1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a pattern matching instruction selector for PowerPC,
11 // converting from a legalized dag to a PPC dag.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "PPC.h"
16 #include "MCTargetDesc/PPCPredicates.h"
17 #include "PPCMachineFunctionInfo.h"
18 #include "PPCTargetMachine.h"
19 #include "llvm/Analysis/BranchProbabilityInfo.h"
20 #include "llvm/CodeGen/FunctionLoweringInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/SelectionDAG.h"
25 #include "llvm/CodeGen/SelectionDAGISel.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GlobalAlias.h"
29 #include "llvm/IR/GlobalValue.h"
30 #include "llvm/IR/GlobalVariable.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetOptions.h"
39 using namespace llvm;
40
41 #define DEBUG_TYPE "ppc-codegen"
42
43 // FIXME: Remove this once the bug has been fixed!
44 cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug",
45 cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden);
46
47 static cl::opt<bool>
48 UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true),
49 cl::desc("use aggressive ppc isel for bit permutations"),
50 cl::Hidden);
51 static cl::opt<bool> BPermRewriterNoMasking(
52 "ppc-bit-perm-rewriter-stress-rotates",
53 cl::desc("stress rotate selection in aggressive ppc isel for "
54 "bit permutations"),
55 cl::Hidden);
56
57 static cl::opt<bool> EnableBranchHint(
58 "ppc-use-branch-hint", cl::init(true),
59 cl::desc("Enable static hinting of branches on ppc"),
60 cl::Hidden);
61
62 namespace {
63 //===--------------------------------------------------------------------===//
64 /// PPCDAGToDAGISel - PPC specific code to select PPC machine
65 /// instructions for SelectionDAG operations.
66 ///
67 class PPCDAGToDAGISel : public SelectionDAGISel {
68 const PPCTargetMachine &TM;
69 const PPCSubtarget *PPCSubTarget;
70 const PPCTargetLowering *PPCLowering;
71 unsigned GlobalBaseReg;
72 public:
PPCDAGToDAGISel(PPCTargetMachine & tm)73 explicit PPCDAGToDAGISel(PPCTargetMachine &tm)
74 : SelectionDAGISel(tm), TM(tm) {}
75
runOnMachineFunction(MachineFunction & MF)76 bool runOnMachineFunction(MachineFunction &MF) override {
77 // Make sure we re-emit a set of the global base reg if necessary
78 GlobalBaseReg = 0;
79 PPCSubTarget = &MF.getSubtarget<PPCSubtarget>();
80 PPCLowering = PPCSubTarget->getTargetLowering();
81 SelectionDAGISel::runOnMachineFunction(MF);
82
83 if (!PPCSubTarget->isSVR4ABI())
84 InsertVRSaveCode(MF);
85
86 return true;
87 }
88
89 void PreprocessISelDAG() override;
90 void PostprocessISelDAG() override;
91
92 /// getI32Imm - Return a target constant with the specified value, of type
93 /// i32.
getI32Imm(unsigned Imm,const SDLoc & dl)94 inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
95 return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
96 }
97
98 /// getI64Imm - Return a target constant with the specified value, of type
99 /// i64.
getI64Imm(uint64_t Imm,const SDLoc & dl)100 inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) {
101 return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
102 }
103
104 /// getSmallIPtrImm - Return a target constant of pointer type.
getSmallIPtrImm(unsigned Imm,const SDLoc & dl)105 inline SDValue getSmallIPtrImm(unsigned Imm, const SDLoc &dl) {
106 return CurDAG->getTargetConstant(
107 Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout()));
108 }
109
110 /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
111 /// rotate and mask opcode and mask operation.
112 static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
113 unsigned &SH, unsigned &MB, unsigned &ME);
114
115 /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
116 /// base register. Return the virtual register that holds this value.
117 SDNode *getGlobalBaseReg();
118
119 void selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0);
120
121 // Select - Convert the specified operand from a target-independent to a
122 // target-specific node if it hasn't already been changed.
123 void Select(SDNode *N) override;
124
125 bool tryBitfieldInsert(SDNode *N);
126 bool tryBitPermutation(SDNode *N);
127
128 /// SelectCC - Select a comparison of the specified values with the
129 /// specified condition code, returning the CR# of the expression.
130 SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
131 const SDLoc &dl);
132
133 /// SelectAddrImm - Returns true if the address N can be represented by
134 /// a base register plus a signed 16-bit displacement [r+imm].
SelectAddrImm(SDValue N,SDValue & Disp,SDValue & Base)135 bool SelectAddrImm(SDValue N, SDValue &Disp,
136 SDValue &Base) {
137 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, false);
138 }
139
140 /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
141 /// immediate field. Note that the operand at this point is already the
142 /// result of a prior SelectAddressRegImm call.
SelectAddrImmOffs(SDValue N,SDValue & Out) const143 bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
144 if (N.getOpcode() == ISD::TargetConstant ||
145 N.getOpcode() == ISD::TargetGlobalAddress) {
146 Out = N;
147 return true;
148 }
149
150 return false;
151 }
152
153 /// SelectAddrIdx - Given the specified addressed, check to see if it can be
154 /// represented as an indexed [r+r] operation. Returns false if it can
155 /// be represented by [r+imm], which are preferred.
SelectAddrIdx(SDValue N,SDValue & Base,SDValue & Index)156 bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
157 return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG);
158 }
159
160 /// SelectAddrIdxOnly - Given the specified addressed, force it to be
161 /// represented as an indexed [r+r] operation.
SelectAddrIdxOnly(SDValue N,SDValue & Base,SDValue & Index)162 bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
163 return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
164 }
165
166 /// SelectAddrImmX4 - Returns true if the address N can be represented by
167 /// a base register plus a signed 16-bit displacement that is a multiple of 4.
168 /// Suitable for use by STD and friends.
SelectAddrImmX4(SDValue N,SDValue & Disp,SDValue & Base)169 bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
170 return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, true);
171 }
172
173 // Select an address into a single register.
SelectAddr(SDValue N,SDValue & Base)174 bool SelectAddr(SDValue N, SDValue &Base) {
175 Base = N;
176 return true;
177 }
178
179 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
180 /// inline asm expressions. It is always correct to compute the value into
181 /// a register. The case of adding a (possibly relocatable) constant to a
182 /// register can be improved, but it is wrong to substitute Reg+Reg for
183 /// Reg in an asm, because the load or store opcode would have to change.
SelectInlineAsmMemoryOperand(const SDValue & Op,unsigned ConstraintID,std::vector<SDValue> & OutOps)184 bool SelectInlineAsmMemoryOperand(const SDValue &Op,
185 unsigned ConstraintID,
186 std::vector<SDValue> &OutOps) override {
187
188 switch(ConstraintID) {
189 default:
190 errs() << "ConstraintID: " << ConstraintID << "\n";
191 llvm_unreachable("Unexpected asm memory constraint");
192 case InlineAsm::Constraint_es:
193 case InlineAsm::Constraint_i:
194 case InlineAsm::Constraint_m:
195 case InlineAsm::Constraint_o:
196 case InlineAsm::Constraint_Q:
197 case InlineAsm::Constraint_Z:
198 case InlineAsm::Constraint_Zy:
199 // We need to make sure that this one operand does not end up in r0
200 // (because we might end up lowering this as 0(%op)).
201 const TargetRegisterInfo *TRI = PPCSubTarget->getRegisterInfo();
202 const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1);
203 SDLoc dl(Op);
204 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32);
205 SDValue NewOp =
206 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
207 dl, Op.getValueType(),
208 Op, RC), 0);
209
210 OutOps.push_back(NewOp);
211 return false;
212 }
213 return true;
214 }
215
216 void InsertVRSaveCode(MachineFunction &MF);
217
getPassName() const218 const char *getPassName() const override {
219 return "PowerPC DAG->DAG Pattern Instruction Selection";
220 }
221
222 // Include the pieces autogenerated from the target description.
223 #include "PPCGenDAGISel.inc"
224
225 private:
226 bool trySETCC(SDNode *N);
227
228 void PeepholePPC64();
229 void PeepholePPC64ZExt();
230 void PeepholeCROps();
231
232 SDValue combineToCMPB(SDNode *N);
233 void foldBoolExts(SDValue &Res, SDNode *&N);
234
235 bool AllUsersSelectZero(SDNode *N);
236 void SwapAllSelectUsers(SDNode *N);
237
238 void transferMemOperands(SDNode *N, SDNode *Result);
239 };
240 }
241
242 /// InsertVRSaveCode - Once the entire function has been instruction selected,
243 /// all virtual registers are created and all machine instructions are built,
244 /// check to see if we need to save/restore VRSAVE. If so, do it.
InsertVRSaveCode(MachineFunction & Fn)245 void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
246 // Check to see if this function uses vector registers, which means we have to
247 // save and restore the VRSAVE register and update it with the regs we use.
248 //
249 // In this case, there will be virtual registers of vector type created
250 // by the scheduler. Detect them now.
251 bool HasVectorVReg = false;
252 for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) {
253 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
254 if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) {
255 HasVectorVReg = true;
256 break;
257 }
258 }
259 if (!HasVectorVReg) return; // nothing to do.
260
261 // If we have a vector register, we want to emit code into the entry and exit
262 // blocks to save and restore the VRSAVE register. We do this here (instead
263 // of marking all vector instructions as clobbering VRSAVE) for two reasons:
264 //
265 // 1. This (trivially) reduces the load on the register allocator, by not
266 // having to represent the live range of the VRSAVE register.
267 // 2. This (more significantly) allows us to create a temporary virtual
268 // register to hold the saved VRSAVE value, allowing this temporary to be
269 // register allocated, instead of forcing it to be spilled to the stack.
270
271 // Create two vregs - one to hold the VRSAVE register that is live-in to the
272 // function and one for the value after having bits or'd into it.
273 unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
274 unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
275
276 const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
277 MachineBasicBlock &EntryBB = *Fn.begin();
278 DebugLoc dl;
279 // Emit the following code into the entry block:
280 // InVRSAVE = MFVRSAVE
281 // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
282 // MTVRSAVE UpdatedVRSAVE
283 MachineBasicBlock::iterator IP = EntryBB.begin(); // Insert Point
284 BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE);
285 BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE),
286 UpdatedVRSAVE).addReg(InVRSAVE);
287 BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
288
289 // Find all return blocks, outputting a restore in each epilog.
290 for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
291 if (BB->isReturnBlock()) {
292 IP = BB->end(); --IP;
293
294 // Skip over all terminator instructions, which are part of the return
295 // sequence.
296 MachineBasicBlock::iterator I2 = IP;
297 while (I2 != BB->begin() && (--I2)->isTerminator())
298 IP = I2;
299
300 // Emit: MTVRSAVE InVRSave
301 BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
302 }
303 }
304 }
305
306
307 /// getGlobalBaseReg - Output the instructions required to put the
308 /// base address to use for accessing globals into a register.
309 ///
getGlobalBaseReg()310 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
311 if (!GlobalBaseReg) {
312 const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
313 // Insert the set of GlobalBaseReg into the first MBB of the function
314 MachineBasicBlock &FirstMBB = MF->front();
315 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
316 const Module *M = MF->getFunction()->getParent();
317 DebugLoc dl;
318
319 if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) {
320 if (PPCSubTarget->isTargetELF()) {
321 GlobalBaseReg = PPC::R30;
322 if (M->getPICLevel() == PICLevel::SmallPIC) {
323 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR));
324 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
325 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
326 } else {
327 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
328 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
329 unsigned TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
330 BuildMI(FirstMBB, MBBI, dl,
331 TII.get(PPC::UpdateGBR), GlobalBaseReg)
332 .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg);
333 MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
334 }
335 } else {
336 GlobalBaseReg =
337 RegInfo->createVirtualRegister(&PPC::GPRC_NOR0RegClass);
338 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
339 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
340 }
341 } else {
342 GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_NOX0RegClass);
343 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
344 BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
345 }
346 }
347 return CurDAG->getRegister(GlobalBaseReg,
348 PPCLowering->getPointerTy(CurDAG->getDataLayout()))
349 .getNode();
350 }
351
352 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
353 /// or 64-bit immediate, and if the value can be accurately represented as a
354 /// sign extension from a 16-bit value. If so, this returns true and the
355 /// immediate.
isIntS16Immediate(SDNode * N,short & Imm)356 static bool isIntS16Immediate(SDNode *N, short &Imm) {
357 if (N->getOpcode() != ISD::Constant)
358 return false;
359
360 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
361 if (N->getValueType(0) == MVT::i32)
362 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
363 else
364 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
365 }
366
isIntS16Immediate(SDValue Op,short & Imm)367 static bool isIntS16Immediate(SDValue Op, short &Imm) {
368 return isIntS16Immediate(Op.getNode(), Imm);
369 }
370
371
372 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
373 /// operand. If so Imm will receive the 32-bit value.
isInt32Immediate(SDNode * N,unsigned & Imm)374 static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
375 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
376 Imm = cast<ConstantSDNode>(N)->getZExtValue();
377 return true;
378 }
379 return false;
380 }
381
382 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant
383 /// operand. If so Imm will receive the 64-bit value.
isInt64Immediate(SDNode * N,uint64_t & Imm)384 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
385 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
386 Imm = cast<ConstantSDNode>(N)->getZExtValue();
387 return true;
388 }
389 return false;
390 }
391
392 // isInt32Immediate - This method tests to see if a constant operand.
393 // If so Imm will receive the 32 bit value.
isInt32Immediate(SDValue N,unsigned & Imm)394 static bool isInt32Immediate(SDValue N, unsigned &Imm) {
395 return isInt32Immediate(N.getNode(), Imm);
396 }
397
getBranchHint(unsigned PCC,FunctionLoweringInfo * FuncInfo,const SDValue & DestMBB)398 static unsigned getBranchHint(unsigned PCC, FunctionLoweringInfo *FuncInfo,
399 const SDValue &DestMBB) {
400 assert(isa<BasicBlockSDNode>(DestMBB));
401
402 if (!FuncInfo->BPI) return PPC::BR_NO_HINT;
403
404 const BasicBlock *BB = FuncInfo->MBB->getBasicBlock();
405 const TerminatorInst *BBTerm = BB->getTerminator();
406
407 if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT;
408
409 const BasicBlock *TBB = BBTerm->getSuccessor(0);
410 const BasicBlock *FBB = BBTerm->getSuccessor(1);
411
412 auto TProb = FuncInfo->BPI->getEdgeProbability(BB, TBB);
413 auto FProb = FuncInfo->BPI->getEdgeProbability(BB, FBB);
414
415 // We only want to handle cases which are easy to predict at static time, e.g.
416 // C++ throw statement, that is very likely not taken, or calling never
417 // returned function, e.g. stdlib exit(). So we set Threshold to filter
418 // unwanted cases.
419 //
420 // Below is LLVM branch weight table, we only want to handle case 1, 2
421 //
422 // Case Taken:Nontaken Example
423 // 1. Unreachable 1048575:1 C++ throw, stdlib exit(),
424 // 2. Invoke-terminating 1:1048575
425 // 3. Coldblock 4:64 __builtin_expect
426 // 4. Loop Branch 124:4 For loop
427 // 5. PH/ZH/FPH 20:12
428 const uint32_t Threshold = 10000;
429
430 if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb))
431 return PPC::BR_NO_HINT;
432
433 DEBUG(dbgs() << "Use branch hint for '" << FuncInfo->Fn->getName() << "::"
434 << BB->getName() << "'\n"
435 << " -> " << TBB->getName() << ": " << TProb << "\n"
436 << " -> " << FBB->getName() << ": " << FProb << "\n");
437
438 const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB);
439
440 // If Dest BasicBlock is False-BasicBlock (FBB), swap branch probabilities,
441 // because we want 'TProb' stands for 'branch probability' to Dest BasicBlock
442 if (BBDN->getBasicBlock()->getBasicBlock() != TBB)
443 std::swap(TProb, FProb);
444
445 return (TProb > FProb) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT;
446 }
447
448 // isOpcWithIntImmediate - This method tests to see if the node is a specific
449 // opcode and that it has a immediate integer right operand.
450 // If so Imm will receive the 32 bit value.
isOpcWithIntImmediate(SDNode * N,unsigned Opc,unsigned & Imm)451 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
452 return N->getOpcode() == Opc
453 && isInt32Immediate(N->getOperand(1).getNode(), Imm);
454 }
455
selectFrameIndex(SDNode * SN,SDNode * N,unsigned Offset)456 void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) {
457 SDLoc dl(SN);
458 int FI = cast<FrameIndexSDNode>(N)->getIndex();
459 SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
460 unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
461 if (SN->hasOneUse())
462 CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI,
463 getSmallIPtrImm(Offset, dl));
464 else
465 ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
466 getSmallIPtrImm(Offset, dl)));
467 }
468
isRotateAndMask(SDNode * N,unsigned Mask,bool isShiftMask,unsigned & SH,unsigned & MB,unsigned & ME)469 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
470 bool isShiftMask, unsigned &SH,
471 unsigned &MB, unsigned &ME) {
472 // Don't even go down this path for i64, since different logic will be
473 // necessary for rldicl/rldicr/rldimi.
474 if (N->getValueType(0) != MVT::i32)
475 return false;
476
477 unsigned Shift = 32;
478 unsigned Indeterminant = ~0; // bit mask marking indeterminant results
479 unsigned Opcode = N->getOpcode();
480 if (N->getNumOperands() != 2 ||
481 !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
482 return false;
483
484 if (Opcode == ISD::SHL) {
485 // apply shift left to mask if it comes first
486 if (isShiftMask) Mask = Mask << Shift;
487 // determine which bits are made indeterminant by shift
488 Indeterminant = ~(0xFFFFFFFFu << Shift);
489 } else if (Opcode == ISD::SRL) {
490 // apply shift right to mask if it comes first
491 if (isShiftMask) Mask = Mask >> Shift;
492 // determine which bits are made indeterminant by shift
493 Indeterminant = ~(0xFFFFFFFFu >> Shift);
494 // adjust for the left rotate
495 Shift = 32 - Shift;
496 } else if (Opcode == ISD::ROTL) {
497 Indeterminant = 0;
498 } else {
499 return false;
500 }
501
502 // if the mask doesn't intersect any Indeterminant bits
503 if (Mask && !(Mask & Indeterminant)) {
504 SH = Shift & 31;
505 // make sure the mask is still a mask (wrap arounds may not be)
506 return isRunOfOnes(Mask, MB, ME);
507 }
508 return false;
509 }
510
511 /// Turn an or of two masked values into the rotate left word immediate then
512 /// mask insert (rlwimi) instruction.
tryBitfieldInsert(SDNode * N)513 bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) {
514 SDValue Op0 = N->getOperand(0);
515 SDValue Op1 = N->getOperand(1);
516 SDLoc dl(N);
517
518 APInt LKZ, LKO, RKZ, RKO;
519 CurDAG->computeKnownBits(Op0, LKZ, LKO);
520 CurDAG->computeKnownBits(Op1, RKZ, RKO);
521
522 unsigned TargetMask = LKZ.getZExtValue();
523 unsigned InsertMask = RKZ.getZExtValue();
524
525 if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
526 unsigned Op0Opc = Op0.getOpcode();
527 unsigned Op1Opc = Op1.getOpcode();
528 unsigned Value, SH = 0;
529 TargetMask = ~TargetMask;
530 InsertMask = ~InsertMask;
531
532 // If the LHS has a foldable shift and the RHS does not, then swap it to the
533 // RHS so that we can fold the shift into the insert.
534 if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
535 if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
536 Op0.getOperand(0).getOpcode() == ISD::SRL) {
537 if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
538 Op1.getOperand(0).getOpcode() != ISD::SRL) {
539 std::swap(Op0, Op1);
540 std::swap(Op0Opc, Op1Opc);
541 std::swap(TargetMask, InsertMask);
542 }
543 }
544 } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
545 if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
546 Op1.getOperand(0).getOpcode() != ISD::SRL) {
547 std::swap(Op0, Op1);
548 std::swap(Op0Opc, Op1Opc);
549 std::swap(TargetMask, InsertMask);
550 }
551 }
552
553 unsigned MB, ME;
554 if (isRunOfOnes(InsertMask, MB, ME)) {
555 SDValue Tmp1, Tmp2;
556
557 if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
558 isInt32Immediate(Op1.getOperand(1), Value)) {
559 Op1 = Op1.getOperand(0);
560 SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
561 }
562 if (Op1Opc == ISD::AND) {
563 // The AND mask might not be a constant, and we need to make sure that
564 // if we're going to fold the masking with the insert, all bits not
565 // know to be zero in the mask are known to be one.
566 APInt MKZ, MKO;
567 CurDAG->computeKnownBits(Op1.getOperand(1), MKZ, MKO);
568 bool CanFoldMask = InsertMask == MKO.getZExtValue();
569
570 unsigned SHOpc = Op1.getOperand(0).getOpcode();
571 if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask &&
572 isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
573 // Note that Value must be in range here (less than 32) because
574 // otherwise there would not be any bits set in InsertMask.
575 Op1 = Op1.getOperand(0).getOperand(0);
576 SH = (SHOpc == ISD::SHL) ? Value : 32 - Value;
577 }
578 }
579
580 SH &= 31;
581 SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl),
582 getI32Imm(ME, dl) };
583 ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
584 return true;
585 }
586 }
587 return false;
588 }
589
590 // Predict the number of instructions that would be generated by calling
591 // getInt64(N).
getInt64CountDirect(int64_t Imm)592 static unsigned getInt64CountDirect(int64_t Imm) {
593 // Assume no remaining bits.
594 unsigned Remainder = 0;
595 // Assume no shift required.
596 unsigned Shift = 0;
597
598 // If it can't be represented as a 32 bit value.
599 if (!isInt<32>(Imm)) {
600 Shift = countTrailingZeros<uint64_t>(Imm);
601 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
602
603 // If the shifted value fits 32 bits.
604 if (isInt<32>(ImmSh)) {
605 // Go with the shifted value.
606 Imm = ImmSh;
607 } else {
608 // Still stuck with a 64 bit value.
609 Remainder = Imm;
610 Shift = 32;
611 Imm >>= 32;
612 }
613 }
614
615 // Intermediate operand.
616 unsigned Result = 0;
617
618 // Handle first 32 bits.
619 unsigned Lo = Imm & 0xFFFF;
620
621 // Simple value.
622 if (isInt<16>(Imm)) {
623 // Just the Lo bits.
624 ++Result;
625 } else if (Lo) {
626 // Handle the Hi bits and Lo bits.
627 Result += 2;
628 } else {
629 // Just the Hi bits.
630 ++Result;
631 }
632
633 // If no shift, we're done.
634 if (!Shift) return Result;
635
636 // Shift for next step if the upper 32-bits were not zero.
637 if (Imm)
638 ++Result;
639
640 // Add in the last bits as required.
641 if ((Remainder >> 16) & 0xFFFF)
642 ++Result;
643 if (Remainder & 0xFFFF)
644 ++Result;
645
646 return Result;
647 }
648
Rot64(uint64_t Imm,unsigned R)649 static uint64_t Rot64(uint64_t Imm, unsigned R) {
650 return (Imm << R) | (Imm >> (64 - R));
651 }
652
getInt64Count(int64_t Imm)653 static unsigned getInt64Count(int64_t Imm) {
654 unsigned Count = getInt64CountDirect(Imm);
655 if (Count == 1)
656 return Count;
657
658 for (unsigned r = 1; r < 63; ++r) {
659 uint64_t RImm = Rot64(Imm, r);
660 unsigned RCount = getInt64CountDirect(RImm) + 1;
661 Count = std::min(Count, RCount);
662
663 // See comments in getInt64 for an explanation of the logic below.
664 unsigned LS = findLastSet(RImm);
665 if (LS != r-1)
666 continue;
667
668 uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
669 uint64_t RImmWithOnes = RImm | OnesMask;
670
671 RCount = getInt64CountDirect(RImmWithOnes) + 1;
672 Count = std::min(Count, RCount);
673 }
674
675 return Count;
676 }
677
678 // Select a 64-bit constant. For cost-modeling purposes, getInt64Count
679 // (above) needs to be kept in sync with this function.
getInt64Direct(SelectionDAG * CurDAG,const SDLoc & dl,int64_t Imm)680 static SDNode *getInt64Direct(SelectionDAG *CurDAG, const SDLoc &dl,
681 int64_t Imm) {
682 // Assume no remaining bits.
683 unsigned Remainder = 0;
684 // Assume no shift required.
685 unsigned Shift = 0;
686
687 // If it can't be represented as a 32 bit value.
688 if (!isInt<32>(Imm)) {
689 Shift = countTrailingZeros<uint64_t>(Imm);
690 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
691
692 // If the shifted value fits 32 bits.
693 if (isInt<32>(ImmSh)) {
694 // Go with the shifted value.
695 Imm = ImmSh;
696 } else {
697 // Still stuck with a 64 bit value.
698 Remainder = Imm;
699 Shift = 32;
700 Imm >>= 32;
701 }
702 }
703
704 // Intermediate operand.
705 SDNode *Result;
706
707 // Handle first 32 bits.
708 unsigned Lo = Imm & 0xFFFF;
709 unsigned Hi = (Imm >> 16) & 0xFFFF;
710
711 auto getI32Imm = [CurDAG, dl](unsigned Imm) {
712 return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
713 };
714
715 // Simple value.
716 if (isInt<16>(Imm)) {
717 // Just the Lo bits.
718 Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo));
719 } else if (Lo) {
720 // Handle the Hi bits.
721 unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
722 Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi));
723 // And Lo bits.
724 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
725 SDValue(Result, 0), getI32Imm(Lo));
726 } else {
727 // Just the Hi bits.
728 Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
729 }
730
731 // If no shift, we're done.
732 if (!Shift) return Result;
733
734 // Shift for next step if the upper 32-bits were not zero.
735 if (Imm) {
736 Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64,
737 SDValue(Result, 0),
738 getI32Imm(Shift),
739 getI32Imm(63 - Shift));
740 }
741
742 // Add in the last bits as required.
743 if ((Hi = (Remainder >> 16) & 0xFFFF)) {
744 Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
745 SDValue(Result, 0), getI32Imm(Hi));
746 }
747 if ((Lo = Remainder & 0xFFFF)) {
748 Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
749 SDValue(Result, 0), getI32Imm(Lo));
750 }
751
752 return Result;
753 }
754
getInt64(SelectionDAG * CurDAG,const SDLoc & dl,int64_t Imm)755 static SDNode *getInt64(SelectionDAG *CurDAG, const SDLoc &dl, int64_t Imm) {
756 unsigned Count = getInt64CountDirect(Imm);
757 if (Count == 1)
758 return getInt64Direct(CurDAG, dl, Imm);
759
760 unsigned RMin = 0;
761
762 int64_t MatImm;
763 unsigned MaskEnd;
764
765 for (unsigned r = 1; r < 63; ++r) {
766 uint64_t RImm = Rot64(Imm, r);
767 unsigned RCount = getInt64CountDirect(RImm) + 1;
768 if (RCount < Count) {
769 Count = RCount;
770 RMin = r;
771 MatImm = RImm;
772 MaskEnd = 63;
773 }
774
775 // If the immediate to generate has many trailing zeros, it might be
776 // worthwhile to generate a rotated value with too many leading ones
777 // (because that's free with li/lis's sign-extension semantics), and then
778 // mask them off after rotation.
779
780 unsigned LS = findLastSet(RImm);
781 // We're adding (63-LS) higher-order ones, and we expect to mask them off
782 // after performing the inverse rotation by (64-r). So we need that:
783 // 63-LS == 64-r => LS == r-1
784 if (LS != r-1)
785 continue;
786
787 uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
788 uint64_t RImmWithOnes = RImm | OnesMask;
789
790 RCount = getInt64CountDirect(RImmWithOnes) + 1;
791 if (RCount < Count) {
792 Count = RCount;
793 RMin = r;
794 MatImm = RImmWithOnes;
795 MaskEnd = LS;
796 }
797 }
798
799 if (!RMin)
800 return getInt64Direct(CurDAG, dl, Imm);
801
802 auto getI32Imm = [CurDAG, dl](unsigned Imm) {
803 return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
804 };
805
806 SDValue Val = SDValue(getInt64Direct(CurDAG, dl, MatImm), 0);
807 return CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Val,
808 getI32Imm(64 - RMin), getI32Imm(MaskEnd));
809 }
810
811 // Select a 64-bit constant.
getInt64(SelectionDAG * CurDAG,SDNode * N)812 static SDNode *getInt64(SelectionDAG *CurDAG, SDNode *N) {
813 SDLoc dl(N);
814
815 // Get 64 bit value.
816 int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
817 return getInt64(CurDAG, dl, Imm);
818 }
819
820 namespace {
821 class BitPermutationSelector {
822 struct ValueBit {
823 SDValue V;
824
825 // The bit number in the value, using a convention where bit 0 is the
826 // lowest-order bit.
827 unsigned Idx;
828
829 enum Kind {
830 ConstZero,
831 Variable
832 } K;
833
ValueBit__anon7bd595e20411::BitPermutationSelector::ValueBit834 ValueBit(SDValue V, unsigned I, Kind K = Variable)
835 : V(V), Idx(I), K(K) {}
ValueBit__anon7bd595e20411::BitPermutationSelector::ValueBit836 ValueBit(Kind K = Variable)
837 : V(SDValue(nullptr, 0)), Idx(UINT32_MAX), K(K) {}
838
isZero__anon7bd595e20411::BitPermutationSelector::ValueBit839 bool isZero() const {
840 return K == ConstZero;
841 }
842
hasValue__anon7bd595e20411::BitPermutationSelector::ValueBit843 bool hasValue() const {
844 return K == Variable;
845 }
846
getValue__anon7bd595e20411::BitPermutationSelector::ValueBit847 SDValue getValue() const {
848 assert(hasValue() && "Cannot get the value of a constant bit");
849 return V;
850 }
851
getValueBitIndex__anon7bd595e20411::BitPermutationSelector::ValueBit852 unsigned getValueBitIndex() const {
853 assert(hasValue() && "Cannot get the value bit index of a constant bit");
854 return Idx;
855 }
856 };
857
858 // A bit group has the same underlying value and the same rotate factor.
859 struct BitGroup {
860 SDValue V;
861 unsigned RLAmt;
862 unsigned StartIdx, EndIdx;
863
864 // This rotation amount assumes that the lower 32 bits of the quantity are
865 // replicated in the high 32 bits by the rotation operator (which is done
866 // by rlwinm and friends in 64-bit mode).
867 bool Repl32;
868 // Did converting to Repl32 == true change the rotation factor? If it did,
869 // it decreased it by 32.
870 bool Repl32CR;
871 // Was this group coalesced after setting Repl32 to true?
872 bool Repl32Coalesced;
873
BitGroup__anon7bd595e20411::BitPermutationSelector::BitGroup874 BitGroup(SDValue V, unsigned R, unsigned S, unsigned E)
875 : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false),
876 Repl32Coalesced(false) {
877 DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R <<
878 " [" << S << ", " << E << "]\n");
879 }
880 };
881
882 // Information on each (Value, RLAmt) pair (like the number of groups
883 // associated with each) used to choose the lowering method.
884 struct ValueRotInfo {
885 SDValue V;
886 unsigned RLAmt;
887 unsigned NumGroups;
888 unsigned FirstGroupStartIdx;
889 bool Repl32;
890
ValueRotInfo__anon7bd595e20411::BitPermutationSelector::ValueRotInfo891 ValueRotInfo()
892 : RLAmt(UINT32_MAX), NumGroups(0), FirstGroupStartIdx(UINT32_MAX),
893 Repl32(false) {}
894
895 // For sorting (in reverse order) by NumGroups, and then by
896 // FirstGroupStartIdx.
operator <__anon7bd595e20411::BitPermutationSelector::ValueRotInfo897 bool operator < (const ValueRotInfo &Other) const {
898 // We need to sort so that the non-Repl32 come first because, when we're
899 // doing masking, the Repl32 bit groups might be subsumed into the 64-bit
900 // masking operation.
901 if (Repl32 < Other.Repl32)
902 return true;
903 else if (Repl32 > Other.Repl32)
904 return false;
905 else if (NumGroups > Other.NumGroups)
906 return true;
907 else if (NumGroups < Other.NumGroups)
908 return false;
909 else if (FirstGroupStartIdx < Other.FirstGroupStartIdx)
910 return true;
911 return false;
912 }
913 };
914
915 // Return true if something interesting was deduced, return false if we're
916 // providing only a generic representation of V (or something else likewise
917 // uninteresting for instruction selection).
getValueBits(SDValue V,SmallVector<ValueBit,64> & Bits)918 bool getValueBits(SDValue V, SmallVector<ValueBit, 64> &Bits) {
919 switch (V.getOpcode()) {
920 default: break;
921 case ISD::ROTL:
922 if (isa<ConstantSDNode>(V.getOperand(1))) {
923 unsigned RotAmt = V.getConstantOperandVal(1);
924
925 SmallVector<ValueBit, 64> LHSBits(Bits.size());
926 getValueBits(V.getOperand(0), LHSBits);
927
928 for (unsigned i = 0; i < Bits.size(); ++i)
929 Bits[i] = LHSBits[i < RotAmt ? i + (Bits.size() - RotAmt) : i - RotAmt];
930
931 return true;
932 }
933 break;
934 case ISD::SHL:
935 if (isa<ConstantSDNode>(V.getOperand(1))) {
936 unsigned ShiftAmt = V.getConstantOperandVal(1);
937
938 SmallVector<ValueBit, 64> LHSBits(Bits.size());
939 getValueBits(V.getOperand(0), LHSBits);
940
941 for (unsigned i = ShiftAmt; i < Bits.size(); ++i)
942 Bits[i] = LHSBits[i - ShiftAmt];
943
944 for (unsigned i = 0; i < ShiftAmt; ++i)
945 Bits[i] = ValueBit(ValueBit::ConstZero);
946
947 return true;
948 }
949 break;
950 case ISD::SRL:
951 if (isa<ConstantSDNode>(V.getOperand(1))) {
952 unsigned ShiftAmt = V.getConstantOperandVal(1);
953
954 SmallVector<ValueBit, 64> LHSBits(Bits.size());
955 getValueBits(V.getOperand(0), LHSBits);
956
957 for (unsigned i = 0; i < Bits.size() - ShiftAmt; ++i)
958 Bits[i] = LHSBits[i + ShiftAmt];
959
960 for (unsigned i = Bits.size() - ShiftAmt; i < Bits.size(); ++i)
961 Bits[i] = ValueBit(ValueBit::ConstZero);
962
963 return true;
964 }
965 break;
966 case ISD::AND:
967 if (isa<ConstantSDNode>(V.getOperand(1))) {
968 uint64_t Mask = V.getConstantOperandVal(1);
969
970 SmallVector<ValueBit, 64> LHSBits(Bits.size());
971 bool LHSTrivial = getValueBits(V.getOperand(0), LHSBits);
972
973 for (unsigned i = 0; i < Bits.size(); ++i)
974 if (((Mask >> i) & 1) == 1)
975 Bits[i] = LHSBits[i];
976 else
977 Bits[i] = ValueBit(ValueBit::ConstZero);
978
979 // Mark this as interesting, only if the LHS was also interesting. This
980 // prevents the overall procedure from matching a single immediate 'and'
981 // (which is non-optimal because such an and might be folded with other
982 // things if we don't select it here).
983 return LHSTrivial;
984 }
985 break;
986 case ISD::OR: {
987 SmallVector<ValueBit, 64> LHSBits(Bits.size()), RHSBits(Bits.size());
988 getValueBits(V.getOperand(0), LHSBits);
989 getValueBits(V.getOperand(1), RHSBits);
990
991 bool AllDisjoint = true;
992 for (unsigned i = 0; i < Bits.size(); ++i)
993 if (LHSBits[i].isZero())
994 Bits[i] = RHSBits[i];
995 else if (RHSBits[i].isZero())
996 Bits[i] = LHSBits[i];
997 else {
998 AllDisjoint = false;
999 break;
1000 }
1001
1002 if (!AllDisjoint)
1003 break;
1004
1005 return true;
1006 }
1007 }
1008
1009 for (unsigned i = 0; i < Bits.size(); ++i)
1010 Bits[i] = ValueBit(V, i);
1011
1012 return false;
1013 }
1014
1015 // For each value (except the constant ones), compute the left-rotate amount
1016 // to get it from its original to final position.
computeRotationAmounts()1017 void computeRotationAmounts() {
1018 HasZeros = false;
1019 RLAmt.resize(Bits.size());
1020 for (unsigned i = 0; i < Bits.size(); ++i)
1021 if (Bits[i].hasValue()) {
1022 unsigned VBI = Bits[i].getValueBitIndex();
1023 if (i >= VBI)
1024 RLAmt[i] = i - VBI;
1025 else
1026 RLAmt[i] = Bits.size() - (VBI - i);
1027 } else if (Bits[i].isZero()) {
1028 HasZeros = true;
1029 RLAmt[i] = UINT32_MAX;
1030 } else {
1031 llvm_unreachable("Unknown value bit type");
1032 }
1033 }
1034
1035 // Collect groups of consecutive bits with the same underlying value and
1036 // rotation factor. If we're doing late masking, we ignore zeros, otherwise
1037 // they break up groups.
collectBitGroups(bool LateMask)1038 void collectBitGroups(bool LateMask) {
1039 BitGroups.clear();
1040
1041 unsigned LastRLAmt = RLAmt[0];
1042 SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue();
1043 unsigned LastGroupStartIdx = 0;
1044 for (unsigned i = 1; i < Bits.size(); ++i) {
1045 unsigned ThisRLAmt = RLAmt[i];
1046 SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue();
1047 if (LateMask && !ThisValue) {
1048 ThisValue = LastValue;
1049 ThisRLAmt = LastRLAmt;
1050 // If we're doing late masking, then the first bit group always starts
1051 // at zero (even if the first bits were zero).
1052 if (BitGroups.empty())
1053 LastGroupStartIdx = 0;
1054 }
1055
1056 // If this bit has the same underlying value and the same rotate factor as
1057 // the last one, then they're part of the same group.
1058 if (ThisRLAmt == LastRLAmt && ThisValue == LastValue)
1059 continue;
1060
1061 if (LastValue.getNode())
1062 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1063 i-1));
1064 LastRLAmt = ThisRLAmt;
1065 LastValue = ThisValue;
1066 LastGroupStartIdx = i;
1067 }
1068 if (LastValue.getNode())
1069 BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1070 Bits.size()-1));
1071
1072 if (BitGroups.empty())
1073 return;
1074
1075 // We might be able to combine the first and last groups.
1076 if (BitGroups.size() > 1) {
1077 // If the first and last groups are the same, then remove the first group
1078 // in favor of the last group, making the ending index of the last group
1079 // equal to the ending index of the to-be-removed first group.
1080 if (BitGroups[0].StartIdx == 0 &&
1081 BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 &&
1082 BitGroups[0].V == BitGroups[BitGroups.size()-1].V &&
1083 BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) {
1084 DEBUG(dbgs() << "\tcombining final bit group with initial one\n");
1085 BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx;
1086 BitGroups.erase(BitGroups.begin());
1087 }
1088 }
1089 }
1090
1091 // Take all (SDValue, RLAmt) pairs and sort them by the number of groups
1092 // associated with each. If there is a degeneracy, pick the one that occurs
1093 // first (in the final value).
collectValueRotInfo()1094 void collectValueRotInfo() {
1095 ValueRots.clear();
1096
1097 for (auto &BG : BitGroups) {
1098 unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0);
1099 ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)];
1100 VRI.V = BG.V;
1101 VRI.RLAmt = BG.RLAmt;
1102 VRI.Repl32 = BG.Repl32;
1103 VRI.NumGroups += 1;
1104 VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx);
1105 }
1106
1107 // Now that we've collected the various ValueRotInfo instances, we need to
1108 // sort them.
1109 ValueRotsVec.clear();
1110 for (auto &I : ValueRots) {
1111 ValueRotsVec.push_back(I.second);
1112 }
1113 std::sort(ValueRotsVec.begin(), ValueRotsVec.end());
1114 }
1115
1116 // In 64-bit mode, rlwinm and friends have a rotation operator that
1117 // replicates the low-order 32 bits into the high-order 32-bits. The mask
1118 // indices of these instructions can only be in the lower 32 bits, so they
1119 // can only represent some 64-bit bit groups. However, when they can be used,
1120 // the 32-bit replication can be used to represent, as a single bit group,
1121 // otherwise separate bit groups. We'll convert to replicated-32-bit bit
1122 // groups when possible. Returns true if any of the bit groups were
1123 // converted.
assignRepl32BitGroups()1124 void assignRepl32BitGroups() {
1125 // If we have bits like this:
1126 //
1127 // Indices: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1128 // V bits: ... 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24
1129 // Groups: | RLAmt = 8 | RLAmt = 40 |
1130 //
1131 // But, making use of a 32-bit operation that replicates the low-order 32
1132 // bits into the high-order 32 bits, this can be one bit group with a RLAmt
1133 // of 8.
1134
1135 auto IsAllLow32 = [this](BitGroup & BG) {
1136 if (BG.StartIdx <= BG.EndIdx) {
1137 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) {
1138 if (!Bits[i].hasValue())
1139 continue;
1140 if (Bits[i].getValueBitIndex() >= 32)
1141 return false;
1142 }
1143 } else {
1144 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) {
1145 if (!Bits[i].hasValue())
1146 continue;
1147 if (Bits[i].getValueBitIndex() >= 32)
1148 return false;
1149 }
1150 for (unsigned i = 0; i <= BG.EndIdx; ++i) {
1151 if (!Bits[i].hasValue())
1152 continue;
1153 if (Bits[i].getValueBitIndex() >= 32)
1154 return false;
1155 }
1156 }
1157
1158 return true;
1159 };
1160
1161 for (auto &BG : BitGroups) {
1162 if (BG.StartIdx < 32 && BG.EndIdx < 32) {
1163 if (IsAllLow32(BG)) {
1164 if (BG.RLAmt >= 32) {
1165 BG.RLAmt -= 32;
1166 BG.Repl32CR = true;
1167 }
1168
1169 BG.Repl32 = true;
1170
1171 DEBUG(dbgs() << "\t32-bit replicated bit group for " <<
1172 BG.V.getNode() << " RLAmt = " << BG.RLAmt <<
1173 " [" << BG.StartIdx << ", " << BG.EndIdx << "]\n");
1174 }
1175 }
1176 }
1177
1178 // Now walk through the bit groups, consolidating where possible.
1179 for (auto I = BitGroups.begin(); I != BitGroups.end();) {
1180 // We might want to remove this bit group by merging it with the previous
1181 // group (which might be the ending group).
1182 auto IP = (I == BitGroups.begin()) ?
1183 std::prev(BitGroups.end()) : std::prev(I);
1184 if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt &&
1185 I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) {
1186
1187 DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for " <<
1188 I->V.getNode() << " RLAmt = " << I->RLAmt <<
1189 " [" << I->StartIdx << ", " << I->EndIdx <<
1190 "] with group with range [" <<
1191 IP->StartIdx << ", " << IP->EndIdx << "]\n");
1192
1193 IP->EndIdx = I->EndIdx;
1194 IP->Repl32CR = IP->Repl32CR || I->Repl32CR;
1195 IP->Repl32Coalesced = true;
1196 I = BitGroups.erase(I);
1197 continue;
1198 } else {
1199 // There is a special case worth handling: If there is a single group
1200 // covering the entire upper 32 bits, and it can be merged with both
1201 // the next and previous groups (which might be the same group), then
1202 // do so. If it is the same group (so there will be only one group in
1203 // total), then we need to reverse the order of the range so that it
1204 // covers the entire 64 bits.
1205 if (I->StartIdx == 32 && I->EndIdx == 63) {
1206 assert(std::next(I) == BitGroups.end() &&
1207 "bit group ends at index 63 but there is another?");
1208 auto IN = BitGroups.begin();
1209
1210 if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V &&
1211 (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt &&
1212 IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP &&
1213 IsAllLow32(*I)) {
1214
1215 DEBUG(dbgs() << "\tcombining bit group for " <<
1216 I->V.getNode() << " RLAmt = " << I->RLAmt <<
1217 " [" << I->StartIdx << ", " << I->EndIdx <<
1218 "] with 32-bit replicated groups with ranges [" <<
1219 IP->StartIdx << ", " << IP->EndIdx << "] and [" <<
1220 IN->StartIdx << ", " << IN->EndIdx << "]\n");
1221
1222 if (IP == IN) {
1223 // There is only one other group; change it to cover the whole
1224 // range (backward, so that it can still be Repl32 but cover the
1225 // whole 64-bit range).
1226 IP->StartIdx = 31;
1227 IP->EndIdx = 30;
1228 IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32;
1229 IP->Repl32Coalesced = true;
1230 I = BitGroups.erase(I);
1231 } else {
1232 // There are two separate groups, one before this group and one
1233 // after us (at the beginning). We're going to remove this group,
1234 // but also the group at the very beginning.
1235 IP->EndIdx = IN->EndIdx;
1236 IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32;
1237 IP->Repl32Coalesced = true;
1238 I = BitGroups.erase(I);
1239 BitGroups.erase(BitGroups.begin());
1240 }
1241
1242 // This must be the last group in the vector (and we might have
1243 // just invalidated the iterator above), so break here.
1244 break;
1245 }
1246 }
1247 }
1248
1249 ++I;
1250 }
1251 }
1252
getI32Imm(unsigned Imm,const SDLoc & dl)1253 SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
1254 return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1255 }
1256
getZerosMask()1257 uint64_t getZerosMask() {
1258 uint64_t Mask = 0;
1259 for (unsigned i = 0; i < Bits.size(); ++i) {
1260 if (Bits[i].hasValue())
1261 continue;
1262 Mask |= (UINT64_C(1) << i);
1263 }
1264
1265 return ~Mask;
1266 }
1267
1268 // Depending on the number of groups for a particular value, it might be
1269 // better to rotate, mask explicitly (using andi/andis), and then or the
1270 // result. Select this part of the result first.
SelectAndParts32(const SDLoc & dl,SDValue & Res,unsigned * InstCnt)1271 void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
1272 if (BPermRewriterNoMasking)
1273 return;
1274
1275 for (ValueRotInfo &VRI : ValueRotsVec) {
1276 unsigned Mask = 0;
1277 for (unsigned i = 0; i < Bits.size(); ++i) {
1278 if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V)
1279 continue;
1280 if (RLAmt[i] != VRI.RLAmt)
1281 continue;
1282 Mask |= (1u << i);
1283 }
1284
1285 // Compute the masks for andi/andis that would be necessary.
1286 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
1287 assert((ANDIMask != 0 || ANDISMask != 0) &&
1288 "No set bits in mask for value bit groups");
1289 bool NeedsRotate = VRI.RLAmt != 0;
1290
1291 // We're trying to minimize the number of instructions. If we have one
1292 // group, using one of andi/andis can break even. If we have three
1293 // groups, we can use both andi and andis and break even (to use both
1294 // andi and andis we also need to or the results together). We need four
1295 // groups if we also need to rotate. To use andi/andis we need to do more
1296 // than break even because rotate-and-mask instructions tend to be easier
1297 // to schedule.
1298
1299 // FIXME: We've biased here against using andi/andis, which is right for
1300 // POWER cores, but not optimal everywhere. For example, on the A2,
1301 // andi/andis have single-cycle latency whereas the rotate-and-mask
1302 // instructions take two cycles, and it would be better to bias toward
1303 // andi/andis in break-even cases.
1304
1305 unsigned NumAndInsts = (unsigned) NeedsRotate +
1306 (unsigned) (ANDIMask != 0) +
1307 (unsigned) (ANDISMask != 0) +
1308 (unsigned) (ANDIMask != 0 && ANDISMask != 0) +
1309 (unsigned) (bool) Res;
1310
1311 DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() <<
1312 " RL: " << VRI.RLAmt << ":" <<
1313 "\n\t\t\tisel using masking: " << NumAndInsts <<
1314 " using rotates: " << VRI.NumGroups << "\n");
1315
1316 if (NumAndInsts >= VRI.NumGroups)
1317 continue;
1318
1319 DEBUG(dbgs() << "\t\t\t\tusing masking\n");
1320
1321 if (InstCnt) *InstCnt += NumAndInsts;
1322
1323 SDValue VRot;
1324 if (VRI.RLAmt) {
1325 SDValue Ops[] =
1326 { VRI.V, getI32Imm(VRI.RLAmt, dl), getI32Imm(0, dl),
1327 getI32Imm(31, dl) };
1328 VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
1329 Ops), 0);
1330 } else {
1331 VRot = VRI.V;
1332 }
1333
1334 SDValue ANDIVal, ANDISVal;
1335 if (ANDIMask != 0)
1336 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
1337 VRot, getI32Imm(ANDIMask, dl)), 0);
1338 if (ANDISMask != 0)
1339 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
1340 VRot, getI32Imm(ANDISMask, dl)), 0);
1341
1342 SDValue TotalVal;
1343 if (!ANDIVal)
1344 TotalVal = ANDISVal;
1345 else if (!ANDISVal)
1346 TotalVal = ANDIVal;
1347 else
1348 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1349 ANDIVal, ANDISVal), 0);
1350
1351 if (!Res)
1352 Res = TotalVal;
1353 else
1354 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1355 Res, TotalVal), 0);
1356
1357 // Now, remove all groups with this underlying value and rotation
1358 // factor.
1359 eraseMatchingBitGroups([VRI](const BitGroup &BG) {
1360 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
1361 });
1362 }
1363 }
1364
1365 // Instruction selection for the 32-bit case.
Select32(SDNode * N,bool LateMask,unsigned * InstCnt)1366 SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) {
1367 SDLoc dl(N);
1368 SDValue Res;
1369
1370 if (InstCnt) *InstCnt = 0;
1371
1372 // Take care of cases that should use andi/andis first.
1373 SelectAndParts32(dl, Res, InstCnt);
1374
1375 // If we've not yet selected a 'starting' instruction, and we have no zeros
1376 // to fill in, select the (Value, RLAmt) with the highest priority (largest
1377 // number of groups), and start with this rotated value.
1378 if ((!HasZeros || LateMask) && !Res) {
1379 ValueRotInfo &VRI = ValueRotsVec[0];
1380 if (VRI.RLAmt) {
1381 if (InstCnt) *InstCnt += 1;
1382 SDValue Ops[] =
1383 { VRI.V, getI32Imm(VRI.RLAmt, dl), getI32Imm(0, dl),
1384 getI32Imm(31, dl) };
1385 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
1386 0);
1387 } else {
1388 Res = VRI.V;
1389 }
1390
1391 // Now, remove all groups with this underlying value and rotation factor.
1392 eraseMatchingBitGroups([VRI](const BitGroup &BG) {
1393 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
1394 });
1395 }
1396
1397 if (InstCnt) *InstCnt += BitGroups.size();
1398
1399 // Insert the other groups (one at a time).
1400 for (auto &BG : BitGroups) {
1401 if (!Res) {
1402 SDValue Ops[] =
1403 { BG.V, getI32Imm(BG.RLAmt, dl),
1404 getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
1405 getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
1406 Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
1407 } else {
1408 SDValue Ops[] =
1409 { Res, BG.V, getI32Imm(BG.RLAmt, dl),
1410 getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
1411 getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
1412 Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0);
1413 }
1414 }
1415
1416 if (LateMask) {
1417 unsigned Mask = (unsigned) getZerosMask();
1418
1419 unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
1420 assert((ANDIMask != 0 || ANDISMask != 0) &&
1421 "No set bits in zeros mask?");
1422
1423 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
1424 (unsigned) (ANDISMask != 0) +
1425 (unsigned) (ANDIMask != 0 && ANDISMask != 0);
1426
1427 SDValue ANDIVal, ANDISVal;
1428 if (ANDIMask != 0)
1429 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
1430 Res, getI32Imm(ANDIMask, dl)), 0);
1431 if (ANDISMask != 0)
1432 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
1433 Res, getI32Imm(ANDISMask, dl)), 0);
1434
1435 if (!ANDIVal)
1436 Res = ANDISVal;
1437 else if (!ANDISVal)
1438 Res = ANDIVal;
1439 else
1440 Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
1441 ANDIVal, ANDISVal), 0);
1442 }
1443
1444 return Res.getNode();
1445 }
1446
SelectRotMask64Count(unsigned RLAmt,bool Repl32,unsigned MaskStart,unsigned MaskEnd,bool IsIns)1447 unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32,
1448 unsigned MaskStart, unsigned MaskEnd,
1449 bool IsIns) {
1450 // In the notation used by the instructions, 'start' and 'end' are reversed
1451 // because bits are counted from high to low order.
1452 unsigned InstMaskStart = 64 - MaskEnd - 1,
1453 InstMaskEnd = 64 - MaskStart - 1;
1454
1455 if (Repl32)
1456 return 1;
1457
1458 if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) ||
1459 InstMaskEnd == 63 - RLAmt)
1460 return 1;
1461
1462 return 2;
1463 }
1464
1465 // For 64-bit values, not all combinations of rotates and masks are
1466 // available. Produce one if it is available.
SelectRotMask64(SDValue V,const SDLoc & dl,unsigned RLAmt,bool Repl32,unsigned MaskStart,unsigned MaskEnd,unsigned * InstCnt=nullptr)1467 SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt,
1468 bool Repl32, unsigned MaskStart, unsigned MaskEnd,
1469 unsigned *InstCnt = nullptr) {
1470 // In the notation used by the instructions, 'start' and 'end' are reversed
1471 // because bits are counted from high to low order.
1472 unsigned InstMaskStart = 64 - MaskEnd - 1,
1473 InstMaskEnd = 64 - MaskStart - 1;
1474
1475 if (InstCnt) *InstCnt += 1;
1476
1477 if (Repl32) {
1478 // This rotation amount assumes that the lower 32 bits of the quantity
1479 // are replicated in the high 32 bits by the rotation operator (which is
1480 // done by rlwinm and friends).
1481 assert(InstMaskStart >= 32 && "Mask cannot start out of range");
1482 assert(InstMaskEnd >= 32 && "Mask cannot end out of range");
1483 SDValue Ops[] =
1484 { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart - 32, dl),
1485 getI32Imm(InstMaskEnd - 32, dl) };
1486 return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64,
1487 Ops), 0);
1488 }
1489
1490 if (InstMaskEnd == 63) {
1491 SDValue Ops[] =
1492 { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) };
1493 return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0);
1494 }
1495
1496 if (InstMaskStart == 0) {
1497 SDValue Ops[] =
1498 { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskEnd, dl) };
1499 return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0);
1500 }
1501
1502 if (InstMaskEnd == 63 - RLAmt) {
1503 SDValue Ops[] =
1504 { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) };
1505 return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0);
1506 }
1507
1508 // We cannot do this with a single instruction, so we'll use two. The
1509 // problem is that we're not free to choose both a rotation amount and mask
1510 // start and end independently. We can choose an arbitrary mask start and
1511 // end, but then the rotation amount is fixed. Rotation, however, can be
1512 // inverted, and so by applying an "inverse" rotation first, we can get the
1513 // desired result.
1514 if (InstCnt) *InstCnt += 1;
1515
1516 // The rotation mask for the second instruction must be MaskStart.
1517 unsigned RLAmt2 = MaskStart;
1518 // The first instruction must rotate V so that the overall rotation amount
1519 // is RLAmt.
1520 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
1521 if (RLAmt1)
1522 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
1523 return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd);
1524 }
1525
1526 // For 64-bit values, not all combinations of rotates and masks are
1527 // available. Produce a rotate-mask-and-insert if one is available.
SelectRotMaskIns64(SDValue Base,SDValue V,const SDLoc & dl,unsigned RLAmt,bool Repl32,unsigned MaskStart,unsigned MaskEnd,unsigned * InstCnt=nullptr)1528 SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl,
1529 unsigned RLAmt, bool Repl32, unsigned MaskStart,
1530 unsigned MaskEnd, unsigned *InstCnt = nullptr) {
1531 // In the notation used by the instructions, 'start' and 'end' are reversed
1532 // because bits are counted from high to low order.
1533 unsigned InstMaskStart = 64 - MaskEnd - 1,
1534 InstMaskEnd = 64 - MaskStart - 1;
1535
1536 if (InstCnt) *InstCnt += 1;
1537
1538 if (Repl32) {
1539 // This rotation amount assumes that the lower 32 bits of the quantity
1540 // are replicated in the high 32 bits by the rotation operator (which is
1541 // done by rlwinm and friends).
1542 assert(InstMaskStart >= 32 && "Mask cannot start out of range");
1543 assert(InstMaskEnd >= 32 && "Mask cannot end out of range");
1544 SDValue Ops[] =
1545 { Base, V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart - 32, dl),
1546 getI32Imm(InstMaskEnd - 32, dl) };
1547 return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64,
1548 Ops), 0);
1549 }
1550
1551 if (InstMaskEnd == 63 - RLAmt) {
1552 SDValue Ops[] =
1553 { Base, V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) };
1554 return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0);
1555 }
1556
1557 // We cannot do this with a single instruction, so we'll use two. The
1558 // problem is that we're not free to choose both a rotation amount and mask
1559 // start and end independently. We can choose an arbitrary mask start and
1560 // end, but then the rotation amount is fixed. Rotation, however, can be
1561 // inverted, and so by applying an "inverse" rotation first, we can get the
1562 // desired result.
1563 if (InstCnt) *InstCnt += 1;
1564
1565 // The rotation mask for the second instruction must be MaskStart.
1566 unsigned RLAmt2 = MaskStart;
1567 // The first instruction must rotate V so that the overall rotation amount
1568 // is RLAmt.
1569 unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
1570 if (RLAmt1)
1571 V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
1572 return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd);
1573 }
1574
SelectAndParts64(const SDLoc & dl,SDValue & Res,unsigned * InstCnt)1575 void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
1576 if (BPermRewriterNoMasking)
1577 return;
1578
1579 // The idea here is the same as in the 32-bit version, but with additional
1580 // complications from the fact that Repl32 might be true. Because we
1581 // aggressively convert bit groups to Repl32 form (which, for small
1582 // rotation factors, involves no other change), and then coalesce, it might
1583 // be the case that a single 64-bit masking operation could handle both
1584 // some Repl32 groups and some non-Repl32 groups. If converting to Repl32
1585 // form allowed coalescing, then we must use a 32-bit rotaton in order to
1586 // completely capture the new combined bit group.
1587
1588 for (ValueRotInfo &VRI : ValueRotsVec) {
1589 uint64_t Mask = 0;
1590
1591 // We need to add to the mask all bits from the associated bit groups.
1592 // If Repl32 is false, we need to add bits from bit groups that have
1593 // Repl32 true, but are trivially convertable to Repl32 false. Such a
1594 // group is trivially convertable if it overlaps only with the lower 32
1595 // bits, and the group has not been coalesced.
1596 auto MatchingBG = [VRI](const BitGroup &BG) {
1597 if (VRI.V != BG.V)
1598 return false;
1599
1600 unsigned EffRLAmt = BG.RLAmt;
1601 if (!VRI.Repl32 && BG.Repl32) {
1602 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx &&
1603 !BG.Repl32Coalesced) {
1604 if (BG.Repl32CR)
1605 EffRLAmt += 32;
1606 } else {
1607 return false;
1608 }
1609 } else if (VRI.Repl32 != BG.Repl32) {
1610 return false;
1611 }
1612
1613 return VRI.RLAmt == EffRLAmt;
1614 };
1615
1616 for (auto &BG : BitGroups) {
1617 if (!MatchingBG(BG))
1618 continue;
1619
1620 if (BG.StartIdx <= BG.EndIdx) {
1621 for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i)
1622 Mask |= (UINT64_C(1) << i);
1623 } else {
1624 for (unsigned i = BG.StartIdx; i < Bits.size(); ++i)
1625 Mask |= (UINT64_C(1) << i);
1626 for (unsigned i = 0; i <= BG.EndIdx; ++i)
1627 Mask |= (UINT64_C(1) << i);
1628 }
1629 }
1630
1631 // We can use the 32-bit andi/andis technique if the mask does not
1632 // require any higher-order bits. This can save an instruction compared
1633 // to always using the general 64-bit technique.
1634 bool Use32BitInsts = isUInt<32>(Mask);
1635 // Compute the masks for andi/andis that would be necessary.
1636 unsigned ANDIMask = (Mask & UINT16_MAX),
1637 ANDISMask = (Mask >> 16) & UINT16_MAX;
1638
1639 bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask));
1640
1641 unsigned NumAndInsts = (unsigned) NeedsRotate +
1642 (unsigned) (bool) Res;
1643 if (Use32BitInsts)
1644 NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) +
1645 (unsigned) (ANDIMask != 0 && ANDISMask != 0);
1646 else
1647 NumAndInsts += getInt64Count(Mask) + /* and */ 1;
1648
1649 unsigned NumRLInsts = 0;
1650 bool FirstBG = true;
1651 for (auto &BG : BitGroups) {
1652 if (!MatchingBG(BG))
1653 continue;
1654 NumRLInsts +=
1655 SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx,
1656 !FirstBG);
1657 FirstBG = false;
1658 }
1659
1660 DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() <<
1661 " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") <<
1662 "\n\t\t\tisel using masking: " << NumAndInsts <<
1663 " using rotates: " << NumRLInsts << "\n");
1664
1665 // When we'd use andi/andis, we bias toward using the rotates (andi only
1666 // has a record form, and is cracked on POWER cores). However, when using
1667 // general 64-bit constant formation, bias toward the constant form,
1668 // because that exposes more opportunities for CSE.
1669 if (NumAndInsts > NumRLInsts)
1670 continue;
1671 if (Use32BitInsts && NumAndInsts == NumRLInsts)
1672 continue;
1673
1674 DEBUG(dbgs() << "\t\t\t\tusing masking\n");
1675
1676 if (InstCnt) *InstCnt += NumAndInsts;
1677
1678 SDValue VRot;
1679 // We actually need to generate a rotation if we have a non-zero rotation
1680 // factor or, in the Repl32 case, if we care about any of the
1681 // higher-order replicated bits. In the latter case, we generate a mask
1682 // backward so that it actually includes the entire 64 bits.
1683 if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)))
1684 VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
1685 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63);
1686 else
1687 VRot = VRI.V;
1688
1689 SDValue TotalVal;
1690 if (Use32BitInsts) {
1691 assert((ANDIMask != 0 || ANDISMask != 0) &&
1692 "No set bits in mask when using 32-bit ands for 64-bit value");
1693
1694 SDValue ANDIVal, ANDISVal;
1695 if (ANDIMask != 0)
1696 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
1697 VRot, getI32Imm(ANDIMask, dl)), 0);
1698 if (ANDISMask != 0)
1699 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
1700 VRot, getI32Imm(ANDISMask, dl)), 0);
1701
1702 if (!ANDIVal)
1703 TotalVal = ANDISVal;
1704 else if (!ANDISVal)
1705 TotalVal = ANDIVal;
1706 else
1707 TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
1708 ANDIVal, ANDISVal), 0);
1709 } else {
1710 TotalVal = SDValue(getInt64(CurDAG, dl, Mask), 0);
1711 TotalVal =
1712 SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
1713 VRot, TotalVal), 0);
1714 }
1715
1716 if (!Res)
1717 Res = TotalVal;
1718 else
1719 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
1720 Res, TotalVal), 0);
1721
1722 // Now, remove all groups with this underlying value and rotation
1723 // factor.
1724 eraseMatchingBitGroups(MatchingBG);
1725 }
1726 }
1727
1728 // Instruction selection for the 64-bit case.
Select64(SDNode * N,bool LateMask,unsigned * InstCnt)1729 SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) {
1730 SDLoc dl(N);
1731 SDValue Res;
1732
1733 if (InstCnt) *InstCnt = 0;
1734
1735 // Take care of cases that should use andi/andis first.
1736 SelectAndParts64(dl, Res, InstCnt);
1737
1738 // If we've not yet selected a 'starting' instruction, and we have no zeros
1739 // to fill in, select the (Value, RLAmt) with the highest priority (largest
1740 // number of groups), and start with this rotated value.
1741 if ((!HasZeros || LateMask) && !Res) {
1742 // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32
1743 // groups will come first, and so the VRI representing the largest number
1744 // of groups might not be first (it might be the first Repl32 groups).
1745 unsigned MaxGroupsIdx = 0;
1746 if (!ValueRotsVec[0].Repl32) {
1747 for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i)
1748 if (ValueRotsVec[i].Repl32) {
1749 if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups)
1750 MaxGroupsIdx = i;
1751 break;
1752 }
1753 }
1754
1755 ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx];
1756 bool NeedsRotate = false;
1757 if (VRI.RLAmt) {
1758 NeedsRotate = true;
1759 } else if (VRI.Repl32) {
1760 for (auto &BG : BitGroups) {
1761 if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt ||
1762 BG.Repl32 != VRI.Repl32)
1763 continue;
1764
1765 // We don't need a rotate if the bit group is confined to the lower
1766 // 32 bits.
1767 if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx)
1768 continue;
1769
1770 NeedsRotate = true;
1771 break;
1772 }
1773 }
1774
1775 if (NeedsRotate)
1776 Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
1777 VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63,
1778 InstCnt);
1779 else
1780 Res = VRI.V;
1781
1782 // Now, remove all groups with this underlying value and rotation factor.
1783 if (Res)
1784 eraseMatchingBitGroups([VRI](const BitGroup &BG) {
1785 return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt &&
1786 BG.Repl32 == VRI.Repl32;
1787 });
1788 }
1789
1790 // Because 64-bit rotates are more flexible than inserts, we might have a
1791 // preference regarding which one we do first (to save one instruction).
1792 if (!Res)
1793 for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) {
1794 if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
1795 false) <
1796 SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
1797 true)) {
1798 if (I != BitGroups.begin()) {
1799 BitGroup BG = *I;
1800 BitGroups.erase(I);
1801 BitGroups.insert(BitGroups.begin(), BG);
1802 }
1803
1804 break;
1805 }
1806 }
1807
1808 // Insert the other groups (one at a time).
1809 for (auto &BG : BitGroups) {
1810 if (!Res)
1811 Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx,
1812 BG.EndIdx, InstCnt);
1813 else
1814 Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32,
1815 BG.StartIdx, BG.EndIdx, InstCnt);
1816 }
1817
1818 if (LateMask) {
1819 uint64_t Mask = getZerosMask();
1820
1821 // We can use the 32-bit andi/andis technique if the mask does not
1822 // require any higher-order bits. This can save an instruction compared
1823 // to always using the general 64-bit technique.
1824 bool Use32BitInsts = isUInt<32>(Mask);
1825 // Compute the masks for andi/andis that would be necessary.
1826 unsigned ANDIMask = (Mask & UINT16_MAX),
1827 ANDISMask = (Mask >> 16) & UINT16_MAX;
1828
1829 if (Use32BitInsts) {
1830 assert((ANDIMask != 0 || ANDISMask != 0) &&
1831 "No set bits in mask when using 32-bit ands for 64-bit value");
1832
1833 if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
1834 (unsigned) (ANDISMask != 0) +
1835 (unsigned) (ANDIMask != 0 && ANDISMask != 0);
1836
1837 SDValue ANDIVal, ANDISVal;
1838 if (ANDIMask != 0)
1839 ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
1840 Res, getI32Imm(ANDIMask, dl)), 0);
1841 if (ANDISMask != 0)
1842 ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
1843 Res, getI32Imm(ANDISMask, dl)), 0);
1844
1845 if (!ANDIVal)
1846 Res = ANDISVal;
1847 else if (!ANDISVal)
1848 Res = ANDIVal;
1849 else
1850 Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
1851 ANDIVal, ANDISVal), 0);
1852 } else {
1853 if (InstCnt) *InstCnt += getInt64Count(Mask) + /* and */ 1;
1854
1855 SDValue MaskVal = SDValue(getInt64(CurDAG, dl, Mask), 0);
1856 Res =
1857 SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
1858 Res, MaskVal), 0);
1859 }
1860 }
1861
1862 return Res.getNode();
1863 }
1864
Select(SDNode * N,bool LateMask,unsigned * InstCnt=nullptr)1865 SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) {
1866 // Fill in BitGroups.
1867 collectBitGroups(LateMask);
1868 if (BitGroups.empty())
1869 return nullptr;
1870
1871 // For 64-bit values, figure out when we can use 32-bit instructions.
1872 if (Bits.size() == 64)
1873 assignRepl32BitGroups();
1874
1875 // Fill in ValueRotsVec.
1876 collectValueRotInfo();
1877
1878 if (Bits.size() == 32) {
1879 return Select32(N, LateMask, InstCnt);
1880 } else {
1881 assert(Bits.size() == 64 && "Not 64 bits here?");
1882 return Select64(N, LateMask, InstCnt);
1883 }
1884
1885 return nullptr;
1886 }
1887
eraseMatchingBitGroups(function_ref<bool (const BitGroup &)> F)1888 void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) {
1889 BitGroups.erase(std::remove_if(BitGroups.begin(), BitGroups.end(), F),
1890 BitGroups.end());
1891 }
1892
1893 SmallVector<ValueBit, 64> Bits;
1894
1895 bool HasZeros;
1896 SmallVector<unsigned, 64> RLAmt;
1897
1898 SmallVector<BitGroup, 16> BitGroups;
1899
1900 DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots;
1901 SmallVector<ValueRotInfo, 16> ValueRotsVec;
1902
1903 SelectionDAG *CurDAG;
1904
1905 public:
BitPermutationSelector(SelectionDAG * DAG)1906 BitPermutationSelector(SelectionDAG *DAG)
1907 : CurDAG(DAG) {}
1908
1909 // Here we try to match complex bit permutations into a set of
1910 // rotate-and-shift/shift/and/or instructions, using a set of heuristics
1911 // known to produce optimial code for common cases (like i32 byte swapping).
Select(SDNode * N)1912 SDNode *Select(SDNode *N) {
1913 Bits.resize(N->getValueType(0).getSizeInBits());
1914 if (!getValueBits(SDValue(N, 0), Bits))
1915 return nullptr;
1916
1917 DEBUG(dbgs() << "Considering bit-permutation-based instruction"
1918 " selection for: ");
1919 DEBUG(N->dump(CurDAG));
1920
1921 // Fill it RLAmt and set HasZeros.
1922 computeRotationAmounts();
1923
1924 if (!HasZeros)
1925 return Select(N, false);
1926
1927 // We currently have two techniques for handling results with zeros: early
1928 // masking (the default) and late masking. Late masking is sometimes more
1929 // efficient, but because the structure of the bit groups is different, it
1930 // is hard to tell without generating both and comparing the results. With
1931 // late masking, we ignore zeros in the resulting value when inserting each
1932 // set of bit groups, and then mask in the zeros at the end. With early
1933 // masking, we only insert the non-zero parts of the result at every step.
1934
1935 unsigned InstCnt, InstCntLateMask;
1936 DEBUG(dbgs() << "\tEarly masking:\n");
1937 SDNode *RN = Select(N, false, &InstCnt);
1938 DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n");
1939
1940 DEBUG(dbgs() << "\tLate masking:\n");
1941 SDNode *RNLM = Select(N, true, &InstCntLateMask);
1942 DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask <<
1943 " instructions\n");
1944
1945 if (InstCnt <= InstCntLateMask) {
1946 DEBUG(dbgs() << "\tUsing early-masking for isel\n");
1947 return RN;
1948 }
1949
1950 DEBUG(dbgs() << "\tUsing late-masking for isel\n");
1951 return RNLM;
1952 }
1953 };
1954 } // anonymous namespace
1955
tryBitPermutation(SDNode * N)1956 bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) {
1957 if (N->getValueType(0) != MVT::i32 &&
1958 N->getValueType(0) != MVT::i64)
1959 return false;
1960
1961 if (!UseBitPermRewriter)
1962 return false;
1963
1964 switch (N->getOpcode()) {
1965 default: break;
1966 case ISD::ROTL:
1967 case ISD::SHL:
1968 case ISD::SRL:
1969 case ISD::AND:
1970 case ISD::OR: {
1971 BitPermutationSelector BPS(CurDAG);
1972 if (SDNode *New = BPS.Select(N)) {
1973 ReplaceNode(N, New);
1974 return true;
1975 }
1976 return false;
1977 }
1978 }
1979
1980 return false;
1981 }
1982
1983 /// SelectCC - Select a comparison of the specified values with the specified
1984 /// condition code, returning the CR# of the expression.
SelectCC(SDValue LHS,SDValue RHS,ISD::CondCode CC,const SDLoc & dl)1985 SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1986 const SDLoc &dl) {
1987 // Always select the LHS.
1988 unsigned Opc;
1989
1990 if (LHS.getValueType() == MVT::i32) {
1991 unsigned Imm;
1992 if (CC == ISD::SETEQ || CC == ISD::SETNE) {
1993 if (isInt32Immediate(RHS, Imm)) {
1994 // SETEQ/SETNE comparison with 16-bit immediate, fold it.
1995 if (isUInt<16>(Imm))
1996 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
1997 getI32Imm(Imm & 0xFFFF, dl)),
1998 0);
1999 // If this is a 16-bit signed immediate, fold it.
2000 if (isInt<16>((int)Imm))
2001 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
2002 getI32Imm(Imm & 0xFFFF, dl)),
2003 0);
2004
2005 // For non-equality comparisons, the default code would materialize the
2006 // constant, then compare against it, like this:
2007 // lis r2, 4660
2008 // ori r2, r2, 22136
2009 // cmpw cr0, r3, r2
2010 // Since we are just comparing for equality, we can emit this instead:
2011 // xoris r0,r3,0x1234
2012 // cmplwi cr0,r0,0x5678
2013 // beq cr0,L6
2014 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
2015 getI32Imm(Imm >> 16, dl)), 0);
2016 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
2017 getI32Imm(Imm & 0xFFFF, dl)), 0);
2018 }
2019 Opc = PPC::CMPLW;
2020 } else if (ISD::isUnsignedIntSetCC(CC)) {
2021 if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
2022 return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
2023 getI32Imm(Imm & 0xFFFF, dl)), 0);
2024 Opc = PPC::CMPLW;
2025 } else {
2026 short SImm;
2027 if (isIntS16Immediate(RHS, SImm))
2028 return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
2029 getI32Imm((int)SImm & 0xFFFF,
2030 dl)),
2031 0);
2032 Opc = PPC::CMPW;
2033 }
2034 } else if (LHS.getValueType() == MVT::i64) {
2035 uint64_t Imm;
2036 if (CC == ISD::SETEQ || CC == ISD::SETNE) {
2037 if (isInt64Immediate(RHS.getNode(), Imm)) {
2038 // SETEQ/SETNE comparison with 16-bit immediate, fold it.
2039 if (isUInt<16>(Imm))
2040 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
2041 getI32Imm(Imm & 0xFFFF, dl)),
2042 0);
2043 // If this is a 16-bit signed immediate, fold it.
2044 if (isInt<16>(Imm))
2045 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
2046 getI32Imm(Imm & 0xFFFF, dl)),
2047 0);
2048
2049 // For non-equality comparisons, the default code would materialize the
2050 // constant, then compare against it, like this:
2051 // lis r2, 4660
2052 // ori r2, r2, 22136
2053 // cmpd cr0, r3, r2
2054 // Since we are just comparing for equality, we can emit this instead:
2055 // xoris r0,r3,0x1234
2056 // cmpldi cr0,r0,0x5678
2057 // beq cr0,L6
2058 if (isUInt<32>(Imm)) {
2059 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
2060 getI64Imm(Imm >> 16, dl)), 0);
2061 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
2062 getI64Imm(Imm & 0xFFFF, dl)),
2063 0);
2064 }
2065 }
2066 Opc = PPC::CMPLD;
2067 } else if (ISD::isUnsignedIntSetCC(CC)) {
2068 if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
2069 return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
2070 getI64Imm(Imm & 0xFFFF, dl)), 0);
2071 Opc = PPC::CMPLD;
2072 } else {
2073 short SImm;
2074 if (isIntS16Immediate(RHS, SImm))
2075 return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
2076 getI64Imm(SImm & 0xFFFF, dl)),
2077 0);
2078 Opc = PPC::CMPD;
2079 }
2080 } else if (LHS.getValueType() == MVT::f32) {
2081 Opc = PPC::FCMPUS;
2082 } else {
2083 assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
2084 Opc = PPCSubTarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
2085 }
2086 return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
2087 }
2088
getPredicateForSetCC(ISD::CondCode CC)2089 static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
2090 switch (CC) {
2091 case ISD::SETUEQ:
2092 case ISD::SETONE:
2093 case ISD::SETOLE:
2094 case ISD::SETOGE:
2095 llvm_unreachable("Should be lowered by legalize!");
2096 default: llvm_unreachable("Unknown condition!");
2097 case ISD::SETOEQ:
2098 case ISD::SETEQ: return PPC::PRED_EQ;
2099 case ISD::SETUNE:
2100 case ISD::SETNE: return PPC::PRED_NE;
2101 case ISD::SETOLT:
2102 case ISD::SETLT: return PPC::PRED_LT;
2103 case ISD::SETULE:
2104 case ISD::SETLE: return PPC::PRED_LE;
2105 case ISD::SETOGT:
2106 case ISD::SETGT: return PPC::PRED_GT;
2107 case ISD::SETUGE:
2108 case ISD::SETGE: return PPC::PRED_GE;
2109 case ISD::SETO: return PPC::PRED_NU;
2110 case ISD::SETUO: return PPC::PRED_UN;
2111 // These two are invalid for floating point. Assume we have int.
2112 case ISD::SETULT: return PPC::PRED_LT;
2113 case ISD::SETUGT: return PPC::PRED_GT;
2114 }
2115 }
2116
2117 /// getCRIdxForSetCC - Return the index of the condition register field
2118 /// associated with the SetCC condition, and whether or not the field is
2119 /// treated as inverted. That is, lt = 0; ge = 0 inverted.
getCRIdxForSetCC(ISD::CondCode CC,bool & Invert)2120 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) {
2121 Invert = false;
2122 switch (CC) {
2123 default: llvm_unreachable("Unknown condition!");
2124 case ISD::SETOLT:
2125 case ISD::SETLT: return 0; // Bit #0 = SETOLT
2126 case ISD::SETOGT:
2127 case ISD::SETGT: return 1; // Bit #1 = SETOGT
2128 case ISD::SETOEQ:
2129 case ISD::SETEQ: return 2; // Bit #2 = SETOEQ
2130 case ISD::SETUO: return 3; // Bit #3 = SETUO
2131 case ISD::SETUGE:
2132 case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE
2133 case ISD::SETULE:
2134 case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE
2135 case ISD::SETUNE:
2136 case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE
2137 case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO
2138 case ISD::SETUEQ:
2139 case ISD::SETOGE:
2140 case ISD::SETOLE:
2141 case ISD::SETONE:
2142 llvm_unreachable("Invalid branch code: should be expanded by legalize");
2143 // These are invalid for floating point. Assume integer.
2144 case ISD::SETULT: return 0;
2145 case ISD::SETUGT: return 1;
2146 }
2147 }
2148
2149 // getVCmpInst: return the vector compare instruction for the specified
2150 // vector type and condition code. Since this is for altivec specific code,
2151 // only support the altivec types (v16i8, v8i16, v4i32, v2i64, and v4f32).
getVCmpInst(MVT VecVT,ISD::CondCode CC,bool HasVSX,bool & Swap,bool & Negate)2152 static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC,
2153 bool HasVSX, bool &Swap, bool &Negate) {
2154 Swap = false;
2155 Negate = false;
2156
2157 if (VecVT.isFloatingPoint()) {
2158 /* Handle some cases by swapping input operands. */
2159 switch (CC) {
2160 case ISD::SETLE: CC = ISD::SETGE; Swap = true; break;
2161 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
2162 case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break;
2163 case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break;
2164 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
2165 case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break;
2166 default: break;
2167 }
2168 /* Handle some cases by negating the result. */
2169 switch (CC) {
2170 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
2171 case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break;
2172 case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break;
2173 case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break;
2174 default: break;
2175 }
2176 /* We have instructions implementing the remaining cases. */
2177 switch (CC) {
2178 case ISD::SETEQ:
2179 case ISD::SETOEQ:
2180 if (VecVT == MVT::v4f32)
2181 return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP;
2182 else if (VecVT == MVT::v2f64)
2183 return PPC::XVCMPEQDP;
2184 break;
2185 case ISD::SETGT:
2186 case ISD::SETOGT:
2187 if (VecVT == MVT::v4f32)
2188 return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP;
2189 else if (VecVT == MVT::v2f64)
2190 return PPC::XVCMPGTDP;
2191 break;
2192 case ISD::SETGE:
2193 case ISD::SETOGE:
2194 if (VecVT == MVT::v4f32)
2195 return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP;
2196 else if (VecVT == MVT::v2f64)
2197 return PPC::XVCMPGEDP;
2198 break;
2199 default:
2200 break;
2201 }
2202 llvm_unreachable("Invalid floating-point vector compare condition");
2203 } else {
2204 /* Handle some cases by swapping input operands. */
2205 switch (CC) {
2206 case ISD::SETGE: CC = ISD::SETLE; Swap = true; break;
2207 case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
2208 case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
2209 case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break;
2210 default: break;
2211 }
2212 /* Handle some cases by negating the result. */
2213 switch (CC) {
2214 case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
2215 case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break;
2216 case ISD::SETLE: CC = ISD::SETGT; Negate = true; break;
2217 case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break;
2218 default: break;
2219 }
2220 /* We have instructions implementing the remaining cases. */
2221 switch (CC) {
2222 case ISD::SETEQ:
2223 case ISD::SETUEQ:
2224 if (VecVT == MVT::v16i8)
2225 return PPC::VCMPEQUB;
2226 else if (VecVT == MVT::v8i16)
2227 return PPC::VCMPEQUH;
2228 else if (VecVT == MVT::v4i32)
2229 return PPC::VCMPEQUW;
2230 else if (VecVT == MVT::v2i64)
2231 return PPC::VCMPEQUD;
2232 break;
2233 case ISD::SETGT:
2234 if (VecVT == MVT::v16i8)
2235 return PPC::VCMPGTSB;
2236 else if (VecVT == MVT::v8i16)
2237 return PPC::VCMPGTSH;
2238 else if (VecVT == MVT::v4i32)
2239 return PPC::VCMPGTSW;
2240 else if (VecVT == MVT::v2i64)
2241 return PPC::VCMPGTSD;
2242 break;
2243 case ISD::SETUGT:
2244 if (VecVT == MVT::v16i8)
2245 return PPC::VCMPGTUB;
2246 else if (VecVT == MVT::v8i16)
2247 return PPC::VCMPGTUH;
2248 else if (VecVT == MVT::v4i32)
2249 return PPC::VCMPGTUW;
2250 else if (VecVT == MVT::v2i64)
2251 return PPC::VCMPGTUD;
2252 break;
2253 default:
2254 break;
2255 }
2256 llvm_unreachable("Invalid integer vector compare condition");
2257 }
2258 }
2259
trySETCC(SDNode * N)2260 bool PPCDAGToDAGISel::trySETCC(SDNode *N) {
2261 SDLoc dl(N);
2262 unsigned Imm;
2263 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
2264 EVT PtrVT =
2265 CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
2266 bool isPPC64 = (PtrVT == MVT::i64);
2267
2268 if (!PPCSubTarget->useCRBits() &&
2269 isInt32Immediate(N->getOperand(1), Imm)) {
2270 // We can codegen setcc op, imm very efficiently compared to a brcond.
2271 // Check for those cases here.
2272 // setcc op, 0
2273 if (Imm == 0) {
2274 SDValue Op = N->getOperand(0);
2275 switch (CC) {
2276 default: break;
2277 case ISD::SETEQ: {
2278 Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
2279 SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl),
2280 getI32Imm(31, dl) };
2281 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2282 return true;
2283 }
2284 case ISD::SETNE: {
2285 if (isPPC64) break;
2286 SDValue AD =
2287 SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
2288 Op, getI32Imm(~0U, dl)), 0);
2289 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1));
2290 return true;
2291 }
2292 case ISD::SETLT: {
2293 SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
2294 getI32Imm(31, dl) };
2295 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2296 return true;
2297 }
2298 case ISD::SETGT: {
2299 SDValue T =
2300 SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
2301 T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
2302 SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl),
2303 getI32Imm(31, dl) };
2304 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2305 return true;
2306 }
2307 }
2308 } else if (Imm == ~0U) { // setcc op, -1
2309 SDValue Op = N->getOperand(0);
2310 switch (CC) {
2311 default: break;
2312 case ISD::SETEQ:
2313 if (isPPC64) break;
2314 Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
2315 Op, getI32Imm(1, dl)), 0);
2316 CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
2317 SDValue(CurDAG->getMachineNode(PPC::LI, dl,
2318 MVT::i32,
2319 getI32Imm(0, dl)),
2320 0), Op.getValue(1));
2321 return true;
2322 case ISD::SETNE: {
2323 if (isPPC64) break;
2324 Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
2325 SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
2326 Op, getI32Imm(~0U, dl));
2327 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op,
2328 SDValue(AD, 1));
2329 return true;
2330 }
2331 case ISD::SETLT: {
2332 SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
2333 getI32Imm(1, dl)), 0);
2334 SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
2335 Op), 0);
2336 SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl),
2337 getI32Imm(31, dl) };
2338 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2339 return true;
2340 }
2341 case ISD::SETGT: {
2342 SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
2343 getI32Imm(31, dl) };
2344 Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
2345 CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl));
2346 return true;
2347 }
2348 }
2349 }
2350 }
2351
2352 SDValue LHS = N->getOperand(0);
2353 SDValue RHS = N->getOperand(1);
2354
2355 // Altivec Vector compare instructions do not set any CR register by default and
2356 // vector compare operations return the same type as the operands.
2357 if (LHS.getValueType().isVector()) {
2358 if (PPCSubTarget->hasQPX())
2359 return false;
2360
2361 EVT VecVT = LHS.getValueType();
2362 bool Swap, Negate;
2363 unsigned int VCmpInst = getVCmpInst(VecVT.getSimpleVT(), CC,
2364 PPCSubTarget->hasVSX(), Swap, Negate);
2365 if (Swap)
2366 std::swap(LHS, RHS);
2367
2368 EVT ResVT = VecVT.changeVectorElementTypeToInteger();
2369 if (Negate) {
2370 SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0);
2371 CurDAG->SelectNodeTo(N, PPCSubTarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR,
2372 ResVT, VCmp, VCmp);
2373 return true;
2374 }
2375
2376 CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS);
2377 return true;
2378 }
2379
2380 if (PPCSubTarget->useCRBits())
2381 return false;
2382
2383 bool Inv;
2384 unsigned Idx = getCRIdxForSetCC(CC, Inv);
2385 SDValue CCReg = SelectCC(LHS, RHS, CC, dl);
2386 SDValue IntCR;
2387
2388 // Force the ccreg into CR7.
2389 SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
2390
2391 SDValue InFlag(nullptr, 0); // Null incoming flag value.
2392 CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
2393 InFlag).getValue(1);
2394
2395 IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
2396 CCReg), 0);
2397
2398 SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl),
2399 getI32Imm(31, dl), getI32Imm(31, dl) };
2400 if (!Inv) {
2401 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2402 return true;
2403 }
2404
2405 // Get the specified bit.
2406 SDValue Tmp =
2407 SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
2408 CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl));
2409 return true;
2410 }
2411
transferMemOperands(SDNode * N,SDNode * Result)2412 void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) {
2413 // Transfer memoperands.
2414 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
2415 MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
2416 cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);
2417 }
2418
2419
2420 // Select - Convert the specified operand from a target-independent to a
2421 // target-specific node if it hasn't already been changed.
Select(SDNode * N)2422 void PPCDAGToDAGISel::Select(SDNode *N) {
2423 SDLoc dl(N);
2424 if (N->isMachineOpcode()) {
2425 N->setNodeId(-1);
2426 return; // Already selected.
2427 }
2428
2429 // In case any misguided DAG-level optimizations form an ADD with a
2430 // TargetConstant operand, crash here instead of miscompiling (by selecting
2431 // an r+r add instead of some kind of r+i add).
2432 if (N->getOpcode() == ISD::ADD &&
2433 N->getOperand(1).getOpcode() == ISD::TargetConstant)
2434 llvm_unreachable("Invalid ADD with TargetConstant operand");
2435
2436 // Try matching complex bit permutations before doing anything else.
2437 if (tryBitPermutation(N))
2438 return;
2439
2440 switch (N->getOpcode()) {
2441 default: break;
2442
2443 case ISD::Constant: {
2444 if (N->getValueType(0) == MVT::i64) {
2445 ReplaceNode(N, getInt64(CurDAG, N));
2446 return;
2447 }
2448 break;
2449 }
2450
2451 case ISD::SETCC: {
2452 if (trySETCC(N))
2453 return;
2454 break;
2455 }
2456 case PPCISD::GlobalBaseReg:
2457 ReplaceNode(N, getGlobalBaseReg());
2458 return;
2459
2460 case ISD::FrameIndex:
2461 selectFrameIndex(N, N);
2462 return;
2463
2464 case PPCISD::MFOCRF: {
2465 SDValue InFlag = N->getOperand(1);
2466 ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
2467 N->getOperand(0), InFlag));
2468 return;
2469 }
2470
2471 case PPCISD::READ_TIME_BASE: {
2472 ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32,
2473 MVT::Other, N->getOperand(0)));
2474 return;
2475 }
2476
2477 case PPCISD::SRA_ADDZE: {
2478 SDValue N0 = N->getOperand(0);
2479 SDValue ShiftAmt =
2480 CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))->
2481 getConstantIntValue(), dl,
2482 N->getValueType(0));
2483 if (N->getValueType(0) == MVT::i64) {
2484 SDNode *Op =
2485 CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue,
2486 N0, ShiftAmt);
2487 CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0),
2488 SDValue(Op, 1));
2489 return;
2490 } else {
2491 assert(N->getValueType(0) == MVT::i32 &&
2492 "Expecting i64 or i32 in PPCISD::SRA_ADDZE");
2493 SDNode *Op =
2494 CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
2495 N0, ShiftAmt);
2496 CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0),
2497 SDValue(Op, 1));
2498 return;
2499 }
2500 }
2501
2502 case ISD::LOAD: {
2503 // Handle preincrement loads.
2504 LoadSDNode *LD = cast<LoadSDNode>(N);
2505 EVT LoadedVT = LD->getMemoryVT();
2506
2507 // Normal loads are handled by code generated from the .td file.
2508 if (LD->getAddressingMode() != ISD::PRE_INC)
2509 break;
2510
2511 SDValue Offset = LD->getOffset();
2512 if (Offset.getOpcode() == ISD::TargetConstant ||
2513 Offset.getOpcode() == ISD::TargetGlobalAddress) {
2514
2515 unsigned Opcode;
2516 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
2517 if (LD->getValueType(0) != MVT::i64) {
2518 // Handle PPC32 integer and normal FP loads.
2519 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
2520 switch (LoadedVT.getSimpleVT().SimpleTy) {
2521 default: llvm_unreachable("Invalid PPC load type!");
2522 case MVT::f64: Opcode = PPC::LFDU; break;
2523 case MVT::f32: Opcode = PPC::LFSU; break;
2524 case MVT::i32: Opcode = PPC::LWZU; break;
2525 case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
2526 case MVT::i1:
2527 case MVT::i8: Opcode = PPC::LBZU; break;
2528 }
2529 } else {
2530 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
2531 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
2532 switch (LoadedVT.getSimpleVT().SimpleTy) {
2533 default: llvm_unreachable("Invalid PPC load type!");
2534 case MVT::i64: Opcode = PPC::LDU; break;
2535 case MVT::i32: Opcode = PPC::LWZU8; break;
2536 case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
2537 case MVT::i1:
2538 case MVT::i8: Opcode = PPC::LBZU8; break;
2539 }
2540 }
2541
2542 SDValue Chain = LD->getChain();
2543 SDValue Base = LD->getBasePtr();
2544 SDValue Ops[] = { Offset, Base, Chain };
2545 SDNode *MN = CurDAG->getMachineNode(
2546 Opcode, dl, LD->getValueType(0),
2547 PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
2548 transferMemOperands(N, MN);
2549 ReplaceNode(N, MN);
2550 return;
2551 } else {
2552 unsigned Opcode;
2553 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
2554 if (LD->getValueType(0) != MVT::i64) {
2555 // Handle PPC32 integer and normal FP loads.
2556 assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
2557 switch (LoadedVT.getSimpleVT().SimpleTy) {
2558 default: llvm_unreachable("Invalid PPC load type!");
2559 case MVT::v4f64: Opcode = PPC::QVLFDUX; break; // QPX
2560 case MVT::v4f32: Opcode = PPC::QVLFSUX; break; // QPX
2561 case MVT::f64: Opcode = PPC::LFDUX; break;
2562 case MVT::f32: Opcode = PPC::LFSUX; break;
2563 case MVT::i32: Opcode = PPC::LWZUX; break;
2564 case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
2565 case MVT::i1:
2566 case MVT::i8: Opcode = PPC::LBZUX; break;
2567 }
2568 } else {
2569 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
2570 assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
2571 "Invalid sext update load");
2572 switch (LoadedVT.getSimpleVT().SimpleTy) {
2573 default: llvm_unreachable("Invalid PPC load type!");
2574 case MVT::i64: Opcode = PPC::LDUX; break;
2575 case MVT::i32: Opcode = isSExt ? PPC::LWAUX : PPC::LWZUX8; break;
2576 case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
2577 case MVT::i1:
2578 case MVT::i8: Opcode = PPC::LBZUX8; break;
2579 }
2580 }
2581
2582 SDValue Chain = LD->getChain();
2583 SDValue Base = LD->getBasePtr();
2584 SDValue Ops[] = { Base, Offset, Chain };
2585 SDNode *MN = CurDAG->getMachineNode(
2586 Opcode, dl, LD->getValueType(0),
2587 PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
2588 transferMemOperands(N, MN);
2589 ReplaceNode(N, MN);
2590 return;
2591 }
2592 }
2593
2594 case ISD::AND: {
2595 unsigned Imm, Imm2, SH, MB, ME;
2596 uint64_t Imm64;
2597
2598 // If this is an and of a value rotated between 0 and 31 bits and then and'd
2599 // with a mask, emit rlwinm
2600 if (isInt32Immediate(N->getOperand(1), Imm) &&
2601 isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) {
2602 SDValue Val = N->getOperand(0).getOperand(0);
2603 SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl),
2604 getI32Imm(ME, dl) };
2605 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2606 return;
2607 }
2608 // If this is just a masked value where the input is not handled above, and
2609 // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
2610 if (isInt32Immediate(N->getOperand(1), Imm) &&
2611 isRunOfOnes(Imm, MB, ME) &&
2612 N->getOperand(0).getOpcode() != ISD::ROTL) {
2613 SDValue Val = N->getOperand(0);
2614 SDValue Ops[] = { Val, getI32Imm(0, dl), getI32Imm(MB, dl),
2615 getI32Imm(ME, dl) };
2616 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2617 return;
2618 }
2619 // If this is a 64-bit zero-extension mask, emit rldicl.
2620 if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) &&
2621 isMask_64(Imm64)) {
2622 SDValue Val = N->getOperand(0);
2623 MB = 64 - countTrailingOnes(Imm64);
2624 SH = 0;
2625
2626 // If the operand is a logical right shift, we can fold it into this
2627 // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
2628 // for n <= mb. The right shift is really a left rotate followed by a
2629 // mask, and this mask is a more-restrictive sub-mask of the mask implied
2630 // by the shift.
2631 if (Val.getOpcode() == ISD::SRL &&
2632 isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) {
2633 assert(Imm < 64 && "Illegal shift amount");
2634 Val = Val.getOperand(0);
2635 SH = 64 - Imm;
2636 }
2637
2638 SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl) };
2639 CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
2640 return;
2641 }
2642 // AND X, 0 -> 0, not "rlwinm 32".
2643 if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
2644 ReplaceUses(SDValue(N, 0), N->getOperand(1));
2645 return;
2646 }
2647 // ISD::OR doesn't get all the bitfield insertion fun.
2648 // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a
2649 // bitfield insert.
2650 if (isInt32Immediate(N->getOperand(1), Imm) &&
2651 N->getOperand(0).getOpcode() == ISD::OR &&
2652 isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
2653 // The idea here is to check whether this is equivalent to:
2654 // (c1 & m) | (x & ~m)
2655 // where m is a run-of-ones mask. The logic here is that, for each bit in
2656 // c1 and c2:
2657 // - if both are 1, then the output will be 1.
2658 // - if both are 0, then the output will be 0.
2659 // - if the bit in c1 is 0, and the bit in c2 is 1, then the output will
2660 // come from x.
2661 // - if the bit in c1 is 1, and the bit in c2 is 0, then the output will
2662 // be 0.
2663 // If that last condition is never the case, then we can form m from the
2664 // bits that are the same between c1 and c2.
2665 unsigned MB, ME;
2666 if (isRunOfOnes(~(Imm^Imm2), MB, ME) && !(~Imm & Imm2)) {
2667 SDValue Ops[] = { N->getOperand(0).getOperand(0),
2668 N->getOperand(0).getOperand(1),
2669 getI32Imm(0, dl), getI32Imm(MB, dl),
2670 getI32Imm(ME, dl) };
2671 ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
2672 return;
2673 }
2674 }
2675
2676 // Other cases are autogenerated.
2677 break;
2678 }
2679 case ISD::OR: {
2680 if (N->getValueType(0) == MVT::i32)
2681 if (tryBitfieldInsert(N))
2682 return;
2683
2684 short Imm;
2685 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
2686 isIntS16Immediate(N->getOperand(1), Imm)) {
2687 APInt LHSKnownZero, LHSKnownOne;
2688 CurDAG->computeKnownBits(N->getOperand(0), LHSKnownZero, LHSKnownOne);
2689
2690 // If this is equivalent to an add, then we can fold it with the
2691 // FrameIndex calculation.
2692 if ((LHSKnownZero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) {
2693 selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
2694 return;
2695 }
2696 }
2697
2698 // Other cases are autogenerated.
2699 break;
2700 }
2701 case ISD::ADD: {
2702 short Imm;
2703 if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
2704 isIntS16Immediate(N->getOperand(1), Imm)) {
2705 selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
2706 return;
2707 }
2708
2709 break;
2710 }
2711 case ISD::SHL: {
2712 unsigned Imm, SH, MB, ME;
2713 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
2714 isRotateAndMask(N, Imm, true, SH, MB, ME)) {
2715 SDValue Ops[] = { N->getOperand(0).getOperand(0),
2716 getI32Imm(SH, dl), getI32Imm(MB, dl),
2717 getI32Imm(ME, dl) };
2718 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2719 return;
2720 }
2721
2722 // Other cases are autogenerated.
2723 break;
2724 }
2725 case ISD::SRL: {
2726 unsigned Imm, SH, MB, ME;
2727 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
2728 isRotateAndMask(N, Imm, true, SH, MB, ME)) {
2729 SDValue Ops[] = { N->getOperand(0).getOperand(0),
2730 getI32Imm(SH, dl), getI32Imm(MB, dl),
2731 getI32Imm(ME, dl) };
2732 CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
2733 return;
2734 }
2735
2736 // Other cases are autogenerated.
2737 break;
2738 }
2739 // FIXME: Remove this once the ANDI glue bug is fixed:
2740 case PPCISD::ANDIo_1_EQ_BIT:
2741 case PPCISD::ANDIo_1_GT_BIT: {
2742 if (!ANDIGlueBug)
2743 break;
2744
2745 EVT InVT = N->getOperand(0).getValueType();
2746 assert((InVT == MVT::i64 || InVT == MVT::i32) &&
2747 "Invalid input type for ANDIo_1_EQ_BIT");
2748
2749 unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDIo8 : PPC::ANDIo;
2750 SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue,
2751 N->getOperand(0),
2752 CurDAG->getTargetConstant(1, dl, InVT)),
2753 0);
2754 SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
2755 SDValue SRIdxVal =
2756 CurDAG->getTargetConstant(N->getOpcode() == PPCISD::ANDIo_1_EQ_BIT ?
2757 PPC::sub_eq : PPC::sub_gt, dl, MVT::i32);
2758
2759 CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg,
2760 SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */);
2761 return;
2762 }
2763 case ISD::SELECT_CC: {
2764 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
2765 EVT PtrVT =
2766 CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
2767 bool isPPC64 = (PtrVT == MVT::i64);
2768
2769 // If this is a select of i1 operands, we'll pattern match it.
2770 if (PPCSubTarget->useCRBits() &&
2771 N->getOperand(0).getValueType() == MVT::i1)
2772 break;
2773
2774 // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc
2775 if (!isPPC64)
2776 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2777 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
2778 if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
2779 if (N1C->isNullValue() && N3C->isNullValue() &&
2780 N2C->getZExtValue() == 1ULL && CC == ISD::SETNE &&
2781 // FIXME: Implement this optzn for PPC64.
2782 N->getValueType(0) == MVT::i32) {
2783 SDNode *Tmp =
2784 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
2785 N->getOperand(0), getI32Imm(~0U, dl));
2786 CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0),
2787 N->getOperand(0), SDValue(Tmp, 1));
2788 return;
2789 }
2790
2791 SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
2792
2793 if (N->getValueType(0) == MVT::i1) {
2794 // An i1 select is: (c & t) | (!c & f).
2795 bool Inv;
2796 unsigned Idx = getCRIdxForSetCC(CC, Inv);
2797
2798 unsigned SRI;
2799 switch (Idx) {
2800 default: llvm_unreachable("Invalid CC index");
2801 case 0: SRI = PPC::sub_lt; break;
2802 case 1: SRI = PPC::sub_gt; break;
2803 case 2: SRI = PPC::sub_eq; break;
2804 case 3: SRI = PPC::sub_un; break;
2805 }
2806
2807 SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg);
2808
2809 SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1,
2810 CCBit, CCBit), 0);
2811 SDValue C = Inv ? NotCCBit : CCBit,
2812 NotC = Inv ? CCBit : NotCCBit;
2813
2814 SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
2815 C, N->getOperand(2)), 0);
2816 SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
2817 NotC, N->getOperand(3)), 0);
2818
2819 CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF);
2820 return;
2821 }
2822
2823 unsigned BROpc = getPredicateForSetCC(CC);
2824
2825 unsigned SelectCCOp;
2826 if (N->getValueType(0) == MVT::i32)
2827 SelectCCOp = PPC::SELECT_CC_I4;
2828 else if (N->getValueType(0) == MVT::i64)
2829 SelectCCOp = PPC::SELECT_CC_I8;
2830 else if (N->getValueType(0) == MVT::f32)
2831 if (PPCSubTarget->hasP8Vector())
2832 SelectCCOp = PPC::SELECT_CC_VSSRC;
2833 else
2834 SelectCCOp = PPC::SELECT_CC_F4;
2835 else if (N->getValueType(0) == MVT::f64)
2836 if (PPCSubTarget->hasVSX())
2837 SelectCCOp = PPC::SELECT_CC_VSFRC;
2838 else
2839 SelectCCOp = PPC::SELECT_CC_F8;
2840 else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f64)
2841 SelectCCOp = PPC::SELECT_CC_QFRC;
2842 else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f32)
2843 SelectCCOp = PPC::SELECT_CC_QSRC;
2844 else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4i1)
2845 SelectCCOp = PPC::SELECT_CC_QBRC;
2846 else if (N->getValueType(0) == MVT::v2f64 ||
2847 N->getValueType(0) == MVT::v2i64)
2848 SelectCCOp = PPC::SELECT_CC_VSRC;
2849 else
2850 SelectCCOp = PPC::SELECT_CC_VRRC;
2851
2852 SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
2853 getI32Imm(BROpc, dl) };
2854 CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops);
2855 return;
2856 }
2857 case ISD::VSELECT:
2858 if (PPCSubTarget->hasVSX()) {
2859 SDValue Ops[] = { N->getOperand(2), N->getOperand(1), N->getOperand(0) };
2860 CurDAG->SelectNodeTo(N, PPC::XXSEL, N->getValueType(0), Ops);
2861 return;
2862 }
2863
2864 break;
2865 case ISD::VECTOR_SHUFFLE:
2866 if (PPCSubTarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 ||
2867 N->getValueType(0) == MVT::v2i64)) {
2868 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
2869
2870 SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1),
2871 Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1);
2872 unsigned DM[2];
2873
2874 for (int i = 0; i < 2; ++i)
2875 if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2)
2876 DM[i] = 0;
2877 else
2878 DM[i] = 1;
2879
2880 if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 &&
2881 Op1.getOpcode() == ISD::SCALAR_TO_VECTOR &&
2882 isa<LoadSDNode>(Op1.getOperand(0))) {
2883 LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0));
2884 SDValue Base, Offset;
2885
2886 if (LD->isUnindexed() && LD->hasOneUse() && Op1.hasOneUse() &&
2887 (LD->getMemoryVT() == MVT::f64 ||
2888 LD->getMemoryVT() == MVT::i64) &&
2889 SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) {
2890 SDValue Chain = LD->getChain();
2891 SDValue Ops[] = { Base, Offset, Chain };
2892 CurDAG->SelectNodeTo(N, PPC::LXVDSX, N->getValueType(0), Ops);
2893 return;
2894 }
2895 }
2896
2897 // For little endian, we must swap the input operands and adjust
2898 // the mask elements (reverse and invert them).
2899 if (PPCSubTarget->isLittleEndian()) {
2900 std::swap(Op1, Op2);
2901 unsigned tmp = DM[0];
2902 DM[0] = 1 - DM[1];
2903 DM[1] = 1 - tmp;
2904 }
2905
2906 SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl,
2907 MVT::i32);
2908 SDValue Ops[] = { Op1, Op2, DMV };
2909 CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops);
2910 return;
2911 }
2912
2913 break;
2914 case PPCISD::BDNZ:
2915 case PPCISD::BDZ: {
2916 bool IsPPC64 = PPCSubTarget->isPPC64();
2917 SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
2918 CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ
2919 ? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
2920 : (IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
2921 MVT::Other, Ops);
2922 return;
2923 }
2924 case PPCISD::COND_BRANCH: {
2925 // Op #0 is the Chain.
2926 // Op #1 is the PPC::PRED_* number.
2927 // Op #2 is the CR#
2928 // Op #3 is the Dest MBB
2929 // Op #4 is the Flag.
2930 // Prevent PPC::PRED_* from being selected into LI.
2931 unsigned PCC = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2932 if (EnableBranchHint)
2933 PCC |= getBranchHint(PCC, FuncInfo, N->getOperand(3));
2934
2935 SDValue Pred = getI32Imm(PCC, dl);
2936 SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
2937 N->getOperand(0), N->getOperand(4) };
2938 CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
2939 return;
2940 }
2941 case ISD::BR_CC: {
2942 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
2943 unsigned PCC = getPredicateForSetCC(CC);
2944
2945 if (N->getOperand(2).getValueType() == MVT::i1) {
2946 unsigned Opc;
2947 bool Swap;
2948 switch (PCC) {
2949 default: llvm_unreachable("Unexpected Boolean-operand predicate");
2950 case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true; break;
2951 case PPC::PRED_LE: Opc = PPC::CRORC; Swap = true; break;
2952 case PPC::PRED_EQ: Opc = PPC::CREQV; Swap = false; break;
2953 case PPC::PRED_GE: Opc = PPC::CRORC; Swap = false; break;
2954 case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break;
2955 case PPC::PRED_NE: Opc = PPC::CRXOR; Swap = false; break;
2956 }
2957
2958 SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1,
2959 N->getOperand(Swap ? 3 : 2),
2960 N->getOperand(Swap ? 2 : 3)), 0);
2961 CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4),
2962 N->getOperand(0));
2963 return;
2964 }
2965
2966 if (EnableBranchHint)
2967 PCC |= getBranchHint(PCC, FuncInfo, N->getOperand(4));
2968
2969 SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
2970 SDValue Ops[] = { getI32Imm(PCC, dl), CondCode,
2971 N->getOperand(4), N->getOperand(0) };
2972 CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
2973 return;
2974 }
2975 case ISD::BRIND: {
2976 // FIXME: Should custom lower this.
2977 SDValue Chain = N->getOperand(0);
2978 SDValue Target = N->getOperand(1);
2979 unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
2980 unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
2981 Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
2982 Chain), 0);
2983 CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
2984 return;
2985 }
2986 case PPCISD::TOC_ENTRY: {
2987 assert ((PPCSubTarget->isPPC64() || PPCSubTarget->isSVR4ABI()) &&
2988 "Only supported for 64-bit ABI and 32-bit SVR4");
2989 if (PPCSubTarget->isSVR4ABI() && !PPCSubTarget->isPPC64()) {
2990 SDValue GA = N->getOperand(0);
2991 SDNode *MN = CurDAG->getMachineNode(PPC::LWZtoc, dl, MVT::i32, GA,
2992 N->getOperand(1));
2993 transferMemOperands(N, MN);
2994 ReplaceNode(N, MN);
2995 return;
2996 }
2997
2998 // For medium and large code model, we generate two instructions as
2999 // described below. Otherwise we allow SelectCodeCommon to handle this,
3000 // selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA.
3001 CodeModel::Model CModel = TM.getCodeModel();
3002 if (CModel != CodeModel::Medium && CModel != CodeModel::Large)
3003 break;
3004
3005 // The first source operand is a TargetGlobalAddress or a TargetJumpTable.
3006 // If it must be toc-referenced according to PPCSubTarget, we generate:
3007 // LDtocL(<ga:@sym>, ADDIStocHA(%X2, <ga:@sym>))
3008 // Otherwise we generate:
3009 // ADDItocL(ADDIStocHA(%X2, <ga:@sym>), <ga:@sym>)
3010 SDValue GA = N->getOperand(0);
3011 SDValue TOCbase = N->getOperand(1);
3012 SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64,
3013 TOCbase, GA);
3014
3015 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA) ||
3016 CModel == CodeModel::Large) {
3017 SDNode *MN = CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
3018 SDValue(Tmp, 0));
3019 transferMemOperands(N, MN);
3020 ReplaceNode(N, MN);
3021 return;
3022 }
3023
3024 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) {
3025 const GlobalValue *GV = G->getGlobal();
3026 unsigned char GVFlags = PPCSubTarget->classifyGlobalReference(GV);
3027 if (GVFlags & PPCII::MO_NLP_FLAG) {
3028 SDNode *MN = CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
3029 SDValue(Tmp, 0));
3030 transferMemOperands(N, MN);
3031 ReplaceNode(N, MN);
3032 return;
3033 }
3034 }
3035
3036 ReplaceNode(N, CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
3037 SDValue(Tmp, 0), GA));
3038 return;
3039 }
3040 case PPCISD::PPC32_PICGOT: {
3041 // Generate a PIC-safe GOT reference.
3042 assert(!PPCSubTarget->isPPC64() && PPCSubTarget->isSVR4ABI() &&
3043 "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4");
3044 CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT,
3045 PPCLowering->getPointerTy(CurDAG->getDataLayout()),
3046 MVT::i32);
3047 return;
3048 }
3049 case PPCISD::VADD_SPLAT: {
3050 // This expands into one of three sequences, depending on whether
3051 // the first operand is odd or even, positive or negative.
3052 assert(isa<ConstantSDNode>(N->getOperand(0)) &&
3053 isa<ConstantSDNode>(N->getOperand(1)) &&
3054 "Invalid operand on VADD_SPLAT!");
3055
3056 int Elt = N->getConstantOperandVal(0);
3057 int EltSize = N->getConstantOperandVal(1);
3058 unsigned Opc1, Opc2, Opc3;
3059 EVT VT;
3060
3061 if (EltSize == 1) {
3062 Opc1 = PPC::VSPLTISB;
3063 Opc2 = PPC::VADDUBM;
3064 Opc3 = PPC::VSUBUBM;
3065 VT = MVT::v16i8;
3066 } else if (EltSize == 2) {
3067 Opc1 = PPC::VSPLTISH;
3068 Opc2 = PPC::VADDUHM;
3069 Opc3 = PPC::VSUBUHM;
3070 VT = MVT::v8i16;
3071 } else {
3072 assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
3073 Opc1 = PPC::VSPLTISW;
3074 Opc2 = PPC::VADDUWM;
3075 Opc3 = PPC::VSUBUWM;
3076 VT = MVT::v4i32;
3077 }
3078
3079 if ((Elt & 1) == 0) {
3080 // Elt is even, in the range [-32,-18] + [16,30].
3081 //
3082 // Convert: VADD_SPLAT elt, size
3083 // Into: tmp = VSPLTIS[BHW] elt
3084 // VADDU[BHW]M tmp, tmp
3085 // Where: [BHW] = B for size = 1, H for size = 2, W for size = 4
3086 SDValue EltVal = getI32Imm(Elt >> 1, dl);
3087 SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
3088 SDValue TmpVal = SDValue(Tmp, 0);
3089 ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal));
3090 return;
3091
3092 } else if (Elt > 0) {
3093 // Elt is odd and positive, in the range [17,31].
3094 //
3095 // Convert: VADD_SPLAT elt, size
3096 // Into: tmp1 = VSPLTIS[BHW] elt-16
3097 // tmp2 = VSPLTIS[BHW] -16
3098 // VSUBU[BHW]M tmp1, tmp2
3099 SDValue EltVal = getI32Imm(Elt - 16, dl);
3100 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
3101 EltVal = getI32Imm(-16, dl);
3102 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
3103 ReplaceNode(N, CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
3104 SDValue(Tmp2, 0)));
3105 return;
3106
3107 } else {
3108 // Elt is odd and negative, in the range [-31,-17].
3109 //
3110 // Convert: VADD_SPLAT elt, size
3111 // Into: tmp1 = VSPLTIS[BHW] elt+16
3112 // tmp2 = VSPLTIS[BHW] -16
3113 // VADDU[BHW]M tmp1, tmp2
3114 SDValue EltVal = getI32Imm(Elt + 16, dl);
3115 SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
3116 EltVal = getI32Imm(-16, dl);
3117 SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
3118 ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
3119 SDValue(Tmp2, 0)));
3120 return;
3121 }
3122 }
3123 }
3124
3125 SelectCode(N);
3126 }
3127
3128 // If the target supports the cmpb instruction, do the idiom recognition here.
3129 // We don't do this as a DAG combine because we don't want to do it as nodes
3130 // are being combined (because we might miss part of the eventual idiom). We
3131 // don't want to do it during instruction selection because we want to reuse
3132 // the logic for lowering the masking operations already part of the
3133 // instruction selector.
combineToCMPB(SDNode * N)3134 SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
3135 SDLoc dl(N);
3136
3137 assert(N->getOpcode() == ISD::OR &&
3138 "Only OR nodes are supported for CMPB");
3139
3140 SDValue Res;
3141 if (!PPCSubTarget->hasCMPB())
3142 return Res;
3143
3144 if (N->getValueType(0) != MVT::i32 &&
3145 N->getValueType(0) != MVT::i64)
3146 return Res;
3147
3148 EVT VT = N->getValueType(0);
3149
3150 SDValue RHS, LHS;
3151 bool BytesFound[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
3152 uint64_t Mask = 0, Alt = 0;
3153
3154 auto IsByteSelectCC = [this](SDValue O, unsigned &b,
3155 uint64_t &Mask, uint64_t &Alt,
3156 SDValue &LHS, SDValue &RHS) {
3157 if (O.getOpcode() != ISD::SELECT_CC)
3158 return false;
3159 ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get();
3160
3161 if (!isa<ConstantSDNode>(O.getOperand(2)) ||
3162 !isa<ConstantSDNode>(O.getOperand(3)))
3163 return false;
3164
3165 uint64_t PM = O.getConstantOperandVal(2);
3166 uint64_t PAlt = O.getConstantOperandVal(3);
3167 for (b = 0; b < 8; ++b) {
3168 uint64_t Mask = UINT64_C(0xFF) << (8*b);
3169 if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt)
3170 break;
3171 }
3172
3173 if (b == 8)
3174 return false;
3175 Mask |= PM;
3176 Alt |= PAlt;
3177
3178 if (!isa<ConstantSDNode>(O.getOperand(1)) ||
3179 O.getConstantOperandVal(1) != 0) {
3180 SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1);
3181 if (Op0.getOpcode() == ISD::TRUNCATE)
3182 Op0 = Op0.getOperand(0);
3183 if (Op1.getOpcode() == ISD::TRUNCATE)
3184 Op1 = Op1.getOperand(0);
3185
3186 if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL &&
3187 Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ &&
3188 isa<ConstantSDNode>(Op0.getOperand(1))) {
3189
3190 unsigned Bits = Op0.getValueType().getSizeInBits();
3191 if (b != Bits/8-1)
3192 return false;
3193 if (Op0.getConstantOperandVal(1) != Bits-8)
3194 return false;
3195
3196 LHS = Op0.getOperand(0);
3197 RHS = Op1.getOperand(0);
3198 return true;
3199 }
3200
3201 // When we have small integers (i16 to be specific), the form present
3202 // post-legalization uses SETULT in the SELECT_CC for the
3203 // higher-order byte, depending on the fact that the
3204 // even-higher-order bytes are known to all be zero, for example:
3205 // select_cc (xor $lhs, $rhs), 256, 65280, 0, setult
3206 // (so when the second byte is the same, because all higher-order
3207 // bits from bytes 3 and 4 are known to be zero, the result of the
3208 // xor can be at most 255)
3209 if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT &&
3210 isa<ConstantSDNode>(O.getOperand(1))) {
3211
3212 uint64_t ULim = O.getConstantOperandVal(1);
3213 if (ULim != (UINT64_C(1) << b*8))
3214 return false;
3215
3216 // Now we need to make sure that the upper bytes are known to be
3217 // zero.
3218 unsigned Bits = Op0.getValueType().getSizeInBits();
3219 if (!CurDAG->MaskedValueIsZero(Op0,
3220 APInt::getHighBitsSet(Bits, Bits - (b+1)*8)))
3221 return false;
3222
3223 LHS = Op0.getOperand(0);
3224 RHS = Op0.getOperand(1);
3225 return true;
3226 }
3227
3228 return false;
3229 }
3230
3231 if (CC != ISD::SETEQ)
3232 return false;
3233
3234 SDValue Op = O.getOperand(0);
3235 if (Op.getOpcode() == ISD::AND) {
3236 if (!isa<ConstantSDNode>(Op.getOperand(1)))
3237 return false;
3238 if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b)))
3239 return false;
3240
3241 SDValue XOR = Op.getOperand(0);
3242 if (XOR.getOpcode() == ISD::TRUNCATE)
3243 XOR = XOR.getOperand(0);
3244 if (XOR.getOpcode() != ISD::XOR)
3245 return false;
3246
3247 LHS = XOR.getOperand(0);
3248 RHS = XOR.getOperand(1);
3249 return true;
3250 } else if (Op.getOpcode() == ISD::SRL) {
3251 if (!isa<ConstantSDNode>(Op.getOperand(1)))
3252 return false;
3253 unsigned Bits = Op.getValueType().getSizeInBits();
3254 if (b != Bits/8-1)
3255 return false;
3256 if (Op.getConstantOperandVal(1) != Bits-8)
3257 return false;
3258
3259 SDValue XOR = Op.getOperand(0);
3260 if (XOR.getOpcode() == ISD::TRUNCATE)
3261 XOR = XOR.getOperand(0);
3262 if (XOR.getOpcode() != ISD::XOR)
3263 return false;
3264
3265 LHS = XOR.getOperand(0);
3266 RHS = XOR.getOperand(1);
3267 return true;
3268 }
3269
3270 return false;
3271 };
3272
3273 SmallVector<SDValue, 8> Queue(1, SDValue(N, 0));
3274 while (!Queue.empty()) {
3275 SDValue V = Queue.pop_back_val();
3276
3277 for (const SDValue &O : V.getNode()->ops()) {
3278 unsigned b;
3279 uint64_t M = 0, A = 0;
3280 SDValue OLHS, ORHS;
3281 if (O.getOpcode() == ISD::OR) {
3282 Queue.push_back(O);
3283 } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) {
3284 if (!LHS) {
3285 LHS = OLHS;
3286 RHS = ORHS;
3287 BytesFound[b] = true;
3288 Mask |= M;
3289 Alt |= A;
3290 } else if ((LHS == ORHS && RHS == OLHS) ||
3291 (RHS == ORHS && LHS == OLHS)) {
3292 BytesFound[b] = true;
3293 Mask |= M;
3294 Alt |= A;
3295 } else {
3296 return Res;
3297 }
3298 } else {
3299 return Res;
3300 }
3301 }
3302 }
3303
3304 unsigned LastB = 0, BCnt = 0;
3305 for (unsigned i = 0; i < 8; ++i)
3306 if (BytesFound[LastB]) {
3307 ++BCnt;
3308 LastB = i;
3309 }
3310
3311 if (!LastB || BCnt < 2)
3312 return Res;
3313
3314 // Because we'll be zero-extending the output anyway if don't have a specific
3315 // value for each input byte (via the Mask), we can 'anyext' the inputs.
3316 if (LHS.getValueType() != VT) {
3317 LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT);
3318 RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT);
3319 }
3320
3321 Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS);
3322
3323 bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1);
3324 if (NonTrivialMask && !Alt) {
3325 // Res = Mask & CMPB
3326 Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
3327 CurDAG->getConstant(Mask, dl, VT));
3328 } else if (Alt) {
3329 // Res = (CMPB & Mask) | (~CMPB & Alt)
3330 // Which, as suggested here:
3331 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge
3332 // can be written as:
3333 // Res = Alt ^ ((Alt ^ Mask) & CMPB)
3334 // useful because the (Alt ^ Mask) can be pre-computed.
3335 Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
3336 CurDAG->getConstant(Mask ^ Alt, dl, VT));
3337 Res = CurDAG->getNode(ISD::XOR, dl, VT, Res,
3338 CurDAG->getConstant(Alt, dl, VT));
3339 }
3340
3341 return Res;
3342 }
3343
3344 // When CR bit registers are enabled, an extension of an i1 variable to a i32
3345 // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus
3346 // involves constant materialization of a 0 or a 1 or both. If the result of
3347 // the extension is then operated upon by some operator that can be constant
3348 // folded with a constant 0 or 1, and that constant can be materialized using
3349 // only one instruction (like a zero or one), then we should fold in those
3350 // operations with the select.
foldBoolExts(SDValue & Res,SDNode * & N)3351 void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) {
3352 if (!PPCSubTarget->useCRBits())
3353 return;
3354
3355 if (N->getOpcode() != ISD::ZERO_EXTEND &&
3356 N->getOpcode() != ISD::SIGN_EXTEND &&
3357 N->getOpcode() != ISD::ANY_EXTEND)
3358 return;
3359
3360 if (N->getOperand(0).getValueType() != MVT::i1)
3361 return;
3362
3363 if (!N->hasOneUse())
3364 return;
3365
3366 SDLoc dl(N);
3367 EVT VT = N->getValueType(0);
3368 SDValue Cond = N->getOperand(0);
3369 SDValue ConstTrue =
3370 CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT);
3371 SDValue ConstFalse = CurDAG->getConstant(0, dl, VT);
3372
3373 do {
3374 SDNode *User = *N->use_begin();
3375 if (User->getNumOperands() != 2)
3376 break;
3377
3378 auto TryFold = [this, N, User, dl](SDValue Val) {
3379 SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1);
3380 SDValue O0 = UserO0.getNode() == N ? Val : UserO0;
3381 SDValue O1 = UserO1.getNode() == N ? Val : UserO1;
3382
3383 return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl,
3384 User->getValueType(0),
3385 O0.getNode(), O1.getNode());
3386 };
3387
3388 SDValue TrueRes = TryFold(ConstTrue);
3389 if (!TrueRes)
3390 break;
3391 SDValue FalseRes = TryFold(ConstFalse);
3392 if (!FalseRes)
3393 break;
3394
3395 // For us to materialize these using one instruction, we must be able to
3396 // represent them as signed 16-bit integers.
3397 uint64_t True = cast<ConstantSDNode>(TrueRes)->getZExtValue(),
3398 False = cast<ConstantSDNode>(FalseRes)->getZExtValue();
3399 if (!isInt<16>(True) || !isInt<16>(False))
3400 break;
3401
3402 // We can replace User with a new SELECT node, and try again to see if we
3403 // can fold the select with its user.
3404 Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes);
3405 N = User;
3406 ConstTrue = TrueRes;
3407 ConstFalse = FalseRes;
3408 } while (N->hasOneUse());
3409 }
3410
PreprocessISelDAG()3411 void PPCDAGToDAGISel::PreprocessISelDAG() {
3412 SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
3413 ++Position;
3414
3415 bool MadeChange = false;
3416 while (Position != CurDAG->allnodes_begin()) {
3417 SDNode *N = &*--Position;
3418 if (N->use_empty())
3419 continue;
3420
3421 SDValue Res;
3422 switch (N->getOpcode()) {
3423 default: break;
3424 case ISD::OR:
3425 Res = combineToCMPB(N);
3426 break;
3427 }
3428
3429 if (!Res)
3430 foldBoolExts(Res, N);
3431
3432 if (Res) {
3433 DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld: ");
3434 DEBUG(N->dump(CurDAG));
3435 DEBUG(dbgs() << "\nNew: ");
3436 DEBUG(Res.getNode()->dump(CurDAG));
3437 DEBUG(dbgs() << "\n");
3438
3439 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
3440 MadeChange = true;
3441 }
3442 }
3443
3444 if (MadeChange)
3445 CurDAG->RemoveDeadNodes();
3446 }
3447
3448 /// PostprocessISelDAG - Perform some late peephole optimizations
3449 /// on the DAG representation.
PostprocessISelDAG()3450 void PPCDAGToDAGISel::PostprocessISelDAG() {
3451
3452 // Skip peepholes at -O0.
3453 if (TM.getOptLevel() == CodeGenOpt::None)
3454 return;
3455
3456 PeepholePPC64();
3457 PeepholeCROps();
3458 PeepholePPC64ZExt();
3459 }
3460
3461 // Check if all users of this node will become isel where the second operand
3462 // is the constant zero. If this is so, and if we can negate the condition,
3463 // then we can flip the true and false operands. This will allow the zero to
3464 // be folded with the isel so that we don't need to materialize a register
3465 // containing zero.
AllUsersSelectZero(SDNode * N)3466 bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) {
3467 // If we're not using isel, then this does not matter.
3468 if (!PPCSubTarget->hasISEL())
3469 return false;
3470
3471 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
3472 UI != UE; ++UI) {
3473 SDNode *User = *UI;
3474 if (!User->isMachineOpcode())
3475 return false;
3476 if (User->getMachineOpcode() != PPC::SELECT_I4 &&
3477 User->getMachineOpcode() != PPC::SELECT_I8)
3478 return false;
3479
3480 SDNode *Op2 = User->getOperand(2).getNode();
3481 if (!Op2->isMachineOpcode())
3482 return false;
3483
3484 if (Op2->getMachineOpcode() != PPC::LI &&
3485 Op2->getMachineOpcode() != PPC::LI8)
3486 return false;
3487
3488 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0));
3489 if (!C)
3490 return false;
3491
3492 if (!C->isNullValue())
3493 return false;
3494 }
3495
3496 return true;
3497 }
3498
SwapAllSelectUsers(SDNode * N)3499 void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) {
3500 SmallVector<SDNode *, 4> ToReplace;
3501 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
3502 UI != UE; ++UI) {
3503 SDNode *User = *UI;
3504 assert((User->getMachineOpcode() == PPC::SELECT_I4 ||
3505 User->getMachineOpcode() == PPC::SELECT_I8) &&
3506 "Must have all select users");
3507 ToReplace.push_back(User);
3508 }
3509
3510 for (SmallVector<SDNode *, 4>::iterator UI = ToReplace.begin(),
3511 UE = ToReplace.end(); UI != UE; ++UI) {
3512 SDNode *User = *UI;
3513 SDNode *ResNode =
3514 CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User),
3515 User->getValueType(0), User->getOperand(0),
3516 User->getOperand(2),
3517 User->getOperand(1));
3518
3519 DEBUG(dbgs() << "CR Peephole replacing:\nOld: ");
3520 DEBUG(User->dump(CurDAG));
3521 DEBUG(dbgs() << "\nNew: ");
3522 DEBUG(ResNode->dump(CurDAG));
3523 DEBUG(dbgs() << "\n");
3524
3525 ReplaceUses(User, ResNode);
3526 }
3527 }
3528
PeepholeCROps()3529 void PPCDAGToDAGISel::PeepholeCROps() {
3530 bool IsModified;
3531 do {
3532 IsModified = false;
3533 for (SDNode &Node : CurDAG->allnodes()) {
3534 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(&Node);
3535 if (!MachineNode || MachineNode->use_empty())
3536 continue;
3537 SDNode *ResNode = MachineNode;
3538
3539 bool Op1Set = false, Op1Unset = false,
3540 Op1Not = false,
3541 Op2Set = false, Op2Unset = false,
3542 Op2Not = false;
3543
3544 unsigned Opcode = MachineNode->getMachineOpcode();
3545 switch (Opcode) {
3546 default: break;
3547 case PPC::CRAND:
3548 case PPC::CRNAND:
3549 case PPC::CROR:
3550 case PPC::CRXOR:
3551 case PPC::CRNOR:
3552 case PPC::CREQV:
3553 case PPC::CRANDC:
3554 case PPC::CRORC: {
3555 SDValue Op = MachineNode->getOperand(1);
3556 if (Op.isMachineOpcode()) {
3557 if (Op.getMachineOpcode() == PPC::CRSET)
3558 Op2Set = true;
3559 else if (Op.getMachineOpcode() == PPC::CRUNSET)
3560 Op2Unset = true;
3561 else if (Op.getMachineOpcode() == PPC::CRNOR &&
3562 Op.getOperand(0) == Op.getOperand(1))
3563 Op2Not = true;
3564 }
3565 } // fallthrough
3566 case PPC::BC:
3567 case PPC::BCn:
3568 case PPC::SELECT_I4:
3569 case PPC::SELECT_I8:
3570 case PPC::SELECT_F4:
3571 case PPC::SELECT_F8:
3572 case PPC::SELECT_QFRC:
3573 case PPC::SELECT_QSRC:
3574 case PPC::SELECT_QBRC:
3575 case PPC::SELECT_VRRC:
3576 case PPC::SELECT_VSFRC:
3577 case PPC::SELECT_VSSRC:
3578 case PPC::SELECT_VSRC: {
3579 SDValue Op = MachineNode->getOperand(0);
3580 if (Op.isMachineOpcode()) {
3581 if (Op.getMachineOpcode() == PPC::CRSET)
3582 Op1Set = true;
3583 else if (Op.getMachineOpcode() == PPC::CRUNSET)
3584 Op1Unset = true;
3585 else if (Op.getMachineOpcode() == PPC::CRNOR &&
3586 Op.getOperand(0) == Op.getOperand(1))
3587 Op1Not = true;
3588 }
3589 }
3590 break;
3591 }
3592
3593 bool SelectSwap = false;
3594 switch (Opcode) {
3595 default: break;
3596 case PPC::CRAND:
3597 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3598 // x & x = x
3599 ResNode = MachineNode->getOperand(0).getNode();
3600 else if (Op1Set)
3601 // 1 & y = y
3602 ResNode = MachineNode->getOperand(1).getNode();
3603 else if (Op2Set)
3604 // x & 1 = x
3605 ResNode = MachineNode->getOperand(0).getNode();
3606 else if (Op1Unset || Op2Unset)
3607 // x & 0 = 0 & y = 0
3608 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3609 MVT::i1);
3610 else if (Op1Not)
3611 // ~x & y = andc(y, x)
3612 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3613 MVT::i1, MachineNode->getOperand(1),
3614 MachineNode->getOperand(0).
3615 getOperand(0));
3616 else if (Op2Not)
3617 // x & ~y = andc(x, y)
3618 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3619 MVT::i1, MachineNode->getOperand(0),
3620 MachineNode->getOperand(1).
3621 getOperand(0));
3622 else if (AllUsersSelectZero(MachineNode)) {
3623 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
3624 MVT::i1, MachineNode->getOperand(0),
3625 MachineNode->getOperand(1));
3626 SelectSwap = true;
3627 }
3628 break;
3629 case PPC::CRNAND:
3630 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3631 // nand(x, x) -> nor(x, x)
3632 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3633 MVT::i1, MachineNode->getOperand(0),
3634 MachineNode->getOperand(0));
3635 else if (Op1Set)
3636 // nand(1, y) -> nor(y, y)
3637 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3638 MVT::i1, MachineNode->getOperand(1),
3639 MachineNode->getOperand(1));
3640 else if (Op2Set)
3641 // nand(x, 1) -> nor(x, x)
3642 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3643 MVT::i1, MachineNode->getOperand(0),
3644 MachineNode->getOperand(0));
3645 else if (Op1Unset || Op2Unset)
3646 // nand(x, 0) = nand(0, y) = 1
3647 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3648 MVT::i1);
3649 else if (Op1Not)
3650 // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y)
3651 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3652 MVT::i1, MachineNode->getOperand(0).
3653 getOperand(0),
3654 MachineNode->getOperand(1));
3655 else if (Op2Not)
3656 // nand(x, ~y) = ~x | y = orc(y, x)
3657 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3658 MVT::i1, MachineNode->getOperand(1).
3659 getOperand(0),
3660 MachineNode->getOperand(0));
3661 else if (AllUsersSelectZero(MachineNode)) {
3662 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
3663 MVT::i1, MachineNode->getOperand(0),
3664 MachineNode->getOperand(1));
3665 SelectSwap = true;
3666 }
3667 break;
3668 case PPC::CROR:
3669 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3670 // x | x = x
3671 ResNode = MachineNode->getOperand(0).getNode();
3672 else if (Op1Set || Op2Set)
3673 // x | 1 = 1 | y = 1
3674 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3675 MVT::i1);
3676 else if (Op1Unset)
3677 // 0 | y = y
3678 ResNode = MachineNode->getOperand(1).getNode();
3679 else if (Op2Unset)
3680 // x | 0 = x
3681 ResNode = MachineNode->getOperand(0).getNode();
3682 else if (Op1Not)
3683 // ~x | y = orc(y, x)
3684 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3685 MVT::i1, MachineNode->getOperand(1),
3686 MachineNode->getOperand(0).
3687 getOperand(0));
3688 else if (Op2Not)
3689 // x | ~y = orc(x, y)
3690 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3691 MVT::i1, MachineNode->getOperand(0),
3692 MachineNode->getOperand(1).
3693 getOperand(0));
3694 else if (AllUsersSelectZero(MachineNode)) {
3695 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3696 MVT::i1, MachineNode->getOperand(0),
3697 MachineNode->getOperand(1));
3698 SelectSwap = true;
3699 }
3700 break;
3701 case PPC::CRXOR:
3702 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3703 // xor(x, x) = 0
3704 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3705 MVT::i1);
3706 else if (Op1Set)
3707 // xor(1, y) -> nor(y, y)
3708 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3709 MVT::i1, MachineNode->getOperand(1),
3710 MachineNode->getOperand(1));
3711 else if (Op2Set)
3712 // xor(x, 1) -> nor(x, x)
3713 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3714 MVT::i1, MachineNode->getOperand(0),
3715 MachineNode->getOperand(0));
3716 else if (Op1Unset)
3717 // xor(0, y) = y
3718 ResNode = MachineNode->getOperand(1).getNode();
3719 else if (Op2Unset)
3720 // xor(x, 0) = x
3721 ResNode = MachineNode->getOperand(0).getNode();
3722 else if (Op1Not)
3723 // xor(~x, y) = eqv(x, y)
3724 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
3725 MVT::i1, MachineNode->getOperand(0).
3726 getOperand(0),
3727 MachineNode->getOperand(1));
3728 else if (Op2Not)
3729 // xor(x, ~y) = eqv(x, y)
3730 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
3731 MVT::i1, MachineNode->getOperand(0),
3732 MachineNode->getOperand(1).
3733 getOperand(0));
3734 else if (AllUsersSelectZero(MachineNode)) {
3735 ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
3736 MVT::i1, MachineNode->getOperand(0),
3737 MachineNode->getOperand(1));
3738 SelectSwap = true;
3739 }
3740 break;
3741 case PPC::CRNOR:
3742 if (Op1Set || Op2Set)
3743 // nor(1, y) -> 0
3744 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3745 MVT::i1);
3746 else if (Op1Unset)
3747 // nor(0, y) = ~y -> nor(y, y)
3748 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3749 MVT::i1, MachineNode->getOperand(1),
3750 MachineNode->getOperand(1));
3751 else if (Op2Unset)
3752 // nor(x, 0) = ~x
3753 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3754 MVT::i1, MachineNode->getOperand(0),
3755 MachineNode->getOperand(0));
3756 else if (Op1Not)
3757 // nor(~x, y) = andc(x, y)
3758 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3759 MVT::i1, MachineNode->getOperand(0).
3760 getOperand(0),
3761 MachineNode->getOperand(1));
3762 else if (Op2Not)
3763 // nor(x, ~y) = andc(y, x)
3764 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3765 MVT::i1, MachineNode->getOperand(1).
3766 getOperand(0),
3767 MachineNode->getOperand(0));
3768 else if (AllUsersSelectZero(MachineNode)) {
3769 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
3770 MVT::i1, MachineNode->getOperand(0),
3771 MachineNode->getOperand(1));
3772 SelectSwap = true;
3773 }
3774 break;
3775 case PPC::CREQV:
3776 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3777 // eqv(x, x) = 1
3778 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3779 MVT::i1);
3780 else if (Op1Set)
3781 // eqv(1, y) = y
3782 ResNode = MachineNode->getOperand(1).getNode();
3783 else if (Op2Set)
3784 // eqv(x, 1) = x
3785 ResNode = MachineNode->getOperand(0).getNode();
3786 else if (Op1Unset)
3787 // eqv(0, y) = ~y -> nor(y, y)
3788 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3789 MVT::i1, MachineNode->getOperand(1),
3790 MachineNode->getOperand(1));
3791 else if (Op2Unset)
3792 // eqv(x, 0) = ~x
3793 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3794 MVT::i1, MachineNode->getOperand(0),
3795 MachineNode->getOperand(0));
3796 else if (Op1Not)
3797 // eqv(~x, y) = xor(x, y)
3798 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
3799 MVT::i1, MachineNode->getOperand(0).
3800 getOperand(0),
3801 MachineNode->getOperand(1));
3802 else if (Op2Not)
3803 // eqv(x, ~y) = xor(x, y)
3804 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
3805 MVT::i1, MachineNode->getOperand(0),
3806 MachineNode->getOperand(1).
3807 getOperand(0));
3808 else if (AllUsersSelectZero(MachineNode)) {
3809 ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
3810 MVT::i1, MachineNode->getOperand(0),
3811 MachineNode->getOperand(1));
3812 SelectSwap = true;
3813 }
3814 break;
3815 case PPC::CRANDC:
3816 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3817 // andc(x, x) = 0
3818 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3819 MVT::i1);
3820 else if (Op1Set)
3821 // andc(1, y) = ~y
3822 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3823 MVT::i1, MachineNode->getOperand(1),
3824 MachineNode->getOperand(1));
3825 else if (Op1Unset || Op2Set)
3826 // andc(0, y) = andc(x, 1) = 0
3827 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
3828 MVT::i1);
3829 else if (Op2Unset)
3830 // andc(x, 0) = x
3831 ResNode = MachineNode->getOperand(0).getNode();
3832 else if (Op1Not)
3833 // andc(~x, y) = ~(x | y) = nor(x, y)
3834 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3835 MVT::i1, MachineNode->getOperand(0).
3836 getOperand(0),
3837 MachineNode->getOperand(1));
3838 else if (Op2Not)
3839 // andc(x, ~y) = x & y
3840 ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
3841 MVT::i1, MachineNode->getOperand(0),
3842 MachineNode->getOperand(1).
3843 getOperand(0));
3844 else if (AllUsersSelectZero(MachineNode)) {
3845 ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
3846 MVT::i1, MachineNode->getOperand(1),
3847 MachineNode->getOperand(0));
3848 SelectSwap = true;
3849 }
3850 break;
3851 case PPC::CRORC:
3852 if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
3853 // orc(x, x) = 1
3854 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3855 MVT::i1);
3856 else if (Op1Set || Op2Unset)
3857 // orc(1, y) = orc(x, 0) = 1
3858 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
3859 MVT::i1);
3860 else if (Op2Set)
3861 // orc(x, 1) = x
3862 ResNode = MachineNode->getOperand(0).getNode();
3863 else if (Op1Unset)
3864 // orc(0, y) = ~y
3865 ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
3866 MVT::i1, MachineNode->getOperand(1),
3867 MachineNode->getOperand(1));
3868 else if (Op1Not)
3869 // orc(~x, y) = ~(x & y) = nand(x, y)
3870 ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
3871 MVT::i1, MachineNode->getOperand(0).
3872 getOperand(0),
3873 MachineNode->getOperand(1));
3874 else if (Op2Not)
3875 // orc(x, ~y) = x | y
3876 ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
3877 MVT::i1, MachineNode->getOperand(0),
3878 MachineNode->getOperand(1).
3879 getOperand(0));
3880 else if (AllUsersSelectZero(MachineNode)) {
3881 ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
3882 MVT::i1, MachineNode->getOperand(1),
3883 MachineNode->getOperand(0));
3884 SelectSwap = true;
3885 }
3886 break;
3887 case PPC::SELECT_I4:
3888 case PPC::SELECT_I8:
3889 case PPC::SELECT_F4:
3890 case PPC::SELECT_F8:
3891 case PPC::SELECT_QFRC:
3892 case PPC::SELECT_QSRC:
3893 case PPC::SELECT_QBRC:
3894 case PPC::SELECT_VRRC:
3895 case PPC::SELECT_VSFRC:
3896 case PPC::SELECT_VSSRC:
3897 case PPC::SELECT_VSRC:
3898 if (Op1Set)
3899 ResNode = MachineNode->getOperand(1).getNode();
3900 else if (Op1Unset)
3901 ResNode = MachineNode->getOperand(2).getNode();
3902 else if (Op1Not)
3903 ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(),
3904 SDLoc(MachineNode),
3905 MachineNode->getValueType(0),
3906 MachineNode->getOperand(0).
3907 getOperand(0),
3908 MachineNode->getOperand(2),
3909 MachineNode->getOperand(1));
3910 break;
3911 case PPC::BC:
3912 case PPC::BCn:
3913 if (Op1Not)
3914 ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn :
3915 PPC::BC,
3916 SDLoc(MachineNode),
3917 MVT::Other,
3918 MachineNode->getOperand(0).
3919 getOperand(0),
3920 MachineNode->getOperand(1),
3921 MachineNode->getOperand(2));
3922 // FIXME: Handle Op1Set, Op1Unset here too.
3923 break;
3924 }
3925
3926 // If we're inverting this node because it is used only by selects that
3927 // we'd like to swap, then swap the selects before the node replacement.
3928 if (SelectSwap)
3929 SwapAllSelectUsers(MachineNode);
3930
3931 if (ResNode != MachineNode) {
3932 DEBUG(dbgs() << "CR Peephole replacing:\nOld: ");
3933 DEBUG(MachineNode->dump(CurDAG));
3934 DEBUG(dbgs() << "\nNew: ");
3935 DEBUG(ResNode->dump(CurDAG));
3936 DEBUG(dbgs() << "\n");
3937
3938 ReplaceUses(MachineNode, ResNode);
3939 IsModified = true;
3940 }
3941 }
3942 if (IsModified)
3943 CurDAG->RemoveDeadNodes();
3944 } while (IsModified);
3945 }
3946
3947 // Gather the set of 32-bit operations that are known to have their
3948 // higher-order 32 bits zero, where ToPromote contains all such operations.
PeepholePPC64ZExtGather(SDValue Op32,SmallPtrSetImpl<SDNode * > & ToPromote)3949 static bool PeepholePPC64ZExtGather(SDValue Op32,
3950 SmallPtrSetImpl<SDNode *> &ToPromote) {
3951 if (!Op32.isMachineOpcode())
3952 return false;
3953
3954 // First, check for the "frontier" instructions (those that will clear the
3955 // higher-order 32 bits.
3956
3957 // For RLWINM and RLWNM, we need to make sure that the mask does not wrap
3958 // around. If it does not, then these instructions will clear the
3959 // higher-order bits.
3960 if ((Op32.getMachineOpcode() == PPC::RLWINM ||
3961 Op32.getMachineOpcode() == PPC::RLWNM) &&
3962 Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) {
3963 ToPromote.insert(Op32.getNode());
3964 return true;
3965 }
3966
3967 // SLW and SRW always clear the higher-order bits.
3968 if (Op32.getMachineOpcode() == PPC::SLW ||
3969 Op32.getMachineOpcode() == PPC::SRW) {
3970 ToPromote.insert(Op32.getNode());
3971 return true;
3972 }
3973
3974 // For LI and LIS, we need the immediate to be positive (so that it is not
3975 // sign extended).
3976 if (Op32.getMachineOpcode() == PPC::LI ||
3977 Op32.getMachineOpcode() == PPC::LIS) {
3978 if (!isUInt<15>(Op32.getConstantOperandVal(0)))
3979 return false;
3980
3981 ToPromote.insert(Op32.getNode());
3982 return true;
3983 }
3984
3985 // LHBRX and LWBRX always clear the higher-order bits.
3986 if (Op32.getMachineOpcode() == PPC::LHBRX ||
3987 Op32.getMachineOpcode() == PPC::LWBRX) {
3988 ToPromote.insert(Op32.getNode());
3989 return true;
3990 }
3991
3992 // CNTLZW always produces a 64-bit value in [0,32], and so is zero extended.
3993 if (Op32.getMachineOpcode() == PPC::CNTLZW) {
3994 ToPromote.insert(Op32.getNode());
3995 return true;
3996 }
3997
3998 // Next, check for those instructions we can look through.
3999
4000 // Assuming the mask does not wrap around, then the higher-order bits are
4001 // taken directly from the first operand.
4002 if (Op32.getMachineOpcode() == PPC::RLWIMI &&
4003 Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) {
4004 SmallPtrSet<SDNode *, 16> ToPromote1;
4005 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
4006 return false;
4007
4008 ToPromote.insert(Op32.getNode());
4009 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
4010 return true;
4011 }
4012
4013 // For OR, the higher-order bits are zero if that is true for both operands.
4014 // For SELECT_I4, the same is true (but the relevant operand numbers are
4015 // shifted by 1).
4016 if (Op32.getMachineOpcode() == PPC::OR ||
4017 Op32.getMachineOpcode() == PPC::SELECT_I4) {
4018 unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0;
4019 SmallPtrSet<SDNode *, 16> ToPromote1;
4020 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1))
4021 return false;
4022 if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1))
4023 return false;
4024
4025 ToPromote.insert(Op32.getNode());
4026 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
4027 return true;
4028 }
4029
4030 // For ORI and ORIS, we need the higher-order bits of the first operand to be
4031 // zero, and also for the constant to be positive (so that it is not sign
4032 // extended).
4033 if (Op32.getMachineOpcode() == PPC::ORI ||
4034 Op32.getMachineOpcode() == PPC::ORIS) {
4035 SmallPtrSet<SDNode *, 16> ToPromote1;
4036 if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
4037 return false;
4038 if (!isUInt<15>(Op32.getConstantOperandVal(1)))
4039 return false;
4040
4041 ToPromote.insert(Op32.getNode());
4042 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
4043 return true;
4044 }
4045
4046 // The higher-order bits of AND are zero if that is true for at least one of
4047 // the operands.
4048 if (Op32.getMachineOpcode() == PPC::AND) {
4049 SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2;
4050 bool Op0OK =
4051 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
4052 bool Op1OK =
4053 PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2);
4054 if (!Op0OK && !Op1OK)
4055 return false;
4056
4057 ToPromote.insert(Op32.getNode());
4058
4059 if (Op0OK)
4060 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
4061
4062 if (Op1OK)
4063 ToPromote.insert(ToPromote2.begin(), ToPromote2.end());
4064
4065 return true;
4066 }
4067
4068 // For ANDI and ANDIS, the higher-order bits are zero if either that is true
4069 // of the first operand, or if the second operand is positive (so that it is
4070 // not sign extended).
4071 if (Op32.getMachineOpcode() == PPC::ANDIo ||
4072 Op32.getMachineOpcode() == PPC::ANDISo) {
4073 SmallPtrSet<SDNode *, 16> ToPromote1;
4074 bool Op0OK =
4075 PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
4076 bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1));
4077 if (!Op0OK && !Op1OK)
4078 return false;
4079
4080 ToPromote.insert(Op32.getNode());
4081
4082 if (Op0OK)
4083 ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
4084
4085 return true;
4086 }
4087
4088 return false;
4089 }
4090
PeepholePPC64ZExt()4091 void PPCDAGToDAGISel::PeepholePPC64ZExt() {
4092 if (!PPCSubTarget->isPPC64())
4093 return;
4094
4095 // When we zero-extend from i32 to i64, we use a pattern like this:
4096 // def : Pat<(i64 (zext i32:$in)),
4097 // (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32),
4098 // 0, 32)>;
4099 // There are several 32-bit shift/rotate instructions, however, that will
4100 // clear the higher-order bits of their output, rendering the RLDICL
4101 // unnecessary. When that happens, we remove it here, and redefine the
4102 // relevant 32-bit operation to be a 64-bit operation.
4103
4104 SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
4105 ++Position;
4106
4107 bool MadeChange = false;
4108 while (Position != CurDAG->allnodes_begin()) {
4109 SDNode *N = &*--Position;
4110 // Skip dead nodes and any non-machine opcodes.
4111 if (N->use_empty() || !N->isMachineOpcode())
4112 continue;
4113
4114 if (N->getMachineOpcode() != PPC::RLDICL)
4115 continue;
4116
4117 if (N->getConstantOperandVal(1) != 0 ||
4118 N->getConstantOperandVal(2) != 32)
4119 continue;
4120
4121 SDValue ISR = N->getOperand(0);
4122 if (!ISR.isMachineOpcode() ||
4123 ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG)
4124 continue;
4125
4126 if (!ISR.hasOneUse())
4127 continue;
4128
4129 if (ISR.getConstantOperandVal(2) != PPC::sub_32)
4130 continue;
4131
4132 SDValue IDef = ISR.getOperand(0);
4133 if (!IDef.isMachineOpcode() ||
4134 IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF)
4135 continue;
4136
4137 // We now know that we're looking at a canonical i32 -> i64 zext. See if we
4138 // can get rid of it.
4139
4140 SDValue Op32 = ISR->getOperand(1);
4141 if (!Op32.isMachineOpcode())
4142 continue;
4143
4144 // There are some 32-bit instructions that always clear the high-order 32
4145 // bits, there are also some instructions (like AND) that we can look
4146 // through.
4147 SmallPtrSet<SDNode *, 16> ToPromote;
4148 if (!PeepholePPC64ZExtGather(Op32, ToPromote))
4149 continue;
4150
4151 // If the ToPromote set contains nodes that have uses outside of the set
4152 // (except for the original INSERT_SUBREG), then abort the transformation.
4153 bool OutsideUse = false;
4154 for (SDNode *PN : ToPromote) {
4155 for (SDNode *UN : PN->uses()) {
4156 if (!ToPromote.count(UN) && UN != ISR.getNode()) {
4157 OutsideUse = true;
4158 break;
4159 }
4160 }
4161
4162 if (OutsideUse)
4163 break;
4164 }
4165 if (OutsideUse)
4166 continue;
4167
4168 MadeChange = true;
4169
4170 // We now know that this zero extension can be removed by promoting to
4171 // nodes in ToPromote to 64-bit operations, where for operations in the
4172 // frontier of the set, we need to insert INSERT_SUBREGs for their
4173 // operands.
4174 for (SDNode *PN : ToPromote) {
4175 unsigned NewOpcode;
4176 switch (PN->getMachineOpcode()) {
4177 default:
4178 llvm_unreachable("Don't know the 64-bit variant of this instruction");
4179 case PPC::RLWINM: NewOpcode = PPC::RLWINM8; break;
4180 case PPC::RLWNM: NewOpcode = PPC::RLWNM8; break;
4181 case PPC::SLW: NewOpcode = PPC::SLW8; break;
4182 case PPC::SRW: NewOpcode = PPC::SRW8; break;
4183 case PPC::LI: NewOpcode = PPC::LI8; break;
4184 case PPC::LIS: NewOpcode = PPC::LIS8; break;
4185 case PPC::LHBRX: NewOpcode = PPC::LHBRX8; break;
4186 case PPC::LWBRX: NewOpcode = PPC::LWBRX8; break;
4187 case PPC::CNTLZW: NewOpcode = PPC::CNTLZW8; break;
4188 case PPC::RLWIMI: NewOpcode = PPC::RLWIMI8; break;
4189 case PPC::OR: NewOpcode = PPC::OR8; break;
4190 case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break;
4191 case PPC::ORI: NewOpcode = PPC::ORI8; break;
4192 case PPC::ORIS: NewOpcode = PPC::ORIS8; break;
4193 case PPC::AND: NewOpcode = PPC::AND8; break;
4194 case PPC::ANDIo: NewOpcode = PPC::ANDIo8; break;
4195 case PPC::ANDISo: NewOpcode = PPC::ANDISo8; break;
4196 }
4197
4198 // Note: During the replacement process, the nodes will be in an
4199 // inconsistent state (some instructions will have operands with values
4200 // of the wrong type). Once done, however, everything should be right
4201 // again.
4202
4203 SmallVector<SDValue, 4> Ops;
4204 for (const SDValue &V : PN->ops()) {
4205 if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 &&
4206 !isa<ConstantSDNode>(V)) {
4207 SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) };
4208 SDNode *ReplOp =
4209 CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V),
4210 ISR.getNode()->getVTList(), ReplOpOps);
4211 Ops.push_back(SDValue(ReplOp, 0));
4212 } else {
4213 Ops.push_back(V);
4214 }
4215 }
4216
4217 // Because all to-be-promoted nodes only have users that are other
4218 // promoted nodes (or the original INSERT_SUBREG), we can safely replace
4219 // the i32 result value type with i64.
4220
4221 SmallVector<EVT, 2> NewVTs;
4222 SDVTList VTs = PN->getVTList();
4223 for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i)
4224 if (VTs.VTs[i] == MVT::i32)
4225 NewVTs.push_back(MVT::i64);
4226 else
4227 NewVTs.push_back(VTs.VTs[i]);
4228
4229 DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld: ");
4230 DEBUG(PN->dump(CurDAG));
4231
4232 CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops);
4233
4234 DEBUG(dbgs() << "\nNew: ");
4235 DEBUG(PN->dump(CurDAG));
4236 DEBUG(dbgs() << "\n");
4237 }
4238
4239 // Now we replace the original zero extend and its associated INSERT_SUBREG
4240 // with the value feeding the INSERT_SUBREG (which has now been promoted to
4241 // return an i64).
4242
4243 DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld: ");
4244 DEBUG(N->dump(CurDAG));
4245 DEBUG(dbgs() << "\nNew: ");
4246 DEBUG(Op32.getNode()->dump(CurDAG));
4247 DEBUG(dbgs() << "\n");
4248
4249 ReplaceUses(N, Op32.getNode());
4250 }
4251
4252 if (MadeChange)
4253 CurDAG->RemoveDeadNodes();
4254 }
4255
PeepholePPC64()4256 void PPCDAGToDAGISel::PeepholePPC64() {
4257 // These optimizations are currently supported only for 64-bit SVR4.
4258 if (PPCSubTarget->isDarwin() || !PPCSubTarget->isPPC64())
4259 return;
4260
4261 SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
4262 ++Position;
4263
4264 while (Position != CurDAG->allnodes_begin()) {
4265 SDNode *N = &*--Position;
4266 // Skip dead nodes and any non-machine opcodes.
4267 if (N->use_empty() || !N->isMachineOpcode())
4268 continue;
4269
4270 unsigned FirstOp;
4271 unsigned StorageOpcode = N->getMachineOpcode();
4272
4273 switch (StorageOpcode) {
4274 default: continue;
4275
4276 case PPC::LBZ:
4277 case PPC::LBZ8:
4278 case PPC::LD:
4279 case PPC::LFD:
4280 case PPC::LFS:
4281 case PPC::LHA:
4282 case PPC::LHA8:
4283 case PPC::LHZ:
4284 case PPC::LHZ8:
4285 case PPC::LWA:
4286 case PPC::LWZ:
4287 case PPC::LWZ8:
4288 FirstOp = 0;
4289 break;
4290
4291 case PPC::STB:
4292 case PPC::STB8:
4293 case PPC::STD:
4294 case PPC::STFD:
4295 case PPC::STFS:
4296 case PPC::STH:
4297 case PPC::STH8:
4298 case PPC::STW:
4299 case PPC::STW8:
4300 FirstOp = 1;
4301 break;
4302 }
4303
4304 // If this is a load or store with a zero offset, or within the alignment,
4305 // we may be able to fold an add-immediate into the memory operation.
4306 // The check against alignment is below, as it can't occur until we check
4307 // the arguments to N
4308 if (!isa<ConstantSDNode>(N->getOperand(FirstOp)))
4309 continue;
4310
4311 SDValue Base = N->getOperand(FirstOp + 1);
4312 if (!Base.isMachineOpcode())
4313 continue;
4314
4315 // On targets with fusion, we don't want this to fire and remove a fusion
4316 // opportunity, unless a) it results in another fusion opportunity or
4317 // b) optimizing for size.
4318 if (PPCSubTarget->hasFusion() &&
4319 (!MF->getFunction()->optForSize() && !Base.hasOneUse()))
4320 continue;
4321
4322 unsigned Flags = 0;
4323 bool ReplaceFlags = true;
4324
4325 // When the feeding operation is an add-immediate of some sort,
4326 // determine whether we need to add relocation information to the
4327 // target flags on the immediate operand when we fold it into the
4328 // load instruction.
4329 //
4330 // For something like ADDItocL, the relocation information is
4331 // inferred from the opcode; when we process it in the AsmPrinter,
4332 // we add the necessary relocation there. A load, though, can receive
4333 // relocation from various flavors of ADDIxxx, so we need to carry
4334 // the relocation information in the target flags.
4335 switch (Base.getMachineOpcode()) {
4336 default: continue;
4337
4338 case PPC::ADDI8:
4339 case PPC::ADDI:
4340 // In some cases (such as TLS) the relocation information
4341 // is already in place on the operand, so copying the operand
4342 // is sufficient.
4343 ReplaceFlags = false;
4344 // For these cases, the immediate may not be divisible by 4, in
4345 // which case the fold is illegal for DS-form instructions. (The
4346 // other cases provide aligned addresses and are always safe.)
4347 if ((StorageOpcode == PPC::LWA ||
4348 StorageOpcode == PPC::LD ||
4349 StorageOpcode == PPC::STD) &&
4350 (!isa<ConstantSDNode>(Base.getOperand(1)) ||
4351 Base.getConstantOperandVal(1) % 4 != 0))
4352 continue;
4353 break;
4354 case PPC::ADDIdtprelL:
4355 Flags = PPCII::MO_DTPREL_LO;
4356 break;
4357 case PPC::ADDItlsldL:
4358 Flags = PPCII::MO_TLSLD_LO;
4359 break;
4360 case PPC::ADDItocL:
4361 Flags = PPCII::MO_TOC_LO;
4362 break;
4363 }
4364
4365 SDValue ImmOpnd = Base.getOperand(1);
4366 int MaxDisplacement = 0;
4367 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
4368 const GlobalValue *GV = GA->getGlobal();
4369 MaxDisplacement = GV->getAlignment() - 1;
4370 }
4371
4372 int Offset = N->getConstantOperandVal(FirstOp);
4373 if (Offset < 0 || Offset > MaxDisplacement)
4374 continue;
4375
4376 // We found an opportunity. Reverse the operands from the add
4377 // immediate and substitute them into the load or store. If
4378 // needed, update the target flags for the immediate operand to
4379 // reflect the necessary relocation information.
4380 DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: ");
4381 DEBUG(Base->dump(CurDAG));
4382 DEBUG(dbgs() << "\nN: ");
4383 DEBUG(N->dump(CurDAG));
4384 DEBUG(dbgs() << "\n");
4385
4386 // If the relocation information isn't already present on the
4387 // immediate operand, add it now.
4388 if (ReplaceFlags) {
4389 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
4390 SDLoc dl(GA);
4391 const GlobalValue *GV = GA->getGlobal();
4392 // We can't perform this optimization for data whose alignment
4393 // is insufficient for the instruction encoding.
4394 if (GV->getAlignment() < 4 &&
4395 (StorageOpcode == PPC::LD || StorageOpcode == PPC::STD ||
4396 StorageOpcode == PPC::LWA || (Offset % 4) != 0)) {
4397 DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
4398 continue;
4399 }
4400 ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags);
4401 } else if (ConstantPoolSDNode *CP =
4402 dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
4403 const Constant *C = CP->getConstVal();
4404 ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64,
4405 CP->getAlignment(),
4406 Offset, Flags);
4407 }
4408 }
4409
4410 if (FirstOp == 1) // Store
4411 (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
4412 Base.getOperand(0), N->getOperand(3));
4413 else // Load
4414 (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
4415 N->getOperand(2));
4416
4417 // The add-immediate may now be dead, in which case remove it.
4418 if (Base.getNode()->use_empty())
4419 CurDAG->RemoveDeadNode(Base.getNode());
4420 }
4421 }
4422
4423
4424 /// createPPCISelDag - This pass converts a legalized DAG into a
4425 /// PowerPC-specific DAG, ready for instruction scheduling.
4426 ///
createPPCISelDag(PPCTargetMachine & TM)4427 FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
4428 return new PPCDAGToDAGISel(TM);
4429 }
4430