1 // Copyright 2015, VIXL authors
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are met:
6 //
7 //   * Redistributions of source code must retain the above copyright notice,
8 //     this list of conditions and the following disclaimer.
9 //   * Redistributions in binary form must reproduce the above copyright notice,
10 //     this list of conditions and the following disclaimer in the documentation
11 //     and/or other materials provided with the distribution.
12 //   * Neither the name of ARM Limited nor the names of its contributors may be
13 //     used to endorse or promote products derived from this software without
14 //     specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 
27 #ifndef VIXL_UTILS_H
28 #define VIXL_UTILS_H
29 
30 #include <cmath>
31 #include <cstring>
32 #include <vector>
33 
34 #include "compiler-intrinsics-vixl.h"
35 #include "globals-vixl.h"
36 
37 namespace vixl {
38 
39 // Macros for compile-time format checking.
40 #if GCC_VERSION_OR_NEWER(4, 4, 0)
41 #define PRINTF_CHECK(format_index, varargs_index) \
42   __attribute__((format(gnu_printf, format_index, varargs_index)))
43 #else
44 #define PRINTF_CHECK(format_index, varargs_index)
45 #endif
46 
47 #ifdef __GNUC__
48 #define VIXL_HAS_DEPRECATED_WITH_MSG
49 #elif defined(__clang__)
50 #ifdef __has_extension(attribute_deprecated_with_message)
51 #define VIXL_HAS_DEPRECATED_WITH_MSG
52 #endif
53 #endif
54 
55 #ifdef VIXL_HAS_DEPRECATED_WITH_MSG
56 #define VIXL_DEPRECATED(replaced_by, declarator) \
57   __attribute__((deprecated("Use \"" replaced_by "\" instead"))) declarator
58 #else
59 #define VIXL_DEPRECATED(replaced_by, declarator) declarator
60 #endif
61 
62 #ifdef VIXL_DEBUG
63 #define VIXL_UNREACHABLE_OR_FALLTHROUGH() VIXL_UNREACHABLE()
64 #else
65 #define VIXL_UNREACHABLE_OR_FALLTHROUGH() VIXL_FALLTHROUGH()
66 #endif
67 
68 // Check number width.
69 // TODO: Refactor these using templates.
IsIntN(unsigned n,uint32_t x)70 inline bool IsIntN(unsigned n, uint32_t x) {
71   VIXL_ASSERT((0 < n) && (n < 32));
72   uint32_t limit = UINT32_C(1) << (n - 1);
73   return x < limit;
74 }
IsIntN(unsigned n,int32_t x)75 inline bool IsIntN(unsigned n, int32_t x) {
76   VIXL_ASSERT((0 < n) && (n < 32));
77   int32_t limit = INT32_C(1) << (n - 1);
78   return (-limit <= x) && (x < limit);
79 }
IsIntN(unsigned n,uint64_t x)80 inline bool IsIntN(unsigned n, uint64_t x) {
81   VIXL_ASSERT((0 < n) && (n < 64));
82   uint64_t limit = UINT64_C(1) << (n - 1);
83   return x < limit;
84 }
IsIntN(unsigned n,int64_t x)85 inline bool IsIntN(unsigned n, int64_t x) {
86   VIXL_ASSERT((0 < n) && (n < 64));
87   int64_t limit = INT64_C(1) << (n - 1);
88   return (-limit <= x) && (x < limit);
89 }
is_intn(unsigned n,int64_t x)90 VIXL_DEPRECATED("IsIntN", inline bool is_intn(unsigned n, int64_t x)) {
91   return IsIntN(n, x);
92 }
93 
IsUintN(unsigned n,uint32_t x)94 inline bool IsUintN(unsigned n, uint32_t x) {
95   VIXL_ASSERT((0 < n) && (n < 32));
96   return !(x >> n);
97 }
IsUintN(unsigned n,int32_t x)98 inline bool IsUintN(unsigned n, int32_t x) {
99   VIXL_ASSERT((0 < n) && (n < 32));
100   // Convert to an unsigned integer to avoid implementation-defined behavior.
101   return !(static_cast<uint32_t>(x) >> n);
102 }
IsUintN(unsigned n,uint64_t x)103 inline bool IsUintN(unsigned n, uint64_t x) {
104   VIXL_ASSERT((0 < n) && (n < 64));
105   return !(x >> n);
106 }
IsUintN(unsigned n,int64_t x)107 inline bool IsUintN(unsigned n, int64_t x) {
108   VIXL_ASSERT((0 < n) && (n < 64));
109   // Convert to an unsigned integer to avoid implementation-defined behavior.
110   return !(static_cast<uint64_t>(x) >> n);
111 }
is_uintn(unsigned n,int64_t x)112 VIXL_DEPRECATED("IsUintN", inline bool is_uintn(unsigned n, int64_t x)) {
113   return IsUintN(n, x);
114 }
115 
TruncateToUintN(unsigned n,uint64_t x)116 inline uint64_t TruncateToUintN(unsigned n, uint64_t x) {
117   VIXL_ASSERT((0 < n) && (n < 64));
118   return static_cast<uint64_t>(x) & ((UINT64_C(1) << n) - 1);
119 }
120 VIXL_DEPRECATED("TruncateToUintN",
121                 inline uint64_t truncate_to_intn(unsigned n, int64_t x)) {
122   return TruncateToUintN(n, x);
123 }
124 
125 // clang-format off
126 #define INT_1_TO_32_LIST(V)                                                    \
127 V(1)  V(2)  V(3)  V(4)  V(5)  V(6)  V(7)  V(8)                                 \
128 V(9)  V(10) V(11) V(12) V(13) V(14) V(15) V(16)                                \
129 V(17) V(18) V(19) V(20) V(21) V(22) V(23) V(24)                                \
130 V(25) V(26) V(27) V(28) V(29) V(30) V(31) V(32)
131 
132 #define INT_33_TO_63_LIST(V)                                                   \
133 V(33) V(34) V(35) V(36) V(37) V(38) V(39) V(40)                                \
134 V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48)                                \
135 V(49) V(50) V(51) V(52) V(53) V(54) V(55) V(56)                                \
136 V(57) V(58) V(59) V(60) V(61) V(62) V(63)
137 
138 #define INT_1_TO_63_LIST(V) INT_1_TO_32_LIST(V) INT_33_TO_63_LIST(V)
139 
140 // clang-format on
141 
142 #define DECLARE_IS_INT_N(N)                                       \
143   inline bool IsInt##N(int64_t x) { return IsIntN(N, x); }        \
144   VIXL_DEPRECATED("IsInt" #N, inline bool is_int##N(int64_t x)) { \
145     return IsIntN(N, x);                                          \
146   }
147 
148 #define DECLARE_IS_UINT_N(N)                                        \
149   inline bool IsUint##N(int64_t x) { return IsUintN(N, x); }        \
150   VIXL_DEPRECATED("IsUint" #N, inline bool is_uint##N(int64_t x)) { \
151     return IsUintN(N, x);                                           \
152   }
153 
154 #define DECLARE_TRUNCATE_TO_UINT_32(N)                             \
155   inline uint32_t TruncateToUint##N(uint64_t x) {                  \
156     return static_cast<uint32_t>(TruncateToUintN(N, x));           \
157   }                                                                \
158   VIXL_DEPRECATED("TruncateToUint" #N,                             \
159                   inline uint32_t truncate_to_int##N(int64_t x)) { \
160     return TruncateToUint##N(x);                                   \
161   }
162 
163 INT_1_TO_63_LIST(DECLARE_IS_INT_N)
INT_1_TO_63_LIST(DECLARE_IS_UINT_N)164 INT_1_TO_63_LIST(DECLARE_IS_UINT_N)
165 INT_1_TO_32_LIST(DECLARE_TRUNCATE_TO_UINT_32)
166 
167 #undef DECLARE_IS_INT_N
168 #undef DECLARE_IS_UINT_N
169 #undef DECLARE_TRUNCATE_TO_INT_N
170 
171 // Bit field extraction.
172 inline uint64_t ExtractUnsignedBitfield64(int msb, int lsb, uint64_t x) {
173   VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) &&
174               (msb >= lsb));
175   if ((msb == 63) && (lsb == 0)) return x;
176   return (x >> lsb) & ((static_cast<uint64_t>(1) << (1 + msb - lsb)) - 1);
177 }
178 
179 
ExtractUnsignedBitfield32(int msb,int lsb,uint32_t x)180 inline uint32_t ExtractUnsignedBitfield32(int msb, int lsb, uint32_t x) {
181   VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) &&
182               (msb >= lsb));
183   return TruncateToUint32(ExtractUnsignedBitfield64(msb, lsb, x));
184 }
185 
186 
ExtractSignedBitfield64(int msb,int lsb,int64_t x)187 inline int64_t ExtractSignedBitfield64(int msb, int lsb, int64_t x) {
188   VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) &&
189               (msb >= lsb));
190   uint64_t temp = ExtractUnsignedBitfield64(msb, lsb, x);
191   // If the highest extracted bit is set, sign extend.
192   if ((temp >> (msb - lsb)) == 1) {
193     temp |= ~UINT64_C(0) << (msb - lsb);
194   }
195   int64_t result;
196   memcpy(&result, &temp, sizeof(result));
197   return result;
198 }
199 
200 
ExtractSignedBitfield32(int msb,int lsb,int32_t x)201 inline int32_t ExtractSignedBitfield32(int msb, int lsb, int32_t x) {
202   VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) &&
203               (msb >= lsb));
204   uint32_t temp = TruncateToUint32(ExtractSignedBitfield64(msb, lsb, x));
205   int32_t result;
206   memcpy(&result, &temp, sizeof(result));
207   return result;
208 }
209 
210 
RotateRight(uint64_t value,unsigned int rotate,unsigned int width)211 inline uint64_t RotateRight(uint64_t value,
212                             unsigned int rotate,
213                             unsigned int width) {
214   VIXL_ASSERT((width > 0) && (width <= 64));
215   uint64_t width_mask = ~UINT64_C(0) >> (64 - width);
216   rotate &= 63;
217   if (rotate > 0) {
218     value &= width_mask;
219     value = (value << (width - rotate)) | (value >> rotate);
220   }
221   return value & width_mask;
222 }
223 
224 
225 // Floating point representation.
226 uint32_t FloatToRawbits(float value);
227 VIXL_DEPRECATED("FloatToRawbits",
228                 inline uint32_t float_to_rawbits(float value)) {
229   return FloatToRawbits(value);
230 }
231 
232 uint64_t DoubleToRawbits(double value);
233 VIXL_DEPRECATED("DoubleToRawbits",
234                 inline uint64_t double_to_rawbits(double value)) {
235   return DoubleToRawbits(value);
236 }
237 
238 float RawbitsToFloat(uint32_t bits);
239 VIXL_DEPRECATED("RawbitsToFloat",
rawbits_to_float(uint32_t bits)240                 inline float rawbits_to_float(uint32_t bits)) {
241   return RawbitsToFloat(bits);
242 }
243 
244 double RawbitsToDouble(uint64_t bits);
245 VIXL_DEPRECATED("RawbitsToDouble",
rawbits_to_double(uint64_t bits)246                 inline double rawbits_to_double(uint64_t bits)) {
247   return RawbitsToDouble(bits);
248 }
249 
250 uint32_t FloatSign(float value);
251 VIXL_DEPRECATED("FloatSign", inline uint32_t float_sign(float value)) {
252   return FloatSign(value);
253 }
254 
255 uint32_t FloatExp(float value);
256 VIXL_DEPRECATED("FloatExp", inline uint32_t float_exp(float value)) {
257   return FloatExp(value);
258 }
259 
260 uint32_t FloatMantissa(float value);
261 VIXL_DEPRECATED("FloatMantissa", inline uint32_t float_mantissa(float value)) {
262   return FloatMantissa(value);
263 }
264 
265 uint32_t DoubleSign(double value);
266 VIXL_DEPRECATED("DoubleSign", inline uint32_t double_sign(double value)) {
267   return DoubleSign(value);
268 }
269 
270 uint32_t DoubleExp(double value);
271 VIXL_DEPRECATED("DoubleExp", inline uint32_t double_exp(double value)) {
272   return DoubleExp(value);
273 }
274 
275 uint64_t DoubleMantissa(double value);
276 VIXL_DEPRECATED("DoubleMantissa",
277                 inline uint64_t double_mantissa(double value)) {
278   return DoubleMantissa(value);
279 }
280 
281 float FloatPack(uint32_t sign, uint32_t exp, uint32_t mantissa);
282 VIXL_DEPRECATED("FloatPack",
float_pack(uint32_t sign,uint32_t exp,uint32_t mantissa)283                 inline float float_pack(uint32_t sign,
284                                         uint32_t exp,
285                                         uint32_t mantissa)) {
286   return FloatPack(sign, exp, mantissa);
287 }
288 
289 double DoublePack(uint64_t sign, uint64_t exp, uint64_t mantissa);
290 VIXL_DEPRECATED("DoublePack",
double_pack(uint32_t sign,uint32_t exp,uint64_t mantissa)291                 inline double double_pack(uint32_t sign,
292                                           uint32_t exp,
293                                           uint64_t mantissa)) {
294   return DoublePack(sign, exp, mantissa);
295 }
296 
297 // An fpclassify() function for 16-bit half-precision floats.
298 int Float16Classify(float16 value);
float16classify(float16 value)299 VIXL_DEPRECATED("Float16Classify", inline int float16classify(float16 value)) {
300   return Float16Classify(value);
301 }
302 
303 // NaN tests.
IsSignallingNaN(double num)304 inline bool IsSignallingNaN(double num) {
305   const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
306   uint64_t raw = DoubleToRawbits(num);
307   if (std::isnan(num) && ((raw & kFP64QuietNaNMask) == 0)) {
308     return true;
309   }
310   return false;
311 }
312 
313 
IsSignallingNaN(float num)314 inline bool IsSignallingNaN(float num) {
315   const uint32_t kFP32QuietNaNMask = 0x00400000;
316   uint32_t raw = FloatToRawbits(num);
317   if (std::isnan(num) && ((raw & kFP32QuietNaNMask) == 0)) {
318     return true;
319   }
320   return false;
321 }
322 
323 
IsSignallingNaN(float16 num)324 inline bool IsSignallingNaN(float16 num) {
325   const uint16_t kFP16QuietNaNMask = 0x0200;
326   return (Float16Classify(num) == FP_NAN) && ((num & kFP16QuietNaNMask) == 0);
327 }
328 
329 
330 template <typename T>
IsQuietNaN(T num)331 inline bool IsQuietNaN(T num) {
332   return std::isnan(num) && !IsSignallingNaN(num);
333 }
334 
335 
336 // Convert the NaN in 'num' to a quiet NaN.
ToQuietNaN(double num)337 inline double ToQuietNaN(double num) {
338   const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
339   VIXL_ASSERT(std::isnan(num));
340   return RawbitsToDouble(DoubleToRawbits(num) | kFP64QuietNaNMask);
341 }
342 
343 
ToQuietNaN(float num)344 inline float ToQuietNaN(float num) {
345   const uint32_t kFP32QuietNaNMask = 0x00400000;
346   VIXL_ASSERT(std::isnan(num));
347   return RawbitsToFloat(FloatToRawbits(num) | kFP32QuietNaNMask);
348 }
349 
350 
351 // Fused multiply-add.
FusedMultiplyAdd(double op1,double op2,double a)352 inline double FusedMultiplyAdd(double op1, double op2, double a) {
353   return fma(op1, op2, a);
354 }
355 
356 
FusedMultiplyAdd(float op1,float op2,float a)357 inline float FusedMultiplyAdd(float op1, float op2, float a) {
358   return fmaf(op1, op2, a);
359 }
360 
361 
LowestSetBit(uint64_t value)362 inline uint64_t LowestSetBit(uint64_t value) { return value & -value; }
363 
364 
365 template <typename T>
HighestSetBitPosition(T value)366 inline int HighestSetBitPosition(T value) {
367   VIXL_ASSERT(value != 0);
368   return (sizeof(value) * 8 - 1) - CountLeadingZeros(value);
369 }
370 
371 
372 template <typename V>
WhichPowerOf2(V value)373 inline int WhichPowerOf2(V value) {
374   VIXL_ASSERT(IsPowerOf2(value));
375   return CountTrailingZeros(value);
376 }
377 
378 
379 unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size);
380 
381 
382 int BitCount(uint64_t value);
383 
384 
385 template <typename T>
ReverseBits(T value)386 T ReverseBits(T value) {
387   VIXL_ASSERT((sizeof(value) == 1) || (sizeof(value) == 2) ||
388               (sizeof(value) == 4) || (sizeof(value) == 8));
389   T result = 0;
390   for (unsigned i = 0; i < (sizeof(value) * 8); i++) {
391     result = (result << 1) | (value & 1);
392     value >>= 1;
393   }
394   return result;
395 }
396 
397 
398 template <typename T>
SignExtend(T val,int bitSize)399 inline T SignExtend(T val, int bitSize) {
400   VIXL_ASSERT(bitSize > 0);
401   T mask = (T(2) << (bitSize - 1)) - T(1);
402   val &= mask;
403   T sign = -(val >> (bitSize - 1));
404   val |= (sign << bitSize);
405   return val;
406 }
407 
408 
409 template <typename T>
ReverseBytes(T value,int block_bytes_log2)410 T ReverseBytes(T value, int block_bytes_log2) {
411   VIXL_ASSERT((sizeof(value) == 4) || (sizeof(value) == 8));
412   VIXL_ASSERT((1U << block_bytes_log2) <= sizeof(value));
413   // Split the 64-bit value into an 8-bit array, where b[0] is the least
414   // significant byte, and b[7] is the most significant.
415   uint8_t bytes[8];
416   uint64_t mask = UINT64_C(0xff00000000000000);
417   for (int i = 7; i >= 0; i--) {
418     bytes[i] = (static_cast<uint64_t>(value) & mask) >> (i * 8);
419     mask >>= 8;
420   }
421 
422   // Permutation tables for REV instructions.
423   //  permute_table[0] is used by REV16_x, REV16_w
424   //  permute_table[1] is used by REV32_x, REV_w
425   //  permute_table[2] is used by REV_x
426   VIXL_ASSERT((0 < block_bytes_log2) && (block_bytes_log2 < 4));
427   static const uint8_t permute_table[3][8] = {{6, 7, 4, 5, 2, 3, 0, 1},
428                                               {4, 5, 6, 7, 0, 1, 2, 3},
429                                               {0, 1, 2, 3, 4, 5, 6, 7}};
430   uint64_t temp = 0;
431   for (int i = 0; i < 8; i++) {
432     temp <<= 8;
433     temp |= bytes[permute_table[block_bytes_log2 - 1][i]];
434   }
435 
436   T result;
437   VIXL_STATIC_ASSERT(sizeof(result) <= sizeof(temp));
438   memcpy(&result, &temp, sizeof(result));
439   return result;
440 }
441 
442 template <unsigned MULTIPLE, typename T>
IsMultiple(T value)443 inline bool IsMultiple(T value) {
444   VIXL_ASSERT(IsPowerOf2(MULTIPLE));
445   return (value & (MULTIPLE - 1)) == 0;
446 }
447 
448 template <typename T>
IsMultiple(T value,unsigned multiple)449 inline bool IsMultiple(T value, unsigned multiple) {
450   VIXL_ASSERT(IsPowerOf2(multiple));
451   return (value & (multiple - 1)) == 0;
452 }
453 
454 // Pointer alignment
455 // TODO: rename/refactor to make it specific to instructions.
456 template <unsigned ALIGN, typename T>
IsAligned(T pointer)457 inline bool IsAligned(T pointer) {
458   VIXL_ASSERT(sizeof(pointer) == sizeof(intptr_t));  // NOLINT(runtime/sizeof)
459   VIXL_ASSERT(IsPowerOf2(ALIGN));
460   // Use C-style casts to get static_cast behaviour for integral types (T), and
461   // reinterpret_cast behaviour for other types.
462   return ((intptr_t)(pointer) & (ALIGN - 1)) == 0;
463 }
464 
465 template <typename T>
IsWordAligned(T pointer)466 bool IsWordAligned(T pointer) {
467   return IsAligned<4>(pointer);
468 }
469 
470 // Increment a pointer (up to 64 bits) until it has the specified alignment.
471 template <class T>
AlignUp(T pointer,size_t alignment)472 T AlignUp(T pointer, size_t alignment) {
473   // Use C-style casts to get static_cast behaviour for integral types (T), and
474   // reinterpret_cast behaviour for other types.
475 
476   uint64_t pointer_raw = (uint64_t)pointer;
477   VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw));
478 
479   size_t align_step = (alignment - pointer_raw) % alignment;
480   VIXL_ASSERT((pointer_raw + align_step) % alignment == 0);
481 
482   T result = (T)(pointer_raw + align_step);
483 
484   VIXL_ASSERT(result >= pointer);
485 
486   return result;
487 }
488 
489 // Decrement a pointer (up to 64 bits) until it has the specified alignment.
490 template <class T>
AlignDown(T pointer,size_t alignment)491 T AlignDown(T pointer, size_t alignment) {
492   // Use C-style casts to get static_cast behaviour for integral types (T), and
493   // reinterpret_cast behaviour for other types.
494 
495   uint64_t pointer_raw = (uint64_t)pointer;
496   VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw));
497 
498   size_t align_step = pointer_raw % alignment;
499   VIXL_ASSERT((pointer_raw - align_step) % alignment == 0);
500 
501   return (T)(pointer_raw - align_step);
502 }
503 
504 template <typename T>
ExtractBit(T value,unsigned bit)505 inline T ExtractBit(T value, unsigned bit) {
506   return (value >> bit) & T(1);
507 }
508 
509 template <typename Ts, typename Td>
ExtractBits(Ts value,int least_significant_bit,Td mask)510 inline Td ExtractBits(Ts value, int least_significant_bit, Td mask) {
511   return Td((value >> least_significant_bit) & Ts(mask));
512 }
513 
514 template <typename Ts, typename Td>
AssignBit(Td & dst,int bit,Ts value)515 inline void AssignBit(Td& dst,  // NOLINT(runtime/references)
516                       int bit,
517                       Ts value) {
518   VIXL_ASSERT((value == Ts(0)) || (value == Ts(1)));
519   VIXL_ASSERT(bit >= 0);
520   VIXL_ASSERT(bit < static_cast<int>(sizeof(Td) * 8));
521   Td mask(1);
522   dst &= ~(mask << bit);
523   dst |= Td(value) << bit;
524 }
525 
526 template <typename Td, typename Ts>
AssignBits(Td & dst,int least_significant_bit,Ts mask,Ts value)527 inline void AssignBits(Td& dst,  // NOLINT(runtime/references)
528                        int least_significant_bit,
529                        Ts mask,
530                        Ts value) {
531   VIXL_ASSERT(least_significant_bit >= 0);
532   VIXL_ASSERT(least_significant_bit < static_cast<int>(sizeof(Td) * 8));
533   VIXL_ASSERT(((Td(mask) << least_significant_bit) >> least_significant_bit) ==
534               Td(mask));
535   VIXL_ASSERT((value & mask) == value);
536   dst &= ~(Td(mask) << least_significant_bit);
537   dst |= Td(value) << least_significant_bit;
538 }
539 
540 class VFP {
541  public:
FP32ToImm8(float imm)542   static uint32_t FP32ToImm8(float imm) {
543     // bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000
544     uint32_t bits = FloatToRawbits(imm);
545     // bit7: a000.0000
546     uint32_t bit7 = ((bits >> 31) & 0x1) << 7;
547     // bit6: 0b00.0000
548     uint32_t bit6 = ((bits >> 29) & 0x1) << 6;
549     // bit5_to_0: 00cd.efgh
550     uint32_t bit5_to_0 = (bits >> 19) & 0x3f;
551     return static_cast<uint32_t>(bit7 | bit6 | bit5_to_0);
552   }
FP64ToImm8(double imm)553   static uint32_t FP64ToImm8(double imm) {
554     // bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
555     //       0000.0000.0000.0000.0000.0000.0000.0000
556     uint64_t bits = DoubleToRawbits(imm);
557     // bit7: a000.0000
558     uint64_t bit7 = ((bits >> 63) & 0x1) << 7;
559     // bit6: 0b00.0000
560     uint64_t bit6 = ((bits >> 61) & 0x1) << 6;
561     // bit5_to_0: 00cd.efgh
562     uint64_t bit5_to_0 = (bits >> 48) & 0x3f;
563 
564     return static_cast<uint32_t>(bit7 | bit6 | bit5_to_0);
565   }
Imm8ToFP32(uint32_t imm8)566   static float Imm8ToFP32(uint32_t imm8) {
567     //   Imm8: abcdefgh (8 bits)
568     // Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
569     // where B is b ^ 1
570     uint32_t bits = imm8;
571     uint32_t bit7 = (bits >> 7) & 0x1;
572     uint32_t bit6 = (bits >> 6) & 0x1;
573     uint32_t bit5_to_0 = bits & 0x3f;
574     uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19);
575 
576     return RawbitsToFloat(result);
577   }
Imm8ToFP64(uint32_t imm8)578   static double Imm8ToFP64(uint32_t imm8) {
579     //   Imm8: abcdefgh (8 bits)
580     // Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
581     //         0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
582     // where B is b ^ 1
583     uint32_t bits = imm8;
584     uint64_t bit7 = (bits >> 7) & 0x1;
585     uint64_t bit6 = (bits >> 6) & 0x1;
586     uint64_t bit5_to_0 = bits & 0x3f;
587     uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48);
588     return RawbitsToDouble(result);
589   }
IsImmFP32(float imm)590   static bool IsImmFP32(float imm) {
591     // Valid values will have the form:
592     // aBbb.bbbc.defg.h000.0000.0000.0000.0000
593     uint32_t bits = FloatToRawbits(imm);
594     // bits[19..0] are cleared.
595     if ((bits & 0x7ffff) != 0) {
596       return false;
597     }
598 
599 
600     // bits[29..25] are all set or all cleared.
601     uint32_t b_pattern = (bits >> 16) & 0x3e00;
602     if (b_pattern != 0 && b_pattern != 0x3e00) {
603       return false;
604     }
605     // bit[30] and bit[29] are opposite.
606     if (((bits ^ (bits << 1)) & 0x40000000) == 0) {
607       return false;
608     }
609     return true;
610   }
IsImmFP64(double imm)611   static bool IsImmFP64(double imm) {
612     // Valid values will have the form:
613     // aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
614     // 0000.0000.0000.0000.0000.0000.0000.0000
615     uint64_t bits = DoubleToRawbits(imm);
616     // bits[47..0] are cleared.
617     if ((bits & 0x0000ffffffffffff) != 0) {
618       return false;
619     }
620     // bits[61..54] are all set or all cleared.
621     uint32_t b_pattern = (bits >> 48) & 0x3fc0;
622     if ((b_pattern != 0) && (b_pattern != 0x3fc0)) {
623       return false;
624     }
625     // bit[62] and bit[61] are opposite.
626     if (((bits ^ (bits << 1)) & (UINT64_C(1) << 62)) == 0) {
627       return false;
628     }
629     return true;
630   }
631 };
632 
633 class BitField {
634   // ForEachBitHelper is a functor that will call
635   // bool ForEachBitHelper::execute(ElementType id) const
636   //   and expects a boolean in return whether to continue (if true)
637   //   or stop (if false)
638   // check_set will check if the bits are on (true) or off(false)
639   template <typename ForEachBitHelper, bool check_set>
ForEachBit(const ForEachBitHelper & helper)640   bool ForEachBit(const ForEachBitHelper& helper) {
641     for (int i = 0; static_cast<size_t>(i) < bitfield_.size(); i++) {
642       if (bitfield_[i] == check_set)
643         if (!helper.execute(i)) return false;
644     }
645     return true;
646   }
647 
648  public:
BitField(unsigned size)649   explicit BitField(unsigned size) : bitfield_(size, 0) {}
650 
Set(int i)651   void Set(int i) {
652     VIXL_ASSERT((i >= 0) && (static_cast<size_t>(i) < bitfield_.size()));
653     bitfield_[i] = true;
654   }
655 
Unset(int i)656   void Unset(int i) {
657     VIXL_ASSERT((i >= 0) && (static_cast<size_t>(i) < bitfield_.size()));
658     bitfield_[i] = true;
659   }
660 
IsSet(int i)661   bool IsSet(int i) const { return bitfield_[i]; }
662 
663   // For each bit not set in the bitfield call the execute functor
664   // execute.
665   // ForEachBitSetHelper::execute returns true if the iteration through
666   // the bits can continue, otherwise it will stop.
667   // struct ForEachBitSetHelper {
668   //   bool execute(int /*id*/) { return false; }
669   // };
670   template <typename ForEachBitNotSetHelper>
ForEachBitNotSet(const ForEachBitNotSetHelper & helper)671   bool ForEachBitNotSet(const ForEachBitNotSetHelper& helper) {
672     return ForEachBit<ForEachBitNotSetHelper, false>(helper);
673   }
674 
675   // For each bit set in the bitfield call the execute functor
676   // execute.
677   template <typename ForEachBitSetHelper>
ForEachBitSet(const ForEachBitSetHelper & helper)678   bool ForEachBitSet(const ForEachBitSetHelper& helper) {
679     return ForEachBit<ForEachBitSetHelper, true>(helper);
680   }
681 
682  private:
683   std::vector<bool> bitfield_;
684 };
685 
686 typedef int64_t Int64;
687 class Uint64;
688 class Uint128;
689 
690 class Uint32 {
691   uint32_t data_;
692 
693  public:
694   // Unlike uint32_t, Uint32 has a default constructor.
Uint32()695   Uint32() { data_ = 0; }
Uint32(uint32_t data)696   explicit Uint32(uint32_t data) : data_(data) {}
697   inline explicit Uint32(Uint64 data);
Get()698   uint32_t Get() const { return data_; }
699   template <int N>
GetSigned()700   int32_t GetSigned() const {
701     return ExtractSignedBitfield32(N - 1, 0, data_);
702   }
GetSigned()703   int32_t GetSigned() const { return data_; }
704   Uint32 operator~() const { return Uint32(~data_); }
705   Uint32 operator-() const { return Uint32(-data_); }
706   bool operator==(Uint32 value) const { return data_ == value.data_; }
707   bool operator!=(Uint32 value) const { return data_ != value.data_; }
708   bool operator>(Uint32 value) const { return data_ > value.data_; }
709   Uint32 operator+(Uint32 value) const { return Uint32(data_ + value.data_); }
710   Uint32 operator-(Uint32 value) const { return Uint32(data_ - value.data_); }
711   Uint32 operator&(Uint32 value) const { return Uint32(data_ & value.data_); }
712   Uint32 operator&=(Uint32 value) {
713     data_ &= value.data_;
714     return *this;
715   }
716   Uint32 operator^(Uint32 value) const { return Uint32(data_ ^ value.data_); }
717   Uint32 operator^=(Uint32 value) {
718     data_ ^= value.data_;
719     return *this;
720   }
721   Uint32 operator|(Uint32 value) const { return Uint32(data_ | value.data_); }
722   Uint32 operator|=(Uint32 value) {
723     data_ |= value.data_;
724     return *this;
725   }
726   // Unlike uint32_t, the shift functions can accept negative shift and
727   // return 0 when the shift is too big.
728   Uint32 operator>>(int shift) const {
729     if (shift == 0) return *this;
730     if (shift < 0) {
731       int tmp = -shift;
732       if (tmp >= 32) return Uint32(0);
733       return Uint32(data_ << tmp);
734     }
735     int tmp = shift;
736     if (tmp >= 32) return Uint32(0);
737     return Uint32(data_ >> tmp);
738   }
739   Uint32 operator<<(int shift) const {
740     if (shift == 0) return *this;
741     if (shift < 0) {
742       int tmp = -shift;
743       if (tmp >= 32) return Uint32(0);
744       return Uint32(data_ >> tmp);
745     }
746     int tmp = shift;
747     if (tmp >= 32) return Uint32(0);
748     return Uint32(data_ << tmp);
749   }
750 };
751 
752 class Uint64 {
753   uint64_t data_;
754 
755  public:
756   // Unlike uint64_t, Uint64 has a default constructor.
Uint64()757   Uint64() { data_ = 0; }
Uint64(uint64_t data)758   explicit Uint64(uint64_t data) : data_(data) {}
Uint64(Uint32 data)759   explicit Uint64(Uint32 data) : data_(data.Get()) {}
760   inline explicit Uint64(Uint128 data);
Get()761   uint64_t Get() const { return data_; }
GetSigned(int N)762   int64_t GetSigned(int N) const {
763     return ExtractSignedBitfield64(N - 1, 0, data_);
764   }
GetSigned()765   int64_t GetSigned() const { return data_; }
ToUint32()766   Uint32 ToUint32() const {
767     VIXL_ASSERT((data_ >> 32) == 0);
768     return Uint32(static_cast<uint32_t>(data_));
769   }
GetHigh32()770   Uint32 GetHigh32() const { return Uint32(data_ >> 32); }
GetLow32()771   Uint32 GetLow32() const { return Uint32(data_ & 0xffffffff); }
772   Uint64 operator~() const { return Uint64(~data_); }
773   Uint64 operator-() const { return Uint64(-data_); }
774   bool operator==(Uint64 value) const { return data_ == value.data_; }
775   bool operator!=(Uint64 value) const { return data_ != value.data_; }
776   Uint64 operator+(Uint64 value) const { return Uint64(data_ + value.data_); }
777   Uint64 operator-(Uint64 value) const { return Uint64(data_ - value.data_); }
778   Uint64 operator&(Uint64 value) const { return Uint64(data_ & value.data_); }
779   Uint64 operator&=(Uint64 value) {
780     data_ &= value.data_;
781     return *this;
782   }
783   Uint64 operator^(Uint64 value) const { return Uint64(data_ ^ value.data_); }
784   Uint64 operator^=(Uint64 value) {
785     data_ ^= value.data_;
786     return *this;
787   }
788   Uint64 operator|(Uint64 value) const { return Uint64(data_ | value.data_); }
789   Uint64 operator|=(Uint64 value) {
790     data_ |= value.data_;
791     return *this;
792   }
793   // Unlike uint64_t, the shift functions can accept negative shift and
794   // return 0 when the shift is too big.
795   Uint64 operator>>(int shift) const {
796     if (shift == 0) return *this;
797     if (shift < 0) {
798       int tmp = -shift;
799       if (tmp >= 64) return Uint64(0);
800       return Uint64(data_ << tmp);
801     }
802     int tmp = shift;
803     if (tmp >= 64) return Uint64(0);
804     return Uint64(data_ >> tmp);
805   }
806   Uint64 operator<<(int shift) const {
807     if (shift == 0) return *this;
808     if (shift < 0) {
809       int tmp = -shift;
810       if (tmp >= 64) return Uint64(0);
811       return Uint64(data_ >> tmp);
812     }
813     int tmp = shift;
814     if (tmp >= 64) return Uint64(0);
815     return Uint64(data_ << tmp);
816   }
817 };
818 
819 class Uint128 {
820   uint64_t data_high_;
821   uint64_t data_low_;
822 
823  public:
Uint128()824   Uint128() : data_high_(0), data_low_(0) {}
Uint128(uint64_t data_low)825   explicit Uint128(uint64_t data_low) : data_high_(0), data_low_(data_low) {}
Uint128(Uint64 data_low)826   explicit Uint128(Uint64 data_low)
827       : data_high_(0), data_low_(data_low.Get()) {}
Uint128(uint64_t data_high,uint64_t data_low)828   Uint128(uint64_t data_high, uint64_t data_low)
829       : data_high_(data_high), data_low_(data_low) {}
ToUint64()830   Uint64 ToUint64() const {
831     VIXL_ASSERT(data_high_ == 0);
832     return Uint64(data_low_);
833   }
GetHigh64()834   Uint64 GetHigh64() const { return Uint64(data_high_); }
GetLow64()835   Uint64 GetLow64() const { return Uint64(data_low_); }
836   Uint128 operator~() const { return Uint128(~data_high_, ~data_low_); }
837   bool operator==(Uint128 value) const {
838     return (data_high_ == value.data_high_) && (data_low_ == value.data_low_);
839   }
840   Uint128 operator&(Uint128 value) const {
841     return Uint128(data_high_ & value.data_high_, data_low_ & value.data_low_);
842   }
843   Uint128 operator&=(Uint128 value) {
844     data_high_ &= value.data_high_;
845     data_low_ &= value.data_low_;
846     return *this;
847   }
848   Uint128 operator|=(Uint128 value) {
849     data_high_ |= value.data_high_;
850     data_low_ |= value.data_low_;
851     return *this;
852   }
853   Uint128 operator>>(int shift) const {
854     VIXL_ASSERT((shift >= 0) && (shift < 128));
855     if (shift == 0) return *this;
856     if (shift >= 64) {
857       return Uint128(0, data_high_ >> (shift - 64));
858     }
859     uint64_t tmp = (data_high_ << (64 - shift)) | (data_low_ >> shift);
860     return Uint128(data_high_ >> shift, tmp);
861   }
862   Uint128 operator<<(int shift) const {
863     VIXL_ASSERT((shift >= 0) && (shift < 128));
864     if (shift == 0) return *this;
865     if (shift >= 64) {
866       return Uint128(data_low_ << (shift - 64), 0);
867     }
868     uint64_t tmp = (data_high_ << shift) | (data_low_ >> (64 - shift));
869     return Uint128(tmp, data_low_ << shift);
870   }
871 };
872 
Uint32(Uint64 data)873 Uint32::Uint32(Uint64 data) : data_(data.ToUint32().Get()) {}
Uint64(Uint128 data)874 Uint64::Uint64(Uint128 data) : data_(data.ToUint64().Get()) {}
875 
876 Int64 BitCount(Uint32 value);
877 
878 }  // namespace vixl
879 
880 #endif  // VIXL_UTILS_H
881