the interval color storage is SkPM4f, but
159 // that doesn't necessarily mean the colors are premultiplied; that
160 // property is tracked in fColorsArePremul)
161 //
162 // 2) inject synthetic intervals to support tiling.
163 //
164 // * for kRepeat, no extra intervals are needed - the iterator just
165 // wraps around at the end:
166 //
167 // ->[P0,P1)->..[Pn-1,Pn)->
168 //
169 // * for kClamp, we add two "infinite" intervals before/after:
170 //
171 // [-/+inf , P0)->[P0 , P1)->..[Pn-1 , Pn)->[Pn , +/-inf)
172 //
173 // (the iterator should never run off the end in this mode)
174 //
175 // * for kMirror, we extend the range to [0..2] and add a flipped
176 // interval series - then the iterator operates just as in the
177 // kRepeat case:
178 //
179 // ->[P0,P1)->..[Pn-1,Pn)->[2 - Pn,2 - Pn-1)->..[2 - P1,2 - P0)->
180 //
181 // TODO: investigate collapsing intervals << 1px.
182
183 SkASSERT(count > 0);
184 SkASSERT(colors);
185
186 fIntervals.reset();
187
188 const Sk4f componentScale = premulColors
189 ? Sk4f(alpha)
190 : Sk4f(1.0f, 1.0f, 1.0f, alpha);
191 const int first_index = reverse ? count - 1 : 0;
192 const int last_index = count - 1 - first_index;
193 const SkScalar first_pos = reverse ? SK_Scalar1 : 0;
194 const SkScalar last_pos = SK_Scalar1 - first_pos;
195
196 if (tileMode == SkShader::kClamp_TileMode) {
197 // synthetic edge interval: -/+inf .. P0
198 const Sk4f clamp_color = pack_color(colors[first_index],
199 premulColors, componentScale);
200 const SkScalar clamp_pos = reverse ? SK_ScalarInfinity : SK_ScalarNegativeInfinity;
201 fIntervals.emplace_back(clamp_color, clamp_pos,
202 clamp_color, first_pos);
203 } else if (tileMode == SkShader::kMirror_TileMode && reverse) {
204 // synthetic mirror intervals injected before main intervals: (2 .. 1]
205 addMirrorIntervals(colors, pos, count, componentScale, premulColors, false, &fIntervals);
206 }
207
208 const IntervalIterator iter(colors, pos, count, reverse);
209 iter.iterate([&] (SkColor c0, SkColor c1, SkScalar p0, SkScalar p1) {
210 SkASSERT(fIntervals.empty() || fIntervals.back().fP1 == p0);
211
212 fIntervals.emplace_back(pack_color(c0, premulColors, componentScale), p0,
213 pack_color(c1, premulColors, componentScale), p1);
214 });
215
216 if (tileMode == SkShader::kClamp_TileMode) {
217 // synthetic edge interval: Pn .. +/-inf
218 const Sk4f clamp_color = pack_color(colors[last_index], premulColors, componentScale);
219 const SkScalar clamp_pos = reverse ? SK_ScalarNegativeInfinity : SK_ScalarInfinity;
220 fIntervals.emplace_back(clamp_color, last_pos,
221 clamp_color, clamp_pos);
222 } else if (tileMode == SkShader::kMirror_TileMode && !reverse) {
223 // synthetic mirror intervals injected after main intervals: [1 .. 2)
224 addMirrorIntervals(colors, pos, count, componentScale, premulColors, true, &fIntervals);
225 }
226 }
227
find(SkScalar t) const228 const Sk4fGradientInterval* Sk4fGradientIntervalBuffer::find(SkScalar t) const {
229 // Binary search.
230 const auto* i0 = fIntervals.begin();
231 const auto* i1 = fIntervals.end() - 1;
232
233 while (i0 != i1) {
234 SkASSERT(i0 < i1);
235 SkASSERT(t >= i0->fP0 && t <= i1->fP1);
236
237 const auto* i = i0 + ((i1 - i0) >> 1);
238
239 if (t > i->fP1) {
240 i0 = i + 1;
241 } else {
242 i1 = i;
243 }
244 }
245
246 SkASSERT(i0->contains(t));
247 return i0;
248 }
249
findNext(SkScalar t,const Sk4fGradientInterval * prev,bool increasing) const250 const Sk4fGradientInterval* Sk4fGradientIntervalBuffer::findNext(
251 SkScalar t, const Sk4fGradientInterval* prev, bool increasing) const {
252
253 SkASSERT(!prev->contains(t));
254 SkASSERT(prev >= fIntervals.begin() && prev < fIntervals.end());
255 SkASSERT(t >= fIntervals.front().fP0 && t <= fIntervals.back().fP1);
256
257 const auto* i = prev;
258
259 // Use the |increasing| signal to figure which direction we should search for
260 // the next interval, then perform a linear search.
261 if (increasing) {
262 do {
263 i += 1;
264 if (i >= fIntervals.end()) {
265 i = fIntervals.begin();
266 }
267 } while (!i->contains(t));
268 } else {
269 do {
270 i -= 1;
271 if (i < fIntervals.begin()) {
272 i = fIntervals.end() - 1;
273 }
274 } while (!i->contains(t));
275 }
276
277 return i;
278 }
279
280 SkGradientShaderBase::
GradientShaderBase4fContext(const SkGradientShaderBase & shader,const ContextRec & rec)281 GradientShaderBase4fContext::GradientShaderBase4fContext(const SkGradientShaderBase& shader,
282 const ContextRec& rec)
283 : INHERITED(shader, rec)
284 , fFlags(this->INHERITED::getFlags())
285 #ifdef SK_SUPPORT_LEGACY_GRADIENT_DITHERING
286 , fDither(true)
287 #else
288 , fDither(rec.fPaint->isDither())
289 #endif
290 {
291 const SkMatrix& inverse = this->getTotalInverse();
292 fDstToPos.setConcat(shader.fPtsToUnit, inverse);
293 fDstToPosProc = fDstToPos.getMapXYProc();
294 fDstToPosClass = static_cast<uint8_t>(INHERITED::ComputeMatrixClass(fDstToPos));
295
296 if (shader.fColorsAreOpaque && this->getPaintAlpha() == SK_AlphaOPAQUE) {
297 fFlags |= kOpaqueAlpha_Flag;
298 }
299
300 fColorsArePremul =
301 (shader.fGradFlags & SkGradientShader::kInterpolateColorsInPremul_Flag)
302 || shader.fColorsAreOpaque;
303 }
304
305 bool SkGradientShaderBase::
isValid() const306 GradientShaderBase4fContext::isValid() const {
307 return fDstToPos.isFinite();
308 }
309
310 void SkGradientShaderBase::
shadeSpan(int x,int y,SkPMColor dst[],int count)311 GradientShaderBase4fContext::shadeSpan(int x, int y, SkPMColor dst[], int count) {
312 if (fColorsArePremul) {
313 this->shadePremulSpan<DstType::L32, ApplyPremul::False>(x, y, dst, count);
314 } else {
315 this->shadePremulSpan<DstType::L32, ApplyPremul::True>(x, y, dst, count);
316 }
317 }
318
319 void SkGradientShaderBase::
shadeSpan4f(int x,int y,SkPM4f dst[],int count)320 GradientShaderBase4fContext::shadeSpan4f(int x, int y, SkPM4f dst[], int count) {
321 if (fColorsArePremul) {
322 this->shadePremulSpan<DstType::F32, ApplyPremul::False>(x, y, dst, count);
323 } else {
324 this->shadePremulSpan<DstType::F32, ApplyPremul::True>(x, y, dst, count);
325 }
326 }
327
328 template<DstType dstType, ApplyPremul premul>
329 void SkGradientShaderBase::
shadePremulSpan(int x,int y,typename DstTraits<dstType,premul>::Type dst[],int count) const330 GradientShaderBase4fContext::shadePremulSpan(int x, int y,
331 typename DstTraits<dstType, premul>::Type dst[],
332 int count) const {
333 const SkGradientShaderBase& shader =
334 static_cast<const SkGradientShaderBase&>(fShader);
335
336 switch (shader.fTileMode) {
337 case kClamp_TileMode:
338 this->shadeSpanInternal<dstType,
339 premul,
340 kClamp_TileMode>(x, y, dst, count);
341 break;
342 case kRepeat_TileMode:
343 this->shadeSpanInternal<dstType,
344 premul,
345 kRepeat_TileMode>(x, y, dst, count);
346 break;
347 case kMirror_TileMode:
348 this->shadeSpanInternal<dstType,
349 premul,
350 kMirror_TileMode>(x, y, dst, count);
351 break;
352 }
353 }
354
355 template<DstType dstType, ApplyPremul premul, SkShader::TileMode tileMode>
356 void SkGradientShaderBase::
shadeSpanInternal(int x,int y,typename DstTraits<dstType,premul>::Type dst[],int count) const357 GradientShaderBase4fContext::shadeSpanInternal(int x, int y,
358 typename DstTraits<dstType, premul>::Type dst[],
359 int count) const {
360 static const int kBufSize = 128;
361 SkScalar ts[kBufSize];
362 TSampler<dstType, premul, tileMode> sampler(*this);
363
364 SkASSERT(count > 0);
365 do {
366 const int n = SkTMin(kBufSize, count);
367 this->mapTs(x, y, ts, n);
368 for (int i = 0; i < n; ++i) {
369 const Sk4f c = sampler.sample(ts[i]);
370 DstTraits<dstType, premul>::store(c, dst++);
371 }
372 x += n;
373 count -= n;
374 } while (count > 0);
375 }
376
377 template<DstType dstType, ApplyPremul premul, SkShader::TileMode tileMode>
378 class SkGradientShaderBase::GradientShaderBase4fContext::TSampler {
379 public:
TSampler(const GradientShaderBase4fContext & ctx)380 TSampler(const GradientShaderBase4fContext& ctx)
381 : fCtx(ctx)
382 , fInterval(nullptr) {
383 switch (tileMode) {
384 case kClamp_TileMode:
385 fLargestIntervalValue = SK_ScalarInfinity;
386 break;
387 case kRepeat_TileMode:
388 fLargestIntervalValue = nextafterf(1, 0);
389 break;
390 case kMirror_TileMode:
391 fLargestIntervalValue = nextafterf(2.0f, 0);
392 break;
393 }
394 }
395
sample(SkScalar t)396 Sk4f sample(SkScalar t) {
397 const auto tiled_t = tileProc(t);
398
399 if (!fInterval) {
400 // Very first sample => locate the initial interval.
401 // TODO: maybe do this in ctor to remove a branch?
402 fInterval = fCtx.fIntervals.find(tiled_t);
403 this->loadIntervalData(fInterval);
404 } else if (!fInterval->contains(tiled_t)) {
405 fInterval = fCtx.fIntervals.findNext(tiled_t, fInterval, t >= fPrevT);
406 this->loadIntervalData(fInterval);
407 }
408
409 fPrevT = t;
410 return lerp(tiled_t);
411 }
412
413 private:
tileProc(SkScalar t) const414 SkScalar tileProc(SkScalar t) const {
415 switch (tileMode) {
416 case kClamp_TileMode:
417 // synthetic clamp-mode edge intervals allow for a free-floating t:
418 // [-inf..0)[0..1)[1..+inf)
419 return t;
420 case kRepeat_TileMode:
421 // t % 1 (intervals range: [0..1))
422 // Due to the extra arithmetic, we must clamp to ensure the value remains less than 1.
423 return SkTMin(t - SkScalarFloorToScalar(t), fLargestIntervalValue);
424 case kMirror_TileMode:
425 // t % 2 (synthetic mirror intervals expand the range to [0..2)
426 // Due to the extra arithmetic, we must clamp to ensure the value remains less than 2.
427 return SkTMin(t - SkScalarFloorToScalar(t / 2) * 2, fLargestIntervalValue);
428 }
429
430 SK_ABORT("Unhandled tile mode.");
431 return 0;
432 }
433
lerp(SkScalar t)434 Sk4f lerp(SkScalar t) {
435 SkASSERT(fInterval->contains(t));
436 return fCc + fDc * (t - fInterval->fP0);
437 }
438
loadIntervalData(const Sk4fGradientInterval * i)439 void loadIntervalData(const Sk4fGradientInterval* i) {
440 fCc = DstTraits<dstType, premul>::load(i->fC0);
441 fDc = DstTraits<dstType, premul>::load(i->fDc);
442 }
443
444 const GradientShaderBase4fContext& fCtx;
445 const Sk4fGradientInterval* fInterval;
446 SkScalar fPrevT;
447 SkScalar fLargestIntervalValue;
448 Sk4f fCc;
449 Sk4f fDc;
450 };
451