1 /** @file
2   This library is only intended to be used by UEFI network stack modules.
3   It provides basic functions for the UEFI network stack.
4 
5 Copyright (c) 2005 - 2012, Intel Corporation. All rights reserved.<BR>
6 This program and the accompanying materials
7 are licensed and made available under the terms and conditions of the BSD License
8 which accompanies this distribution.  The full text of the license may be found at<BR>
9 http://opensource.org/licenses/bsd-license.php
10 
11 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
12 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
13 
14 **/
15 
16 #ifndef _NET_LIB_H_
17 #define _NET_LIB_H_
18 
19 #include <Protocol/Ip6.h>
20 
21 #include <Library/BaseLib.h>
22 #include <Library/BaseMemoryLib.h>
23 
24 typedef UINT32          IP4_ADDR;
25 typedef UINT32          TCP_SEQNO;
26 typedef UINT16          TCP_PORTNO;
27 
28 
29 #define  NET_ETHER_ADDR_LEN    6
30 #define  NET_IFTYPE_ETHERNET   0x01
31 
32 #define  NET_VLAN_TAG_LEN      4
33 #define  ETHER_TYPE_VLAN       0x8100
34 
35 #define  EFI_IP_PROTO_UDP      0x11
36 #define  EFI_IP_PROTO_TCP      0x06
37 #define  EFI_IP_PROTO_ICMP     0x01
38 #define  IP4_PROTO_IGMP        0x02
39 #define  IP6_ICMP              58
40 
41 //
42 // The address classification
43 //
44 #define  IP4_ADDR_CLASSA       1
45 #define  IP4_ADDR_CLASSB       2
46 #define  IP4_ADDR_CLASSC       3
47 #define  IP4_ADDR_CLASSD       4
48 #define  IP4_ADDR_CLASSE       5
49 
50 #define  IP4_MASK_NUM          33
51 #define  IP6_PREFIX_NUM        129
52 
53 #define  IP6_HOP_BY_HOP        0
54 #define  IP6_DESTINATION       60
55 #define  IP6_ROUTING           43
56 #define  IP6_FRAGMENT          44
57 #define  IP6_AH                51
58 #define  IP6_ESP               50
59 #define  IP6_NO_NEXT_HEADER    59
60 
61 #define  IP_VERSION_4          4
62 #define  IP_VERSION_6          6
63 
64 #define  IP6_PREFIX_LENGTH     64
65 
66 #pragma pack(1)
67 
68 //
69 // Ethernet head definition
70 //
71 typedef struct {
72   UINT8                 DstMac [NET_ETHER_ADDR_LEN];
73   UINT8                 SrcMac [NET_ETHER_ADDR_LEN];
74   UINT16                EtherType;
75 } ETHER_HEAD;
76 
77 //
78 // 802.1Q VLAN Tag Control Information
79 //
80 typedef union {
81   struct {
82     UINT16              Vid      : 12;  // Unique VLAN identifier (0 to 4094)
83     UINT16              Cfi      : 1;   // Canonical Format Indicator
84     UINT16              Priority : 3;   // 802.1Q priority level (0 to 7)
85   } Bits;
86   UINT16                Uint16;
87 } VLAN_TCI;
88 
89 #define VLAN_TCI_CFI_CANONICAL_MAC      0
90 #define VLAN_TCI_CFI_NON_CANONICAL_MAC  1
91 
92 //
93 // The EFI_IP4_HEADER is hard to use because the source and
94 // destination address are defined as EFI_IPv4_ADDRESS, which
95 // is a structure. Two structures can't be compared or masked
96 // directly. This is why there is an internal representation.
97 //
98 typedef struct {
99   UINT8                 HeadLen : 4;
100   UINT8                 Ver     : 4;
101   UINT8                 Tos;
102   UINT16                TotalLen;
103   UINT16                Id;
104   UINT16                Fragment;
105   UINT8                 Ttl;
106   UINT8                 Protocol;
107   UINT16                Checksum;
108   IP4_ADDR              Src;
109   IP4_ADDR              Dst;
110 } IP4_HEAD;
111 
112 
113 //
114 // ICMP head definition. Each ICMP message is categorized as either an error
115 // message or query message. Two message types have their own head format.
116 //
117 typedef struct {
118   UINT8                 Type;
119   UINT8                 Code;
120   UINT16                Checksum;
121 } IP4_ICMP_HEAD;
122 
123 typedef struct {
124   IP4_ICMP_HEAD         Head;
125   UINT32                Fourth; // 4th filed of the head, it depends on Type.
126   IP4_HEAD              IpHead;
127 } IP4_ICMP_ERROR_HEAD;
128 
129 typedef struct {
130   IP4_ICMP_HEAD         Head;
131   UINT16                Id;
132   UINT16                Seq;
133 } IP4_ICMP_QUERY_HEAD;
134 
135 typedef struct {
136   UINT8                 Type;
137   UINT8                 Code;
138   UINT16                Checksum;
139 } IP6_ICMP_HEAD;
140 
141 typedef struct {
142   IP6_ICMP_HEAD         Head;
143   UINT32                Fourth;
144   EFI_IP6_HEADER        IpHead;
145 } IP6_ICMP_ERROR_HEAD;
146 
147 typedef struct {
148   IP6_ICMP_HEAD         Head;
149   UINT32                Fourth;
150 } IP6_ICMP_INFORMATION_HEAD;
151 
152 //
153 // UDP header definition
154 //
155 typedef struct {
156   UINT16                SrcPort;
157   UINT16                DstPort;
158   UINT16                Length;
159   UINT16                Checksum;
160 } EFI_UDP_HEADER;
161 
162 //
163 // TCP header definition
164 //
165 typedef struct {
166   TCP_PORTNO            SrcPort;
167   TCP_PORTNO            DstPort;
168   TCP_SEQNO             Seq;
169   TCP_SEQNO             Ack;
170   UINT8                 Res     : 4;
171   UINT8                 HeadLen : 4;
172   UINT8                 Flag;
173   UINT16                Wnd;
174   UINT16                Checksum;
175   UINT16                Urg;
176 } TCP_HEAD;
177 
178 #pragma pack()
179 
180 #define NET_MAC_EQUAL(pMac1, pMac2, Len)     \
181     (CompareMem ((pMac1), (pMac2), Len) == 0)
182 
183 #define NET_MAC_IS_MULTICAST(Mac, BMac, Len) \
184     (((*((UINT8 *) Mac) & 0x01) == 0x01) && (!NET_MAC_EQUAL (Mac, BMac, Len)))
185 
186 #define NTOHL(x)  SwapBytes32 (x)
187 
188 #define HTONL(x)  NTOHL(x)
189 
190 #define NTOHS(x)  SwapBytes16 (x)
191 
192 #define HTONS(x)   NTOHS(x)
193 #define NTOHLL(x)  SwapBytes64 (x)
194 #define HTONLL(x)  NTOHLL(x)
195 #define NTOHLLL(x) Ip6Swap128 (x)
196 #define HTONLLL(x) NTOHLLL(x)
197 
198 //
199 // Test the IP's attribute, All the IPs are in host byte order.
200 //
201 #define IP4_IS_MULTICAST(Ip)              (((Ip) & 0xF0000000) == 0xE0000000)
202 #define IP4_IS_LOCAL_BROADCAST(Ip)        ((Ip) == 0xFFFFFFFF)
203 #define IP4_NET_EQUAL(Ip1, Ip2, NetMask)  (((Ip1) & (NetMask)) == ((Ip2) & (NetMask)))
204 #define IP4_IS_VALID_NETMASK(Ip)          (NetGetMaskLength (Ip) != IP4_MASK_NUM)
205 
206 #define IP6_IS_MULTICAST(Ip6)             (((Ip6)->Addr[0]) == 0xFF)
207 
208 //
209 // Convert the EFI_IP4_ADDRESS to plain UINT32 IP4 address.
210 //
211 #define EFI_IP4(EfiIpAddr)       (*(IP4_ADDR *) ((EfiIpAddr).Addr))
212 #define EFI_NTOHL(EfiIp)         (NTOHL (EFI_IP4 ((EfiIp))))
213 #define EFI_IP4_EQUAL(Ip1, Ip2)  (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv4_ADDRESS)) == 0)
214 
215 #define EFI_IP6_EQUAL(Ip1, Ip2)  (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv6_ADDRESS)) == 0)
216 
217 #define IP4_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv4_ADDRESS)))
218 #define IP6_COPY_ADDRESS(Dest, Src) (CopyMem ((Dest), (Src), sizeof (EFI_IPv6_ADDRESS)))
219 #define IP6_COPY_LINK_ADDRESS(Mac1, Mac2) (CopyMem ((Mac1), (Mac2), sizeof (EFI_MAC_ADDRESS)))
220 
221 //
222 // The debug level definition. This value is also used as the
223 // syslog's servity level. Don't change it.
224 //
225 #define NETDEBUG_LEVEL_TRACE   5
226 #define NETDEBUG_LEVEL_WARNING 4
227 #define NETDEBUG_LEVEL_ERROR   3
228 
229 //
230 // Network debug message is sent out as syslog packet.
231 //
232 #define NET_SYSLOG_FACILITY    16                 // Syslog local facility local use
233 #define NET_SYSLOG_PACKET_LEN  512
234 #define NET_SYSLOG_TX_TIMEOUT  (500 * 1000 * 10)  // 500ms
235 #define NET_DEBUG_MSG_LEN      470                // 512 - (ether+ip4+udp4 head length)
236 
237 //
238 // The debug output expects the ASCII format string, Use %a to print ASCII
239 // string, and %s to print UNICODE string. PrintArg must be enclosed in ().
240 // For example: NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name));
241 //
242 #define NET_DEBUG_TRACE(Module, PrintArg) \
243   NetDebugOutput ( \
244     NETDEBUG_LEVEL_TRACE, \
245     Module, \
246     __FILE__, \
247     __LINE__, \
248     NetDebugASPrint PrintArg \
249     )
250 
251 #define NET_DEBUG_WARNING(Module, PrintArg) \
252   NetDebugOutput ( \
253     NETDEBUG_LEVEL_WARNING, \
254     Module, \
255     __FILE__, \
256     __LINE__, \
257     NetDebugASPrint PrintArg \
258     )
259 
260 #define NET_DEBUG_ERROR(Module, PrintArg) \
261   NetDebugOutput ( \
262     NETDEBUG_LEVEL_ERROR, \
263     Module, \
264     __FILE__, \
265     __LINE__, \
266     NetDebugASPrint PrintArg \
267     )
268 
269 /**
270   Allocate a buffer, then format the message to it. This is a
271   help function for the NET_DEBUG_XXX macros. The PrintArg of
272   these macros treats the variable length print parameters as a
273   single parameter, and pass it to the NetDebugASPrint. For
274   example, NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name))
275   if extracted to:
276 
277          NetDebugOutput (
278            NETDEBUG_LEVEL_TRACE,
279            "Tcp",
280            __FILE__,
281            __LINE__,
282            NetDebugASPrint ("State transit to %a\n", Name)
283          )
284 
285   @param Format  The ASCII format string.
286   @param ...     The variable length parameter whose format is determined
287                  by the Format string.
288 
289   @return        The buffer containing the formatted message,
290                  or NULL if memory allocation failed.
291 
292 **/
293 CHAR8 *
294 EFIAPI
295 NetDebugASPrint (
296   IN CHAR8                  *Format,
297   ...
298   );
299 
300 /**
301   Builds an UDP4 syslog packet and send it using SNP.
302 
303   This function will locate a instance of SNP then send the message through it.
304   Because it isn't open the SNP BY_DRIVER, apply caution when using it.
305 
306   @param Level    The servity level of the message.
307   @param Module   The Moudle that generates the log.
308   @param File     The file that contains the log.
309   @param Line     The exact line that contains the log.
310   @param Message  The user message to log.
311 
312   @retval EFI_INVALID_PARAMETER Any input parameter is invalid.
313   @retval EFI_OUT_OF_RESOURCES  Failed to allocate memory for the packet
314   @retval EFI_SUCCESS           The log is discard because that it is more verbose
315                                 than the mNetDebugLevelMax. Or, it has been sent out.
316 **/
317 EFI_STATUS
318 EFIAPI
319 NetDebugOutput (
320   IN UINT32                    Level,
321   IN UINT8                     *Module,
322   IN UINT8                     *File,
323   IN UINT32                    Line,
324   IN UINT8                     *Message
325   );
326 
327 
328 /**
329   Return the length of the mask.
330 
331   Return the length of the mask. Valid values are 0 to 32.
332   If the mask is invalid, return the invalid length 33, which is IP4_MASK_NUM.
333   NetMask is in the host byte order.
334 
335   @param[in]  NetMask              The netmask to get the length from.
336 
337   @return The length of the netmask, or IP4_MASK_NUM (33) if the mask is invalid.
338 
339 **/
340 INTN
341 EFIAPI
342 NetGetMaskLength (
343   IN IP4_ADDR               NetMask
344   );
345 
346 /**
347   Return the class of the IP address, such as class A, B, C.
348   Addr is in host byte order.
349 
350   The address of class A  starts with 0.
351   If the address belong to class A, return IP4_ADDR_CLASSA.
352   The address of class B  starts with 10.
353   If the address belong to class B, return IP4_ADDR_CLASSB.
354   The address of class C  starts with 110.
355   If the address belong to class C, return IP4_ADDR_CLASSC.
356   The address of class D  starts with 1110.
357   If the address belong to class D, return IP4_ADDR_CLASSD.
358   The address of class E  starts with 1111.
359   If the address belong to class E, return IP4_ADDR_CLASSE.
360 
361 
362   @param[in]   Addr                  The address to get the class from.
363 
364   @return IP address class, such as IP4_ADDR_CLASSA.
365 
366 **/
367 INTN
368 EFIAPI
369 NetGetIpClass (
370   IN IP4_ADDR               Addr
371   );
372 
373 /**
374   Check whether the IP is a valid unicast address according to
375   the netmask. If NetMask is zero, use the IP address's class to get the default mask.
376 
377   If Ip is 0, IP is not a valid unicast address.
378   Class D address is used for multicasting and class E address is reserved for future. If Ip
379   belongs to class D or class E, Ip is not a valid unicast address.
380   If all bits of the host address of Ip are 0 or 1, Ip is not a valid unicast address.
381 
382   @param[in]  Ip                    The IP to check against.
383   @param[in]  NetMask               The mask of the IP.
384 
385   @return TRUE if Ip is a valid unicast address on the network, otherwise FALSE.
386 
387 **/
388 BOOLEAN
389 EFIAPI
390 NetIp4IsUnicast (
391   IN IP4_ADDR               Ip,
392   IN IP4_ADDR               NetMask
393   );
394 
395 /**
396   Check whether the incoming IPv6 address is a valid unicast address.
397 
398   If the address is a multicast address has binary 0xFF at the start, it is not
399   a valid unicast address. If the address is unspecified ::, it is not a valid
400   unicast address to be assigned to any node. If the address is loopback address
401   ::1, it is also not a valid unicast address to be assigned to any physical
402   interface.
403 
404   @param[in]  Ip6                   The IPv6 address to check against.
405 
406   @return TRUE if Ip6 is a valid unicast address on the network, otherwise FALSE.
407 
408 **/
409 BOOLEAN
410 EFIAPI
411 NetIp6IsValidUnicast (
412   IN EFI_IPv6_ADDRESS       *Ip6
413   );
414 
415 
416 /**
417   Check whether the incoming Ipv6 address is the unspecified address or not.
418 
419   @param[in] Ip6   - Ip6 address, in network order.
420 
421   @retval TRUE     - Yes, incoming Ipv6 address is the unspecified address.
422   @retval FALSE    - The incoming Ipv6 address is not the unspecified address
423 
424 **/
425 BOOLEAN
426 EFIAPI
427 NetIp6IsUnspecifiedAddr (
428   IN EFI_IPv6_ADDRESS       *Ip6
429   );
430 
431 /**
432   Check whether the incoming Ipv6 address is a link-local address.
433 
434   @param[in] Ip6   - Ip6 address, in network order.
435 
436   @retval TRUE  - The incoming Ipv6 address is a link-local address.
437   @retval FALSE - The incoming Ipv6 address is not a link-local address.
438 
439 **/
440 BOOLEAN
441 EFIAPI
442 NetIp6IsLinkLocalAddr (
443   IN EFI_IPv6_ADDRESS *Ip6
444   );
445 
446 /**
447   Check whether the Ipv6 address1 and address2 are on the connected network.
448 
449   @param[in] Ip1          - Ip6 address1, in network order.
450   @param[in] Ip2          - Ip6 address2, in network order.
451   @param[in] PrefixLength - The prefix length of the checking net.
452 
453   @retval TRUE            - Yes, the Ipv6 address1 and address2 are connected.
454   @retval FALSE           - No the Ipv6 address1 and address2 are not connected.
455 
456 **/
457 BOOLEAN
458 EFIAPI
459 NetIp6IsNetEqual (
460   EFI_IPv6_ADDRESS *Ip1,
461   EFI_IPv6_ADDRESS *Ip2,
462   UINT8            PrefixLength
463   );
464 
465 /**
466   Switches the endianess of an IPv6 address.
467 
468   This function swaps the bytes in a 128-bit IPv6 address to switch the value
469   from little endian to big endian or vice versa. The byte swapped value is
470   returned.
471 
472   @param  Ip6 Points to an IPv6 address.
473 
474   @return The byte swapped IPv6 address.
475 
476 **/
477 EFI_IPv6_ADDRESS *
478 EFIAPI
479 Ip6Swap128 (
480   EFI_IPv6_ADDRESS *Ip6
481   );
482 
483 extern IP4_ADDR gIp4AllMasks[IP4_MASK_NUM];
484 
485 
486 extern EFI_IPv4_ADDRESS  mZeroIp4Addr;
487 
488 #define NET_IS_DIGIT(Ch)            (('0' <= (Ch)) && ((Ch) <= '9'))
489 #define NET_ROUNDUP(size, unit)     (((size) + (unit) - 1) & (~((unit) - 1)))
490 #define NET_IS_LOWER_CASE_CHAR(Ch)  (('a' <= (Ch)) && ((Ch) <= 'z'))
491 #define NET_IS_UPPER_CASE_CHAR(Ch)  (('A' <= (Ch)) && ((Ch) <= 'Z'))
492 
493 #define TICKS_PER_MS            10000U
494 #define TICKS_PER_SECOND        10000000U
495 
496 #define NET_RANDOM(Seed)        ((UINT32) ((UINT32) (Seed) * 1103515245UL + 12345) % 4294967295UL)
497 
498 /**
499   Extract a UINT32 from a byte stream.
500 
501   This function copies a UINT32 from a byte stream, and then converts it from Network
502   byte order to host byte order. Use this function to avoid alignment error.
503 
504   @param[in]  Buf                 The buffer to extract the UINT32.
505 
506   @return The UINT32 extracted.
507 
508 **/
509 UINT32
510 EFIAPI
511 NetGetUint32 (
512   IN UINT8                  *Buf
513   );
514 
515 /**
516   Puts a UINT32 into the byte stream in network byte order.
517 
518   Converts a UINT32 from host byte order to network byte order, then copies it to the
519   byte stream.
520 
521   @param[in, out]  Buf          The buffer in which to put the UINT32.
522   @param[in]       Data         The data to be converted and put into the byte stream.
523 
524 **/
525 VOID
526 EFIAPI
527 NetPutUint32 (
528   IN OUT UINT8                 *Buf,
529   IN     UINT32                Data
530   );
531 
532 /**
533   Initialize a random seed using current time and monotonic count.
534 
535   Get current time and monotonic count first. Then initialize a random seed
536   based on some basic mathematics operation on the hour, day, minute, second,
537   nanosecond and year of the current time and the monotonic count value.
538 
539   @return The random seed initialized with current time.
540 
541 **/
542 UINT32
543 EFIAPI
544 NetRandomInitSeed (
545   VOID
546   );
547 
548 
549 #define NET_LIST_USER_STRUCT(Entry, Type, Field)        \
550           BASE_CR(Entry, Type, Field)
551 
552 #define NET_LIST_USER_STRUCT_S(Entry, Type, Field, Sig)  \
553           CR(Entry, Type, Field, Sig)
554 
555 //
556 // Iterate through the double linked list. It is NOT delete safe
557 //
558 #define NET_LIST_FOR_EACH(Entry, ListHead) \
559   for(Entry = (ListHead)->ForwardLink; Entry != (ListHead); Entry = Entry->ForwardLink)
560 
561 //
562 // Iterate through the double linked list. This is delete-safe.
563 // Don't touch NextEntry. Also, don't use this macro if list
564 // entries other than the Entry may be deleted when processing
565 // the current Entry.
566 //
567 #define NET_LIST_FOR_EACH_SAFE(Entry, NextEntry, ListHead) \
568   for(Entry = (ListHead)->ForwardLink, NextEntry = Entry->ForwardLink; \
569       Entry != (ListHead); \
570       Entry = NextEntry, NextEntry = Entry->ForwardLink \
571      )
572 
573 //
574 // Make sure the list isn't empty before getting the first/last record.
575 //
576 #define NET_LIST_HEAD(ListHead, Type, Field)  \
577           NET_LIST_USER_STRUCT((ListHead)->ForwardLink, Type, Field)
578 
579 #define NET_LIST_TAIL(ListHead, Type, Field)  \
580           NET_LIST_USER_STRUCT((ListHead)->BackLink, Type, Field)
581 
582 
583 /**
584   Remove the first node entry on the list, and return the removed node entry.
585 
586   Removes the first node entry from a doubly linked list. It is up to the caller of
587   this function to release the memory used by the first node, if that is required. On
588   exit, the removed node is returned.
589 
590   If Head is NULL, then ASSERT().
591   If Head was not initialized, then ASSERT().
592   If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
593   linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
594   then ASSERT().
595 
596   @param[in, out]  Head                  The list header.
597 
598   @return The first node entry that is removed from the list, NULL if the list is empty.
599 
600 **/
601 LIST_ENTRY *
602 EFIAPI
603 NetListRemoveHead (
604   IN OUT LIST_ENTRY            *Head
605   );
606 
607 /**
608   Remove the last node entry on the list and return the removed node entry.
609 
610   Removes the last node entry from a doubly linked list. It is up to the caller of
611   this function to release the memory used by the first node, if that is required. On
612   exit, the removed node is returned.
613 
614   If Head is NULL, then ASSERT().
615   If Head was not initialized, then ASSERT().
616   If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
617   linked list including the head node is greater than or equal to PcdMaximumLinkedListLength,
618   then ASSERT().
619 
620   @param[in, out]  Head                  The list head.
621 
622   @return The last node entry that is removed from the list, NULL if the list is empty.
623 
624 **/
625 LIST_ENTRY *
626 EFIAPI
627 NetListRemoveTail (
628   IN OUT LIST_ENTRY            *Head
629   );
630 
631 /**
632   Insert a new node entry after a designated node entry of a doubly linked list.
633 
634   Inserts a new node entry designated by NewEntry after the node entry designated by PrevEntry
635   of the doubly linked list.
636 
637   @param[in, out]  PrevEntry             The entry after which to insert.
638   @param[in, out]  NewEntry              The new entry to insert.
639 
640 **/
641 VOID
642 EFIAPI
643 NetListInsertAfter (
644   IN OUT LIST_ENTRY         *PrevEntry,
645   IN OUT LIST_ENTRY         *NewEntry
646   );
647 
648 /**
649   Insert a new node entry before a designated node entry of a doubly linked list.
650 
651   Inserts a new node entry designated by NewEntry before the node entry designated by PostEntry
652   of the doubly linked list.
653 
654   @param[in, out]  PostEntry             The entry to insert before.
655   @param[in, out]  NewEntry              The new entry to insert.
656 
657 **/
658 VOID
659 EFIAPI
660 NetListInsertBefore (
661   IN OUT LIST_ENTRY     *PostEntry,
662   IN OUT LIST_ENTRY     *NewEntry
663   );
664 
665 /**
666   Callback function which provided by user to remove one node in NetDestroyLinkList process.
667 
668   @param[in]    Entry           The entry to be removed.
669   @param[in]    Context         Pointer to the callback context corresponds to the Context in NetDestroyLinkList.
670 
671   @retval EFI_SUCCESS           The entry has been removed successfully.
672   @retval Others                Fail to remove the entry.
673 
674 **/
675 typedef
676 EFI_STATUS
677 (EFIAPI *NET_DESTROY_LINK_LIST_CALLBACK) (
678   IN LIST_ENTRY         *Entry,
679   IN VOID               *Context   OPTIONAL
680   );
681 
682 /**
683   Safe destroy nodes in a linked list, and return the length of the list after all possible operations finished.
684 
685   Destroy network children list by list traversals is not safe due to graph dependencies between nodes.
686   This function performs a safe traversal to destroy these nodes by checking to see if the node being destroyed
687   has been removed from the list or not.
688   If it has been removed, then restart the traversal from the head.
689   If it hasn't been removed, then continue with the next node directly.
690   This function will end the iterate and return the CallBack's last return value if error happens,
691   or retrun EFI_SUCCESS if 2 complete passes are made with no changes in the number of children in the list.
692 
693   @param[in]    List             The head of the list.
694   @param[in]    CallBack         Pointer to the callback function to destroy one node in the list.
695   @param[in]    Context          Pointer to the callback function's context: corresponds to the
696                                  parameter Context in NET_DESTROY_LINK_LIST_CALLBACK.
697   @param[out]   ListLength       The length of the link list if the function returns successfully.
698 
699   @retval EFI_SUCCESS            Two complete passes are made with no changes in the number of children.
700   @retval EFI_INVALID_PARAMETER  The input parameter is invalid.
701   @retval Others                 Return the CallBack's last return value.
702 
703 **/
704 EFI_STATUS
705 EFIAPI
706 NetDestroyLinkList (
707   IN   LIST_ENTRY                       *List,
708   IN   NET_DESTROY_LINK_LIST_CALLBACK   CallBack,
709   IN   VOID                             *Context,    OPTIONAL
710   OUT  UINTN                            *ListLength  OPTIONAL
711   );
712 
713 /**
714   This function checks the input Handle to see if it's one of these handles in ChildHandleBuffer.
715 
716   @param[in]  Handle             Handle to be checked.
717   @param[in]  NumberOfChildren   Number of Handles in ChildHandleBuffer.
718   @param[in]  ChildHandleBuffer  An array of child handles to be freed. May be NULL
719                                  if NumberOfChildren is 0.
720 
721   @retval TURE                   Found the input Handle in ChildHandleBuffer.
722   @retval FALSE                  Can't find the input Handle in ChildHandleBuffer.
723 
724 **/
725 BOOLEAN
726 EFIAPI
727 NetIsInHandleBuffer (
728   IN  EFI_HANDLE          Handle,
729   IN  UINTN               NumberOfChildren,
730   IN  EFI_HANDLE          *ChildHandleBuffer OPTIONAL
731   );
732 
733 //
734 // Object container: EFI network stack spec defines various kinds of
735 // tokens. The drivers can share code to manage those objects.
736 //
737 typedef struct {
738   LIST_ENTRY                Link;
739   VOID                      *Key;
740   VOID                      *Value;
741 } NET_MAP_ITEM;
742 
743 typedef struct {
744   LIST_ENTRY                Used;
745   LIST_ENTRY                Recycled;
746   UINTN                     Count;
747 } NET_MAP;
748 
749 #define NET_MAP_INCREAMENT  64
750 
751 /**
752   Initialize the netmap. Netmap is a reposity to keep the <Key, Value> pairs.
753 
754   Initialize the forward and backward links of two head nodes donated by Map->Used
755   and Map->Recycled of two doubly linked lists.
756   Initializes the count of the <Key, Value> pairs in the netmap to zero.
757 
758   If Map is NULL, then ASSERT().
759   If the address of Map->Used is NULL, then ASSERT().
760   If the address of Map->Recycled is NULl, then ASSERT().
761 
762   @param[in, out]  Map                   The netmap to initialize.
763 
764 **/
765 VOID
766 EFIAPI
767 NetMapInit (
768   IN OUT NET_MAP                *Map
769   );
770 
771 /**
772   To clean up the netmap, that is, release allocated memories.
773 
774   Removes all nodes of the Used doubly linked list and frees memory of all related netmap items.
775   Removes all nodes of the Recycled doubly linked list and free memory of all related netmap items.
776   The number of the <Key, Value> pairs in the netmap is set to zero.
777 
778   If Map is NULL, then ASSERT().
779 
780   @param[in, out]  Map                   The netmap to clean up.
781 
782 **/
783 VOID
784 EFIAPI
785 NetMapClean (
786   IN OUT NET_MAP            *Map
787   );
788 
789 /**
790   Test whether the netmap is empty and return true if it is.
791 
792   If the number of the <Key, Value> pairs in the netmap is zero, return TRUE.
793 
794   If Map is NULL, then ASSERT().
795 
796 
797   @param[in]  Map                   The net map to test.
798 
799   @return TRUE if the netmap is empty, otherwise FALSE.
800 
801 **/
802 BOOLEAN
803 EFIAPI
804 NetMapIsEmpty (
805   IN NET_MAP                *Map
806   );
807 
808 /**
809   Return the number of the <Key, Value> pairs in the netmap.
810 
811   @param[in]  Map                   The netmap to get the entry number.
812 
813   @return The entry number in the netmap.
814 
815 **/
816 UINTN
817 EFIAPI
818 NetMapGetCount (
819   IN NET_MAP                *Map
820   );
821 
822 /**
823   Allocate an item to save the <Key, Value> pair to the head of the netmap.
824 
825   Allocate an item to save the <Key, Value> pair and add corresponding node entry
826   to the beginning of the Used doubly linked list. The number of the <Key, Value>
827   pairs in the netmap increase by 1.
828 
829   If Map is NULL, then ASSERT().
830 
831   @param[in, out]  Map                   The netmap to insert into.
832   @param[in]       Key                   The user's key.
833   @param[in]       Value                 The user's value for the key.
834 
835   @retval EFI_OUT_OF_RESOURCES  Failed to allocate the memory for the item.
836   @retval EFI_SUCCESS           The item is inserted to the head.
837 
838 **/
839 EFI_STATUS
840 EFIAPI
841 NetMapInsertHead (
842   IN OUT NET_MAP            *Map,
843   IN VOID                   *Key,
844   IN VOID                   *Value    OPTIONAL
845   );
846 
847 /**
848   Allocate an item to save the <Key, Value> pair to the tail of the netmap.
849 
850   Allocate an item to save the <Key, Value> pair and add corresponding node entry
851   to the tail of the Used doubly linked list. The number of the <Key, Value>
852   pairs in the netmap increase by 1.
853 
854   If Map is NULL, then ASSERT().
855 
856   @param[in, out]  Map                   The netmap to insert into.
857   @param[in]       Key                   The user's key.
858   @param[in]       Value                 The user's value for the key.
859 
860   @retval EFI_OUT_OF_RESOURCES  Failed to allocate the memory for the item.
861   @retval EFI_SUCCESS           The item is inserted to the tail.
862 
863 **/
864 EFI_STATUS
865 EFIAPI
866 NetMapInsertTail (
867   IN OUT NET_MAP            *Map,
868   IN VOID                   *Key,
869   IN VOID                   *Value    OPTIONAL
870   );
871 
872 /**
873   Finds the key in the netmap and returns the point to the item containing the Key.
874 
875   Iterate the Used doubly linked list of the netmap to get every item. Compare the key of every
876   item with the key to search. It returns the point to the item contains the Key if found.
877 
878   If Map is NULL, then ASSERT().
879 
880   @param[in]  Map                   The netmap to search within.
881   @param[in]  Key                   The key to search.
882 
883   @return The point to the item contains the Key, or NULL if Key isn't in the map.
884 
885 **/
886 NET_MAP_ITEM *
887 EFIAPI
888 NetMapFindKey (
889   IN  NET_MAP               *Map,
890   IN  VOID                  *Key
891   );
892 
893 /**
894   Remove the node entry of the item from the netmap and return the key of the removed item.
895 
896   Remove the node entry of the item from the Used doubly linked list of the netmap.
897   The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
898   entry of the item to the Recycled doubly linked list of the netmap. If Value is not NULL,
899   Value will point to the value of the item. It returns the key of the removed item.
900 
901   If Map is NULL, then ASSERT().
902   If Item is NULL, then ASSERT().
903   if item in not in the netmap, then ASSERT().
904 
905   @param[in, out]  Map                   The netmap to remove the item from.
906   @param[in, out]  Item                  The item to remove.
907   @param[out]      Value                 The variable to receive the value if not NULL.
908 
909   @return                                The key of the removed item.
910 
911 **/
912 VOID *
913 EFIAPI
914 NetMapRemoveItem (
915   IN  OUT NET_MAP             *Map,
916   IN  OUT NET_MAP_ITEM        *Item,
917   OUT VOID                    **Value           OPTIONAL
918   );
919 
920 /**
921   Remove the first node entry on the netmap and return the key of the removed item.
922 
923   Remove the first node entry from the Used doubly linked list of the netmap.
924   The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
925   entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
926   parameter Value will point to the value of the item. It returns the key of the removed item.
927 
928   If Map is NULL, then ASSERT().
929   If the Used doubly linked list is empty, then ASSERT().
930 
931   @param[in, out]  Map                   The netmap to remove the head from.
932   @param[out]      Value                 The variable to receive the value if not NULL.
933 
934   @return                                The key of the item removed.
935 
936 **/
937 VOID *
938 EFIAPI
939 NetMapRemoveHead (
940   IN OUT NET_MAP            *Map,
941   OUT VOID                  **Value         OPTIONAL
942   );
943 
944 /**
945   Remove the last node entry on the netmap and return the key of the removed item.
946 
947   Remove the last node entry from the Used doubly linked list of the netmap.
948   The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node
949   entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL,
950   parameter Value will point to the value of the item. It returns the key of the removed item.
951 
952   If Map is NULL, then ASSERT().
953   If the Used doubly linked list is empty, then ASSERT().
954 
955   @param[in, out]  Map                   The netmap to remove the tail from.
956   @param[out]      Value                 The variable to receive the value if not NULL.
957 
958   @return                                The key of the item removed.
959 
960 **/
961 VOID *
962 EFIAPI
963 NetMapRemoveTail (
964   IN OUT NET_MAP            *Map,
965   OUT VOID                  **Value       OPTIONAL
966   );
967 
968 typedef
969 EFI_STATUS
970 (EFIAPI *NET_MAP_CALLBACK) (
971   IN NET_MAP                *Map,
972   IN NET_MAP_ITEM           *Item,
973   IN VOID                   *Arg
974   );
975 
976 /**
977   Iterate through the netmap and call CallBack for each item.
978 
979   It will contiue the traverse if CallBack returns EFI_SUCCESS, otherwise, break
980   from the loop. It returns the CallBack's last return value. This function is
981   delete safe for the current item.
982 
983   If Map is NULL, then ASSERT().
984   If CallBack is NULL, then ASSERT().
985 
986   @param[in]  Map                   The Map to iterate through.
987   @param[in]  CallBack              The callback function to call for each item.
988   @param[in]  Arg                   The opaque parameter to the callback.
989 
990   @retval EFI_SUCCESS            There is no item in the netmap, or CallBack for each item
991                                  returns EFI_SUCCESS.
992   @retval Others                 It returns the CallBack's last return value.
993 
994 **/
995 EFI_STATUS
996 EFIAPI
997 NetMapIterate (
998   IN NET_MAP                *Map,
999   IN NET_MAP_CALLBACK       CallBack,
1000   IN VOID                   *Arg      OPTIONAL
1001   );
1002 
1003 
1004 //
1005 // Helper functions to implement driver binding and service binding protocols.
1006 //
1007 /**
1008   Create a child of the service that is identified by ServiceBindingGuid.
1009 
1010   Get the ServiceBinding Protocol first, then use it to create a child.
1011 
1012   If ServiceBindingGuid is NULL, then ASSERT().
1013   If ChildHandle is NULL, then ASSERT().
1014 
1015   @param[in]       Controller            The controller which has the service installed.
1016   @param[in]       Image                 The image handle used to open service.
1017   @param[in]       ServiceBindingGuid    The service's Guid.
1018   @param[in, out]  ChildHandle           The handle to receive the created child.
1019 
1020   @retval EFI_SUCCESS           The child was successfully created.
1021   @retval Others                Failed to create the child.
1022 
1023 **/
1024 EFI_STATUS
1025 EFIAPI
1026 NetLibCreateServiceChild (
1027   IN  EFI_HANDLE            Controller,
1028   IN  EFI_HANDLE            Image,
1029   IN  EFI_GUID              *ServiceBindingGuid,
1030   IN  OUT EFI_HANDLE        *ChildHandle
1031   );
1032 
1033 /**
1034   Destroy a child of the service that is identified by ServiceBindingGuid.
1035 
1036   Get the ServiceBinding Protocol first, then use it to destroy a child.
1037 
1038   If ServiceBindingGuid is NULL, then ASSERT().
1039 
1040   @param[in]   Controller            The controller which has the service installed.
1041   @param[in]   Image                 The image handle used to open service.
1042   @param[in]   ServiceBindingGuid    The service's Guid.
1043   @param[in]   ChildHandle           The child to destroy.
1044 
1045   @retval EFI_SUCCESS           The child was destroyed.
1046   @retval Others                Failed to destroy the child.
1047 
1048 **/
1049 EFI_STATUS
1050 EFIAPI
1051 NetLibDestroyServiceChild (
1052   IN  EFI_HANDLE            Controller,
1053   IN  EFI_HANDLE            Image,
1054   IN  EFI_GUID              *ServiceBindingGuid,
1055   IN  EFI_HANDLE            ChildHandle
1056   );
1057 
1058 /**
1059   Get handle with Simple Network Protocol installed on it.
1060 
1061   There should be MNP Service Binding Protocol installed on the input ServiceHandle.
1062   If Simple Network Protocol is already installed on the ServiceHandle, the
1063   ServiceHandle will be returned. If SNP is not installed on the ServiceHandle,
1064   try to find its parent handle with SNP installed.
1065 
1066   @param[in]   ServiceHandle    The handle where network service binding protocols are
1067                                 installed on.
1068   @param[out]  Snp              The pointer to store the address of the SNP instance.
1069                                 This is an optional parameter that may be NULL.
1070 
1071   @return The SNP handle, or NULL if not found.
1072 
1073 **/
1074 EFI_HANDLE
1075 EFIAPI
1076 NetLibGetSnpHandle (
1077   IN   EFI_HANDLE                  ServiceHandle,
1078   OUT  EFI_SIMPLE_NETWORK_PROTOCOL **Snp  OPTIONAL
1079   );
1080 
1081 /**
1082   Retrieve VLAN ID of a VLAN device handle.
1083 
1084   Search VLAN device path node in Device Path of specified ServiceHandle and
1085   return its VLAN ID. If no VLAN device path node found, then this ServiceHandle
1086   is not a VLAN device handle, and 0 will be returned.
1087 
1088   @param[in]   ServiceHandle    The handle where network service binding protocols are
1089                                 installed on.
1090 
1091   @return VLAN ID of the device handle, or 0 if not a VLAN device.
1092 
1093 **/
1094 UINT16
1095 EFIAPI
1096 NetLibGetVlanId (
1097   IN EFI_HANDLE             ServiceHandle
1098   );
1099 
1100 /**
1101   Find VLAN device handle with specified VLAN ID.
1102 
1103   The VLAN child device handle is created by VLAN Config Protocol on ControllerHandle.
1104   This function will append VLAN device path node to the parent device path,
1105   and then use LocateDevicePath() to find the correct VLAN device handle.
1106 
1107   @param[in]   ControllerHandle The handle where network service binding protocols are
1108                                 installed on.
1109   @param[in]   VlanId           The configured VLAN ID for the VLAN device.
1110 
1111   @return The VLAN device handle, or NULL if not found.
1112 
1113 **/
1114 EFI_HANDLE
1115 EFIAPI
1116 NetLibGetVlanHandle (
1117   IN EFI_HANDLE             ControllerHandle,
1118   IN UINT16                 VlanId
1119   );
1120 
1121 /**
1122   Get MAC address associated with the network service handle.
1123 
1124   There should be MNP Service Binding Protocol installed on the input ServiceHandle.
1125   If SNP is installed on the ServiceHandle or its parent handle, MAC address will
1126   be retrieved from SNP. If no SNP found, try to get SNP mode data use MNP.
1127 
1128   @param[in]   ServiceHandle    The handle where network service binding protocols are
1129                                 installed on.
1130   @param[out]  MacAddress       The pointer to store the returned MAC address.
1131   @param[out]  AddressSize      The length of returned MAC address.
1132 
1133   @retval EFI_SUCCESS           MAC address was returned successfully.
1134   @retval Others                Failed to get SNP mode data.
1135 
1136 **/
1137 EFI_STATUS
1138 EFIAPI
1139 NetLibGetMacAddress (
1140   IN  EFI_HANDLE            ServiceHandle,
1141   OUT EFI_MAC_ADDRESS       *MacAddress,
1142   OUT UINTN                 *AddressSize
1143   );
1144 
1145 /**
1146   Convert MAC address of the NIC associated with specified Service Binding Handle
1147   to a unicode string. Callers are responsible for freeing the string storage.
1148 
1149   Locate simple network protocol associated with the Service Binding Handle and
1150   get the mac address from SNP. Then convert the mac address into a unicode
1151   string. It takes 2 unicode characters to represent a 1 byte binary buffer.
1152   Plus one unicode character for the null-terminator.
1153 
1154   @param[in]   ServiceHandle         The handle where network service binding protocol is
1155                                      installed.
1156   @param[in]   ImageHandle           The image handle used to act as the agent handle to
1157                                      get the simple network protocol. This parameter is
1158                                      optional and may be NULL.
1159   @param[out]  MacString             The pointer to store the address of the string
1160                                      representation of  the mac address.
1161 
1162   @retval EFI_SUCCESS           Converted the mac address a unicode string successfully.
1163   @retval EFI_OUT_OF_RESOURCES  There are not enough memory resources.
1164   @retval Others                Failed to open the simple network protocol.
1165 
1166 **/
1167 EFI_STATUS
1168 EFIAPI
1169 NetLibGetMacString (
1170   IN  EFI_HANDLE            ServiceHandle,
1171   IN  EFI_HANDLE            ImageHandle, OPTIONAL
1172   OUT CHAR16                **MacString
1173   );
1174 
1175 /**
1176   Detect media status for specified network device.
1177 
1178   The underlying UNDI driver may or may not support reporting media status from
1179   GET_STATUS command (PXE_STATFLAGS_GET_STATUS_NO_MEDIA_SUPPORTED). This routine
1180   will try to invoke Snp->GetStatus() to get the media status. If media is already
1181   present, it returns directly. If media is not present, it will stop SNP and then
1182   restart SNP to get the latest media status. This provides an opportunity to get
1183   the correct media status for old UNDI driver, which doesn't support reporting
1184   media status from GET_STATUS command.
1185   Note: there are two limitations for the current algorithm:
1186   1) For UNDI with this capability, when the cable is not attached, there will
1187      be an redundant Stop/Start() process.
1188   2) for UNDI without this capability, in case that network cable is attached when
1189      Snp->Initialize() is invoked while network cable is unattached later,
1190      NetLibDetectMedia() will report MediaPresent as TRUE, causing upper layer
1191      apps to wait for timeout time.
1192 
1193   @param[in]   ServiceHandle    The handle where network service binding protocols are
1194                                 installed.
1195   @param[out]  MediaPresent     The pointer to store the media status.
1196 
1197   @retval EFI_SUCCESS           Media detection success.
1198   @retval EFI_INVALID_PARAMETER ServiceHandle is not a valid network device handle.
1199   @retval EFI_UNSUPPORTED       The network device does not support media detection.
1200   @retval EFI_DEVICE_ERROR      SNP is in an unknown state.
1201 
1202 **/
1203 EFI_STATUS
1204 EFIAPI
1205 NetLibDetectMedia (
1206   IN  EFI_HANDLE            ServiceHandle,
1207   OUT BOOLEAN               *MediaPresent
1208   );
1209 
1210 /**
1211   Create an IPv4 device path node.
1212 
1213   The header type of IPv4 device path node is MESSAGING_DEVICE_PATH.
1214   The header subtype of IPv4 device path node is MSG_IPv4_DP.
1215   The length of the IPv4 device path node in bytes is 19.
1216   Get other information from parameters to make up the whole IPv4 device path node.
1217 
1218   @param[in, out]  Node                  The pointer to the IPv4 device path node.
1219   @param[in]       Controller            The controller handle.
1220   @param[in]       LocalIp               The local IPv4 address.
1221   @param[in]       LocalPort             The local port.
1222   @param[in]       RemoteIp              The remote IPv4 address.
1223   @param[in]       RemotePort            The remote port.
1224   @param[in]       Protocol              The protocol type in the IP header.
1225   @param[in]       UseDefaultAddress     Whether this instance is using default address or not.
1226 
1227 **/
1228 VOID
1229 EFIAPI
1230 NetLibCreateIPv4DPathNode (
1231   IN OUT IPv4_DEVICE_PATH  *Node,
1232   IN EFI_HANDLE            Controller,
1233   IN IP4_ADDR              LocalIp,
1234   IN UINT16                LocalPort,
1235   IN IP4_ADDR              RemoteIp,
1236   IN UINT16                RemotePort,
1237   IN UINT16                Protocol,
1238   IN BOOLEAN               UseDefaultAddress
1239   );
1240 
1241 /**
1242   Create an IPv6 device path node.
1243 
1244   The header type of IPv6 device path node is MESSAGING_DEVICE_PATH.
1245   The header subtype of IPv6 device path node is MSG_IPv6_DP.
1246   The length of the IPv6 device path node in bytes is 43.
1247   Get other information from parameters to make up the whole IPv6 device path node.
1248 
1249   @param[in, out]  Node                  The pointer to the IPv6 device path node.
1250   @param[in]       Controller            The controller handle.
1251   @param[in]       LocalIp               The local IPv6 address.
1252   @param[in]       LocalPort             The local port.
1253   @param[in]       RemoteIp              The remote IPv6 address.
1254   @param[in]       RemotePort            The remote port.
1255   @param[in]       Protocol              The protocol type in the IP header.
1256 
1257 **/
1258 VOID
1259 EFIAPI
1260 NetLibCreateIPv6DPathNode (
1261   IN OUT IPv6_DEVICE_PATH  *Node,
1262   IN EFI_HANDLE            Controller,
1263   IN EFI_IPv6_ADDRESS      *LocalIp,
1264   IN UINT16                LocalPort,
1265   IN EFI_IPv6_ADDRESS      *RemoteIp,
1266   IN UINT16                RemotePort,
1267   IN UINT16                Protocol
1268   );
1269 
1270 
1271 /**
1272   Find the UNDI/SNP handle from controller and protocol GUID.
1273 
1274   For example, IP will open an MNP child to transmit/receive
1275   packets. When MNP is stopped, IP should also be stopped. IP
1276   needs to find its own private data that is related the IP's
1277   service binding instance that is installed on the UNDI/SNP handle.
1278   The controller is then either an MNP or an ARP child handle. Note that
1279   IP opens these handles using BY_DRIVER. Use that infomation to get the
1280   UNDI/SNP handle.
1281 
1282   @param[in]  Controller            The protocol handle to check.
1283   @param[in]  ProtocolGuid          The protocol that is related with the handle.
1284 
1285   @return The UNDI/SNP handle or NULL for errors.
1286 
1287 **/
1288 EFI_HANDLE
1289 EFIAPI
1290 NetLibGetNicHandle (
1291   IN EFI_HANDLE             Controller,
1292   IN EFI_GUID               *ProtocolGuid
1293   );
1294 
1295 /**
1296   This is the default unload handle for all the network drivers.
1297 
1298   Disconnect the driver specified by ImageHandle from all the devices in the handle database.
1299   Uninstall all the protocols installed in the driver entry point.
1300 
1301   @param[in]  ImageHandle       The drivers' driver image.
1302 
1303   @retval EFI_SUCCESS           The image is unloaded.
1304   @retval Others                Failed to unload the image.
1305 
1306 **/
1307 EFI_STATUS
1308 EFIAPI
1309 NetLibDefaultUnload (
1310   IN EFI_HANDLE             ImageHandle
1311   );
1312 
1313 /**
1314   Convert one Null-terminated ASCII string (decimal dotted) to EFI_IPv4_ADDRESS.
1315 
1316   @param[in]      String         The pointer to the Ascii string.
1317   @param[out]     Ip4Address     The pointer to the converted IPv4 address.
1318 
1319   @retval EFI_SUCCESS            Converted to an IPv4 address successfully.
1320   @retval EFI_INVALID_PARAMETER  The string is malformated, or Ip4Address is NULL.
1321 
1322 **/
1323 EFI_STATUS
1324 EFIAPI
1325 NetLibAsciiStrToIp4 (
1326   IN CONST CHAR8                 *String,
1327   OUT      EFI_IPv4_ADDRESS      *Ip4Address
1328   );
1329 
1330 /**
1331   Convert one Null-terminated ASCII string to EFI_IPv6_ADDRESS. The format of the
1332   string is defined in RFC 4291 - Text Pepresentation of Addresses.
1333 
1334   @param[in]      String         The pointer to the Ascii string.
1335   @param[out]     Ip6Address     The pointer to the converted IPv6 address.
1336 
1337   @retval EFI_SUCCESS            Converted to an IPv6 address successfully.
1338   @retval EFI_INVALID_PARAMETER  The string is malformated, or Ip6Address is NULL.
1339 
1340 **/
1341 EFI_STATUS
1342 EFIAPI
1343 NetLibAsciiStrToIp6 (
1344   IN CONST CHAR8                 *String,
1345   OUT      EFI_IPv6_ADDRESS      *Ip6Address
1346   );
1347 
1348 /**
1349   Convert one Null-terminated Unicode string (decimal dotted) to EFI_IPv4_ADDRESS.
1350 
1351   @param[in]      String         The pointer to the Ascii string.
1352   @param[out]     Ip4Address     The pointer to the converted IPv4 address.
1353 
1354   @retval EFI_SUCCESS            Converted to an IPv4 address successfully.
1355   @retval EFI_INVALID_PARAMETER  The string is mal-formated or Ip4Address is NULL.
1356   @retval EFI_OUT_OF_RESOURCES   Failed to perform the operation due to lack of resources.
1357 
1358 **/
1359 EFI_STATUS
1360 EFIAPI
1361 NetLibStrToIp4 (
1362   IN CONST CHAR16                *String,
1363   OUT      EFI_IPv4_ADDRESS      *Ip4Address
1364   );
1365 
1366 /**
1367   Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS.  The format of
1368   the string is defined in RFC 4291 - Text Pepresentation of Addresses.
1369 
1370   @param[in]      String         The pointer to the Ascii string.
1371   @param[out]     Ip6Address     The pointer to the converted IPv6 address.
1372 
1373   @retval EFI_SUCCESS            Converted to an IPv6 address successfully.
1374   @retval EFI_INVALID_PARAMETER  The string is malformated or Ip6Address is NULL.
1375   @retval EFI_OUT_OF_RESOURCES   Failed to perform the operation due to a lack of resources.
1376 
1377 **/
1378 EFI_STATUS
1379 EFIAPI
1380 NetLibStrToIp6 (
1381   IN CONST CHAR16                *String,
1382   OUT      EFI_IPv6_ADDRESS      *Ip6Address
1383   );
1384 
1385 /**
1386   Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS and prefix length.
1387   The format of the string is defined in RFC 4291 - Text Pepresentation of Addresses
1388   Prefixes: ipv6-address/prefix-length.
1389 
1390   @param[in]      String         The pointer to the Ascii string.
1391   @param[out]     Ip6Address     The pointer to the converted IPv6 address.
1392   @param[out]     PrefixLength   The pointer to the converted prefix length.
1393 
1394   @retval EFI_SUCCESS            Converted to an  IPv6 address successfully.
1395   @retval EFI_INVALID_PARAMETER  The string is malformated, or Ip6Address is NULL.
1396   @retval EFI_OUT_OF_RESOURCES   Failed to perform the operation due to a lack of resources.
1397 
1398 **/
1399 EFI_STATUS
1400 EFIAPI
1401 NetLibStrToIp6andPrefix (
1402   IN CONST CHAR16                *String,
1403   OUT      EFI_IPv6_ADDRESS      *Ip6Address,
1404   OUT      UINT8                 *PrefixLength
1405   );
1406 
1407 /**
1408 
1409   Convert one EFI_IPv6_ADDRESS to Null-terminated Unicode string.
1410   The text representation of address is defined in RFC 4291.
1411 
1412   @param[in]       Ip6Address     The pointer to the IPv6 address.
1413   @param[out]      String         The buffer to return the converted string.
1414   @param[in]       StringSize     The length in bytes of the input String.
1415 
1416   @retval EFI_SUCCESS             Convert to string successfully.
1417   @retval EFI_INVALID_PARAMETER   The input parameter is invalid.
1418   @retval EFI_BUFFER_TOO_SMALL    The BufferSize is too small for the result. BufferSize has been
1419                                   updated with the size needed to complete the request.
1420 **/
1421 EFI_STATUS
1422 EFIAPI
1423 NetLibIp6ToStr (
1424   IN         EFI_IPv6_ADDRESS      *Ip6Address,
1425   OUT        CHAR16                *String,
1426   IN         UINTN                 StringSize
1427   );
1428 
1429 //
1430 // Various signatures
1431 //
1432 #define  NET_BUF_SIGNATURE    SIGNATURE_32 ('n', 'b', 'u', 'f')
1433 #define  NET_VECTOR_SIGNATURE SIGNATURE_32 ('n', 'v', 'e', 'c')
1434 #define  NET_QUE_SIGNATURE    SIGNATURE_32 ('n', 'b', 'q', 'u')
1435 
1436 
1437 #define  NET_PROTO_DATA       64   // Opaque buffer for protocols
1438 #define  NET_BUF_HEAD         1    // Trim or allocate space from head
1439 #define  NET_BUF_TAIL         0    // Trim or allocate space from tail
1440 #define  NET_VECTOR_OWN_FIRST 0x01  // We allocated the 1st block in the vector
1441 
1442 #define NET_CHECK_SIGNATURE(PData, SIGNATURE) \
1443   ASSERT (((PData) != NULL) && ((PData)->Signature == (SIGNATURE)))
1444 
1445 //
1446 // Single memory block in the vector.
1447 //
1448 typedef struct {
1449   UINT32              Len;        // The block's length
1450   UINT8               *Bulk;      // The block's Data
1451 } NET_BLOCK;
1452 
1453 typedef VOID (EFIAPI *NET_VECTOR_EXT_FREE) (VOID *Arg);
1454 
1455 //
1456 //NET_VECTOR contains several blocks to hold all packet's
1457 //fragments and other house-keeping stuff for sharing. It
1458 //doesn't specify the where actual packet fragment begins.
1459 //
1460 typedef struct {
1461   UINT32              Signature;
1462   INTN                RefCnt;  // Reference count to share NET_VECTOR.
1463   NET_VECTOR_EXT_FREE Free;    // external function to free NET_VECTOR
1464   VOID                *Arg;    // opeque argument to Free
1465   UINT32              Flag;    // Flags, NET_VECTOR_OWN_FIRST
1466   UINT32              Len;     // Total length of the assocated BLOCKs
1467 
1468   UINT32              BlockNum;
1469   NET_BLOCK           Block[1];
1470 } NET_VECTOR;
1471 
1472 //
1473 //NET_BLOCK_OP operates on the NET_BLOCK. It specifies
1474 //where the actual fragment begins and ends
1475 //
1476 typedef struct {
1477   UINT8               *BlockHead;   // Block's head, or the smallest valid Head
1478   UINT8               *BlockTail;   // Block's tail. BlockTail-BlockHead=block length
1479   UINT8               *Head;        // 1st byte of the data in the block
1480   UINT8               *Tail;        // Tail of the data in the block, Tail-Head=Size
1481   UINT32              Size;         // The size of the data
1482 } NET_BLOCK_OP;
1483 
1484 typedef union {
1485   IP4_HEAD          *Ip4;
1486   EFI_IP6_HEADER    *Ip6;
1487 } NET_IP_HEAD;
1488 
1489 //
1490 //NET_BUF is the buffer manage structure used by the
1491 //network stack. Every network packet may be fragmented. The Vector points to
1492 //memory blocks used by each fragment, and BlockOp
1493 //specifies where each fragment begins and ends.
1494 //
1495 //It also contains an opaque area for the protocol to store
1496 //per-packet information. Protocol must be careful not
1497 //to overwrite the members after that.
1498 //
1499 typedef struct {
1500   UINT32         Signature;
1501   INTN           RefCnt;
1502   LIST_ENTRY     List;                       // The List this NET_BUF is on
1503 
1504   NET_IP_HEAD    Ip;                         // Network layer header, for fast access
1505   TCP_HEAD       *Tcp;                       // Transport layer header, for fast access
1506   EFI_UDP_HEADER *Udp;                       // User Datagram Protocol header
1507   UINT8          ProtoData [NET_PROTO_DATA]; //Protocol specific data
1508 
1509   NET_VECTOR     *Vector;                    // The vector containing the packet
1510 
1511   UINT32         BlockOpNum;                 // Total number of BlockOp in the buffer
1512   UINT32         TotalSize;                  // Total size of the actual packet
1513   NET_BLOCK_OP   BlockOp[1];                 // Specify the position of actual packet
1514 } NET_BUF;
1515 
1516 //
1517 //A queue of NET_BUFs. It is a thin extension of
1518 //NET_BUF functions.
1519 //
1520 typedef struct {
1521   UINT32              Signature;
1522   INTN                RefCnt;
1523   LIST_ENTRY          List;       // The List this buffer queue is on
1524 
1525   LIST_ENTRY          BufList;    // list of queued buffers
1526   UINT32              BufSize;    // total length of DATA in the buffers
1527   UINT32              BufNum;     // total number of buffers on the chain
1528 } NET_BUF_QUEUE;
1529 
1530 //
1531 // Pseudo header for TCP and UDP checksum
1532 //
1533 #pragma pack(1)
1534 typedef struct {
1535   IP4_ADDR            SrcIp;
1536   IP4_ADDR            DstIp;
1537   UINT8               Reserved;
1538   UINT8               Protocol;
1539   UINT16              Len;
1540 } NET_PSEUDO_HDR;
1541 
1542 typedef struct {
1543   EFI_IPv6_ADDRESS    SrcIp;
1544   EFI_IPv6_ADDRESS    DstIp;
1545   UINT32              Len;
1546   UINT32              Reserved:24;
1547   UINT32              NextHeader:8;
1548 } NET_IP6_PSEUDO_HDR;
1549 #pragma pack()
1550 
1551 //
1552 // The fragment entry table used in network interfaces. This is
1553 // the same as NET_BLOCK now. Use two different to distinguish
1554 // the two in case that NET_BLOCK be enhanced later.
1555 //
1556 typedef struct {
1557   UINT32              Len;
1558   UINT8               *Bulk;
1559 } NET_FRAGMENT;
1560 
1561 #define NET_GET_REF(PData)      ((PData)->RefCnt++)
1562 #define NET_PUT_REF(PData)      ((PData)->RefCnt--)
1563 #define NETBUF_FROM_PROTODATA(Info) BASE_CR((Info), NET_BUF, ProtoData)
1564 
1565 #define NET_BUF_SHARED(Buf) \
1566   (((Buf)->RefCnt > 1) || ((Buf)->Vector->RefCnt > 1))
1567 
1568 #define NET_VECTOR_SIZE(BlockNum) \
1569   (sizeof (NET_VECTOR) + ((BlockNum) - 1) * sizeof (NET_BLOCK))
1570 
1571 #define NET_BUF_SIZE(BlockOpNum)  \
1572   (sizeof (NET_BUF) + ((BlockOpNum) - 1) * sizeof (NET_BLOCK_OP))
1573 
1574 #define NET_HEADSPACE(BlockOp)  \
1575   (UINTN)((BlockOp)->Head - (BlockOp)->BlockHead)
1576 
1577 #define NET_TAILSPACE(BlockOp)  \
1578   (UINTN)((BlockOp)->BlockTail - (BlockOp)->Tail)
1579 
1580 /**
1581   Allocate a single block NET_BUF. Upon allocation, all the
1582   free space is in the tail room.
1583 
1584   @param[in]  Len              The length of the block.
1585 
1586   @return                      The pointer to the allocated NET_BUF, or NULL if the
1587                                allocation failed due to resource limitations.
1588 
1589 **/
1590 NET_BUF  *
1591 EFIAPI
1592 NetbufAlloc (
1593   IN UINT32                 Len
1594   );
1595 
1596 /**
1597   Free the net buffer and its associated NET_VECTOR.
1598 
1599   Decrease the reference count of the net buffer by one. Free the associated net
1600   vector and itself if the reference count of the net buffer is decreased to 0.
1601   The net vector free operation decreases the reference count of the net
1602   vector by one, and performs the resource free operation when the reference count
1603   of the net vector is 0.
1604 
1605   @param[in]  Nbuf                  The pointer to the NET_BUF to be freed.
1606 
1607 **/
1608 VOID
1609 EFIAPI
1610 NetbufFree (
1611   IN NET_BUF                *Nbuf
1612   );
1613 
1614 /**
1615   Get the index of NET_BLOCK_OP that contains the byte at Offset in the net
1616   buffer.
1617 
1618   For example, this function can be used to retrieve the IP header in the packet. It
1619   also can be used to get the fragment that contains the byte used
1620   mainly by the library implementation itself.
1621 
1622   @param[in]   Nbuf      The pointer to the net buffer.
1623   @param[in]   Offset    The offset of the byte.
1624   @param[out]  Index     Index of the NET_BLOCK_OP that contains the byte at
1625                          Offset.
1626 
1627   @return       The pointer to the Offset'th byte of data in the net buffer, or NULL
1628                 if there is no such data in the net buffer.
1629 
1630 **/
1631 UINT8  *
1632 EFIAPI
1633 NetbufGetByte (
1634   IN  NET_BUF               *Nbuf,
1635   IN  UINT32                Offset,
1636   OUT UINT32                *Index  OPTIONAL
1637   );
1638 
1639 /**
1640   Create a copy of the net buffer that shares the associated net vector.
1641 
1642   The reference count of the newly created net buffer is set to 1. The reference
1643   count of the associated net vector is increased by one.
1644 
1645   @param[in]  Nbuf              The pointer to the net buffer to be cloned.
1646 
1647   @return                       The pointer to the cloned net buffer, or NULL if the
1648                                 allocation failed due to resource limitations.
1649 
1650 **/
1651 NET_BUF *
1652 EFIAPI
1653 NetbufClone (
1654   IN NET_BUF                *Nbuf
1655   );
1656 
1657 /**
1658   Create a duplicated copy of the net buffer with data copied and HeadSpace
1659   bytes of head space reserved.
1660 
1661   The duplicated net buffer will allocate its own memory to hold the data of the
1662   source net buffer.
1663 
1664   @param[in]       Nbuf         The pointer to the net buffer to be duplicated from.
1665   @param[in, out]  Duplicate    The pointer to the net buffer to duplicate to. If
1666                                 NULL, a new net buffer is allocated.
1667   @param[in]      HeadSpace     The length of the head space to reserve.
1668 
1669   @return                       The pointer to the duplicated net buffer, or NULL if
1670                                 the allocation failed due to resource limitations.
1671 
1672 **/
1673 NET_BUF  *
1674 EFIAPI
1675 NetbufDuplicate (
1676   IN NET_BUF                *Nbuf,
1677   IN OUT NET_BUF            *Duplicate        OPTIONAL,
1678   IN UINT32                 HeadSpace
1679   );
1680 
1681 /**
1682   Create a NET_BUF structure which contains Len byte data of Nbuf starting from
1683   Offset.
1684 
1685   A new NET_BUF structure will be created but the associated data in NET_VECTOR
1686   is shared. This function exists to perform IP packet fragmentation.
1687 
1688   @param[in]  Nbuf         The pointer to the net buffer to be extracted.
1689   @param[in]  Offset       Starting point of the data to be included in the new
1690                            net buffer.
1691   @param[in]  Len          The bytes of data to be included in the new net buffer.
1692   @param[in]  HeadSpace    The bytes of the head space to reserve for the protocol header.
1693 
1694   @return                  The pointer to the cloned net buffer, or NULL if the
1695                            allocation failed due to resource limitations.
1696 
1697 **/
1698 NET_BUF  *
1699 EFIAPI
1700 NetbufGetFragment (
1701   IN NET_BUF                *Nbuf,
1702   IN UINT32                 Offset,
1703   IN UINT32                 Len,
1704   IN UINT32                 HeadSpace
1705   );
1706 
1707 /**
1708   Reserve some space in the header room of the net buffer.
1709 
1710   Upon allocation, all the space is in the tail room of the buffer. Call this
1711   function to move space to the header room. This function is quite limited
1712   in that it can only reserve space from the first block of an empty NET_BUF not
1713   built from the external. However, it should be enough for the network stack.
1714 
1715   @param[in, out]  Nbuf     The pointer to the net buffer.
1716   @param[in]       Len      The length of buffer to be reserved from the header.
1717 
1718 **/
1719 VOID
1720 EFIAPI
1721 NetbufReserve (
1722   IN OUT NET_BUF            *Nbuf,
1723   IN UINT32                 Len
1724   );
1725 
1726 /**
1727   Allocate Len bytes of space from the header or tail of the buffer.
1728 
1729   @param[in, out]  Nbuf       The pointer to the net buffer.
1730   @param[in]       Len        The length of the buffer to be allocated.
1731   @param[in]       FromHead   The flag to indicate whether to reserve the data
1732                               from head (TRUE) or tail (FALSE).
1733 
1734   @return                     The pointer to the first byte of the allocated buffer,
1735                               or NULL, if there is no sufficient space.
1736 
1737 **/
1738 UINT8*
1739 EFIAPI
1740 NetbufAllocSpace (
1741   IN OUT NET_BUF            *Nbuf,
1742   IN UINT32                 Len,
1743   IN BOOLEAN                FromHead
1744   );
1745 
1746 /**
1747   Trim Len bytes from the header or the tail of the net buffer.
1748 
1749   @param[in, out]  Nbuf         The pointer to the net buffer.
1750   @param[in]       Len          The length of the data to be trimmed.
1751   @param[in]      FromHead      The flag to indicate whether trim data is from the
1752                                 head (TRUE) or the tail (FALSE).
1753 
1754   @return    The length of the actual trimmed data, which may be less
1755              than Len if the TotalSize of Nbuf is less than Len.
1756 
1757 **/
1758 UINT32
1759 EFIAPI
1760 NetbufTrim (
1761   IN OUT NET_BUF            *Nbuf,
1762   IN UINT32                 Len,
1763   IN BOOLEAN                FromHead
1764   );
1765 
1766 /**
1767   Copy Len bytes of data from the specific offset of the net buffer to the
1768   destination memory.
1769 
1770   The Len bytes of data may cross several fragments of the net buffer.
1771 
1772   @param[in]   Nbuf         The pointer to the net buffer.
1773   @param[in]   Offset       The sequence number of the first byte to copy.
1774   @param[in]   Len          The length of the data to copy.
1775   @param[in]   Dest         The destination of the data to copy to.
1776 
1777   @return           The length of the actual copied data, or 0 if the offset
1778                     specified exceeds the total size of net buffer.
1779 
1780 **/
1781 UINT32
1782 EFIAPI
1783 NetbufCopy (
1784   IN NET_BUF                *Nbuf,
1785   IN UINT32                 Offset,
1786   IN UINT32                 Len,
1787   IN UINT8                  *Dest
1788   );
1789 
1790 /**
1791   Build a NET_BUF from external blocks.
1792 
1793   A new NET_BUF structure will be created from external blocks. An additional block
1794   of memory will be allocated to hold reserved HeadSpace bytes of header room
1795   and existing HeadLen bytes of header, but the external blocks are shared by the
1796   net buffer to avoid data copying.
1797 
1798   @param[in]  ExtFragment           The pointer to the data block.
1799   @param[in]  ExtNum                The number of the data blocks.
1800   @param[in]  HeadSpace             The head space to be reserved.
1801   @param[in]  HeadLen               The length of the protocol header. The function
1802                                     pulls this amount of data into a linear block.
1803   @param[in]  ExtFree               The pointer to the caller-provided free function.
1804   @param[in]  Arg                   The argument passed to ExtFree when ExtFree is
1805                                     called.
1806 
1807   @return                  The pointer to the net buffer built from the data blocks,
1808                            or NULL if the allocation failed due to resource
1809                            limit.
1810 
1811 **/
1812 NET_BUF  *
1813 EFIAPI
1814 NetbufFromExt (
1815   IN NET_FRAGMENT           *ExtFragment,
1816   IN UINT32                 ExtNum,
1817   IN UINT32                 HeadSpace,
1818   IN UINT32                 HeadLen,
1819   IN NET_VECTOR_EXT_FREE    ExtFree,
1820   IN VOID                   *Arg          OPTIONAL
1821   );
1822 
1823 /**
1824   Build a fragment table to contain the fragments in the net buffer. This is the
1825   opposite operation of the NetbufFromExt.
1826 
1827   @param[in]       Nbuf                  Points to the net buffer.
1828   @param[in, out]  ExtFragment           The pointer to the data block.
1829   @param[in, out]  ExtNum                The number of the data blocks.
1830 
1831   @retval EFI_BUFFER_TOO_SMALL  The number of non-empty blocks is bigger than
1832                                 ExtNum.
1833   @retval EFI_SUCCESS           The fragment table was built successfully.
1834 
1835 **/
1836 EFI_STATUS
1837 EFIAPI
1838 NetbufBuildExt (
1839   IN NET_BUF                *Nbuf,
1840   IN OUT NET_FRAGMENT       *ExtFragment,
1841   IN OUT UINT32             *ExtNum
1842   );
1843 
1844 /**
1845   Build a net buffer from a list of net buffers.
1846 
1847   All the fragments will be collected from the list of NEW_BUF, and then a new
1848   net buffer will be created through NetbufFromExt.
1849 
1850   @param[in]   BufList    A List of the net buffer.
1851   @param[in]   HeadSpace  The head space to be reserved.
1852   @param[in]   HeaderLen  The length of the protocol header. The function
1853                           pulls this amount of data into a linear block.
1854   @param[in]   ExtFree    The pointer to the caller provided free function.
1855   @param[in]   Arg        The argument passed to ExtFree when ExtFree is called.
1856 
1857   @return                 The pointer to the net buffer built from the list of net
1858                           buffers.
1859 
1860 **/
1861 NET_BUF  *
1862 EFIAPI
1863 NetbufFromBufList (
1864   IN LIST_ENTRY             *BufList,
1865   IN UINT32                 HeadSpace,
1866   IN UINT32                 HeaderLen,
1867   IN NET_VECTOR_EXT_FREE    ExtFree,
1868   IN VOID                   *Arg              OPTIONAL
1869   );
1870 
1871 /**
1872   Free a list of net buffers.
1873 
1874   @param[in, out]  Head              The pointer to the head of linked net buffers.
1875 
1876 **/
1877 VOID
1878 EFIAPI
1879 NetbufFreeList (
1880   IN OUT LIST_ENTRY         *Head
1881   );
1882 
1883 /**
1884   Initiate the net buffer queue.
1885 
1886   @param[in, out]  NbufQue   The pointer to the net buffer queue to be initialized.
1887 
1888 **/
1889 VOID
1890 EFIAPI
1891 NetbufQueInit (
1892   IN OUT NET_BUF_QUEUE          *NbufQue
1893   );
1894 
1895 /**
1896   Allocate and initialize a net buffer queue.
1897 
1898   @return         The pointer to the allocated net buffer queue, or NULL if the
1899                   allocation failed due to resource limit.
1900 
1901 **/
1902 NET_BUF_QUEUE  *
1903 EFIAPI
1904 NetbufQueAlloc (
1905   VOID
1906   );
1907 
1908 /**
1909   Free a net buffer queue.
1910 
1911   Decrease the reference count of the net buffer queue by one. The real resource
1912   free operation isn't performed until the reference count of the net buffer
1913   queue is decreased to 0.
1914 
1915   @param[in]  NbufQue               The pointer to the net buffer queue to be freed.
1916 
1917 **/
1918 VOID
1919 EFIAPI
1920 NetbufQueFree (
1921   IN NET_BUF_QUEUE          *NbufQue
1922   );
1923 
1924 /**
1925   Remove a net buffer from the head in the specific queue and return it.
1926 
1927   @param[in, out]  NbufQue               The pointer to the net buffer queue.
1928 
1929   @return           The pointer to the net buffer removed from the specific queue,
1930                     or NULL if there is no net buffer in the specific queue.
1931 
1932 **/
1933 NET_BUF  *
1934 EFIAPI
1935 NetbufQueRemove (
1936   IN OUT NET_BUF_QUEUE          *NbufQue
1937   );
1938 
1939 /**
1940   Append a net buffer to the net buffer queue.
1941 
1942   @param[in, out]  NbufQue            The pointer to the net buffer queue.
1943   @param[in, out]  Nbuf               The pointer to the net buffer to be appended.
1944 
1945 **/
1946 VOID
1947 EFIAPI
1948 NetbufQueAppend (
1949   IN OUT NET_BUF_QUEUE          *NbufQue,
1950   IN OUT NET_BUF                *Nbuf
1951   );
1952 
1953 /**
1954   Copy Len bytes of data from the net buffer queue at the specific offset to the
1955   destination memory.
1956 
1957   The copying operation is the same as NetbufCopy, but applies to the net buffer
1958   queue instead of the net buffer.
1959 
1960   @param[in]   NbufQue         The pointer to the net buffer queue.
1961   @param[in]   Offset          The sequence number of the first byte to copy.
1962   @param[in]   Len             The length of the data to copy.
1963   @param[out]  Dest            The destination of the data to copy to.
1964 
1965   @return       The length of the actual copied data, or 0 if the offset
1966                 specified exceeds the total size of net buffer queue.
1967 
1968 **/
1969 UINT32
1970 EFIAPI
1971 NetbufQueCopy (
1972   IN NET_BUF_QUEUE          *NbufQue,
1973   IN UINT32                 Offset,
1974   IN UINT32                 Len,
1975   OUT UINT8                 *Dest
1976   );
1977 
1978 /**
1979   Trim Len bytes of data from the buffer queue and free any net buffer
1980   that is completely trimmed.
1981 
1982   The trimming operation is the same as NetbufTrim but applies to the net buffer
1983   queue instead of the net buffer.
1984 
1985   @param[in, out]  NbufQue               The pointer to the net buffer queue.
1986   @param[in]       Len                   The length of the data to trim.
1987 
1988   @return   The actual length of the data trimmed.
1989 
1990 **/
1991 UINT32
1992 EFIAPI
1993 NetbufQueTrim (
1994   IN OUT NET_BUF_QUEUE      *NbufQue,
1995   IN UINT32                 Len
1996   );
1997 
1998 
1999 /**
2000   Flush the net buffer queue.
2001 
2002   @param[in, out]  NbufQue               The pointer to the queue to be flushed.
2003 
2004 **/
2005 VOID
2006 EFIAPI
2007 NetbufQueFlush (
2008   IN OUT NET_BUF_QUEUE          *NbufQue
2009   );
2010 
2011 /**
2012   Compute the checksum for a bulk of data.
2013 
2014   @param[in]   Bulk                  The pointer to the data.
2015   @param[in]   Len                   The length of the data, in bytes.
2016 
2017   @return    The computed checksum.
2018 
2019 **/
2020 UINT16
2021 EFIAPI
2022 NetblockChecksum (
2023   IN UINT8                  *Bulk,
2024   IN UINT32                 Len
2025   );
2026 
2027 /**
2028   Add two checksums.
2029 
2030   @param[in]   Checksum1             The first checksum to be added.
2031   @param[in]   Checksum2             The second checksum to be added.
2032 
2033   @return         The new checksum.
2034 
2035 **/
2036 UINT16
2037 EFIAPI
2038 NetAddChecksum (
2039   IN UINT16                 Checksum1,
2040   IN UINT16                 Checksum2
2041   );
2042 
2043 /**
2044   Compute the checksum for a NET_BUF.
2045 
2046   @param[in]   Nbuf                  The pointer to the net buffer.
2047 
2048   @return    The computed checksum.
2049 
2050 **/
2051 UINT16
2052 EFIAPI
2053 NetbufChecksum (
2054   IN NET_BUF                *Nbuf
2055   );
2056 
2057 /**
2058   Compute the checksum for TCP/UDP pseudo header.
2059 
2060   Src and Dst are in network byte order, and Len is in host byte order.
2061 
2062   @param[in]   Src                   The source address of the packet.
2063   @param[in]   Dst                   The destination address of the packet.
2064   @param[in]   Proto                 The protocol type of the packet.
2065   @param[in]   Len                   The length of the packet.
2066 
2067   @return   The computed checksum.
2068 
2069 **/
2070 UINT16
2071 EFIAPI
2072 NetPseudoHeadChecksum (
2073   IN IP4_ADDR               Src,
2074   IN IP4_ADDR               Dst,
2075   IN UINT8                  Proto,
2076   IN UINT16                 Len
2077   );
2078 
2079 /**
2080   Compute the checksum for the TCP6/UDP6 pseudo header.
2081 
2082   Src and Dst are in network byte order, and Len is in host byte order.
2083 
2084   @param[in]   Src                   The source address of the packet.
2085   @param[in]   Dst                   The destination address of the packet.
2086   @param[in]   NextHeader            The protocol type of the packet.
2087   @param[in]   Len                   The length of the packet.
2088 
2089   @return   The computed checksum.
2090 
2091 **/
2092 UINT16
2093 EFIAPI
2094 NetIp6PseudoHeadChecksum (
2095   IN EFI_IPv6_ADDRESS       *Src,
2096   IN EFI_IPv6_ADDRESS       *Dst,
2097   IN UINT8                  NextHeader,
2098   IN UINT32                 Len
2099   );
2100 
2101 /**
2102   The function frees the net buffer which allocated by the IP protocol. It releases
2103   only the net buffer and doesn't call the external free function.
2104 
2105   This function should be called after finishing the process of mIpSec->ProcessExt()
2106   for outbound traffic. The (EFI_IPSEC2_PROTOCOL)->ProcessExt() allocates a new
2107   buffer for the ESP, so there needs a function to free the old net buffer.
2108 
2109   @param[in]  Nbuf       The network buffer to be freed.
2110 
2111 **/
2112 VOID
2113 NetIpSecNetbufFree (
2114   NET_BUF   *Nbuf
2115   );
2116 
2117 /**
2118   This function obtains the system guid from the smbios table.
2119 
2120   @param[out]  SystemGuid     The pointer of the returned system guid.
2121 
2122   @retval EFI_SUCCESS         Successfully obtained the system guid.
2123   @retval EFI_NOT_FOUND       Did not find the SMBIOS table.
2124 
2125 **/
2126 EFI_STATUS
2127 EFIAPI
2128 NetLibGetSystemGuid (
2129   OUT EFI_GUID              *SystemGuid
2130   );
2131 
2132 #endif
2133