1 //===--------- llvm/DataLayout.h - Data size & alignment info ---*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines layout properties related to datatype size/offset/alignment
11 // information. It uses lazy annotations to cache information about how
12 // structure types are laid out and used.
13 //
14 // This structure should be created once, filled in if the defaults are not
15 // correct and then passed around by const&. None of the members functions
16 // require modification to the object.
17 //
18 //===----------------------------------------------------------------------===//
19
20 #ifndef LLVM_IR_DATALAYOUT_H
21 #define LLVM_IR_DATALAYOUT_H
22
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Type.h"
26 #include "llvm/Pass.h"
27 #include "llvm/Support/DataTypes.h"
28
29 // This needs to be outside of the namespace, to avoid conflict with llvm-c
30 // decl.
31 typedef struct LLVMOpaqueTargetData *LLVMTargetDataRef;
32
33 namespace llvm {
34
35 class Value;
36 class StructType;
37 class StructLayout;
38 class Triple;
39 class GlobalVariable;
40 class LLVMContext;
41 template<typename T>
42 class ArrayRef;
43
44 /// Enum used to categorize the alignment types stored by LayoutAlignElem
45 enum AlignTypeEnum {
46 INVALID_ALIGN = 0,
47 INTEGER_ALIGN = 'i',
48 VECTOR_ALIGN = 'v',
49 FLOAT_ALIGN = 'f',
50 AGGREGATE_ALIGN = 'a'
51 };
52
53 // FIXME: Currently the DataLayout string carries a "preferred alignment"
54 // for types. As the DataLayout is module/global, this should likely be
55 // sunk down to an FTTI element that is queried rather than a global
56 // preference.
57
58 /// \brief Layout alignment element.
59 ///
60 /// Stores the alignment data associated with a given alignment type (integer,
61 /// vector, float) and type bit width.
62 ///
63 /// \note The unusual order of elements in the structure attempts to reduce
64 /// padding and make the structure slightly more cache friendly.
65 struct LayoutAlignElem {
66 /// \brief Alignment type from \c AlignTypeEnum
67 unsigned AlignType : 8;
68 unsigned TypeBitWidth : 24;
69 unsigned ABIAlign : 16;
70 unsigned PrefAlign : 16;
71
72 static LayoutAlignElem get(AlignTypeEnum align_type, unsigned abi_align,
73 unsigned pref_align, uint32_t bit_width);
74 bool operator==(const LayoutAlignElem &rhs) const;
75 };
76
77 /// \brief Layout pointer alignment element.
78 ///
79 /// Stores the alignment data associated with a given pointer and address space.
80 ///
81 /// \note The unusual order of elements in the structure attempts to reduce
82 /// padding and make the structure slightly more cache friendly.
83 struct PointerAlignElem {
84 unsigned ABIAlign;
85 unsigned PrefAlign;
86 uint32_t TypeByteWidth;
87 uint32_t AddressSpace;
88
89 /// Initializer
90 static PointerAlignElem get(uint32_t AddressSpace, unsigned ABIAlign,
91 unsigned PrefAlign, uint32_t TypeByteWidth);
92 bool operator==(const PointerAlignElem &rhs) const;
93 };
94
95 /// \brief A parsed version of the target data layout string in and methods for
96 /// querying it.
97 ///
98 /// The target data layout string is specified *by the target* - a frontend
99 /// generating LLVM IR is required to generate the right target data for the
100 /// target being codegen'd to.
101 class DataLayout {
102 private:
103 /// Defaults to false.
104 bool BigEndian;
105
106 unsigned StackNaturalAlign;
107
108 enum ManglingModeT {
109 MM_None,
110 MM_ELF,
111 MM_MachO,
112 MM_WinCOFF,
113 MM_WinCOFFX86,
114 MM_Mips
115 };
116 ManglingModeT ManglingMode;
117
118 SmallVector<unsigned char, 8> LegalIntWidths;
119
120 /// \brief Primitive type alignment data.
121 SmallVector<LayoutAlignElem, 16> Alignments;
122
123 /// \brief The string representation used to create this DataLayout
124 std::string StringRepresentation;
125
126 typedef SmallVector<PointerAlignElem, 8> PointersTy;
127 PointersTy Pointers;
128
129 PointersTy::const_iterator
findPointerLowerBound(uint32_t AddressSpace)130 findPointerLowerBound(uint32_t AddressSpace) const {
131 return const_cast<DataLayout *>(this)->findPointerLowerBound(AddressSpace);
132 }
133
134 PointersTy::iterator findPointerLowerBound(uint32_t AddressSpace);
135
136 /// This member is a signal that a requested alignment type and bit width were
137 /// not found in the SmallVector.
138 static const LayoutAlignElem InvalidAlignmentElem;
139
140 /// This member is a signal that a requested pointer type and bit width were
141 /// not found in the DenseSet.
142 static const PointerAlignElem InvalidPointerElem;
143
144 // The StructType -> StructLayout map.
145 mutable void *LayoutMap;
146
147 void setAlignment(AlignTypeEnum align_type, unsigned abi_align,
148 unsigned pref_align, uint32_t bit_width);
149 unsigned getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width,
150 bool ABIAlign, Type *Ty) const;
151 void setPointerAlignment(uint32_t AddrSpace, unsigned ABIAlign,
152 unsigned PrefAlign, uint32_t TypeByteWidth);
153
154 /// Internal helper method that returns requested alignment for type.
155 unsigned getAlignment(Type *Ty, bool abi_or_pref) const;
156
157 /// \brief Valid alignment predicate.
158 ///
159 /// Predicate that tests a LayoutAlignElem reference returned by get() against
160 /// InvalidAlignmentElem.
validAlignment(const LayoutAlignElem & align)161 bool validAlignment(const LayoutAlignElem &align) const {
162 return &align != &InvalidAlignmentElem;
163 }
164
165 /// \brief Valid pointer predicate.
166 ///
167 /// Predicate that tests a PointerAlignElem reference returned by get()
168 /// against \c InvalidPointerElem.
validPointer(const PointerAlignElem & align)169 bool validPointer(const PointerAlignElem &align) const {
170 return &align != &InvalidPointerElem;
171 }
172
173 /// Parses a target data specification string. Assert if the string is
174 /// malformed.
175 void parseSpecifier(StringRef LayoutDescription);
176
177 // Free all internal data structures.
178 void clear();
179
180 public:
181 /// Constructs a DataLayout from a specification string. See reset().
DataLayout(StringRef LayoutDescription)182 explicit DataLayout(StringRef LayoutDescription) : LayoutMap(nullptr) {
183 reset(LayoutDescription);
184 }
185
186 /// Initialize target data from properties stored in the module.
187 explicit DataLayout(const Module *M);
188
189 void init(const Module *M);
190
DataLayout(const DataLayout & DL)191 DataLayout(const DataLayout &DL) : LayoutMap(nullptr) { *this = DL; }
192
193 DataLayout &operator=(const DataLayout &DL) {
194 clear();
195 StringRepresentation = DL.StringRepresentation;
196 BigEndian = DL.isBigEndian();
197 StackNaturalAlign = DL.StackNaturalAlign;
198 ManglingMode = DL.ManglingMode;
199 LegalIntWidths = DL.LegalIntWidths;
200 Alignments = DL.Alignments;
201 Pointers = DL.Pointers;
202 return *this;
203 }
204
205 bool operator==(const DataLayout &Other) const;
206 bool operator!=(const DataLayout &Other) const { return !(*this == Other); }
207
208 ~DataLayout(); // Not virtual, do not subclass this class
209
210 /// Parse a data layout string (with fallback to default values).
211 void reset(StringRef LayoutDescription);
212
213 /// Layout endianness...
isLittleEndian()214 bool isLittleEndian() const { return !BigEndian; }
isBigEndian()215 bool isBigEndian() const { return BigEndian; }
216
217 /// \brief Returns the string representation of the DataLayout.
218 ///
219 /// This representation is in the same format accepted by the string
220 /// constructor above. This should not be used to compare two DataLayout as
221 /// different string can represent the same layout.
getStringRepresentation()222 const std::string &getStringRepresentation() const {
223 return StringRepresentation;
224 }
225
226 /// \brief Test if the DataLayout was constructed from an empty string.
isDefault()227 bool isDefault() const { return StringRepresentation.empty(); }
228
229 /// \brief Returns true if the specified type is known to be a native integer
230 /// type supported by the CPU.
231 ///
232 /// For example, i64 is not native on most 32-bit CPUs and i37 is not native
233 /// on any known one. This returns false if the integer width is not legal.
234 ///
235 /// The width is specified in bits.
isLegalInteger(uint64_t Width)236 bool isLegalInteger(uint64_t Width) const {
237 for (unsigned LegalIntWidth : LegalIntWidths)
238 if (LegalIntWidth == Width)
239 return true;
240 return false;
241 }
242
isIllegalInteger(uint64_t Width)243 bool isIllegalInteger(uint64_t Width) const { return !isLegalInteger(Width); }
244
245 /// Returns true if the given alignment exceeds the natural stack alignment.
exceedsNaturalStackAlignment(unsigned Align)246 bool exceedsNaturalStackAlignment(unsigned Align) const {
247 return (StackNaturalAlign != 0) && (Align > StackNaturalAlign);
248 }
249
getStackAlignment()250 unsigned getStackAlignment() const { return StackNaturalAlign; }
251
hasMicrosoftFastStdCallMangling()252 bool hasMicrosoftFastStdCallMangling() const {
253 return ManglingMode == MM_WinCOFFX86;
254 }
255
hasLinkerPrivateGlobalPrefix()256 bool hasLinkerPrivateGlobalPrefix() const { return ManglingMode == MM_MachO; }
257
getLinkerPrivateGlobalPrefix()258 const char *getLinkerPrivateGlobalPrefix() const {
259 if (ManglingMode == MM_MachO)
260 return "l";
261 return "";
262 }
263
getGlobalPrefix()264 char getGlobalPrefix() const {
265 switch (ManglingMode) {
266 case MM_None:
267 case MM_ELF:
268 case MM_Mips:
269 case MM_WinCOFF:
270 return '\0';
271 case MM_MachO:
272 case MM_WinCOFFX86:
273 return '_';
274 }
275 llvm_unreachable("invalid mangling mode");
276 }
277
getPrivateGlobalPrefix()278 const char *getPrivateGlobalPrefix() const {
279 switch (ManglingMode) {
280 case MM_None:
281 return "";
282 case MM_ELF:
283 return ".L";
284 case MM_Mips:
285 return "$";
286 case MM_MachO:
287 case MM_WinCOFF:
288 case MM_WinCOFFX86:
289 return "L";
290 }
291 llvm_unreachable("invalid mangling mode");
292 }
293
294 static const char *getManglingComponent(const Triple &T);
295
296 /// \brief Returns true if the specified type fits in a native integer type
297 /// supported by the CPU.
298 ///
299 /// For example, if the CPU only supports i32 as a native integer type, then
300 /// i27 fits in a legal integer type but i45 does not.
fitsInLegalInteger(unsigned Width)301 bool fitsInLegalInteger(unsigned Width) const {
302 for (unsigned LegalIntWidth : LegalIntWidths)
303 if (Width <= LegalIntWidth)
304 return true;
305 return false;
306 }
307
308 /// Layout pointer alignment
309 /// FIXME: The defaults need to be removed once all of
310 /// the backends/clients are updated.
311 unsigned getPointerABIAlignment(unsigned AS = 0) const;
312
313 /// Return target's alignment for stack-based pointers
314 /// FIXME: The defaults need to be removed once all of
315 /// the backends/clients are updated.
316 unsigned getPointerPrefAlignment(unsigned AS = 0) const;
317
318 /// Layout pointer size
319 /// FIXME: The defaults need to be removed once all of
320 /// the backends/clients are updated.
321 unsigned getPointerSize(unsigned AS = 0) const;
322
323 /// Layout pointer size, in bits
324 /// FIXME: The defaults need to be removed once all of
325 /// the backends/clients are updated.
326 unsigned getPointerSizeInBits(unsigned AS = 0) const {
327 return getPointerSize(AS) * 8;
328 }
329
330 /// Layout pointer size, in bits, based on the type. If this function is
331 /// called with a pointer type, then the type size of the pointer is returned.
332 /// If this function is called with a vector of pointers, then the type size
333 /// of the pointer is returned. This should only be called with a pointer or
334 /// vector of pointers.
335 unsigned getPointerTypeSizeInBits(Type *) const;
336
getPointerTypeSize(Type * Ty)337 unsigned getPointerTypeSize(Type *Ty) const {
338 return getPointerTypeSizeInBits(Ty) / 8;
339 }
340
341 /// Size examples:
342 ///
343 /// Type SizeInBits StoreSizeInBits AllocSizeInBits[*]
344 /// ---- ---------- --------------- ---------------
345 /// i1 1 8 8
346 /// i8 8 8 8
347 /// i19 19 24 32
348 /// i32 32 32 32
349 /// i100 100 104 128
350 /// i128 128 128 128
351 /// Float 32 32 32
352 /// Double 64 64 64
353 /// X86_FP80 80 80 96
354 ///
355 /// [*] The alloc size depends on the alignment, and thus on the target.
356 /// These values are for x86-32 linux.
357
358 /// \brief Returns the number of bits necessary to hold the specified type.
359 ///
360 /// For example, returns 36 for i36 and 80 for x86_fp80. The type passed must
361 /// have a size (Type::isSized() must return true).
362 uint64_t getTypeSizeInBits(Type *Ty) const;
363
364 /// \brief Returns the maximum number of bytes that may be overwritten by
365 /// storing the specified type.
366 ///
367 /// For example, returns 5 for i36 and 10 for x86_fp80.
getTypeStoreSize(Type * Ty)368 uint64_t getTypeStoreSize(Type *Ty) const {
369 return (getTypeSizeInBits(Ty) + 7) / 8;
370 }
371
372 /// \brief Returns the maximum number of bits that may be overwritten by
373 /// storing the specified type; always a multiple of 8.
374 ///
375 /// For example, returns 40 for i36 and 80 for x86_fp80.
getTypeStoreSizeInBits(Type * Ty)376 uint64_t getTypeStoreSizeInBits(Type *Ty) const {
377 return 8 * getTypeStoreSize(Ty);
378 }
379
380 /// \brief Returns the offset in bytes between successive objects of the
381 /// specified type, including alignment padding.
382 ///
383 /// This is the amount that alloca reserves for this type. For example,
384 /// returns 12 or 16 for x86_fp80, depending on alignment.
getTypeAllocSize(Type * Ty)385 uint64_t getTypeAllocSize(Type *Ty) const {
386 // Round up to the next alignment boundary.
387 return alignTo(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
388 }
389
390 /// \brief Returns the offset in bits between successive objects of the
391 /// specified type, including alignment padding; always a multiple of 8.
392 ///
393 /// This is the amount that alloca reserves for this type. For example,
394 /// returns 96 or 128 for x86_fp80, depending on alignment.
getTypeAllocSizeInBits(Type * Ty)395 uint64_t getTypeAllocSizeInBits(Type *Ty) const {
396 return 8 * getTypeAllocSize(Ty);
397 }
398
399 /// \brief Returns the minimum ABI-required alignment for the specified type.
400 unsigned getABITypeAlignment(Type *Ty) const;
401
402 /// \brief Returns the minimum ABI-required alignment for an integer type of
403 /// the specified bitwidth.
404 unsigned getABIIntegerTypeAlignment(unsigned BitWidth) const;
405
406 /// \brief Returns the preferred stack/global alignment for the specified
407 /// type.
408 ///
409 /// This is always at least as good as the ABI alignment.
410 unsigned getPrefTypeAlignment(Type *Ty) const;
411
412 /// \brief Returns the preferred alignment for the specified type, returned as
413 /// log2 of the value (a shift amount).
414 unsigned getPreferredTypeAlignmentShift(Type *Ty) const;
415
416 /// \brief Returns an integer type with size at least as big as that of a
417 /// pointer in the given address space.
418 IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const;
419
420 /// \brief Returns an integer (vector of integer) type with size at least as
421 /// big as that of a pointer of the given pointer (vector of pointer) type.
422 Type *getIntPtrType(Type *) const;
423
424 /// \brief Returns the smallest integer type with size at least as big as
425 /// Width bits.
426 Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const;
427
428 /// \brief Returns the largest legal integer type, or null if none are set.
getLargestLegalIntType(LLVMContext & C)429 Type *getLargestLegalIntType(LLVMContext &C) const {
430 unsigned LargestSize = getLargestLegalIntTypeSizeInBits();
431 return (LargestSize == 0) ? nullptr : Type::getIntNTy(C, LargestSize);
432 }
433
434 /// \brief Returns the size of largest legal integer type size, or 0 if none
435 /// are set.
436 unsigned getLargestLegalIntTypeSizeInBits() const;
437
438 /// \brief Returns the offset from the beginning of the type for the specified
439 /// indices.
440 ///
441 /// Note that this takes the element type, not the pointer type.
442 /// This is used to implement getelementptr.
443 int64_t getIndexedOffsetInType(Type *ElemTy, ArrayRef<Value *> Indices) const;
444
445 /// \brief Returns a StructLayout object, indicating the alignment of the
446 /// struct, its size, and the offsets of its fields.
447 ///
448 /// Note that this information is lazily cached.
449 const StructLayout *getStructLayout(StructType *Ty) const;
450
451 /// \brief Returns the preferred alignment of the specified global.
452 ///
453 /// This includes an explicitly requested alignment (if the global has one).
454 unsigned getPreferredAlignment(const GlobalVariable *GV) const;
455
456 /// \brief Returns the preferred alignment of the specified global, returned
457 /// in log form.
458 ///
459 /// This includes an explicitly requested alignment (if the global has one).
460 unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
461 };
462
unwrap(LLVMTargetDataRef P)463 inline DataLayout *unwrap(LLVMTargetDataRef P) {
464 return reinterpret_cast<DataLayout *>(P);
465 }
466
wrap(const DataLayout * P)467 inline LLVMTargetDataRef wrap(const DataLayout *P) {
468 return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout *>(P));
469 }
470
471 /// Used to lazily calculate structure layout information for a target machine,
472 /// based on the DataLayout structure.
473 class StructLayout {
474 uint64_t StructSize;
475 unsigned StructAlignment;
476 unsigned IsPadded : 1;
477 unsigned NumElements : 31;
478 uint64_t MemberOffsets[1]; // variable sized array!
479 public:
getSizeInBytes()480 uint64_t getSizeInBytes() const { return StructSize; }
481
getSizeInBits()482 uint64_t getSizeInBits() const { return 8 * StructSize; }
483
getAlignment()484 unsigned getAlignment() const { return StructAlignment; }
485
486 /// Returns whether the struct has padding or not between its fields.
487 /// NB: Padding in nested element is not taken into account.
hasPadding()488 bool hasPadding() const { return IsPadded; }
489
490 /// \brief Given a valid byte offset into the structure, returns the structure
491 /// index that contains it.
492 unsigned getElementContainingOffset(uint64_t Offset) const;
493
getElementOffset(unsigned Idx)494 uint64_t getElementOffset(unsigned Idx) const {
495 assert(Idx < NumElements && "Invalid element idx!");
496 return MemberOffsets[Idx];
497 }
498
getElementOffsetInBits(unsigned Idx)499 uint64_t getElementOffsetInBits(unsigned Idx) const {
500 return getElementOffset(Idx) * 8;
501 }
502
503 private:
504 friend class DataLayout; // Only DataLayout can create this class
505 StructLayout(StructType *ST, const DataLayout &DL);
506 };
507
508 // The implementation of this method is provided inline as it is particularly
509 // well suited to constant folding when called on a specific Type subclass.
getTypeSizeInBits(Type * Ty)510 inline uint64_t DataLayout::getTypeSizeInBits(Type *Ty) const {
511 assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
512 switch (Ty->getTypeID()) {
513 case Type::LabelTyID:
514 return getPointerSizeInBits(0);
515 case Type::PointerTyID:
516 return getPointerSizeInBits(Ty->getPointerAddressSpace());
517 case Type::ArrayTyID: {
518 ArrayType *ATy = cast<ArrayType>(Ty);
519 return ATy->getNumElements() *
520 getTypeAllocSizeInBits(ATy->getElementType());
521 }
522 case Type::StructTyID:
523 // Get the layout annotation... which is lazily created on demand.
524 return getStructLayout(cast<StructType>(Ty))->getSizeInBits();
525 case Type::IntegerTyID:
526 return Ty->getIntegerBitWidth();
527 case Type::HalfTyID:
528 return 16;
529 case Type::FloatTyID:
530 return 32;
531 case Type::DoubleTyID:
532 case Type::X86_MMXTyID:
533 return 64;
534 case Type::PPC_FP128TyID:
535 case Type::FP128TyID:
536 return 128;
537 // In memory objects this is always aligned to a higher boundary, but
538 // only 80 bits contain information.
539 case Type::X86_FP80TyID:
540 return 80;
541 case Type::VectorTyID: {
542 VectorType *VTy = cast<VectorType>(Ty);
543 return VTy->getNumElements() * getTypeSizeInBits(VTy->getElementType());
544 }
545 default:
546 llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
547 }
548 }
549
550 } // End llvm namespace
551
552 #endif
553