1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 /** \mainpage V8 API Reference Guide
6  *
7  * V8 is Google's open source JavaScript engine.
8  *
9  * This set of documents provides reference material generated from the
10  * V8 header file, include/v8.h.
11  *
12  * For other documentation see http://code.google.com/apis/v8/
13  */
14 
15 #ifndef INCLUDE_V8_H_
16 #define INCLUDE_V8_H_
17 
18 #include <stddef.h>
19 #include <stdint.h>
20 #include <stdio.h>
21 #include <memory>
22 #include <utility>
23 #include <vector>
24 
25 #include "v8-version.h"  // NOLINT(build/include)
26 #include "v8config.h"    // NOLINT(build/include)
27 
28 // We reserve the V8_* prefix for macros defined in V8 public API and
29 // assume there are no name conflicts with the embedder's code.
30 
31 #ifdef V8_OS_WIN
32 
33 // Setup for Windows DLL export/import. When building the V8 DLL the
34 // BUILDING_V8_SHARED needs to be defined. When building a program which uses
35 // the V8 DLL USING_V8_SHARED needs to be defined. When either building the V8
36 // static library or building a program which uses the V8 static library neither
37 // BUILDING_V8_SHARED nor USING_V8_SHARED should be defined.
38 #ifdef BUILDING_V8_SHARED
39 # define V8_EXPORT __declspec(dllexport)
40 #elif USING_V8_SHARED
41 # define V8_EXPORT __declspec(dllimport)
42 #else
43 # define V8_EXPORT
44 #endif  // BUILDING_V8_SHARED
45 
46 #else  // V8_OS_WIN
47 
48 // Setup for Linux shared library export.
49 #if V8_HAS_ATTRIBUTE_VISIBILITY
50 # ifdef BUILDING_V8_SHARED
51 #  define V8_EXPORT __attribute__ ((visibility("default")))
52 # else
53 #  define V8_EXPORT
54 # endif
55 #else
56 # define V8_EXPORT
57 #endif
58 
59 #endif  // V8_OS_WIN
60 
61 /**
62  * The v8 JavaScript engine.
63  */
64 namespace v8 {
65 
66 class AccessorSignature;
67 class Array;
68 class ArrayBuffer;
69 class Boolean;
70 class BooleanObject;
71 class Context;
72 class CpuProfiler;
73 class Data;
74 class Date;
75 class External;
76 class Function;
77 class FunctionTemplate;
78 class HeapProfiler;
79 class ImplementationUtilities;
80 class Int32;
81 class Integer;
82 class Isolate;
83 template <class T>
84 class Maybe;
85 class Name;
86 class Number;
87 class NumberObject;
88 class Object;
89 class ObjectOperationDescriptor;
90 class ObjectTemplate;
91 class Platform;
92 class Primitive;
93 class Promise;
94 class PropertyDescriptor;
95 class Proxy;
96 class RawOperationDescriptor;
97 class Script;
98 class SharedArrayBuffer;
99 class Signature;
100 class StartupData;
101 class StackFrame;
102 class StackTrace;
103 class String;
104 class StringObject;
105 class Symbol;
106 class SymbolObject;
107 class Private;
108 class Uint32;
109 class Utils;
110 class Value;
111 template <class T> class Local;
112 template <class T>
113 class MaybeLocal;
114 template <class T> class Eternal;
115 template<class T> class NonCopyablePersistentTraits;
116 template<class T> class PersistentBase;
117 template <class T, class M = NonCopyablePersistentTraits<T> >
118 class Persistent;
119 template <class T>
120 class Global;
121 template<class K, class V, class T> class PersistentValueMap;
122 template <class K, class V, class T>
123 class PersistentValueMapBase;
124 template <class K, class V, class T>
125 class GlobalValueMap;
126 template<class V, class T> class PersistentValueVector;
127 template<class T, class P> class WeakCallbackObject;
128 class FunctionTemplate;
129 class ObjectTemplate;
130 class Data;
131 template<typename T> class FunctionCallbackInfo;
132 template<typename T> class PropertyCallbackInfo;
133 class StackTrace;
134 class StackFrame;
135 class Isolate;
136 class CallHandlerHelper;
137 class EscapableHandleScope;
138 template<typename T> class ReturnValue;
139 
140 namespace experimental {
141 class FastAccessorBuilder;
142 }  // namespace experimental
143 
144 namespace internal {
145 class Arguments;
146 class Heap;
147 class HeapObject;
148 class Isolate;
149 class Object;
150 struct StreamedSource;
151 template<typename T> class CustomArguments;
152 class PropertyCallbackArguments;
153 class FunctionCallbackArguments;
154 class GlobalHandles;
155 }  // namespace internal
156 
157 
158 /**
159  * General purpose unique identifier.
160  */
161 class UniqueId {
162  public:
UniqueId(intptr_t data)163   explicit UniqueId(intptr_t data)
164       : data_(data) {}
165 
166   bool operator==(const UniqueId& other) const {
167     return data_ == other.data_;
168   }
169 
170   bool operator!=(const UniqueId& other) const {
171     return data_ != other.data_;
172   }
173 
174   bool operator<(const UniqueId& other) const {
175     return data_ < other.data_;
176   }
177 
178  private:
179   intptr_t data_;
180 };
181 
182 // --- Handles ---
183 
184 #define TYPE_CHECK(T, S)                                       \
185   while (false) {                                              \
186     *(static_cast<T* volatile*>(0)) = static_cast<S*>(0);      \
187   }
188 
189 
190 /**
191  * An object reference managed by the v8 garbage collector.
192  *
193  * All objects returned from v8 have to be tracked by the garbage
194  * collector so that it knows that the objects are still alive.  Also,
195  * because the garbage collector may move objects, it is unsafe to
196  * point directly to an object.  Instead, all objects are stored in
197  * handles which are known by the garbage collector and updated
198  * whenever an object moves.  Handles should always be passed by value
199  * (except in cases like out-parameters) and they should never be
200  * allocated on the heap.
201  *
202  * There are two types of handles: local and persistent handles.
203  * Local handles are light-weight and transient and typically used in
204  * local operations.  They are managed by HandleScopes.  Persistent
205  * handles can be used when storing objects across several independent
206  * operations and have to be explicitly deallocated when they're no
207  * longer used.
208  *
209  * It is safe to extract the object stored in the handle by
210  * dereferencing the handle (for instance, to extract the Object* from
211  * a Local<Object>); the value will still be governed by a handle
212  * behind the scenes and the same rules apply to these values as to
213  * their handles.
214  */
215 template <class T>
216 class Local {
217  public:
Local()218   V8_INLINE Local() : val_(0) {}
219   template <class S>
Local(Local<S> that)220   V8_INLINE Local(Local<S> that)
221       : val_(reinterpret_cast<T*>(*that)) {
222     /**
223      * This check fails when trying to convert between incompatible
224      * handles. For example, converting from a Local<String> to a
225      * Local<Number>.
226      */
227     TYPE_CHECK(T, S);
228   }
229 
230   /**
231    * Returns true if the handle is empty.
232    */
IsEmpty()233   V8_INLINE bool IsEmpty() const { return val_ == 0; }
234 
235   /**
236    * Sets the handle to be empty. IsEmpty() will then return true.
237    */
Clear()238   V8_INLINE void Clear() { val_ = 0; }
239 
240   V8_INLINE T* operator->() const { return val_; }
241 
242   V8_INLINE T* operator*() const { return val_; }
243 
244   /**
245    * Checks whether two handles are the same.
246    * Returns true if both are empty, or if the objects
247    * to which they refer are identical.
248    * The handles' references are not checked.
249    */
250   template <class S>
251   V8_INLINE bool operator==(const Local<S>& that) const {
252     internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
253     internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
254     if (a == 0) return b == 0;
255     if (b == 0) return false;
256     return *a == *b;
257   }
258 
259   template <class S> V8_INLINE bool operator==(
260       const PersistentBase<S>& that) const {
261     internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
262     internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
263     if (a == 0) return b == 0;
264     if (b == 0) return false;
265     return *a == *b;
266   }
267 
268   /**
269    * Checks whether two handles are different.
270    * Returns true if only one of the handles is empty, or if
271    * the objects to which they refer are different.
272    * The handles' references are not checked.
273    */
274   template <class S>
275   V8_INLINE bool operator!=(const Local<S>& that) const {
276     return !operator==(that);
277   }
278 
279   template <class S> V8_INLINE bool operator!=(
280       const Persistent<S>& that) const {
281     return !operator==(that);
282   }
283 
Cast(Local<S> that)284   template <class S> V8_INLINE static Local<T> Cast(Local<S> that) {
285 #ifdef V8_ENABLE_CHECKS
286     // If we're going to perform the type check then we have to check
287     // that the handle isn't empty before doing the checked cast.
288     if (that.IsEmpty()) return Local<T>();
289 #endif
290     return Local<T>(T::Cast(*that));
291   }
292 
293   template <class S>
As()294   V8_INLINE Local<S> As() const {
295     return Local<S>::Cast(*this);
296   }
297 
298   /**
299    * Create a local handle for the content of another handle.
300    * The referee is kept alive by the local handle even when
301    * the original handle is destroyed/disposed.
302    */
303   V8_INLINE static Local<T> New(Isolate* isolate, Local<T> that);
304   V8_INLINE static Local<T> New(Isolate* isolate,
305                                 const PersistentBase<T>& that);
306 
307  private:
308   friend class Utils;
309   template<class F> friend class Eternal;
310   template<class F> friend class PersistentBase;
311   template<class F, class M> friend class Persistent;
312   template<class F> friend class Local;
313   template <class F>
314   friend class MaybeLocal;
315   template<class F> friend class FunctionCallbackInfo;
316   template<class F> friend class PropertyCallbackInfo;
317   friend class String;
318   friend class Object;
319   friend class Context;
320   friend class Private;
321   template<class F> friend class internal::CustomArguments;
322   friend Local<Primitive> Undefined(Isolate* isolate);
323   friend Local<Primitive> Null(Isolate* isolate);
324   friend Local<Boolean> True(Isolate* isolate);
325   friend Local<Boolean> False(Isolate* isolate);
326   friend class HandleScope;
327   friend class EscapableHandleScope;
328   template <class F1, class F2, class F3>
329   friend class PersistentValueMapBase;
330   template<class F1, class F2> friend class PersistentValueVector;
331   template <class F>
332   friend class ReturnValue;
333 
Local(T * that)334   explicit V8_INLINE Local(T* that) : val_(that) {}
335   V8_INLINE static Local<T> New(Isolate* isolate, T* that);
336   T* val_;
337 };
338 
339 
340 #if !defined(V8_IMMINENT_DEPRECATION_WARNINGS)
341 // Handle is an alias for Local for historical reasons.
342 template <class T>
343 using Handle = Local<T>;
344 #endif
345 
346 
347 /**
348  * A MaybeLocal<> is a wrapper around Local<> that enforces a check whether
349  * the Local<> is empty before it can be used.
350  *
351  * If an API method returns a MaybeLocal<>, the API method can potentially fail
352  * either because an exception is thrown, or because an exception is pending,
353  * e.g. because a previous API call threw an exception that hasn't been caught
354  * yet, or because a TerminateExecution exception was thrown. In that case, an
355  * empty MaybeLocal is returned.
356  */
357 template <class T>
358 class MaybeLocal {
359  public:
MaybeLocal()360   V8_INLINE MaybeLocal() : val_(nullptr) {}
361   template <class S>
MaybeLocal(Local<S> that)362   V8_INLINE MaybeLocal(Local<S> that)
363       : val_(reinterpret_cast<T*>(*that)) {
364     TYPE_CHECK(T, S);
365   }
366 
IsEmpty()367   V8_INLINE bool IsEmpty() const { return val_ == nullptr; }
368 
369   template <class S>
ToLocal(Local<S> * out)370   V8_WARN_UNUSED_RESULT V8_INLINE bool ToLocal(Local<S>* out) const {
371     out->val_ = IsEmpty() ? nullptr : this->val_;
372     return !IsEmpty();
373   }
374 
375   // Will crash if the MaybeLocal<> is empty.
376   V8_INLINE Local<T> ToLocalChecked();
377 
378   template <class S>
FromMaybe(Local<S> default_value)379   V8_INLINE Local<S> FromMaybe(Local<S> default_value) const {
380     return IsEmpty() ? default_value : Local<S>(val_);
381   }
382 
383  private:
384   T* val_;
385 };
386 
387 
388 // Eternal handles are set-once handles that live for the life of the isolate.
389 template <class T> class Eternal {
390  public:
Eternal()391   V8_INLINE Eternal() : index_(kInitialValue) { }
392   template<class S>
Eternal(Isolate * isolate,Local<S> handle)393   V8_INLINE Eternal(Isolate* isolate, Local<S> handle) : index_(kInitialValue) {
394     Set(isolate, handle);
395   }
396   // Can only be safely called if already set.
397   V8_INLINE Local<T> Get(Isolate* isolate);
IsEmpty()398   V8_INLINE bool IsEmpty() { return index_ == kInitialValue; }
399   template<class S> V8_INLINE void Set(Isolate* isolate, Local<S> handle);
400 
401  private:
402   static const int kInitialValue = -1;
403   int index_;
404 };
405 
406 
407 static const int kInternalFieldsInWeakCallback = 2;
408 
409 
410 template <typename T>
411 class WeakCallbackInfo {
412  public:
413   typedef void (*Callback)(const WeakCallbackInfo<T>& data);
414 
WeakCallbackInfo(Isolate * isolate,T * parameter,void * internal_fields[kInternalFieldsInWeakCallback],Callback * callback)415   WeakCallbackInfo(Isolate* isolate, T* parameter,
416                    void* internal_fields[kInternalFieldsInWeakCallback],
417                    Callback* callback)
418       : isolate_(isolate), parameter_(parameter), callback_(callback) {
419     for (int i = 0; i < kInternalFieldsInWeakCallback; ++i) {
420       internal_fields_[i] = internal_fields[i];
421     }
422   }
423 
GetIsolate()424   V8_INLINE Isolate* GetIsolate() const { return isolate_; }
GetParameter()425   V8_INLINE T* GetParameter() const { return parameter_; }
426   V8_INLINE void* GetInternalField(int index) const;
427 
428   V8_INLINE V8_DEPRECATED("use indexed version",
GetInternalField1()429                           void* GetInternalField1() const) {
430     return internal_fields_[0];
431   }
432   V8_INLINE V8_DEPRECATED("use indexed version",
GetInternalField2()433                           void* GetInternalField2() const) {
434     return internal_fields_[1];
435   }
436 
437   V8_DEPRECATED("Not realiable once SetSecondPassCallback() was used.",
IsFirstPass()438                 bool IsFirstPass() const) {
439     return callback_ != nullptr;
440   }
441 
442   // When first called, the embedder MUST Reset() the Global which triggered the
443   // callback. The Global itself is unusable for anything else. No v8 other api
444   // calls may be called in the first callback. Should additional work be
445   // required, the embedder must set a second pass callback, which will be
446   // called after all the initial callbacks are processed.
447   // Calling SetSecondPassCallback on the second pass will immediately crash.
SetSecondPassCallback(Callback callback)448   void SetSecondPassCallback(Callback callback) const { *callback_ = callback; }
449 
450  private:
451   Isolate* isolate_;
452   T* parameter_;
453   Callback* callback_;
454   void* internal_fields_[kInternalFieldsInWeakCallback];
455 };
456 
457 
458 // kParameter will pass a void* parameter back to the callback, kInternalFields
459 // will pass the first two internal fields back to the callback, kFinalizer
460 // will pass a void* parameter back, but is invoked before the object is
461 // actually collected, so it can be resurrected. In the last case, it is not
462 // possible to request a second pass callback.
463 enum class WeakCallbackType { kParameter, kInternalFields, kFinalizer };
464 
465 /**
466  * An object reference that is independent of any handle scope.  Where
467  * a Local handle only lives as long as the HandleScope in which it was
468  * allocated, a PersistentBase handle remains valid until it is explicitly
469  * disposed.
470  *
471  * A persistent handle contains a reference to a storage cell within
472  * the v8 engine which holds an object value and which is updated by
473  * the garbage collector whenever the object is moved.  A new storage
474  * cell can be created using the constructor or PersistentBase::Reset and
475  * existing handles can be disposed using PersistentBase::Reset.
476  *
477  */
478 template <class T> class PersistentBase {
479  public:
480   /**
481    * If non-empty, destroy the underlying storage cell
482    * IsEmpty() will return true after this call.
483    */
484   V8_INLINE void Reset();
485   /**
486    * If non-empty, destroy the underlying storage cell
487    * and create a new one with the contents of other if other is non empty
488    */
489   template <class S>
490   V8_INLINE void Reset(Isolate* isolate, const Local<S>& other);
491 
492   /**
493    * If non-empty, destroy the underlying storage cell
494    * and create a new one with the contents of other if other is non empty
495    */
496   template <class S>
497   V8_INLINE void Reset(Isolate* isolate, const PersistentBase<S>& other);
498 
IsEmpty()499   V8_INLINE bool IsEmpty() const { return val_ == NULL; }
Empty()500   V8_INLINE void Empty() { val_ = 0; }
501 
Get(Isolate * isolate)502   V8_INLINE Local<T> Get(Isolate* isolate) const {
503     return Local<T>::New(isolate, *this);
504   }
505 
506   template <class S>
507   V8_INLINE bool operator==(const PersistentBase<S>& that) const {
508     internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
509     internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
510     if (a == NULL) return b == NULL;
511     if (b == NULL) return false;
512     return *a == *b;
513   }
514 
515   template <class S>
516   V8_INLINE bool operator==(const Local<S>& that) const {
517     internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
518     internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
519     if (a == NULL) return b == NULL;
520     if (b == NULL) return false;
521     return *a == *b;
522   }
523 
524   template <class S>
525   V8_INLINE bool operator!=(const PersistentBase<S>& that) const {
526     return !operator==(that);
527   }
528 
529   template <class S>
530   V8_INLINE bool operator!=(const Local<S>& that) const {
531     return !operator==(that);
532   }
533 
534   /**
535    *  Install a finalization callback on this object.
536    *  NOTE: There is no guarantee as to *when* or even *if* the callback is
537    *  invoked. The invocation is performed solely on a best effort basis.
538    *  As always, GC-based finalization should *not* be relied upon for any
539    *  critical form of resource management!
540    */
541   template <typename P>
542   V8_INLINE void SetWeak(P* parameter,
543                          typename WeakCallbackInfo<P>::Callback callback,
544                          WeakCallbackType type);
545 
546   /**
547    * Turns this handle into a weak phantom handle without finalization callback.
548    * The handle will be reset automatically when the garbage collector detects
549    * that the object is no longer reachable.
550    * A related function Isolate::NumberOfPhantomHandleResetsSinceLastCall
551    * returns how many phantom handles were reset by the garbage collector.
552    */
553   V8_INLINE void SetWeak();
554 
555   template<typename P>
556   V8_INLINE P* ClearWeak();
557 
558   // TODO(dcarney): remove this.
ClearWeak()559   V8_INLINE void ClearWeak() { ClearWeak<void>(); }
560 
561   /**
562    * Allows the embedder to tell the v8 garbage collector that a certain object
563    * is alive. Only allowed when the embedder is asked to trace its heap by
564    * EmbedderHeapTracer.
565    */
566   V8_INLINE void RegisterExternalReference(Isolate* isolate) const;
567 
568   /**
569    * Marks the reference to this object independent. Garbage collector is free
570    * to ignore any object groups containing this object. Weak callback for an
571    * independent handle should not assume that it will be preceded by a global
572    * GC prologue callback or followed by a global GC epilogue callback.
573    */
574   V8_INLINE void MarkIndependent();
575 
576   /**
577    * Marks the reference to this object as active. The scavenge garbage
578    * collection should not reclaim the objects marked as active.
579    * This bit is cleared after the each garbage collection pass.
580    */
581   V8_INLINE void MarkActive();
582 
583   V8_INLINE bool IsIndependent() const;
584 
585   /** Checks if the handle holds the only reference to an object. */
586   V8_INLINE bool IsNearDeath() const;
587 
588   /** Returns true if the handle's reference is weak.  */
589   V8_INLINE bool IsWeak() const;
590 
591   /**
592    * Assigns a wrapper class ID to the handle. See RetainedObjectInfo interface
593    * description in v8-profiler.h for details.
594    */
595   V8_INLINE void SetWrapperClassId(uint16_t class_id);
596 
597   /**
598    * Returns the class ID previously assigned to this handle or 0 if no class ID
599    * was previously assigned.
600    */
601   V8_INLINE uint16_t WrapperClassId() const;
602 
603   PersistentBase(const PersistentBase& other) = delete;  // NOLINT
604   void operator=(const PersistentBase&) = delete;
605 
606  private:
607   friend class Isolate;
608   friend class Utils;
609   template<class F> friend class Local;
610   template<class F1, class F2> friend class Persistent;
611   template <class F>
612   friend class Global;
613   template<class F> friend class PersistentBase;
614   template<class F> friend class ReturnValue;
615   template <class F1, class F2, class F3>
616   friend class PersistentValueMapBase;
617   template<class F1, class F2> friend class PersistentValueVector;
618   friend class Object;
619 
PersistentBase(T * val)620   explicit V8_INLINE PersistentBase(T* val) : val_(val) {}
621   V8_INLINE static T* New(Isolate* isolate, T* that);
622 
623   T* val_;
624 };
625 
626 
627 /**
628  * Default traits for Persistent. This class does not allow
629  * use of the copy constructor or assignment operator.
630  * At present kResetInDestructor is not set, but that will change in a future
631  * version.
632  */
633 template<class T>
634 class NonCopyablePersistentTraits {
635  public:
636   typedef Persistent<T, NonCopyablePersistentTraits<T> > NonCopyablePersistent;
637   static const bool kResetInDestructor = false;
638   template<class S, class M>
Copy(const Persistent<S,M> & source,NonCopyablePersistent * dest)639   V8_INLINE static void Copy(const Persistent<S, M>& source,
640                              NonCopyablePersistent* dest) {
641     Uncompilable<Object>();
642   }
643   // TODO(dcarney): come up with a good compile error here.
Uncompilable()644   template<class O> V8_INLINE static void Uncompilable() {
645     TYPE_CHECK(O, Primitive);
646   }
647 };
648 
649 
650 /**
651  * Helper class traits to allow copying and assignment of Persistent.
652  * This will clone the contents of storage cell, but not any of the flags, etc.
653  */
654 template<class T>
655 struct CopyablePersistentTraits {
656   typedef Persistent<T, CopyablePersistentTraits<T> > CopyablePersistent;
657   static const bool kResetInDestructor = true;
658   template<class S, class M>
CopyCopyablePersistentTraits659   static V8_INLINE void Copy(const Persistent<S, M>& source,
660                              CopyablePersistent* dest) {
661     // do nothing, just allow copy
662   }
663 };
664 
665 
666 /**
667  * A PersistentBase which allows copy and assignment.
668  *
669  * Copy, assignment and destructor bevavior is controlled by the traits
670  * class M.
671  *
672  * Note: Persistent class hierarchy is subject to future changes.
673  */
674 template <class T, class M> class Persistent : public PersistentBase<T> {
675  public:
676   /**
677    * A Persistent with no storage cell.
678    */
Persistent()679   V8_INLINE Persistent() : PersistentBase<T>(0) { }
680   /**
681    * Construct a Persistent from a Local.
682    * When the Local is non-empty, a new storage cell is created
683    * pointing to the same object, and no flags are set.
684    */
685   template <class S>
Persistent(Isolate * isolate,Local<S> that)686   V8_INLINE Persistent(Isolate* isolate, Local<S> that)
687       : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
688     TYPE_CHECK(T, S);
689   }
690   /**
691    * Construct a Persistent from a Persistent.
692    * When the Persistent is non-empty, a new storage cell is created
693    * pointing to the same object, and no flags are set.
694    */
695   template <class S, class M2>
Persistent(Isolate * isolate,const Persistent<S,M2> & that)696   V8_INLINE Persistent(Isolate* isolate, const Persistent<S, M2>& that)
697     : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
698     TYPE_CHECK(T, S);
699   }
700   /**
701    * The copy constructors and assignment operator create a Persistent
702    * exactly as the Persistent constructor, but the Copy function from the
703    * traits class is called, allowing the setting of flags based on the
704    * copied Persistent.
705    */
Persistent(const Persistent & that)706   V8_INLINE Persistent(const Persistent& that) : PersistentBase<T>(0) {
707     Copy(that);
708   }
709   template <class S, class M2>
Persistent(const Persistent<S,M2> & that)710   V8_INLINE Persistent(const Persistent<S, M2>& that) : PersistentBase<T>(0) {
711     Copy(that);
712   }
713   V8_INLINE Persistent& operator=(const Persistent& that) { // NOLINT
714     Copy(that);
715     return *this;
716   }
717   template <class S, class M2>
718   V8_INLINE Persistent& operator=(const Persistent<S, M2>& that) { // NOLINT
719     Copy(that);
720     return *this;
721   }
722   /**
723    * The destructor will dispose the Persistent based on the
724    * kResetInDestructor flags in the traits class.  Since not calling dispose
725    * can result in a memory leak, it is recommended to always set this flag.
726    */
~Persistent()727   V8_INLINE ~Persistent() {
728     if (M::kResetInDestructor) this->Reset();
729   }
730 
731   // TODO(dcarney): this is pretty useless, fix or remove
732   template <class S>
Cast(const Persistent<S> & that)733   V8_INLINE static Persistent<T>& Cast(const Persistent<S>& that) {  // NOLINT
734 #ifdef V8_ENABLE_CHECKS
735     // If we're going to perform the type check then we have to check
736     // that the handle isn't empty before doing the checked cast.
737     if (!that.IsEmpty()) T::Cast(*that);
738 #endif
739     return reinterpret_cast<Persistent<T>&>(const_cast<Persistent<S>&>(that));
740   }
741 
742   // TODO(dcarney): this is pretty useless, fix or remove
743   template <class S>
As()744   V8_INLINE Persistent<S>& As() const {  // NOLINT
745     return Persistent<S>::Cast(*this);
746   }
747 
748  private:
749   friend class Isolate;
750   friend class Utils;
751   template<class F> friend class Local;
752   template<class F1, class F2> friend class Persistent;
753   template<class F> friend class ReturnValue;
754 
Persistent(T * that)755   explicit V8_INLINE Persistent(T* that) : PersistentBase<T>(that) {}
756   V8_INLINE T* operator*() const { return this->val_; }
757   template<class S, class M2>
758   V8_INLINE void Copy(const Persistent<S, M2>& that);
759 };
760 
761 
762 /**
763  * A PersistentBase which has move semantics.
764  *
765  * Note: Persistent class hierarchy is subject to future changes.
766  */
767 template <class T>
768 class Global : public PersistentBase<T> {
769  public:
770   /**
771    * A Global with no storage cell.
772    */
Global()773   V8_INLINE Global() : PersistentBase<T>(nullptr) {}
774   /**
775    * Construct a Global from a Local.
776    * When the Local is non-empty, a new storage cell is created
777    * pointing to the same object, and no flags are set.
778    */
779   template <class S>
Global(Isolate * isolate,Local<S> that)780   V8_INLINE Global(Isolate* isolate, Local<S> that)
781       : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
782     TYPE_CHECK(T, S);
783   }
784   /**
785    * Construct a Global from a PersistentBase.
786    * When the Persistent is non-empty, a new storage cell is created
787    * pointing to the same object, and no flags are set.
788    */
789   template <class S>
Global(Isolate * isolate,const PersistentBase<S> & that)790   V8_INLINE Global(Isolate* isolate, const PersistentBase<S>& that)
791       : PersistentBase<T>(PersistentBase<T>::New(isolate, that.val_)) {
792     TYPE_CHECK(T, S);
793   }
794   /**
795    * Move constructor.
796    */
Global(Global && other)797   V8_INLINE Global(Global&& other) : PersistentBase<T>(other.val_) {  // NOLINT
798     other.val_ = nullptr;
799   }
~Global()800   V8_INLINE ~Global() { this->Reset(); }
801   /**
802    * Move via assignment.
803    */
804   template <class S>
805   V8_INLINE Global& operator=(Global<S>&& rhs) {  // NOLINT
806     TYPE_CHECK(T, S);
807     if (this != &rhs) {
808       this->Reset();
809       this->val_ = rhs.val_;
810       rhs.val_ = nullptr;
811     }
812     return *this;
813   }
814   /**
815    * Pass allows returning uniques from functions, etc.
816    */
Pass()817   Global Pass() { return static_cast<Global&&>(*this); }  // NOLINT
818 
819   /*
820    * For compatibility with Chromium's base::Bind (base::Passed).
821    */
822   typedef void MoveOnlyTypeForCPP03;
823 
824   Global(const Global&) = delete;
825   void operator=(const Global&) = delete;
826 
827  private:
828   template <class F>
829   friend class ReturnValue;
830   V8_INLINE T* operator*() const { return this->val_; }
831 };
832 
833 
834 // UniquePersistent is an alias for Global for historical reason.
835 template <class T>
836 using UniquePersistent = Global<T>;
837 
838 
839  /**
840  * A stack-allocated class that governs a number of local handles.
841  * After a handle scope has been created, all local handles will be
842  * allocated within that handle scope until either the handle scope is
843  * deleted or another handle scope is created.  If there is already a
844  * handle scope and a new one is created, all allocations will take
845  * place in the new handle scope until it is deleted.  After that,
846  * new handles will again be allocated in the original handle scope.
847  *
848  * After the handle scope of a local handle has been deleted the
849  * garbage collector will no longer track the object stored in the
850  * handle and may deallocate it.  The behavior of accessing a handle
851  * for which the handle scope has been deleted is undefined.
852  */
853 class V8_EXPORT HandleScope {
854  public:
855   explicit HandleScope(Isolate* isolate);
856 
857   ~HandleScope();
858 
859   /**
860    * Counts the number of allocated handles.
861    */
862   static int NumberOfHandles(Isolate* isolate);
863 
GetIsolate()864   V8_INLINE Isolate* GetIsolate() const {
865     return reinterpret_cast<Isolate*>(isolate_);
866   }
867 
868   HandleScope(const HandleScope&) = delete;
869   void operator=(const HandleScope&) = delete;
870   void* operator new(size_t size) = delete;
871   void operator delete(void*, size_t) = delete;
872 
873  protected:
HandleScope()874   V8_INLINE HandleScope() {}
875 
876   void Initialize(Isolate* isolate);
877 
878   static internal::Object** CreateHandle(internal::Isolate* isolate,
879                                          internal::Object* value);
880 
881  private:
882   // Uses heap_object to obtain the current Isolate.
883   static internal::Object** CreateHandle(internal::HeapObject* heap_object,
884                                          internal::Object* value);
885 
886   internal::Isolate* isolate_;
887   internal::Object** prev_next_;
888   internal::Object** prev_limit_;
889 
890   // Local::New uses CreateHandle with an Isolate* parameter.
891   template<class F> friend class Local;
892 
893   // Object::GetInternalField and Context::GetEmbedderData use CreateHandle with
894   // a HeapObject* in their shortcuts.
895   friend class Object;
896   friend class Context;
897 };
898 
899 
900 /**
901  * A HandleScope which first allocates a handle in the current scope
902  * which will be later filled with the escape value.
903  */
904 class V8_EXPORT EscapableHandleScope : public HandleScope {
905  public:
906   explicit EscapableHandleScope(Isolate* isolate);
~EscapableHandleScope()907   V8_INLINE ~EscapableHandleScope() {}
908 
909   /**
910    * Pushes the value into the previous scope and returns a handle to it.
911    * Cannot be called twice.
912    */
913   template <class T>
Escape(Local<T> value)914   V8_INLINE Local<T> Escape(Local<T> value) {
915     internal::Object** slot =
916         Escape(reinterpret_cast<internal::Object**>(*value));
917     return Local<T>(reinterpret_cast<T*>(slot));
918   }
919 
920   EscapableHandleScope(const EscapableHandleScope&) = delete;
921   void operator=(const EscapableHandleScope&) = delete;
922   void* operator new(size_t size) = delete;
923   void operator delete(void*, size_t) = delete;
924 
925  private:
926   internal::Object** Escape(internal::Object** escape_value);
927   internal::Object** escape_slot_;
928 };
929 
930 class V8_EXPORT SealHandleScope {
931  public:
932   SealHandleScope(Isolate* isolate);
933   ~SealHandleScope();
934 
935   SealHandleScope(const SealHandleScope&) = delete;
936   void operator=(const SealHandleScope&) = delete;
937   void* operator new(size_t size) = delete;
938   void operator delete(void*, size_t) = delete;
939 
940  private:
941   internal::Isolate* const isolate_;
942   internal::Object** prev_limit_;
943   int prev_sealed_level_;
944 };
945 
946 
947 // --- Special objects ---
948 
949 
950 /**
951  * The superclass of values and API object templates.
952  */
953 class V8_EXPORT Data {
954  private:
955   Data();
956 };
957 
958 
959 /**
960  * The optional attributes of ScriptOrigin.
961  */
962 class ScriptOriginOptions {
963  public:
964   V8_INLINE ScriptOriginOptions(bool is_embedder_debug_script = false,
965                                 bool is_shared_cross_origin = false,
966                                 bool is_opaque = false)
967       : flags_((is_embedder_debug_script ? kIsEmbedderDebugScript : 0) |
968                (is_shared_cross_origin ? kIsSharedCrossOrigin : 0) |
969                (is_opaque ? kIsOpaque : 0)) {}
ScriptOriginOptions(int flags)970   V8_INLINE ScriptOriginOptions(int flags)
971       : flags_(flags &
972                (kIsEmbedderDebugScript | kIsSharedCrossOrigin | kIsOpaque)) {}
IsEmbedderDebugScript()973   bool IsEmbedderDebugScript() const {
974     return (flags_ & kIsEmbedderDebugScript) != 0;
975   }
IsSharedCrossOrigin()976   bool IsSharedCrossOrigin() const {
977     return (flags_ & kIsSharedCrossOrigin) != 0;
978   }
IsOpaque()979   bool IsOpaque() const { return (flags_ & kIsOpaque) != 0; }
Flags()980   int Flags() const { return flags_; }
981 
982  private:
983   enum {
984     kIsEmbedderDebugScript = 1,
985     kIsSharedCrossOrigin = 1 << 1,
986     kIsOpaque = 1 << 2
987   };
988   const int flags_;
989 };
990 
991 /**
992  * The origin, within a file, of a script.
993  */
994 class ScriptOrigin {
995  public:
996   V8_INLINE ScriptOrigin(
997       Local<Value> resource_name,
998       Local<Integer> resource_line_offset = Local<Integer>(),
999       Local<Integer> resource_column_offset = Local<Integer>(),
1000       Local<Boolean> resource_is_shared_cross_origin = Local<Boolean>(),
1001       Local<Integer> script_id = Local<Integer>(),
1002       Local<Boolean> resource_is_embedder_debug_script = Local<Boolean>(),
1003       Local<Value> source_map_url = Local<Value>(),
1004       Local<Boolean> resource_is_opaque = Local<Boolean>());
1005   V8_INLINE Local<Value> ResourceName() const;
1006   V8_INLINE Local<Integer> ResourceLineOffset() const;
1007   V8_INLINE Local<Integer> ResourceColumnOffset() const;
1008   /**
1009     * Returns true for embedder's debugger scripts
1010     */
1011   V8_INLINE Local<Integer> ScriptID() const;
1012   V8_INLINE Local<Value> SourceMapUrl() const;
Options()1013   V8_INLINE ScriptOriginOptions Options() const { return options_; }
1014 
1015  private:
1016   Local<Value> resource_name_;
1017   Local<Integer> resource_line_offset_;
1018   Local<Integer> resource_column_offset_;
1019   ScriptOriginOptions options_;
1020   Local<Integer> script_id_;
1021   Local<Value> source_map_url_;
1022 };
1023 
1024 
1025 /**
1026  * A compiled JavaScript script, not yet tied to a Context.
1027  */
1028 class V8_EXPORT UnboundScript {
1029  public:
1030   /**
1031    * Binds the script to the currently entered context.
1032    */
1033   Local<Script> BindToCurrentContext();
1034 
1035   int GetId();
1036   Local<Value> GetScriptName();
1037 
1038   /**
1039    * Data read from magic sourceURL comments.
1040    */
1041   Local<Value> GetSourceURL();
1042   /**
1043    * Data read from magic sourceMappingURL comments.
1044    */
1045   Local<Value> GetSourceMappingURL();
1046 
1047   /**
1048    * Returns zero based line number of the code_pos location in the script.
1049    * -1 will be returned if no information available.
1050    */
1051   int GetLineNumber(int code_pos);
1052 
1053   static const int kNoScriptId = 0;
1054 };
1055 
1056 /**
1057  * This is an unfinished experimental feature, and is only exposed
1058  * here for internal testing purposes. DO NOT USE.
1059  *
1060  * A compiled JavaScript module.
1061  */
1062 class V8_EXPORT Module {
1063  public:
1064   /**
1065    * Returns the number of modules requested by this module.
1066    */
1067   int GetModuleRequestsLength() const;
1068 
1069   /**
1070    * Returns the ith module specifier in this module.
1071    * i must be < GetModuleRequestsLength() and >= 0.
1072    */
1073   Local<String> GetModuleRequest(int i) const;
1074 
1075   /**
1076    * Returns the identity hash for this object.
1077    */
1078   int GetIdentityHash() const;
1079 
1080   typedef MaybeLocal<Module> (*ResolveCallback)(Local<Context> context,
1081                                                 Local<String> specifier,
1082                                                 Local<Module> referrer);
1083 
1084   /**
1085    * ModuleDeclarationInstantiation
1086    *
1087    * Returns false if an exception occurred during instantiation.
1088    */
1089   V8_WARN_UNUSED_RESULT bool Instantiate(Local<Context> context,
1090                                          ResolveCallback callback);
1091 
1092   /**
1093    * ModuleEvaluation
1094    */
1095   V8_WARN_UNUSED_RESULT MaybeLocal<Value> Evaluate(Local<Context> context);
1096 };
1097 
1098 /**
1099  * A compiled JavaScript script, tied to a Context which was active when the
1100  * script was compiled.
1101  */
1102 class V8_EXPORT Script {
1103  public:
1104   /**
1105    * A shorthand for ScriptCompiler::Compile().
1106    */
1107   static V8_DEPRECATE_SOON(
1108       "Use maybe version",
1109       Local<Script> Compile(Local<String> source,
1110                             ScriptOrigin* origin = nullptr));
1111   static V8_WARN_UNUSED_RESULT MaybeLocal<Script> Compile(
1112       Local<Context> context, Local<String> source,
1113       ScriptOrigin* origin = nullptr);
1114 
1115   static Local<Script> V8_DEPRECATE_SOON("Use maybe version",
1116                                          Compile(Local<String> source,
1117                                                  Local<String> file_name));
1118 
1119   /**
1120    * Runs the script returning the resulting value. It will be run in the
1121    * context in which it was created (ScriptCompiler::CompileBound or
1122    * UnboundScript::BindToCurrentContext()).
1123    */
1124   V8_DEPRECATE_SOON("Use maybe version", Local<Value> Run());
1125   V8_WARN_UNUSED_RESULT MaybeLocal<Value> Run(Local<Context> context);
1126 
1127   /**
1128    * Returns the corresponding context-unbound script.
1129    */
1130   Local<UnboundScript> GetUnboundScript();
1131 };
1132 
1133 
1134 /**
1135  * For compiling scripts.
1136  */
1137 class V8_EXPORT ScriptCompiler {
1138  public:
1139   /**
1140    * Compilation data that the embedder can cache and pass back to speed up
1141    * future compilations. The data is produced if the CompilerOptions passed to
1142    * the compilation functions in ScriptCompiler contains produce_data_to_cache
1143    * = true. The data to cache can then can be retrieved from
1144    * UnboundScript.
1145    */
1146   struct V8_EXPORT CachedData {
1147     enum BufferPolicy {
1148       BufferNotOwned,
1149       BufferOwned
1150     };
1151 
CachedDataCachedData1152     CachedData()
1153         : data(NULL),
1154           length(0),
1155           rejected(false),
1156           buffer_policy(BufferNotOwned) {}
1157 
1158     // If buffer_policy is BufferNotOwned, the caller keeps the ownership of
1159     // data and guarantees that it stays alive until the CachedData object is
1160     // destroyed. If the policy is BufferOwned, the given data will be deleted
1161     // (with delete[]) when the CachedData object is destroyed.
1162     CachedData(const uint8_t* data, int length,
1163                BufferPolicy buffer_policy = BufferNotOwned);
1164     ~CachedData();
1165     // TODO(marja): Async compilation; add constructors which take a callback
1166     // which will be called when V8 no longer needs the data.
1167     const uint8_t* data;
1168     int length;
1169     bool rejected;
1170     BufferPolicy buffer_policy;
1171 
1172     // Prevent copying.
1173     CachedData(const CachedData&) = delete;
1174     CachedData& operator=(const CachedData&) = delete;
1175   };
1176 
1177   /**
1178    * Source code which can be then compiled to a UnboundScript or Script.
1179    */
1180   class Source {
1181    public:
1182     // Source takes ownership of CachedData.
1183     V8_INLINE Source(Local<String> source_string, const ScriptOrigin& origin,
1184            CachedData* cached_data = NULL);
1185     V8_INLINE Source(Local<String> source_string,
1186                      CachedData* cached_data = NULL);
1187     V8_INLINE ~Source();
1188 
1189     // Ownership of the CachedData or its buffers is *not* transferred to the
1190     // caller. The CachedData object is alive as long as the Source object is
1191     // alive.
1192     V8_INLINE const CachedData* GetCachedData() const;
1193 
1194     // Prevent copying.
1195     Source(const Source&) = delete;
1196     Source& operator=(const Source&) = delete;
1197 
1198    private:
1199     friend class ScriptCompiler;
1200 
1201     Local<String> source_string;
1202 
1203     // Origin information
1204     Local<Value> resource_name;
1205     Local<Integer> resource_line_offset;
1206     Local<Integer> resource_column_offset;
1207     ScriptOriginOptions resource_options;
1208     Local<Value> source_map_url;
1209 
1210     // Cached data from previous compilation (if a kConsume*Cache flag is
1211     // set), or hold newly generated cache data (kProduce*Cache flags) are
1212     // set when calling a compile method.
1213     CachedData* cached_data;
1214   };
1215 
1216   /**
1217    * For streaming incomplete script data to V8. The embedder should implement a
1218    * subclass of this class.
1219    */
1220   class V8_EXPORT ExternalSourceStream {
1221    public:
~ExternalSourceStream()1222     virtual ~ExternalSourceStream() {}
1223 
1224     /**
1225      * V8 calls this to request the next chunk of data from the embedder. This
1226      * function will be called on a background thread, so it's OK to block and
1227      * wait for the data, if the embedder doesn't have data yet. Returns the
1228      * length of the data returned. When the data ends, GetMoreData should
1229      * return 0. Caller takes ownership of the data.
1230      *
1231      * When streaming UTF-8 data, V8 handles multi-byte characters split between
1232      * two data chunks, but doesn't handle multi-byte characters split between
1233      * more than two data chunks. The embedder can avoid this problem by always
1234      * returning at least 2 bytes of data.
1235      *
1236      * If the embedder wants to cancel the streaming, they should make the next
1237      * GetMoreData call return 0. V8 will interpret it as end of data (and most
1238      * probably, parsing will fail). The streaming task will return as soon as
1239      * V8 has parsed the data it received so far.
1240      */
1241     virtual size_t GetMoreData(const uint8_t** src) = 0;
1242 
1243     /**
1244      * V8 calls this method to set a 'bookmark' at the current position in
1245      * the source stream, for the purpose of (maybe) later calling
1246      * ResetToBookmark. If ResetToBookmark is called later, then subsequent
1247      * calls to GetMoreData should return the same data as they did when
1248      * SetBookmark was called earlier.
1249      *
1250      * The embedder may return 'false' to indicate it cannot provide this
1251      * functionality.
1252      */
1253     virtual bool SetBookmark();
1254 
1255     /**
1256      * V8 calls this to return to a previously set bookmark.
1257      */
1258     virtual void ResetToBookmark();
1259   };
1260 
1261 
1262   /**
1263    * Source code which can be streamed into V8 in pieces. It will be parsed
1264    * while streaming. It can be compiled after the streaming is complete.
1265    * StreamedSource must be kept alive while the streaming task is ran (see
1266    * ScriptStreamingTask below).
1267    */
1268   class V8_EXPORT StreamedSource {
1269    public:
1270     enum Encoding { ONE_BYTE, TWO_BYTE, UTF8 };
1271 
1272     StreamedSource(ExternalSourceStream* source_stream, Encoding encoding);
1273     ~StreamedSource();
1274 
1275     // Ownership of the CachedData or its buffers is *not* transferred to the
1276     // caller. The CachedData object is alive as long as the StreamedSource
1277     // object is alive.
1278     const CachedData* GetCachedData() const;
1279 
impl()1280     internal::StreamedSource* impl() const { return impl_; }
1281 
1282     // Prevent copying.
1283     StreamedSource(const StreamedSource&) = delete;
1284     StreamedSource& operator=(const StreamedSource&) = delete;
1285 
1286    private:
1287     internal::StreamedSource* impl_;
1288   };
1289 
1290   /**
1291    * A streaming task which the embedder must run on a background thread to
1292    * stream scripts into V8. Returned by ScriptCompiler::StartStreamingScript.
1293    */
1294   class ScriptStreamingTask {
1295    public:
~ScriptStreamingTask()1296     virtual ~ScriptStreamingTask() {}
1297     virtual void Run() = 0;
1298   };
1299 
1300   enum CompileOptions {
1301     kNoCompileOptions = 0,
1302     kProduceParserCache,
1303     kConsumeParserCache,
1304     kProduceCodeCache,
1305     kConsumeCodeCache
1306   };
1307 
1308   /**
1309    * Compiles the specified script (context-independent).
1310    * Cached data as part of the source object can be optionally produced to be
1311    * consumed later to speed up compilation of identical source scripts.
1312    *
1313    * Note that when producing cached data, the source must point to NULL for
1314    * cached data. When consuming cached data, the cached data must have been
1315    * produced by the same version of V8.
1316    *
1317    * \param source Script source code.
1318    * \return Compiled script object (context independent; for running it must be
1319    *   bound to a context).
1320    */
1321   static V8_DEPRECATED("Use maybe version",
1322                        Local<UnboundScript> CompileUnbound(
1323                            Isolate* isolate, Source* source,
1324                            CompileOptions options = kNoCompileOptions));
1325   static V8_WARN_UNUSED_RESULT MaybeLocal<UnboundScript> CompileUnboundScript(
1326       Isolate* isolate, Source* source,
1327       CompileOptions options = kNoCompileOptions);
1328 
1329   /**
1330    * Compiles the specified script (bound to current context).
1331    *
1332    * \param source Script source code.
1333    * \param pre_data Pre-parsing data, as obtained by ScriptData::PreCompile()
1334    *   using pre_data speeds compilation if it's done multiple times.
1335    *   Owned by caller, no references are kept when this function returns.
1336    * \return Compiled script object, bound to the context that was active
1337    *   when this function was called. When run it will always use this
1338    *   context.
1339    */
1340   static V8_DEPRECATED(
1341       "Use maybe version",
1342       Local<Script> Compile(Isolate* isolate, Source* source,
1343                             CompileOptions options = kNoCompileOptions));
1344   static V8_WARN_UNUSED_RESULT MaybeLocal<Script> Compile(
1345       Local<Context> context, Source* source,
1346       CompileOptions options = kNoCompileOptions);
1347 
1348   /**
1349    * Returns a task which streams script data into V8, or NULL if the script
1350    * cannot be streamed. The user is responsible for running the task on a
1351    * background thread and deleting it. When ran, the task starts parsing the
1352    * script, and it will request data from the StreamedSource as needed. When
1353    * ScriptStreamingTask::Run exits, all data has been streamed and the script
1354    * can be compiled (see Compile below).
1355    *
1356    * This API allows to start the streaming with as little data as possible, and
1357    * the remaining data (for example, the ScriptOrigin) is passed to Compile.
1358    */
1359   static ScriptStreamingTask* StartStreamingScript(
1360       Isolate* isolate, StreamedSource* source,
1361       CompileOptions options = kNoCompileOptions);
1362 
1363   /**
1364    * Compiles a streamed script (bound to current context).
1365    *
1366    * This can only be called after the streaming has finished
1367    * (ScriptStreamingTask has been run). V8 doesn't construct the source string
1368    * during streaming, so the embedder needs to pass the full source here.
1369    */
1370   static V8_DEPRECATED("Use maybe version",
1371                        Local<Script> Compile(Isolate* isolate,
1372                                              StreamedSource* source,
1373                                              Local<String> full_source_string,
1374                                              const ScriptOrigin& origin));
1375   static V8_WARN_UNUSED_RESULT MaybeLocal<Script> Compile(
1376       Local<Context> context, StreamedSource* source,
1377       Local<String> full_source_string, const ScriptOrigin& origin);
1378 
1379   /**
1380    * Return a version tag for CachedData for the current V8 version & flags.
1381    *
1382    * This value is meant only for determining whether a previously generated
1383    * CachedData instance is still valid; the tag has no other meaing.
1384    *
1385    * Background: The data carried by CachedData may depend on the exact
1386    *   V8 version number or currently compiler flags. This means when
1387    *   persisting CachedData, the embedder must take care to not pass in
1388    *   data from another V8 version, or the same version with different
1389    *   features enabled.
1390    *
1391    *   The easiest way to do so is to clear the embedder's cache on any
1392    *   such change.
1393    *
1394    *   Alternatively, this tag can be stored alongside the cached data and
1395    *   compared when it is being used.
1396    */
1397   static uint32_t CachedDataVersionTag();
1398 
1399   /**
1400    * This is an unfinished experimental feature, and is only exposed
1401    * here for internal testing purposes. DO NOT USE.
1402    *
1403    * Compile an ES module, returning a Module that encapsulates
1404    * the compiled code.
1405    *
1406    * Corresponds to the ParseModule abstract operation in the
1407    * ECMAScript specification.
1408    */
1409   static V8_WARN_UNUSED_RESULT MaybeLocal<Module> CompileModule(
1410       Isolate* isolate, Source* source);
1411 
1412   /**
1413    * Compile a function for a given context. This is equivalent to running
1414    *
1415    * with (obj) {
1416    *   return function(args) { ... }
1417    * }
1418    *
1419    * It is possible to specify multiple context extensions (obj in the above
1420    * example).
1421    */
1422   static V8_DEPRECATE_SOON("Use maybe version",
1423                            Local<Function> CompileFunctionInContext(
1424                                Isolate* isolate, Source* source,
1425                                Local<Context> context, size_t arguments_count,
1426                                Local<String> arguments[],
1427                                size_t context_extension_count,
1428                                Local<Object> context_extensions[]));
1429   static V8_WARN_UNUSED_RESULT MaybeLocal<Function> CompileFunctionInContext(
1430       Local<Context> context, Source* source, size_t arguments_count,
1431       Local<String> arguments[], size_t context_extension_count,
1432       Local<Object> context_extensions[]);
1433 
1434  private:
1435   static V8_WARN_UNUSED_RESULT MaybeLocal<UnboundScript> CompileUnboundInternal(
1436       Isolate* isolate, Source* source, CompileOptions options, bool is_module);
1437 };
1438 
1439 
1440 /**
1441  * An error message.
1442  */
1443 class V8_EXPORT Message {
1444  public:
1445   Local<String> Get() const;
1446 
1447   V8_DEPRECATE_SOON("Use maybe version", Local<String> GetSourceLine() const);
1448   V8_WARN_UNUSED_RESULT MaybeLocal<String> GetSourceLine(
1449       Local<Context> context) const;
1450 
1451   /**
1452    * Returns the origin for the script from where the function causing the
1453    * error originates.
1454    */
1455   ScriptOrigin GetScriptOrigin() const;
1456 
1457   /**
1458    * Returns the resource name for the script from where the function causing
1459    * the error originates.
1460    */
1461   Local<Value> GetScriptResourceName() const;
1462 
1463   /**
1464    * Exception stack trace. By default stack traces are not captured for
1465    * uncaught exceptions. SetCaptureStackTraceForUncaughtExceptions allows
1466    * to change this option.
1467    */
1468   Local<StackTrace> GetStackTrace() const;
1469 
1470   /**
1471    * Returns the number, 1-based, of the line where the error occurred.
1472    */
1473   V8_DEPRECATE_SOON("Use maybe version", int GetLineNumber() const);
1474   V8_WARN_UNUSED_RESULT Maybe<int> GetLineNumber(Local<Context> context) const;
1475 
1476   /**
1477    * Returns the index within the script of the first character where
1478    * the error occurred.
1479    */
1480   int GetStartPosition() const;
1481 
1482   /**
1483    * Returns the index within the script of the last character where
1484    * the error occurred.
1485    */
1486   int GetEndPosition() const;
1487 
1488   /**
1489    * Returns the index within the line of the first character where
1490    * the error occurred.
1491    */
1492   V8_DEPRECATE_SOON("Use maybe version", int GetStartColumn() const);
1493   V8_WARN_UNUSED_RESULT Maybe<int> GetStartColumn(Local<Context> context) const;
1494 
1495   /**
1496    * Returns the index within the line of the last character where
1497    * the error occurred.
1498    */
1499   V8_DEPRECATED("Use maybe version", int GetEndColumn() const);
1500   V8_WARN_UNUSED_RESULT Maybe<int> GetEndColumn(Local<Context> context) const;
1501 
1502   /**
1503    * Passes on the value set by the embedder when it fed the script from which
1504    * this Message was generated to V8.
1505    */
1506   bool IsSharedCrossOrigin() const;
1507   bool IsOpaque() const;
1508 
1509   // TODO(1245381): Print to a string instead of on a FILE.
1510   static void PrintCurrentStackTrace(Isolate* isolate, FILE* out);
1511 
1512   static const int kNoLineNumberInfo = 0;
1513   static const int kNoColumnInfo = 0;
1514   static const int kNoScriptIdInfo = 0;
1515 };
1516 
1517 
1518 /**
1519  * Representation of a JavaScript stack trace. The information collected is a
1520  * snapshot of the execution stack and the information remains valid after
1521  * execution continues.
1522  */
1523 class V8_EXPORT StackTrace {
1524  public:
1525   /**
1526    * Flags that determine what information is placed captured for each
1527    * StackFrame when grabbing the current stack trace.
1528    */
1529   enum StackTraceOptions {
1530     kLineNumber = 1,
1531     kColumnOffset = 1 << 1 | kLineNumber,
1532     kScriptName = 1 << 2,
1533     kFunctionName = 1 << 3,
1534     kIsEval = 1 << 4,
1535     kIsConstructor = 1 << 5,
1536     kScriptNameOrSourceURL = 1 << 6,
1537     kScriptId = 1 << 7,
1538     kExposeFramesAcrossSecurityOrigins = 1 << 8,
1539     kOverview = kLineNumber | kColumnOffset | kScriptName | kFunctionName,
1540     kDetailed = kOverview | kIsEval | kIsConstructor | kScriptNameOrSourceURL
1541   };
1542 
1543   /**
1544    * Returns a StackFrame at a particular index.
1545    */
1546   Local<StackFrame> GetFrame(uint32_t index) const;
1547 
1548   /**
1549    * Returns the number of StackFrames.
1550    */
1551   int GetFrameCount() const;
1552 
1553   /**
1554    * Returns StackTrace as a v8::Array that contains StackFrame objects.
1555    */
1556   Local<Array> AsArray();
1557 
1558   /**
1559    * Grab a snapshot of the current JavaScript execution stack.
1560    *
1561    * \param frame_limit The maximum number of stack frames we want to capture.
1562    * \param options Enumerates the set of things we will capture for each
1563    *   StackFrame.
1564    */
1565   static Local<StackTrace> CurrentStackTrace(
1566       Isolate* isolate,
1567       int frame_limit,
1568       StackTraceOptions options = kOverview);
1569 };
1570 
1571 
1572 /**
1573  * A single JavaScript stack frame.
1574  */
1575 class V8_EXPORT StackFrame {
1576  public:
1577   /**
1578    * Returns the number, 1-based, of the line for the associate function call.
1579    * This method will return Message::kNoLineNumberInfo if it is unable to
1580    * retrieve the line number, or if kLineNumber was not passed as an option
1581    * when capturing the StackTrace.
1582    */
1583   int GetLineNumber() const;
1584 
1585   /**
1586    * Returns the 1-based column offset on the line for the associated function
1587    * call.
1588    * This method will return Message::kNoColumnInfo if it is unable to retrieve
1589    * the column number, or if kColumnOffset was not passed as an option when
1590    * capturing the StackTrace.
1591    */
1592   int GetColumn() const;
1593 
1594   /**
1595    * Returns the id of the script for the function for this StackFrame.
1596    * This method will return Message::kNoScriptIdInfo if it is unable to
1597    * retrieve the script id, or if kScriptId was not passed as an option when
1598    * capturing the StackTrace.
1599    */
1600   int GetScriptId() const;
1601 
1602   /**
1603    * Returns the name of the resource that contains the script for the
1604    * function for this StackFrame.
1605    */
1606   Local<String> GetScriptName() const;
1607 
1608   /**
1609    * Returns the name of the resource that contains the script for the
1610    * function for this StackFrame or sourceURL value if the script name
1611    * is undefined and its source ends with //# sourceURL=... string or
1612    * deprecated //@ sourceURL=... string.
1613    */
1614   Local<String> GetScriptNameOrSourceURL() const;
1615 
1616   /**
1617    * Returns the name of the function associated with this stack frame.
1618    */
1619   Local<String> GetFunctionName() const;
1620 
1621   /**
1622    * Returns whether or not the associated function is compiled via a call to
1623    * eval().
1624    */
1625   bool IsEval() const;
1626 
1627   /**
1628    * Returns whether or not the associated function is called as a
1629    * constructor via "new".
1630    */
1631   bool IsConstructor() const;
1632 };
1633 
1634 
1635 // A StateTag represents a possible state of the VM.
1636 enum StateTag { JS, GC, COMPILER, OTHER, EXTERNAL, IDLE };
1637 
1638 // A RegisterState represents the current state of registers used
1639 // by the sampling profiler API.
1640 struct RegisterState {
RegisterStateRegisterState1641   RegisterState() : pc(nullptr), sp(nullptr), fp(nullptr) {}
1642   void* pc;  // Instruction pointer.
1643   void* sp;  // Stack pointer.
1644   void* fp;  // Frame pointer.
1645 };
1646 
1647 // The output structure filled up by GetStackSample API function.
1648 struct SampleInfo {
1649   size_t frames_count;            // Number of frames collected.
1650   StateTag vm_state;              // Current VM state.
1651   void* external_callback_entry;  // External callback address if VM is
1652                                   // executing an external callback.
1653 };
1654 
1655 /**
1656  * A JSON Parser and Stringifier.
1657  */
1658 class V8_EXPORT JSON {
1659  public:
1660   /**
1661    * Tries to parse the string |json_string| and returns it as value if
1662    * successful.
1663    *
1664    * \param json_string The string to parse.
1665    * \return The corresponding value if successfully parsed.
1666    */
1667   static V8_DEPRECATED("Use the maybe version taking context",
1668                        Local<Value> Parse(Local<String> json_string));
1669   static V8_DEPRECATE_SOON("Use the maybe version taking context",
1670                            MaybeLocal<Value> Parse(Isolate* isolate,
1671                                                    Local<String> json_string));
1672   static V8_WARN_UNUSED_RESULT MaybeLocal<Value> Parse(
1673       Local<Context> context, Local<String> json_string);
1674 
1675   /**
1676    * Tries to stringify the JSON-serializable object |json_object| and returns
1677    * it as string if successful.
1678    *
1679    * \param json_object The JSON-serializable object to stringify.
1680    * \return The corresponding string if successfully stringified.
1681    */
1682   static V8_WARN_UNUSED_RESULT MaybeLocal<String> Stringify(
1683       Local<Context> context, Local<Object> json_object,
1684       Local<String> gap = Local<String>());
1685 };
1686 
1687 /**
1688  * Value serialization compatible with the HTML structured clone algorithm.
1689  * The format is backward-compatible (i.e. safe to store to disk).
1690  *
1691  * WARNING: This API is under development, and changes (including incompatible
1692  * changes to the API or wire format) may occur without notice until this
1693  * warning is removed.
1694  */
1695 class V8_EXPORT ValueSerializer {
1696  public:
1697   class V8_EXPORT Delegate {
1698    public:
~Delegate()1699     virtual ~Delegate() {}
1700 
1701     /*
1702      * Handles the case where a DataCloneError would be thrown in the structured
1703      * clone spec. Other V8 embedders may throw some other appropriate exception
1704      * type.
1705      */
1706     virtual void ThrowDataCloneError(Local<String> message) = 0;
1707 
1708     /*
1709      * The embedder overrides this method to write some kind of host object, if
1710      * possible. If not, a suitable exception should be thrown and
1711      * Nothing<bool>() returned.
1712      */
1713     virtual Maybe<bool> WriteHostObject(Isolate* isolate, Local<Object> object);
1714 
1715     /*
1716      * Allocates memory for the buffer of at least the size provided. The actual
1717      * size (which may be greater or equal) is written to |actual_size|. If no
1718      * buffer has been allocated yet, nullptr will be provided.
1719      */
1720     virtual void* ReallocateBufferMemory(void* old_buffer, size_t size,
1721                                          size_t* actual_size);
1722 
1723     /*
1724      * Frees a buffer allocated with |ReallocateBufferMemory|.
1725      */
1726     virtual void FreeBufferMemory(void* buffer);
1727   };
1728 
1729   explicit ValueSerializer(Isolate* isolate);
1730   ValueSerializer(Isolate* isolate, Delegate* delegate);
1731   ~ValueSerializer();
1732 
1733   /*
1734    * Writes out a header, which includes the format version.
1735    */
1736   void WriteHeader();
1737 
1738   /*
1739    * Serializes a JavaScript value into the buffer.
1740    */
1741   V8_WARN_UNUSED_RESULT Maybe<bool> WriteValue(Local<Context> context,
1742                                                Local<Value> value);
1743 
1744   /*
1745    * Returns the stored data. This serializer should not be used once the buffer
1746    * is released. The contents are undefined if a previous write has failed.
1747    */
1748   V8_DEPRECATE_SOON("Use Release()", std::vector<uint8_t> ReleaseBuffer());
1749 
1750   /*
1751    * Returns the stored data (allocated using the delegate's
1752    * AllocateBufferMemory) and its size. This serializer should not be used once
1753    * the buffer is released. The contents are undefined if a previous write has
1754    * failed.
1755    */
1756   V8_WARN_UNUSED_RESULT std::pair<uint8_t*, size_t> Release();
1757 
1758   /*
1759    * Marks an ArrayBuffer as havings its contents transferred out of band.
1760    * Pass the corresponding JSArrayBuffer in the deserializing context to
1761    * ValueDeserializer::TransferArrayBuffer.
1762    */
1763   void TransferArrayBuffer(uint32_t transfer_id,
1764                            Local<ArrayBuffer> array_buffer);
1765 
1766   /*
1767    * Similar to TransferArrayBuffer, but for SharedArrayBuffer.
1768    */
1769   void TransferSharedArrayBuffer(uint32_t transfer_id,
1770                                  Local<SharedArrayBuffer> shared_array_buffer);
1771 
1772   /*
1773    * Write raw data in various common formats to the buffer.
1774    * Note that integer types are written in base-128 varint format, not with a
1775    * binary copy. For use during an override of Delegate::WriteHostObject.
1776    */
1777   void WriteUint32(uint32_t value);
1778   void WriteUint64(uint64_t value);
1779   void WriteDouble(double value);
1780   void WriteRawBytes(const void* source, size_t length);
1781 
1782  private:
1783   ValueSerializer(const ValueSerializer&) = delete;
1784   void operator=(const ValueSerializer&) = delete;
1785 
1786   struct PrivateData;
1787   PrivateData* private_;
1788 };
1789 
1790 /**
1791  * Deserializes values from data written with ValueSerializer, or a compatible
1792  * implementation.
1793  *
1794  * WARNING: This API is under development, and changes (including incompatible
1795  * changes to the API or wire format) may occur without notice until this
1796  * warning is removed.
1797  */
1798 class V8_EXPORT ValueDeserializer {
1799  public:
1800   class V8_EXPORT Delegate {
1801    public:
~Delegate()1802     virtual ~Delegate() {}
1803 
1804     /*
1805      * The embedder overrides this method to read some kind of host object, if
1806      * possible. If not, a suitable exception should be thrown and
1807      * MaybeLocal<Object>() returned.
1808      */
1809     virtual MaybeLocal<Object> ReadHostObject(Isolate* isolate);
1810   };
1811 
1812   ValueDeserializer(Isolate* isolate, const uint8_t* data, size_t size);
1813   ValueDeserializer(Isolate* isolate, const uint8_t* data, size_t size,
1814                     Delegate* delegate);
1815   ~ValueDeserializer();
1816 
1817   /*
1818    * Reads and validates a header (including the format version).
1819    * May, for example, reject an invalid or unsupported wire format.
1820    */
1821   V8_WARN_UNUSED_RESULT Maybe<bool> ReadHeader(Local<Context> context);
1822 
1823   /*
1824    * Deserializes a JavaScript value from the buffer.
1825    */
1826   V8_WARN_UNUSED_RESULT MaybeLocal<Value> ReadValue(Local<Context> context);
1827 
1828   /*
1829    * Accepts the array buffer corresponding to the one passed previously to
1830    * ValueSerializer::TransferArrayBuffer.
1831    */
1832   void TransferArrayBuffer(uint32_t transfer_id,
1833                            Local<ArrayBuffer> array_buffer);
1834 
1835   /*
1836    * Similar to TransferArrayBuffer, but for SharedArrayBuffer.
1837    * transfer_id exists in the same namespace as unshared ArrayBuffer objects.
1838    */
1839   void TransferSharedArrayBuffer(uint32_t transfer_id,
1840                                  Local<SharedArrayBuffer> shared_array_buffer);
1841 
1842   /*
1843    * Must be called before ReadHeader to enable support for reading the legacy
1844    * wire format (i.e., which predates this being shipped).
1845    *
1846    * Don't use this unless you need to read data written by previous versions of
1847    * blink::ScriptValueSerializer.
1848    */
1849   void SetSupportsLegacyWireFormat(bool supports_legacy_wire_format);
1850 
1851   /*
1852    * Reads the underlying wire format version. Likely mostly to be useful to
1853    * legacy code reading old wire format versions. Must be called after
1854    * ReadHeader.
1855    */
1856   uint32_t GetWireFormatVersion() const;
1857 
1858   /*
1859    * Reads raw data in various common formats to the buffer.
1860    * Note that integer types are read in base-128 varint format, not with a
1861    * binary copy. For use during an override of Delegate::ReadHostObject.
1862    */
1863   V8_WARN_UNUSED_RESULT bool ReadUint32(uint32_t* value);
1864   V8_WARN_UNUSED_RESULT bool ReadUint64(uint64_t* value);
1865   V8_WARN_UNUSED_RESULT bool ReadDouble(double* value);
1866   V8_WARN_UNUSED_RESULT bool ReadRawBytes(size_t length, const void** data);
1867 
1868  private:
1869   ValueDeserializer(const ValueDeserializer&) = delete;
1870   void operator=(const ValueDeserializer&) = delete;
1871 
1872   struct PrivateData;
1873   PrivateData* private_;
1874 };
1875 
1876 /**
1877  * A map whose keys are referenced weakly. It is similar to JavaScript WeakMap
1878  * but can be created without entering a v8::Context and hence shouldn't
1879  * escape to JavaScript.
1880  */
1881 class V8_EXPORT NativeWeakMap : public Data {
1882  public:
1883   static Local<NativeWeakMap> New(Isolate* isolate);
1884   void Set(Local<Value> key, Local<Value> value);
1885   Local<Value> Get(Local<Value> key);
1886   bool Has(Local<Value> key);
1887   bool Delete(Local<Value> key);
1888 };
1889 
1890 
1891 // --- Value ---
1892 
1893 
1894 /**
1895  * The superclass of all JavaScript values and objects.
1896  */
1897 class V8_EXPORT Value : public Data {
1898  public:
1899   /**
1900    * Returns true if this value is the undefined value.  See ECMA-262
1901    * 4.3.10.
1902    */
1903   V8_INLINE bool IsUndefined() const;
1904 
1905   /**
1906    * Returns true if this value is the null value.  See ECMA-262
1907    * 4.3.11.
1908    */
1909   V8_INLINE bool IsNull() const;
1910 
1911    /**
1912    * Returns true if this value is true.
1913    */
1914   bool IsTrue() const;
1915 
1916   /**
1917    * Returns true if this value is false.
1918    */
1919   bool IsFalse() const;
1920 
1921   /**
1922    * Returns true if this value is a symbol or a string.
1923    * This is an experimental feature.
1924    */
1925   bool IsName() const;
1926 
1927   /**
1928    * Returns true if this value is an instance of the String type.
1929    * See ECMA-262 8.4.
1930    */
1931   V8_INLINE bool IsString() const;
1932 
1933   /**
1934    * Returns true if this value is a symbol.
1935    * This is an experimental feature.
1936    */
1937   bool IsSymbol() const;
1938 
1939   /**
1940    * Returns true if this value is a function.
1941    */
1942   bool IsFunction() const;
1943 
1944   /**
1945    * Returns true if this value is an array. Note that it will return false for
1946    * an Proxy for an array.
1947    */
1948   bool IsArray() const;
1949 
1950   /**
1951    * Returns true if this value is an object.
1952    */
1953   bool IsObject() const;
1954 
1955   /**
1956    * Returns true if this value is boolean.
1957    */
1958   bool IsBoolean() const;
1959 
1960   /**
1961    * Returns true if this value is a number.
1962    */
1963   bool IsNumber() const;
1964 
1965   /**
1966    * Returns true if this value is external.
1967    */
1968   bool IsExternal() const;
1969 
1970   /**
1971    * Returns true if this value is a 32-bit signed integer.
1972    */
1973   bool IsInt32() const;
1974 
1975   /**
1976    * Returns true if this value is a 32-bit unsigned integer.
1977    */
1978   bool IsUint32() const;
1979 
1980   /**
1981    * Returns true if this value is a Date.
1982    */
1983   bool IsDate() const;
1984 
1985   /**
1986    * Returns true if this value is an Arguments object.
1987    */
1988   bool IsArgumentsObject() const;
1989 
1990   /**
1991    * Returns true if this value is a Boolean object.
1992    */
1993   bool IsBooleanObject() const;
1994 
1995   /**
1996    * Returns true if this value is a Number object.
1997    */
1998   bool IsNumberObject() const;
1999 
2000   /**
2001    * Returns true if this value is a String object.
2002    */
2003   bool IsStringObject() const;
2004 
2005   /**
2006    * Returns true if this value is a Symbol object.
2007    * This is an experimental feature.
2008    */
2009   bool IsSymbolObject() const;
2010 
2011   /**
2012    * Returns true if this value is a NativeError.
2013    */
2014   bool IsNativeError() const;
2015 
2016   /**
2017    * Returns true if this value is a RegExp.
2018    */
2019   bool IsRegExp() const;
2020 
2021   /**
2022    * Returns true if this value is an async function.
2023    */
2024   bool IsAsyncFunction() const;
2025 
2026   /**
2027    * Returns true if this value is a Generator function.
2028    * This is an experimental feature.
2029    */
2030   bool IsGeneratorFunction() const;
2031 
2032   /**
2033    * Returns true if this value is a Generator object (iterator).
2034    * This is an experimental feature.
2035    */
2036   bool IsGeneratorObject() const;
2037 
2038   /**
2039    * Returns true if this value is a Promise.
2040    * This is an experimental feature.
2041    */
2042   bool IsPromise() const;
2043 
2044   /**
2045    * Returns true if this value is a Map.
2046    */
2047   bool IsMap() const;
2048 
2049   /**
2050    * Returns true if this value is a Set.
2051    */
2052   bool IsSet() const;
2053 
2054   /**
2055    * Returns true if this value is a Map Iterator.
2056    */
2057   bool IsMapIterator() const;
2058 
2059   /**
2060    * Returns true if this value is a Set Iterator.
2061    */
2062   bool IsSetIterator() const;
2063 
2064   /**
2065    * Returns true if this value is a WeakMap.
2066    */
2067   bool IsWeakMap() const;
2068 
2069   /**
2070    * Returns true if this value is a WeakSet.
2071    */
2072   bool IsWeakSet() const;
2073 
2074   /**
2075    * Returns true if this value is an ArrayBuffer.
2076    * This is an experimental feature.
2077    */
2078   bool IsArrayBuffer() const;
2079 
2080   /**
2081    * Returns true if this value is an ArrayBufferView.
2082    * This is an experimental feature.
2083    */
2084   bool IsArrayBufferView() const;
2085 
2086   /**
2087    * Returns true if this value is one of TypedArrays.
2088    * This is an experimental feature.
2089    */
2090   bool IsTypedArray() const;
2091 
2092   /**
2093    * Returns true if this value is an Uint8Array.
2094    * This is an experimental feature.
2095    */
2096   bool IsUint8Array() const;
2097 
2098   /**
2099    * Returns true if this value is an Uint8ClampedArray.
2100    * This is an experimental feature.
2101    */
2102   bool IsUint8ClampedArray() const;
2103 
2104   /**
2105    * Returns true if this value is an Int8Array.
2106    * This is an experimental feature.
2107    */
2108   bool IsInt8Array() const;
2109 
2110   /**
2111    * Returns true if this value is an Uint16Array.
2112    * This is an experimental feature.
2113    */
2114   bool IsUint16Array() const;
2115 
2116   /**
2117    * Returns true if this value is an Int16Array.
2118    * This is an experimental feature.
2119    */
2120   bool IsInt16Array() const;
2121 
2122   /**
2123    * Returns true if this value is an Uint32Array.
2124    * This is an experimental feature.
2125    */
2126   bool IsUint32Array() const;
2127 
2128   /**
2129    * Returns true if this value is an Int32Array.
2130    * This is an experimental feature.
2131    */
2132   bool IsInt32Array() const;
2133 
2134   /**
2135    * Returns true if this value is a Float32Array.
2136    * This is an experimental feature.
2137    */
2138   bool IsFloat32Array() const;
2139 
2140   /**
2141    * Returns true if this value is a Float64Array.
2142    * This is an experimental feature.
2143    */
2144   bool IsFloat64Array() const;
2145 
2146   /**
2147    * Returns true if this value is a SIMD Float32x4.
2148    * This is an experimental feature.
2149    */
2150   bool IsFloat32x4() const;
2151 
2152   /**
2153    * Returns true if this value is a DataView.
2154    * This is an experimental feature.
2155    */
2156   bool IsDataView() const;
2157 
2158   /**
2159    * Returns true if this value is a SharedArrayBuffer.
2160    * This is an experimental feature.
2161    */
2162   bool IsSharedArrayBuffer() const;
2163 
2164   /**
2165    * Returns true if this value is a JavaScript Proxy.
2166    */
2167   bool IsProxy() const;
2168 
2169   bool IsWebAssemblyCompiledModule() const;
2170 
2171   V8_WARN_UNUSED_RESULT MaybeLocal<Boolean> ToBoolean(
2172       Local<Context> context) const;
2173   V8_WARN_UNUSED_RESULT MaybeLocal<Number> ToNumber(
2174       Local<Context> context) const;
2175   V8_WARN_UNUSED_RESULT MaybeLocal<String> ToString(
2176       Local<Context> context) const;
2177   V8_WARN_UNUSED_RESULT MaybeLocal<String> ToDetailString(
2178       Local<Context> context) const;
2179   V8_WARN_UNUSED_RESULT MaybeLocal<Object> ToObject(
2180       Local<Context> context) const;
2181   V8_WARN_UNUSED_RESULT MaybeLocal<Integer> ToInteger(
2182       Local<Context> context) const;
2183   V8_WARN_UNUSED_RESULT MaybeLocal<Uint32> ToUint32(
2184       Local<Context> context) const;
2185   V8_WARN_UNUSED_RESULT MaybeLocal<Int32> ToInt32(Local<Context> context) const;
2186 
2187   V8_DEPRECATE_SOON("Use maybe version",
2188                     Local<Boolean> ToBoolean(Isolate* isolate) const);
2189   V8_DEPRECATE_SOON("Use maybe version",
2190                     Local<Number> ToNumber(Isolate* isolate) const);
2191   V8_DEPRECATE_SOON("Use maybe version",
2192                     Local<String> ToString(Isolate* isolate) const);
2193   V8_DEPRECATED("Use maybe version",
2194                 Local<String> ToDetailString(Isolate* isolate) const);
2195   V8_DEPRECATE_SOON("Use maybe version",
2196                     Local<Object> ToObject(Isolate* isolate) const);
2197   V8_DEPRECATE_SOON("Use maybe version",
2198                     Local<Integer> ToInteger(Isolate* isolate) const);
2199   V8_DEPRECATED("Use maybe version",
2200                 Local<Uint32> ToUint32(Isolate* isolate) const);
2201   V8_DEPRECATE_SOON("Use maybe version",
2202                     Local<Int32> ToInt32(Isolate* isolate) const);
2203 
2204   inline V8_DEPRECATE_SOON("Use maybe version",
2205                            Local<Boolean> ToBoolean() const);
2206   inline V8_DEPRECATED("Use maybe version", Local<Number> ToNumber() const);
2207   inline V8_DEPRECATE_SOON("Use maybe version", Local<String> ToString() const);
2208   inline V8_DEPRECATED("Use maybe version",
2209                        Local<String> ToDetailString() const);
2210   inline V8_DEPRECATE_SOON("Use maybe version", Local<Object> ToObject() const);
2211   inline V8_DEPRECATE_SOON("Use maybe version",
2212                            Local<Integer> ToInteger() const);
2213   inline V8_DEPRECATED("Use maybe version", Local<Uint32> ToUint32() const);
2214   inline V8_DEPRECATED("Use maybe version", Local<Int32> ToInt32() const);
2215 
2216   /**
2217    * Attempts to convert a string to an array index.
2218    * Returns an empty handle if the conversion fails.
2219    */
2220   V8_DEPRECATED("Use maybe version", Local<Uint32> ToArrayIndex() const);
2221   V8_WARN_UNUSED_RESULT MaybeLocal<Uint32> ToArrayIndex(
2222       Local<Context> context) const;
2223 
2224   V8_WARN_UNUSED_RESULT Maybe<bool> BooleanValue(Local<Context> context) const;
2225   V8_WARN_UNUSED_RESULT Maybe<double> NumberValue(Local<Context> context) const;
2226   V8_WARN_UNUSED_RESULT Maybe<int64_t> IntegerValue(
2227       Local<Context> context) const;
2228   V8_WARN_UNUSED_RESULT Maybe<uint32_t> Uint32Value(
2229       Local<Context> context) const;
2230   V8_WARN_UNUSED_RESULT Maybe<int32_t> Int32Value(Local<Context> context) const;
2231 
2232   V8_DEPRECATE_SOON("Use maybe version", bool BooleanValue() const);
2233   V8_DEPRECATE_SOON("Use maybe version", double NumberValue() const);
2234   V8_DEPRECATE_SOON("Use maybe version", int64_t IntegerValue() const);
2235   V8_DEPRECATE_SOON("Use maybe version", uint32_t Uint32Value() const);
2236   V8_DEPRECATE_SOON("Use maybe version", int32_t Int32Value() const);
2237 
2238   /** JS == */
2239   V8_DEPRECATE_SOON("Use maybe version", bool Equals(Local<Value> that) const);
2240   V8_WARN_UNUSED_RESULT Maybe<bool> Equals(Local<Context> context,
2241                                            Local<Value> that) const;
2242   bool StrictEquals(Local<Value> that) const;
2243   bool SameValue(Local<Value> that) const;
2244 
2245   template <class T> V8_INLINE static Value* Cast(T* value);
2246 
2247   Local<String> TypeOf(v8::Isolate*);
2248 
2249  private:
2250   V8_INLINE bool QuickIsUndefined() const;
2251   V8_INLINE bool QuickIsNull() const;
2252   V8_INLINE bool QuickIsString() const;
2253   bool FullIsUndefined() const;
2254   bool FullIsNull() const;
2255   bool FullIsString() const;
2256 };
2257 
2258 
2259 /**
2260  * The superclass of primitive values.  See ECMA-262 4.3.2.
2261  */
2262 class V8_EXPORT Primitive : public Value { };
2263 
2264 
2265 /**
2266  * A primitive boolean value (ECMA-262, 4.3.14).  Either the true
2267  * or false value.
2268  */
2269 class V8_EXPORT Boolean : public Primitive {
2270  public:
2271   bool Value() const;
2272   V8_INLINE static Boolean* Cast(v8::Value* obj);
2273   V8_INLINE static Local<Boolean> New(Isolate* isolate, bool value);
2274 
2275  private:
2276   static void CheckCast(v8::Value* obj);
2277 };
2278 
2279 
2280 /**
2281  * A superclass for symbols and strings.
2282  */
2283 class V8_EXPORT Name : public Primitive {
2284  public:
2285   /**
2286    * Returns the identity hash for this object. The current implementation
2287    * uses an inline property on the object to store the identity hash.
2288    *
2289    * The return value will never be 0. Also, it is not guaranteed to be
2290    * unique.
2291    */
2292   int GetIdentityHash();
2293 
2294   V8_INLINE static Name* Cast(v8::Value* obj);
2295  private:
2296   static void CheckCast(v8::Value* obj);
2297 };
2298 
2299 
2300 enum class NewStringType { kNormal, kInternalized };
2301 
2302 
2303 /**
2304  * A JavaScript string value (ECMA-262, 4.3.17).
2305  */
2306 class V8_EXPORT String : public Name {
2307  public:
2308   static const int kMaxLength = (1 << 28) - 16;
2309 
2310   enum Encoding {
2311     UNKNOWN_ENCODING = 0x1,
2312     TWO_BYTE_ENCODING = 0x0,
2313     ONE_BYTE_ENCODING = 0x4
2314   };
2315   /**
2316    * Returns the number of characters in this string.
2317    */
2318   int Length() const;
2319 
2320   /**
2321    * Returns the number of bytes in the UTF-8 encoded
2322    * representation of this string.
2323    */
2324   int Utf8Length() const;
2325 
2326   /**
2327    * Returns whether this string is known to contain only one byte data.
2328    * Does not read the string.
2329    * False negatives are possible.
2330    */
2331   bool IsOneByte() const;
2332 
2333   /**
2334    * Returns whether this string contain only one byte data.
2335    * Will read the entire string in some cases.
2336    */
2337   bool ContainsOnlyOneByte() const;
2338 
2339   /**
2340    * Write the contents of the string to an external buffer.
2341    * If no arguments are given, expects the buffer to be large
2342    * enough to hold the entire string and NULL terminator. Copies
2343    * the contents of the string and the NULL terminator into the
2344    * buffer.
2345    *
2346    * WriteUtf8 will not write partial UTF-8 sequences, preferring to stop
2347    * before the end of the buffer.
2348    *
2349    * Copies up to length characters into the output buffer.
2350    * Only null-terminates if there is enough space in the buffer.
2351    *
2352    * \param buffer The buffer into which the string will be copied.
2353    * \param start The starting position within the string at which
2354    * copying begins.
2355    * \param length The number of characters to copy from the string.  For
2356    *    WriteUtf8 the number of bytes in the buffer.
2357    * \param nchars_ref The number of characters written, can be NULL.
2358    * \param options Various options that might affect performance of this or
2359    *    subsequent operations.
2360    * \return The number of characters copied to the buffer excluding the null
2361    *    terminator.  For WriteUtf8: The number of bytes copied to the buffer
2362    *    including the null terminator (if written).
2363    */
2364   enum WriteOptions {
2365     NO_OPTIONS = 0,
2366     HINT_MANY_WRITES_EXPECTED = 1,
2367     NO_NULL_TERMINATION = 2,
2368     PRESERVE_ONE_BYTE_NULL = 4,
2369     // Used by WriteUtf8 to replace orphan surrogate code units with the
2370     // unicode replacement character. Needs to be set to guarantee valid UTF-8
2371     // output.
2372     REPLACE_INVALID_UTF8 = 8
2373   };
2374 
2375   // 16-bit character codes.
2376   int Write(uint16_t* buffer,
2377             int start = 0,
2378             int length = -1,
2379             int options = NO_OPTIONS) const;
2380   // One byte characters.
2381   int WriteOneByte(uint8_t* buffer,
2382                    int start = 0,
2383                    int length = -1,
2384                    int options = NO_OPTIONS) const;
2385   // UTF-8 encoded characters.
2386   int WriteUtf8(char* buffer,
2387                 int length = -1,
2388                 int* nchars_ref = NULL,
2389                 int options = NO_OPTIONS) const;
2390 
2391   /**
2392    * A zero length string.
2393    */
2394   V8_INLINE static v8::Local<v8::String> Empty(Isolate* isolate);
2395 
2396   /**
2397    * Returns true if the string is external
2398    */
2399   bool IsExternal() const;
2400 
2401   /**
2402    * Returns true if the string is both external and one-byte.
2403    */
2404   bool IsExternalOneByte() const;
2405 
2406   class V8_EXPORT ExternalStringResourceBase {  // NOLINT
2407    public:
~ExternalStringResourceBase()2408     virtual ~ExternalStringResourceBase() {}
2409 
IsCompressible()2410     virtual bool IsCompressible() const { return false; }
2411 
2412    protected:
ExternalStringResourceBase()2413     ExternalStringResourceBase() {}
2414 
2415     /**
2416      * Internally V8 will call this Dispose method when the external string
2417      * resource is no longer needed. The default implementation will use the
2418      * delete operator. This method can be overridden in subclasses to
2419      * control how allocated external string resources are disposed.
2420      */
Dispose()2421     virtual void Dispose() { delete this; }
2422 
2423     // Disallow copying and assigning.
2424     ExternalStringResourceBase(const ExternalStringResourceBase&) = delete;
2425     void operator=(const ExternalStringResourceBase&) = delete;
2426 
2427    private:
2428     friend class v8::internal::Heap;
2429   };
2430 
2431   /**
2432    * An ExternalStringResource is a wrapper around a two-byte string
2433    * buffer that resides outside V8's heap. Implement an
2434    * ExternalStringResource to manage the life cycle of the underlying
2435    * buffer.  Note that the string data must be immutable.
2436    */
2437   class V8_EXPORT ExternalStringResource
2438       : public ExternalStringResourceBase {
2439    public:
2440     /**
2441      * Override the destructor to manage the life cycle of the underlying
2442      * buffer.
2443      */
~ExternalStringResource()2444     virtual ~ExternalStringResource() {}
2445 
2446     /**
2447      * The string data from the underlying buffer.
2448      */
2449     virtual const uint16_t* data() const = 0;
2450 
2451     /**
2452      * The length of the string. That is, the number of two-byte characters.
2453      */
2454     virtual size_t length() const = 0;
2455 
2456    protected:
ExternalStringResource()2457     ExternalStringResource() {}
2458   };
2459 
2460   /**
2461    * An ExternalOneByteStringResource is a wrapper around an one-byte
2462    * string buffer that resides outside V8's heap. Implement an
2463    * ExternalOneByteStringResource to manage the life cycle of the
2464    * underlying buffer.  Note that the string data must be immutable
2465    * and that the data must be Latin-1 and not UTF-8, which would require
2466    * special treatment internally in the engine and do not allow efficient
2467    * indexing.  Use String::New or convert to 16 bit data for non-Latin1.
2468    */
2469 
2470   class V8_EXPORT ExternalOneByteStringResource
2471       : public ExternalStringResourceBase {
2472    public:
2473     /**
2474      * Override the destructor to manage the life cycle of the underlying
2475      * buffer.
2476      */
~ExternalOneByteStringResource()2477     virtual ~ExternalOneByteStringResource() {}
2478     /** The string data from the underlying buffer.*/
2479     virtual const char* data() const = 0;
2480     /** The number of Latin-1 characters in the string.*/
2481     virtual size_t length() const = 0;
2482    protected:
ExternalOneByteStringResource()2483     ExternalOneByteStringResource() {}
2484   };
2485 
2486   /**
2487    * If the string is an external string, return the ExternalStringResourceBase
2488    * regardless of the encoding, otherwise return NULL.  The encoding of the
2489    * string is returned in encoding_out.
2490    */
2491   V8_INLINE ExternalStringResourceBase* GetExternalStringResourceBase(
2492       Encoding* encoding_out) const;
2493 
2494   /**
2495    * Get the ExternalStringResource for an external string.  Returns
2496    * NULL if IsExternal() doesn't return true.
2497    */
2498   V8_INLINE ExternalStringResource* GetExternalStringResource() const;
2499 
2500   /**
2501    * Get the ExternalOneByteStringResource for an external one-byte string.
2502    * Returns NULL if IsExternalOneByte() doesn't return true.
2503    */
2504   const ExternalOneByteStringResource* GetExternalOneByteStringResource() const;
2505 
2506   V8_INLINE static String* Cast(v8::Value* obj);
2507 
2508   // TODO(dcarney): remove with deprecation of New functions.
2509   enum NewStringType {
2510     kNormalString = static_cast<int>(v8::NewStringType::kNormal),
2511     kInternalizedString = static_cast<int>(v8::NewStringType::kInternalized)
2512   };
2513 
2514   /** Allocates a new string from UTF-8 data.*/
2515   static V8_DEPRECATE_SOON(
2516       "Use maybe version",
2517       Local<String> NewFromUtf8(Isolate* isolate, const char* data,
2518                                 NewStringType type = kNormalString,
2519                                 int length = -1));
2520 
2521   /** Allocates a new string from UTF-8 data. Only returns an empty value when
2522    * length > kMaxLength. **/
2523   static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewFromUtf8(
2524       Isolate* isolate, const char* data, v8::NewStringType type,
2525       int length = -1);
2526 
2527   /** Allocates a new string from Latin-1 data.*/
2528   static V8_DEPRECATED(
2529       "Use maybe version",
2530       Local<String> NewFromOneByte(Isolate* isolate, const uint8_t* data,
2531                                    NewStringType type = kNormalString,
2532                                    int length = -1));
2533 
2534   /** Allocates a new string from Latin-1 data.  Only returns an empty value
2535    * when length > kMaxLength. **/
2536   static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewFromOneByte(
2537       Isolate* isolate, const uint8_t* data, v8::NewStringType type,
2538       int length = -1);
2539 
2540   /** Allocates a new string from UTF-16 data.*/
2541   static V8_DEPRECATE_SOON(
2542       "Use maybe version",
2543       Local<String> NewFromTwoByte(Isolate* isolate, const uint16_t* data,
2544                                    NewStringType type = kNormalString,
2545                                    int length = -1));
2546 
2547   /** Allocates a new string from UTF-16 data. Only returns an empty value when
2548    * length > kMaxLength. **/
2549   static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewFromTwoByte(
2550       Isolate* isolate, const uint16_t* data, v8::NewStringType type,
2551       int length = -1);
2552 
2553   /**
2554    * Creates a new string by concatenating the left and the right strings
2555    * passed in as parameters.
2556    */
2557   static Local<String> Concat(Local<String> left, Local<String> right);
2558 
2559   /**
2560    * Creates a new external string using the data defined in the given
2561    * resource. When the external string is no longer live on V8's heap the
2562    * resource will be disposed by calling its Dispose method. The caller of
2563    * this function should not otherwise delete or modify the resource. Neither
2564    * should the underlying buffer be deallocated or modified except through the
2565    * destructor of the external string resource.
2566    */
2567   static V8_DEPRECATED("Use maybe version",
2568                        Local<String> NewExternal(
2569                            Isolate* isolate, ExternalStringResource* resource));
2570   static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewExternalTwoByte(
2571       Isolate* isolate, ExternalStringResource* resource);
2572 
2573   /**
2574    * Associate an external string resource with this string by transforming it
2575    * in place so that existing references to this string in the JavaScript heap
2576    * will use the external string resource. The external string resource's
2577    * character contents need to be equivalent to this string.
2578    * Returns true if the string has been changed to be an external string.
2579    * The string is not modified if the operation fails. See NewExternal for
2580    * information on the lifetime of the resource.
2581    */
2582   bool MakeExternal(ExternalStringResource* resource);
2583 
2584   /**
2585    * Creates a new external string using the one-byte data defined in the given
2586    * resource. When the external string is no longer live on V8's heap the
2587    * resource will be disposed by calling its Dispose method. The caller of
2588    * this function should not otherwise delete or modify the resource. Neither
2589    * should the underlying buffer be deallocated or modified except through the
2590    * destructor of the external string resource.
2591    */
2592   static V8_DEPRECATE_SOON(
2593       "Use maybe version",
2594       Local<String> NewExternal(Isolate* isolate,
2595                                 ExternalOneByteStringResource* resource));
2596   static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewExternalOneByte(
2597       Isolate* isolate, ExternalOneByteStringResource* resource);
2598 
2599   /**
2600    * Associate an external string resource with this string by transforming it
2601    * in place so that existing references to this string in the JavaScript heap
2602    * will use the external string resource. The external string resource's
2603    * character contents need to be equivalent to this string.
2604    * Returns true if the string has been changed to be an external string.
2605    * The string is not modified if the operation fails. See NewExternal for
2606    * information on the lifetime of the resource.
2607    */
2608   bool MakeExternal(ExternalOneByteStringResource* resource);
2609 
2610   /**
2611    * Returns true if this string can be made external.
2612    */
2613   bool CanMakeExternal();
2614 
2615   /**
2616    * Converts an object to a UTF-8-encoded character array.  Useful if
2617    * you want to print the object.  If conversion to a string fails
2618    * (e.g. due to an exception in the toString() method of the object)
2619    * then the length() method returns 0 and the * operator returns
2620    * NULL.
2621    */
2622   class V8_EXPORT Utf8Value {
2623    public:
2624     explicit Utf8Value(Local<v8::Value> obj);
2625     ~Utf8Value();
2626     char* operator*() { return str_; }
2627     const char* operator*() const { return str_; }
length()2628     int length() const { return length_; }
2629 
2630     // Disallow copying and assigning.
2631     Utf8Value(const Utf8Value&) = delete;
2632     void operator=(const Utf8Value&) = delete;
2633 
2634    private:
2635     char* str_;
2636     int length_;
2637   };
2638 
2639   /**
2640    * Converts an object to a two-byte string.
2641    * If conversion to a string fails (eg. due to an exception in the toString()
2642    * method of the object) then the length() method returns 0 and the * operator
2643    * returns NULL.
2644    */
2645   class V8_EXPORT Value {
2646    public:
2647     explicit Value(Local<v8::Value> obj);
2648     ~Value();
2649     uint16_t* operator*() { return str_; }
2650     const uint16_t* operator*() const { return str_; }
length()2651     int length() const { return length_; }
2652 
2653     // Disallow copying and assigning.
2654     Value(const Value&) = delete;
2655     void operator=(const Value&) = delete;
2656 
2657    private:
2658     uint16_t* str_;
2659     int length_;
2660   };
2661 
2662  private:
2663   void VerifyExternalStringResourceBase(ExternalStringResourceBase* v,
2664                                         Encoding encoding) const;
2665   void VerifyExternalStringResource(ExternalStringResource* val) const;
2666   static void CheckCast(v8::Value* obj);
2667 };
2668 
2669 
2670 /**
2671  * A JavaScript symbol (ECMA-262 edition 6)
2672  *
2673  * This is an experimental feature. Use at your own risk.
2674  */
2675 class V8_EXPORT Symbol : public Name {
2676  public:
2677   // Returns the print name string of the symbol, or undefined if none.
2678   Local<Value> Name() const;
2679 
2680   // Create a symbol. If name is not empty, it will be used as the description.
2681   static Local<Symbol> New(Isolate* isolate,
2682                            Local<String> name = Local<String>());
2683 
2684   // Access global symbol registry.
2685   // Note that symbols created this way are never collected, so
2686   // they should only be used for statically fixed properties.
2687   // Also, there is only one global name space for the names used as keys.
2688   // To minimize the potential for clashes, use qualified names as keys.
2689   static Local<Symbol> For(Isolate *isolate, Local<String> name);
2690 
2691   // Retrieve a global symbol. Similar to |For|, but using a separate
2692   // registry that is not accessible by (and cannot clash with) JavaScript code.
2693   static Local<Symbol> ForApi(Isolate *isolate, Local<String> name);
2694 
2695   // Well-known symbols
2696   static Local<Symbol> GetIterator(Isolate* isolate);
2697   static Local<Symbol> GetUnscopables(Isolate* isolate);
2698   static Local<Symbol> GetToStringTag(Isolate* isolate);
2699   static Local<Symbol> GetIsConcatSpreadable(Isolate* isolate);
2700 
2701   V8_INLINE static Symbol* Cast(v8::Value* obj);
2702 
2703  private:
2704   Symbol();
2705   static void CheckCast(v8::Value* obj);
2706 };
2707 
2708 
2709 /**
2710  * A private symbol
2711  *
2712  * This is an experimental feature. Use at your own risk.
2713  */
2714 class V8_EXPORT Private : public Data {
2715  public:
2716   // Returns the print name string of the private symbol, or undefined if none.
2717   Local<Value> Name() const;
2718 
2719   // Create a private symbol. If name is not empty, it will be the description.
2720   static Local<Private> New(Isolate* isolate,
2721                             Local<String> name = Local<String>());
2722 
2723   // Retrieve a global private symbol. If a symbol with this name has not
2724   // been retrieved in the same isolate before, it is created.
2725   // Note that private symbols created this way are never collected, so
2726   // they should only be used for statically fixed properties.
2727   // Also, there is only one global name space for the names used as keys.
2728   // To minimize the potential for clashes, use qualified names as keys,
2729   // e.g., "Class#property".
2730   static Local<Private> ForApi(Isolate* isolate, Local<String> name);
2731 
2732  private:
2733   Private();
2734 };
2735 
2736 
2737 /**
2738  * A JavaScript number value (ECMA-262, 4.3.20)
2739  */
2740 class V8_EXPORT Number : public Primitive {
2741  public:
2742   double Value() const;
2743   static Local<Number> New(Isolate* isolate, double value);
2744   V8_INLINE static Number* Cast(v8::Value* obj);
2745  private:
2746   Number();
2747   static void CheckCast(v8::Value* obj);
2748 };
2749 
2750 
2751 /**
2752  * A JavaScript value representing a signed integer.
2753  */
2754 class V8_EXPORT Integer : public Number {
2755  public:
2756   static Local<Integer> New(Isolate* isolate, int32_t value);
2757   static Local<Integer> NewFromUnsigned(Isolate* isolate, uint32_t value);
2758   int64_t Value() const;
2759   V8_INLINE static Integer* Cast(v8::Value* obj);
2760  private:
2761   Integer();
2762   static void CheckCast(v8::Value* obj);
2763 };
2764 
2765 
2766 /**
2767  * A JavaScript value representing a 32-bit signed integer.
2768  */
2769 class V8_EXPORT Int32 : public Integer {
2770  public:
2771   int32_t Value() const;
2772   V8_INLINE static Int32* Cast(v8::Value* obj);
2773 
2774  private:
2775   Int32();
2776   static void CheckCast(v8::Value* obj);
2777 };
2778 
2779 
2780 /**
2781  * A JavaScript value representing a 32-bit unsigned integer.
2782  */
2783 class V8_EXPORT Uint32 : public Integer {
2784  public:
2785   uint32_t Value() const;
2786   V8_INLINE static Uint32* Cast(v8::Value* obj);
2787 
2788  private:
2789   Uint32();
2790   static void CheckCast(v8::Value* obj);
2791 };
2792 
2793 /**
2794  * PropertyAttribute.
2795  */
2796 enum PropertyAttribute {
2797   /** None. **/
2798   None = 0,
2799   /** ReadOnly, i.e., not writable. **/
2800   ReadOnly = 1 << 0,
2801   /** DontEnum, i.e., not enumerable. **/
2802   DontEnum = 1 << 1,
2803   /** DontDelete, i.e., not configurable. **/
2804   DontDelete = 1 << 2
2805 };
2806 
2807 /**
2808  * Accessor[Getter|Setter] are used as callback functions when
2809  * setting|getting a particular property. See Object and ObjectTemplate's
2810  * method SetAccessor.
2811  */
2812 typedef void (*AccessorGetterCallback)(
2813     Local<String> property,
2814     const PropertyCallbackInfo<Value>& info);
2815 typedef void (*AccessorNameGetterCallback)(
2816     Local<Name> property,
2817     const PropertyCallbackInfo<Value>& info);
2818 
2819 
2820 typedef void (*AccessorSetterCallback)(
2821     Local<String> property,
2822     Local<Value> value,
2823     const PropertyCallbackInfo<void>& info);
2824 typedef void (*AccessorNameSetterCallback)(
2825     Local<Name> property,
2826     Local<Value> value,
2827     const PropertyCallbackInfo<void>& info);
2828 
2829 
2830 /**
2831  * Access control specifications.
2832  *
2833  * Some accessors should be accessible across contexts.  These
2834  * accessors have an explicit access control parameter which specifies
2835  * the kind of cross-context access that should be allowed.
2836  *
2837  * TODO(dcarney): Remove PROHIBITS_OVERWRITING as it is now unused.
2838  */
2839 enum AccessControl {
2840   DEFAULT               = 0,
2841   ALL_CAN_READ          = 1,
2842   ALL_CAN_WRITE         = 1 << 1,
2843   PROHIBITS_OVERWRITING = 1 << 2
2844 };
2845 
2846 /**
2847  * Property filter bits. They can be or'ed to build a composite filter.
2848  */
2849 enum PropertyFilter {
2850   ALL_PROPERTIES = 0,
2851   ONLY_WRITABLE = 1,
2852   ONLY_ENUMERABLE = 2,
2853   ONLY_CONFIGURABLE = 4,
2854   SKIP_STRINGS = 8,
2855   SKIP_SYMBOLS = 16
2856 };
2857 
2858 /**
2859  * Keys/Properties filter enums:
2860  *
2861  * KeyCollectionMode limits the range of collected properties. kOwnOnly limits
2862  * the collected properties to the given Object only. kIncludesPrototypes will
2863  * include all keys of the objects's prototype chain as well.
2864  */
2865 enum class KeyCollectionMode { kOwnOnly, kIncludePrototypes };
2866 
2867 /**
2868  * kIncludesIndices allows for integer indices to be collected, while
2869  * kSkipIndices will exclude integer indicies from being collected.
2870  */
2871 enum class IndexFilter { kIncludeIndices, kSkipIndices };
2872 
2873 /**
2874  * Integrity level for objects.
2875  */
2876 enum class IntegrityLevel { kFrozen, kSealed };
2877 
2878 /**
2879  * A JavaScript object (ECMA-262, 4.3.3)
2880  */
2881 class V8_EXPORT Object : public Value {
2882  public:
2883   V8_DEPRECATE_SOON("Use maybe version",
2884                     bool Set(Local<Value> key, Local<Value> value));
2885   V8_WARN_UNUSED_RESULT Maybe<bool> Set(Local<Context> context,
2886                                         Local<Value> key, Local<Value> value);
2887 
2888   V8_DEPRECATE_SOON("Use maybe version",
2889                     bool Set(uint32_t index, Local<Value> value));
2890   V8_WARN_UNUSED_RESULT Maybe<bool> Set(Local<Context> context, uint32_t index,
2891                                         Local<Value> value);
2892 
2893   // Implements CreateDataProperty (ECMA-262, 7.3.4).
2894   //
2895   // Defines a configurable, writable, enumerable property with the given value
2896   // on the object unless the property already exists and is not configurable
2897   // or the object is not extensible.
2898   //
2899   // Returns true on success.
2900   V8_WARN_UNUSED_RESULT Maybe<bool> CreateDataProperty(Local<Context> context,
2901                                                        Local<Name> key,
2902                                                        Local<Value> value);
2903   V8_WARN_UNUSED_RESULT Maybe<bool> CreateDataProperty(Local<Context> context,
2904                                                        uint32_t index,
2905                                                        Local<Value> value);
2906 
2907   // Implements DefineOwnProperty.
2908   //
2909   // In general, CreateDataProperty will be faster, however, does not allow
2910   // for specifying attributes.
2911   //
2912   // Returns true on success.
2913   V8_WARN_UNUSED_RESULT Maybe<bool> DefineOwnProperty(
2914       Local<Context> context, Local<Name> key, Local<Value> value,
2915       PropertyAttribute attributes = None);
2916 
2917   // Implements Object.DefineProperty(O, P, Attributes), see Ecma-262 19.1.2.4.
2918   //
2919   // The defineProperty function is used to add an own property or
2920   // update the attributes of an existing own property of an object.
2921   //
2922   // Both data and accessor descriptors can be used.
2923   //
2924   // In general, CreateDataProperty is faster, however, does not allow
2925   // for specifying attributes or an accessor descriptor.
2926   //
2927   // The PropertyDescriptor can change when redefining a property.
2928   //
2929   // Returns true on success.
2930   V8_WARN_UNUSED_RESULT Maybe<bool> DefineProperty(
2931       Local<Context> context, Local<Name> key, PropertyDescriptor& descriptor);
2932 
2933   // Sets an own property on this object bypassing interceptors and
2934   // overriding accessors or read-only properties.
2935   //
2936   // Note that if the object has an interceptor the property will be set
2937   // locally, but since the interceptor takes precedence the local property
2938   // will only be returned if the interceptor doesn't return a value.
2939   //
2940   // Note also that this only works for named properties.
2941   V8_DEPRECATED("Use CreateDataProperty / DefineOwnProperty",
2942                 bool ForceSet(Local<Value> key, Local<Value> value,
2943                               PropertyAttribute attribs = None));
2944   V8_DEPRECATE_SOON("Use CreateDataProperty / DefineOwnProperty",
2945                     Maybe<bool> ForceSet(Local<Context> context,
2946                                          Local<Value> key, Local<Value> value,
2947                                          PropertyAttribute attribs = None));
2948 
2949   V8_DEPRECATE_SOON("Use maybe version", Local<Value> Get(Local<Value> key));
2950   V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context,
2951                                               Local<Value> key);
2952 
2953   V8_DEPRECATE_SOON("Use maybe version", Local<Value> Get(uint32_t index));
2954   V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context,
2955                                               uint32_t index);
2956 
2957   /**
2958    * Gets the property attributes of a property which can be None or
2959    * any combination of ReadOnly, DontEnum and DontDelete. Returns
2960    * None when the property doesn't exist.
2961    */
2962   V8_DEPRECATED("Use maybe version",
2963                 PropertyAttribute GetPropertyAttributes(Local<Value> key));
2964   V8_WARN_UNUSED_RESULT Maybe<PropertyAttribute> GetPropertyAttributes(
2965       Local<Context> context, Local<Value> key);
2966 
2967   /**
2968    * Returns Object.getOwnPropertyDescriptor as per ES5 section 15.2.3.3.
2969    */
2970   V8_DEPRECATED("Use maybe version",
2971                 Local<Value> GetOwnPropertyDescriptor(Local<String> key));
2972   V8_WARN_UNUSED_RESULT MaybeLocal<Value> GetOwnPropertyDescriptor(
2973       Local<Context> context, Local<String> key);
2974 
2975   V8_DEPRECATE_SOON("Use maybe version", bool Has(Local<Value> key));
2976   /**
2977    * Object::Has() calls the abstract operation HasProperty(O, P) described
2978    * in ECMA-262, 7.3.10. Has() returns
2979    * true, if the object has the property, either own or on the prototype chain.
2980    * Interceptors, i.e., PropertyQueryCallbacks, are called if present.
2981    *
2982    * Has() has the same side effects as JavaScript's `variable in object`.
2983    * For example, calling Has() on a revoked proxy will throw an exception.
2984    *
2985    * \note Has() converts the key to a name, which possibly calls back into
2986    * JavaScript.
2987    *
2988    * See also v8::Object::HasOwnProperty() and
2989    * v8::Object::HasRealNamedProperty().
2990    */
2991   V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context,
2992                                         Local<Value> key);
2993 
2994   V8_DEPRECATE_SOON("Use maybe version", bool Delete(Local<Value> key));
2995   // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
2996   Maybe<bool> Delete(Local<Context> context, Local<Value> key);
2997 
2998   V8_DEPRECATED("Use maybe version", bool Has(uint32_t index));
2999   V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context, uint32_t index);
3000 
3001   V8_DEPRECATED("Use maybe version", bool Delete(uint32_t index));
3002   // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
3003   Maybe<bool> Delete(Local<Context> context, uint32_t index);
3004 
3005   V8_DEPRECATED("Use maybe version",
3006                 bool SetAccessor(Local<String> name,
3007                                  AccessorGetterCallback getter,
3008                                  AccessorSetterCallback setter = 0,
3009                                  Local<Value> data = Local<Value>(),
3010                                  AccessControl settings = DEFAULT,
3011                                  PropertyAttribute attribute = None));
3012   V8_DEPRECATED("Use maybe version",
3013                 bool SetAccessor(Local<Name> name,
3014                                  AccessorNameGetterCallback getter,
3015                                  AccessorNameSetterCallback setter = 0,
3016                                  Local<Value> data = Local<Value>(),
3017                                  AccessControl settings = DEFAULT,
3018                                  PropertyAttribute attribute = None));
3019   // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
3020   Maybe<bool> SetAccessor(Local<Context> context, Local<Name> name,
3021                           AccessorNameGetterCallback getter,
3022                           AccessorNameSetterCallback setter = 0,
3023                           MaybeLocal<Value> data = MaybeLocal<Value>(),
3024                           AccessControl settings = DEFAULT,
3025                           PropertyAttribute attribute = None);
3026 
3027   void SetAccessorProperty(Local<Name> name, Local<Function> getter,
3028                            Local<Function> setter = Local<Function>(),
3029                            PropertyAttribute attribute = None,
3030                            AccessControl settings = DEFAULT);
3031 
3032   /**
3033    * Functionality for private properties.
3034    * This is an experimental feature, use at your own risk.
3035    * Note: Private properties are not inherited. Do not rely on this, since it
3036    * may change.
3037    */
3038   Maybe<bool> HasPrivate(Local<Context> context, Local<Private> key);
3039   Maybe<bool> SetPrivate(Local<Context> context, Local<Private> key,
3040                          Local<Value> value);
3041   Maybe<bool> DeletePrivate(Local<Context> context, Local<Private> key);
3042   MaybeLocal<Value> GetPrivate(Local<Context> context, Local<Private> key);
3043 
3044   /**
3045    * Returns an array containing the names of the enumerable properties
3046    * of this object, including properties from prototype objects.  The
3047    * array returned by this method contains the same values as would
3048    * be enumerated by a for-in statement over this object.
3049    */
3050   V8_DEPRECATE_SOON("Use maybe version", Local<Array> GetPropertyNames());
3051   V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetPropertyNames(
3052       Local<Context> context);
3053   V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetPropertyNames(
3054       Local<Context> context, KeyCollectionMode mode,
3055       PropertyFilter property_filter, IndexFilter index_filter);
3056 
3057   /**
3058    * This function has the same functionality as GetPropertyNames but
3059    * the returned array doesn't contain the names of properties from
3060    * prototype objects.
3061    */
3062   V8_DEPRECATE_SOON("Use maybe version", Local<Array> GetOwnPropertyNames());
3063   V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetOwnPropertyNames(
3064       Local<Context> context);
3065 
3066   /**
3067    * Returns an array containing the names of the filtered properties
3068    * of this object, including properties from prototype objects.  The
3069    * array returned by this method contains the same values as would
3070    * be enumerated by a for-in statement over this object.
3071    */
3072   V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetOwnPropertyNames(
3073       Local<Context> context, PropertyFilter filter);
3074 
3075   /**
3076    * Get the prototype object.  This does not skip objects marked to
3077    * be skipped by __proto__ and it does not consult the security
3078    * handler.
3079    */
3080   Local<Value> GetPrototype();
3081 
3082   /**
3083    * Set the prototype object.  This does not skip objects marked to
3084    * be skipped by __proto__ and it does not consult the security
3085    * handler.
3086    */
3087   V8_DEPRECATED("Use maybe version", bool SetPrototype(Local<Value> prototype));
3088   V8_WARN_UNUSED_RESULT Maybe<bool> SetPrototype(Local<Context> context,
3089                                                  Local<Value> prototype);
3090 
3091   /**
3092    * Finds an instance of the given function template in the prototype
3093    * chain.
3094    */
3095   Local<Object> FindInstanceInPrototypeChain(Local<FunctionTemplate> tmpl);
3096 
3097   /**
3098    * Call builtin Object.prototype.toString on this object.
3099    * This is different from Value::ToString() that may call
3100    * user-defined toString function. This one does not.
3101    */
3102   V8_DEPRECATED("Use maybe version", Local<String> ObjectProtoToString());
3103   V8_WARN_UNUSED_RESULT MaybeLocal<String> ObjectProtoToString(
3104       Local<Context> context);
3105 
3106   /**
3107    * Returns the name of the function invoked as a constructor for this object.
3108    */
3109   Local<String> GetConstructorName();
3110 
3111   /**
3112    * Sets the integrity level of the object.
3113    */
3114   Maybe<bool> SetIntegrityLevel(Local<Context> context, IntegrityLevel level);
3115 
3116   /** Gets the number of internal fields for this Object. */
3117   int InternalFieldCount();
3118 
3119   /** Same as above, but works for Persistents */
InternalFieldCount(const PersistentBase<Object> & object)3120   V8_INLINE static int InternalFieldCount(
3121       const PersistentBase<Object>& object) {
3122     return object.val_->InternalFieldCount();
3123   }
3124 
3125   /** Gets the value from an internal field. */
3126   V8_INLINE Local<Value> GetInternalField(int index);
3127 
3128   /** Sets the value in an internal field. */
3129   void SetInternalField(int index, Local<Value> value);
3130 
3131   /**
3132    * Gets a 2-byte-aligned native pointer from an internal field. This field
3133    * must have been set by SetAlignedPointerInInternalField, everything else
3134    * leads to undefined behavior.
3135    */
3136   V8_INLINE void* GetAlignedPointerFromInternalField(int index);
3137 
3138   /** Same as above, but works for Persistents */
GetAlignedPointerFromInternalField(const PersistentBase<Object> & object,int index)3139   V8_INLINE static void* GetAlignedPointerFromInternalField(
3140       const PersistentBase<Object>& object, int index) {
3141     return object.val_->GetAlignedPointerFromInternalField(index);
3142   }
3143 
3144   /**
3145    * Sets a 2-byte-aligned native pointer in an internal field. To retrieve such
3146    * a field, GetAlignedPointerFromInternalField must be used, everything else
3147    * leads to undefined behavior.
3148    */
3149   void SetAlignedPointerInInternalField(int index, void* value);
3150   void SetAlignedPointerInInternalFields(int argc, int indices[],
3151                                          void* values[]);
3152 
3153   // Testers for local properties.
3154   V8_DEPRECATED("Use maybe version", bool HasOwnProperty(Local<String> key));
3155 
3156   /**
3157    * HasOwnProperty() is like JavaScript's Object.prototype.hasOwnProperty().
3158    *
3159    * See also v8::Object::Has() and v8::Object::HasRealNamedProperty().
3160    */
3161   V8_WARN_UNUSED_RESULT Maybe<bool> HasOwnProperty(Local<Context> context,
3162                                                    Local<Name> key);
3163   V8_WARN_UNUSED_RESULT Maybe<bool> HasOwnProperty(Local<Context> context,
3164                                                    uint32_t index);
3165   V8_DEPRECATE_SOON("Use maybe version",
3166                     bool HasRealNamedProperty(Local<String> key));
3167   /**
3168    * Use HasRealNamedProperty() if you want to check if an object has an own
3169    * property without causing side effects, i.e., without calling interceptors.
3170    *
3171    * This function is similar to v8::Object::HasOwnProperty(), but it does not
3172    * call interceptors.
3173    *
3174    * \note Consider using non-masking interceptors, i.e., the interceptors are
3175    * not called if the receiver has the real named property. See
3176    * `v8::PropertyHandlerFlags::kNonMasking`.
3177    *
3178    * See also v8::Object::Has().
3179    */
3180   V8_WARN_UNUSED_RESULT Maybe<bool> HasRealNamedProperty(Local<Context> context,
3181                                                          Local<Name> key);
3182   V8_DEPRECATE_SOON("Use maybe version",
3183                     bool HasRealIndexedProperty(uint32_t index));
3184   V8_WARN_UNUSED_RESULT Maybe<bool> HasRealIndexedProperty(
3185       Local<Context> context, uint32_t index);
3186   V8_DEPRECATE_SOON("Use maybe version",
3187                     bool HasRealNamedCallbackProperty(Local<String> key));
3188   V8_WARN_UNUSED_RESULT Maybe<bool> HasRealNamedCallbackProperty(
3189       Local<Context> context, Local<Name> key);
3190 
3191   /**
3192    * If result.IsEmpty() no real property was located in the prototype chain.
3193    * This means interceptors in the prototype chain are not called.
3194    */
3195   V8_DEPRECATED(
3196       "Use maybe version",
3197       Local<Value> GetRealNamedPropertyInPrototypeChain(Local<String> key));
3198   V8_WARN_UNUSED_RESULT MaybeLocal<Value> GetRealNamedPropertyInPrototypeChain(
3199       Local<Context> context, Local<Name> key);
3200 
3201   /**
3202    * Gets the property attributes of a real property in the prototype chain,
3203    * which can be None or any combination of ReadOnly, DontEnum and DontDelete.
3204    * Interceptors in the prototype chain are not called.
3205    */
3206   V8_DEPRECATED(
3207       "Use maybe version",
3208       Maybe<PropertyAttribute> GetRealNamedPropertyAttributesInPrototypeChain(
3209           Local<String> key));
3210   V8_WARN_UNUSED_RESULT Maybe<PropertyAttribute>
3211   GetRealNamedPropertyAttributesInPrototypeChain(Local<Context> context,
3212                                                  Local<Name> key);
3213 
3214   /**
3215    * If result.IsEmpty() no real property was located on the object or
3216    * in the prototype chain.
3217    * This means interceptors in the prototype chain are not called.
3218    */
3219   V8_DEPRECATED("Use maybe version",
3220                 Local<Value> GetRealNamedProperty(Local<String> key));
3221   V8_WARN_UNUSED_RESULT MaybeLocal<Value> GetRealNamedProperty(
3222       Local<Context> context, Local<Name> key);
3223 
3224   /**
3225    * Gets the property attributes of a real property which can be
3226    * None or any combination of ReadOnly, DontEnum and DontDelete.
3227    * Interceptors in the prototype chain are not called.
3228    */
3229   V8_DEPRECATED("Use maybe version",
3230                 Maybe<PropertyAttribute> GetRealNamedPropertyAttributes(
3231                     Local<String> key));
3232   V8_WARN_UNUSED_RESULT Maybe<PropertyAttribute> GetRealNamedPropertyAttributes(
3233       Local<Context> context, Local<Name> key);
3234 
3235   /** Tests for a named lookup interceptor.*/
3236   bool HasNamedLookupInterceptor();
3237 
3238   /** Tests for an index lookup interceptor.*/
3239   bool HasIndexedLookupInterceptor();
3240 
3241   /**
3242    * Returns the identity hash for this object. The current implementation
3243    * uses a hidden property on the object to store the identity hash.
3244    *
3245    * The return value will never be 0. Also, it is not guaranteed to be
3246    * unique.
3247    */
3248   int GetIdentityHash();
3249 
3250   /**
3251    * Clone this object with a fast but shallow copy.  Values will point
3252    * to the same values as the original object.
3253    */
3254   // TODO(dcarney): take an isolate and optionally bail out?
3255   Local<Object> Clone();
3256 
3257   /**
3258    * Returns the context in which the object was created.
3259    */
3260   Local<Context> CreationContext();
3261 
3262   /** Same as above, but works for Persistents */
CreationContext(const PersistentBase<Object> & object)3263   V8_INLINE static Local<Context> CreationContext(
3264       const PersistentBase<Object>& object) {
3265     return object.val_->CreationContext();
3266   }
3267 
3268   /**
3269    * Checks whether a callback is set by the
3270    * ObjectTemplate::SetCallAsFunctionHandler method.
3271    * When an Object is callable this method returns true.
3272    */
3273   bool IsCallable();
3274 
3275   /**
3276    * True if this object is a constructor.
3277    */
3278   bool IsConstructor();
3279 
3280   /**
3281    * Call an Object as a function if a callback is set by the
3282    * ObjectTemplate::SetCallAsFunctionHandler method.
3283    */
3284   V8_DEPRECATED("Use maybe version",
3285                 Local<Value> CallAsFunction(Local<Value> recv, int argc,
3286                                             Local<Value> argv[]));
3287   V8_WARN_UNUSED_RESULT MaybeLocal<Value> CallAsFunction(Local<Context> context,
3288                                                          Local<Value> recv,
3289                                                          int argc,
3290                                                          Local<Value> argv[]);
3291 
3292   /**
3293    * Call an Object as a constructor if a callback is set by the
3294    * ObjectTemplate::SetCallAsFunctionHandler method.
3295    * Note: This method behaves like the Function::NewInstance method.
3296    */
3297   V8_DEPRECATED("Use maybe version",
3298                 Local<Value> CallAsConstructor(int argc, Local<Value> argv[]));
3299   V8_WARN_UNUSED_RESULT MaybeLocal<Value> CallAsConstructor(
3300       Local<Context> context, int argc, Local<Value> argv[]);
3301 
3302   /**
3303    * Return the isolate to which the Object belongs to.
3304    */
3305   V8_DEPRECATE_SOON("Keep track of isolate correctly", Isolate* GetIsolate());
3306 
3307   static Local<Object> New(Isolate* isolate);
3308 
3309   V8_INLINE static Object* Cast(Value* obj);
3310 
3311  private:
3312   Object();
3313   static void CheckCast(Value* obj);
3314   Local<Value> SlowGetInternalField(int index);
3315   void* SlowGetAlignedPointerFromInternalField(int index);
3316 };
3317 
3318 
3319 /**
3320  * An instance of the built-in array constructor (ECMA-262, 15.4.2).
3321  */
3322 class V8_EXPORT Array : public Object {
3323  public:
3324   uint32_t Length() const;
3325 
3326   /**
3327    * Clones an element at index |index|.  Returns an empty
3328    * handle if cloning fails (for any reason).
3329    */
3330   V8_DEPRECATED("Cloning is not supported.",
3331                 Local<Object> CloneElementAt(uint32_t index));
3332   V8_DEPRECATED("Cloning is not supported.",
3333                 MaybeLocal<Object> CloneElementAt(Local<Context> context,
3334                                                   uint32_t index));
3335 
3336   /**
3337    * Creates a JavaScript array with the given length. If the length
3338    * is negative the returned array will have length 0.
3339    */
3340   static Local<Array> New(Isolate* isolate, int length = 0);
3341 
3342   V8_INLINE static Array* Cast(Value* obj);
3343  private:
3344   Array();
3345   static void CheckCast(Value* obj);
3346 };
3347 
3348 
3349 /**
3350  * An instance of the built-in Map constructor (ECMA-262, 6th Edition, 23.1.1).
3351  */
3352 class V8_EXPORT Map : public Object {
3353  public:
3354   size_t Size() const;
3355   void Clear();
3356   V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context,
3357                                               Local<Value> key);
3358   V8_WARN_UNUSED_RESULT MaybeLocal<Map> Set(Local<Context> context,
3359                                             Local<Value> key,
3360                                             Local<Value> value);
3361   V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context,
3362                                         Local<Value> key);
3363   V8_WARN_UNUSED_RESULT Maybe<bool> Delete(Local<Context> context,
3364                                            Local<Value> key);
3365 
3366   /**
3367    * Returns an array of length Size() * 2, where index N is the Nth key and
3368    * index N + 1 is the Nth value.
3369    */
3370   Local<Array> AsArray() const;
3371 
3372   /**
3373    * Creates a new empty Map.
3374    */
3375   static Local<Map> New(Isolate* isolate);
3376 
3377   V8_INLINE static Map* Cast(Value* obj);
3378 
3379  private:
3380   Map();
3381   static void CheckCast(Value* obj);
3382 };
3383 
3384 
3385 /**
3386  * An instance of the built-in Set constructor (ECMA-262, 6th Edition, 23.2.1).
3387  */
3388 class V8_EXPORT Set : public Object {
3389  public:
3390   size_t Size() const;
3391   void Clear();
3392   V8_WARN_UNUSED_RESULT MaybeLocal<Set> Add(Local<Context> context,
3393                                             Local<Value> key);
3394   V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context,
3395                                         Local<Value> key);
3396   V8_WARN_UNUSED_RESULT Maybe<bool> Delete(Local<Context> context,
3397                                            Local<Value> key);
3398 
3399   /**
3400    * Returns an array of the keys in this Set.
3401    */
3402   Local<Array> AsArray() const;
3403 
3404   /**
3405    * Creates a new empty Set.
3406    */
3407   static Local<Set> New(Isolate* isolate);
3408 
3409   V8_INLINE static Set* Cast(Value* obj);
3410 
3411  private:
3412   Set();
3413   static void CheckCast(Value* obj);
3414 };
3415 
3416 
3417 template<typename T>
3418 class ReturnValue {
3419  public:
ReturnValue(const ReturnValue<S> & that)3420   template <class S> V8_INLINE ReturnValue(const ReturnValue<S>& that)
3421       : value_(that.value_) {
3422     TYPE_CHECK(T, S);
3423   }
3424   // Local setters
3425   template <typename S>
3426   V8_INLINE V8_DEPRECATE_SOON("Use Global<> instead",
3427                               void Set(const Persistent<S>& handle));
3428   template <typename S>
3429   V8_INLINE void Set(const Global<S>& handle);
3430   template <typename S>
3431   V8_INLINE void Set(const Local<S> handle);
3432   // Fast primitive setters
3433   V8_INLINE void Set(bool value);
3434   V8_INLINE void Set(double i);
3435   V8_INLINE void Set(int32_t i);
3436   V8_INLINE void Set(uint32_t i);
3437   // Fast JS primitive setters
3438   V8_INLINE void SetNull();
3439   V8_INLINE void SetUndefined();
3440   V8_INLINE void SetEmptyString();
3441   // Convenience getter for Isolate
3442   V8_INLINE Isolate* GetIsolate() const;
3443 
3444   // Pointer setter: Uncompilable to prevent inadvertent misuse.
3445   template <typename S>
3446   V8_INLINE void Set(S* whatever);
3447 
3448   // Getter. Creates a new Local<> so it comes with a certain performance
3449   // hit. If the ReturnValue was not yet set, this will return the undefined
3450   // value.
3451   V8_INLINE Local<Value> Get() const;
3452 
3453  private:
3454   template<class F> friend class ReturnValue;
3455   template<class F> friend class FunctionCallbackInfo;
3456   template<class F> friend class PropertyCallbackInfo;
3457   template <class F, class G, class H>
3458   friend class PersistentValueMapBase;
SetInternal(internal::Object * value)3459   V8_INLINE void SetInternal(internal::Object* value) { *value_ = value; }
3460   V8_INLINE internal::Object* GetDefaultValue();
3461   V8_INLINE explicit ReturnValue(internal::Object** slot);
3462   internal::Object** value_;
3463 };
3464 
3465 
3466 /**
3467  * The argument information given to function call callbacks.  This
3468  * class provides access to information about the context of the call,
3469  * including the receiver, the number and values of arguments, and
3470  * the holder of the function.
3471  */
3472 template<typename T>
3473 class FunctionCallbackInfo {
3474  public:
3475   V8_INLINE int Length() const;
3476   V8_INLINE Local<Value> operator[](int i) const;
3477   V8_INLINE V8_DEPRECATED("Use Data() to explicitly pass Callee instead",
3478                           Local<Function> Callee() const);
3479   V8_INLINE Local<Object> This() const;
3480   V8_INLINE Local<Object> Holder() const;
3481   V8_INLINE Local<Value> NewTarget() const;
3482   V8_INLINE bool IsConstructCall() const;
3483   V8_INLINE Local<Value> Data() const;
3484   V8_INLINE Isolate* GetIsolate() const;
3485   V8_INLINE ReturnValue<T> GetReturnValue() const;
3486   // This shouldn't be public, but the arm compiler needs it.
3487   static const int kArgsLength = 8;
3488 
3489  protected:
3490   friend class internal::FunctionCallbackArguments;
3491   friend class internal::CustomArguments<FunctionCallbackInfo>;
3492   static const int kHolderIndex = 0;
3493   static const int kIsolateIndex = 1;
3494   static const int kReturnValueDefaultValueIndex = 2;
3495   static const int kReturnValueIndex = 3;
3496   static const int kDataIndex = 4;
3497   static const int kCalleeIndex = 5;
3498   static const int kContextSaveIndex = 6;
3499   static const int kNewTargetIndex = 7;
3500 
3501   V8_INLINE FunctionCallbackInfo(internal::Object** implicit_args,
3502                                  internal::Object** values, int length);
3503   internal::Object** implicit_args_;
3504   internal::Object** values_;
3505   int length_;
3506 };
3507 
3508 
3509 /**
3510  * The information passed to a property callback about the context
3511  * of the property access.
3512  */
3513 template<typename T>
3514 class PropertyCallbackInfo {
3515  public:
3516   /**
3517    * \return The isolate of the property access.
3518    */
3519   V8_INLINE Isolate* GetIsolate() const;
3520 
3521   /**
3522    * \return The data set in the configuration, i.e., in
3523    * `NamedPropertyHandlerConfiguration` or
3524    * `IndexedPropertyHandlerConfiguration.`
3525    */
3526   V8_INLINE Local<Value> Data() const;
3527 
3528   /**
3529    * \return The receiver. In many cases, this is the object on which the
3530    * property access was intercepted. When using
3531    * `Reflect.get`, `Function.prototype.call`, or similar functions, it is the
3532    * object passed in as receiver or thisArg.
3533    *
3534    * \code
3535    *  void GetterCallback(Local<Name> name,
3536    *                      const v8::PropertyCallbackInfo<v8::Value>& info) {
3537    *     auto context = info.GetIsolate()->GetCurrentContext();
3538    *
3539    *     v8::Local<v8::Value> a_this =
3540    *         info.This()
3541    *             ->GetRealNamedProperty(context, v8_str("a"))
3542    *             .ToLocalChecked();
3543    *     v8::Local<v8::Value> a_holder =
3544    *         info.Holder()
3545    *             ->GetRealNamedProperty(context, v8_str("a"))
3546    *             .ToLocalChecked();
3547    *
3548    *    CHECK(v8_str("r")->Equals(context, a_this).FromJust());
3549    *    CHECK(v8_str("obj")->Equals(context, a_holder).FromJust());
3550    *
3551    *    info.GetReturnValue().Set(name);
3552    *  }
3553    *
3554    *  v8::Local<v8::FunctionTemplate> templ =
3555    *  v8::FunctionTemplate::New(isolate);
3556    *  templ->InstanceTemplate()->SetHandler(
3557    *      v8::NamedPropertyHandlerConfiguration(GetterCallback));
3558    *  LocalContext env;
3559    *  env->Global()
3560    *      ->Set(env.local(), v8_str("obj"), templ->GetFunction(env.local())
3561    *                                           .ToLocalChecked()
3562    *                                           ->NewInstance(env.local())
3563    *                                           .ToLocalChecked())
3564    *      .FromJust();
3565    *
3566    *  CompileRun("obj.a = 'obj'; var r = {a: 'r'}; Reflect.get(obj, 'x', r)");
3567    * \endcode
3568    */
3569   V8_INLINE Local<Object> This() const;
3570 
3571   /**
3572    * \return The object in the prototype chain of the receiver that has the
3573    * interceptor. Suppose you have `x` and its prototype is `y`, and `y`
3574    * has an interceptor. Then `info.This()` is `x` and `info.Holder()` is `y`.
3575    * The Holder() could be a hidden object (the global object, rather
3576    * than the global proxy).
3577    *
3578    * \note For security reasons, do not pass the object back into the runtime.
3579    */
3580   V8_INLINE Local<Object> Holder() const;
3581 
3582   /**
3583    * \return The return value of the callback.
3584    * Can be changed by calling Set().
3585    * \code
3586    * info.GetReturnValue().Set(...)
3587    * \endcode
3588    *
3589    */
3590   V8_INLINE ReturnValue<T> GetReturnValue() const;
3591 
3592   /**
3593    * \return True if the intercepted function should throw if an error occurs.
3594    * Usually, `true` corresponds to `'use strict'`.
3595    *
3596    * \note Always `false` when intercepting `Reflect.set()`
3597    * independent of the language mode.
3598    */
3599   V8_INLINE bool ShouldThrowOnError() const;
3600 
3601   // This shouldn't be public, but the arm compiler needs it.
3602   static const int kArgsLength = 7;
3603 
3604  protected:
3605   friend class MacroAssembler;
3606   friend class internal::PropertyCallbackArguments;
3607   friend class internal::CustomArguments<PropertyCallbackInfo>;
3608   static const int kShouldThrowOnErrorIndex = 0;
3609   static const int kHolderIndex = 1;
3610   static const int kIsolateIndex = 2;
3611   static const int kReturnValueDefaultValueIndex = 3;
3612   static const int kReturnValueIndex = 4;
3613   static const int kDataIndex = 5;
3614   static const int kThisIndex = 6;
3615 
PropertyCallbackInfo(internal::Object ** args)3616   V8_INLINE PropertyCallbackInfo(internal::Object** args) : args_(args) {}
3617   internal::Object** args_;
3618 };
3619 
3620 
3621 typedef void (*FunctionCallback)(const FunctionCallbackInfo<Value>& info);
3622 
3623 enum class ConstructorBehavior { kThrow, kAllow };
3624 
3625 /**
3626  * A JavaScript function object (ECMA-262, 15.3).
3627  */
3628 class V8_EXPORT Function : public Object {
3629  public:
3630   /**
3631    * Create a function in the current execution context
3632    * for a given FunctionCallback.
3633    */
3634   static MaybeLocal<Function> New(
3635       Local<Context> context, FunctionCallback callback,
3636       Local<Value> data = Local<Value>(), int length = 0,
3637       ConstructorBehavior behavior = ConstructorBehavior::kAllow);
3638   static V8_DEPRECATE_SOON(
3639       "Use maybe version",
3640       Local<Function> New(Isolate* isolate, FunctionCallback callback,
3641                           Local<Value> data = Local<Value>(), int length = 0));
3642 
3643   V8_DEPRECATED("Use maybe version",
3644                 Local<Object> NewInstance(int argc, Local<Value> argv[]) const);
3645   V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewInstance(
3646       Local<Context> context, int argc, Local<Value> argv[]) const;
3647 
3648   V8_DEPRECATED("Use maybe version", Local<Object> NewInstance() const);
NewInstance(Local<Context> context)3649   V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewInstance(
3650       Local<Context> context) const {
3651     return NewInstance(context, 0, nullptr);
3652   }
3653 
3654   V8_DEPRECATE_SOON("Use maybe version",
3655                     Local<Value> Call(Local<Value> recv, int argc,
3656                                       Local<Value> argv[]));
3657   V8_WARN_UNUSED_RESULT MaybeLocal<Value> Call(Local<Context> context,
3658                                                Local<Value> recv, int argc,
3659                                                Local<Value> argv[]);
3660 
3661   void SetName(Local<String> name);
3662   Local<Value> GetName() const;
3663 
3664   /**
3665    * Name inferred from variable or property assignment of this function.
3666    * Used to facilitate debugging and profiling of JavaScript code written
3667    * in an OO style, where many functions are anonymous but are assigned
3668    * to object properties.
3669    */
3670   Local<Value> GetInferredName() const;
3671 
3672   /**
3673    * displayName if it is set, otherwise name if it is configured, otherwise
3674    * function name, otherwise inferred name.
3675    */
3676   Local<Value> GetDebugName() const;
3677 
3678   /**
3679    * User-defined name assigned to the "displayName" property of this function.
3680    * Used to facilitate debugging and profiling of JavaScript code.
3681    */
3682   Local<Value> GetDisplayName() const;
3683 
3684   /**
3685    * Returns zero based line number of function body and
3686    * kLineOffsetNotFound if no information available.
3687    */
3688   int GetScriptLineNumber() const;
3689   /**
3690    * Returns zero based column number of function body and
3691    * kLineOffsetNotFound if no information available.
3692    */
3693   int GetScriptColumnNumber() const;
3694 
3695   /**
3696    * Tells whether this function is builtin.
3697    */
3698   bool IsBuiltin() const;
3699 
3700   /**
3701    * Returns scriptId.
3702    */
3703   int ScriptId() const;
3704 
3705   /**
3706    * Returns the original function if this function is bound, else returns
3707    * v8::Undefined.
3708    */
3709   Local<Value> GetBoundFunction() const;
3710 
3711   ScriptOrigin GetScriptOrigin() const;
3712   V8_INLINE static Function* Cast(Value* obj);
3713   static const int kLineOffsetNotFound;
3714 
3715  private:
3716   Function();
3717   static void CheckCast(Value* obj);
3718 };
3719 
3720 
3721 /**
3722  * An instance of the built-in Promise constructor (ES6 draft).
3723  * This API is experimental. Only works with --harmony flag.
3724  */
3725 class V8_EXPORT Promise : public Object {
3726  public:
3727   class V8_EXPORT Resolver : public Object {
3728    public:
3729     /**
3730      * Create a new resolver, along with an associated promise in pending state.
3731      */
3732     static V8_DEPRECATE_SOON("Use maybe version",
3733                              Local<Resolver> New(Isolate* isolate));
3734     static V8_WARN_UNUSED_RESULT MaybeLocal<Resolver> New(
3735         Local<Context> context);
3736 
3737     /**
3738      * Extract the associated promise.
3739      */
3740     Local<Promise> GetPromise();
3741 
3742     /**
3743      * Resolve/reject the associated promise with a given value.
3744      * Ignored if the promise is no longer pending.
3745      */
3746     V8_DEPRECATE_SOON("Use maybe version", void Resolve(Local<Value> value));
3747     // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
3748     Maybe<bool> Resolve(Local<Context> context, Local<Value> value);
3749 
3750     V8_DEPRECATE_SOON("Use maybe version", void Reject(Local<Value> value));
3751     // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
3752     Maybe<bool> Reject(Local<Context> context, Local<Value> value);
3753 
3754     V8_INLINE static Resolver* Cast(Value* obj);
3755 
3756    private:
3757     Resolver();
3758     static void CheckCast(Value* obj);
3759   };
3760 
3761   /**
3762    * Register a resolution/rejection handler with a promise.
3763    * The handler is given the respective resolution/rejection value as
3764    * an argument. If the promise is already resolved/rejected, the handler is
3765    * invoked at the end of turn.
3766    */
3767   V8_DEPRECATED("Use maybe version",
3768                 Local<Promise> Catch(Local<Function> handler));
3769   V8_WARN_UNUSED_RESULT MaybeLocal<Promise> Catch(Local<Context> context,
3770                                                   Local<Function> handler);
3771 
3772   V8_DEPRECATED("Use maybe version",
3773                 Local<Promise> Then(Local<Function> handler));
3774   V8_WARN_UNUSED_RESULT MaybeLocal<Promise> Then(Local<Context> context,
3775                                                  Local<Function> handler);
3776 
3777   /**
3778    * Returns true if the promise has at least one derived promise, and
3779    * therefore resolve/reject handlers (including default handler).
3780    */
3781   bool HasHandler();
3782 
3783   V8_INLINE static Promise* Cast(Value* obj);
3784 
3785  private:
3786   Promise();
3787   static void CheckCast(Value* obj);
3788 };
3789 
3790 /**
3791  * An instance of a Property Descriptor, see Ecma-262 6.2.4.
3792  *
3793  * Properties in a descriptor are present or absent. If you do not set
3794  * `enumerable`, `configurable`, and `writable`, they are absent. If `value`,
3795  * `get`, or `set` are absent, but you must specify them in the constructor, use
3796  * empty handles.
3797  *
3798  * Accessors `get` and `set` must be callable or undefined if they are present.
3799  *
3800  * \note Only query properties if they are present, i.e., call `x()` only if
3801  * `has_x()` returns true.
3802  *
3803  * \code
3804  * // var desc = {writable: false}
3805  * v8::PropertyDescriptor d(Local<Value>()), false);
3806  * d.value(); // error, value not set
3807  * if (d.has_writable()) {
3808  *   d.writable(); // false
3809  * }
3810  *
3811  * // var desc = {value: undefined}
3812  * v8::PropertyDescriptor d(v8::Undefined(isolate));
3813  *
3814  * // var desc = {get: undefined}
3815  * v8::PropertyDescriptor d(v8::Undefined(isolate), Local<Value>()));
3816  * \endcode
3817  */
3818 class V8_EXPORT PropertyDescriptor {
3819  public:
3820   // GenericDescriptor
3821   PropertyDescriptor();
3822 
3823   // DataDescriptor
3824   PropertyDescriptor(Local<Value> value);
3825 
3826   // DataDescriptor with writable property
3827   PropertyDescriptor(Local<Value> value, bool writable);
3828 
3829   // AccessorDescriptor
3830   PropertyDescriptor(Local<Value> get, Local<Value> set);
3831 
3832   ~PropertyDescriptor();
3833 
3834   Local<Value> value() const;
3835   bool has_value() const;
3836 
3837   Local<Value> get() const;
3838   bool has_get() const;
3839   Local<Value> set() const;
3840   bool has_set() const;
3841 
3842   void set_enumerable(bool enumerable);
3843   bool enumerable() const;
3844   bool has_enumerable() const;
3845 
3846   void set_configurable(bool configurable);
3847   bool configurable() const;
3848   bool has_configurable() const;
3849 
3850   bool writable() const;
3851   bool has_writable() const;
3852 
3853   struct PrivateData;
get_private()3854   PrivateData* get_private() const { return private_; }
3855 
3856   PropertyDescriptor(const PropertyDescriptor&) = delete;
3857   void operator=(const PropertyDescriptor&) = delete;
3858 
3859  private:
3860   PrivateData* private_;
3861 };
3862 
3863 /**
3864  * An instance of the built-in Proxy constructor (ECMA-262, 6th Edition,
3865  * 26.2.1).
3866  */
3867 class V8_EXPORT Proxy : public Object {
3868  public:
3869   Local<Object> GetTarget();
3870   Local<Value> GetHandler();
3871   bool IsRevoked();
3872   void Revoke();
3873 
3874   /**
3875    * Creates a new Proxy for the target object.
3876    */
3877   static MaybeLocal<Proxy> New(Local<Context> context,
3878                                Local<Object> local_target,
3879                                Local<Object> local_handler);
3880 
3881   V8_INLINE static Proxy* Cast(Value* obj);
3882 
3883  private:
3884   Proxy();
3885   static void CheckCast(Value* obj);
3886 };
3887 
3888 class V8_EXPORT WasmCompiledModule : public Object {
3889  public:
3890   typedef std::pair<std::unique_ptr<const uint8_t[]>, size_t> SerializedModule;
3891   // A buffer that is owned by the caller.
3892   typedef std::pair<const uint8_t*, size_t> CallerOwnedBuffer;
3893   // Get the wasm-encoded bytes that were used to compile this module.
3894   Local<String> GetWasmWireBytes();
3895 
3896   // Serialize the compiled module. The serialized data does not include the
3897   // uncompiled bytes.
3898   SerializedModule Serialize();
3899 
3900   // If possible, deserialize the module, otherwise compile it from the provided
3901   // uncompiled bytes.
3902   static MaybeLocal<WasmCompiledModule> DeserializeOrCompile(
3903       Isolate* isolate, const CallerOwnedBuffer& serialized_module,
3904       const CallerOwnedBuffer& wire_bytes);
3905   V8_INLINE static WasmCompiledModule* Cast(Value* obj);
3906 
3907  private:
3908   static MaybeLocal<WasmCompiledModule> Deserialize(
3909       Isolate* isolate, const CallerOwnedBuffer& serialized_module,
3910       const CallerOwnedBuffer& wire_bytes);
3911   static MaybeLocal<WasmCompiledModule> Compile(Isolate* isolate,
3912                                                 const uint8_t* start,
3913                                                 size_t length);
3914   WasmCompiledModule();
3915   static void CheckCast(Value* obj);
3916 };
3917 
3918 #ifndef V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT
3919 // The number of required internal fields can be defined by embedder.
3920 #define V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT 2
3921 #endif
3922 
3923 
3924 enum class ArrayBufferCreationMode { kInternalized, kExternalized };
3925 
3926 
3927 /**
3928  * An instance of the built-in ArrayBuffer constructor (ES6 draft 15.13.5).
3929  * This API is experimental and may change significantly.
3930  */
3931 class V8_EXPORT ArrayBuffer : public Object {
3932  public:
3933   /**
3934    * A thread-safe allocator that V8 uses to allocate |ArrayBuffer|'s memory.
3935    * The allocator is a global V8 setting. It has to be set via
3936    * Isolate::CreateParams.
3937    *
3938    * Memory allocated through this allocator by V8 is accounted for as external
3939    * memory by V8. Note that V8 keeps track of the memory for all internalized
3940    * |ArrayBuffer|s. Responsibility for tracking external memory (using
3941    * Isolate::AdjustAmountOfExternalAllocatedMemory) is handed over to the
3942    * embedder upon externalization and taken over upon internalization (creating
3943    * an internalized buffer from an existing buffer).
3944    *
3945    * Note that it is unsafe to call back into V8 from any of the allocator
3946    * functions.
3947    */
3948   class V8_EXPORT Allocator { // NOLINT
3949    public:
~Allocator()3950     virtual ~Allocator() {}
3951 
3952     /**
3953      * Allocate |length| bytes. Return NULL if allocation is not successful.
3954      * Memory should be initialized to zeroes.
3955      */
3956     virtual void* Allocate(size_t length) = 0;
3957 
3958     /**
3959      * Allocate |length| bytes. Return NULL if allocation is not successful.
3960      * Memory does not have to be initialized.
3961      */
3962     virtual void* AllocateUninitialized(size_t length) = 0;
3963 
3964     /**
3965      * Free the memory block of size |length|, pointed to by |data|.
3966      * That memory is guaranteed to be previously allocated by |Allocate|.
3967      */
3968     virtual void Free(void* data, size_t length) = 0;
3969 
3970     /**
3971      * malloc/free based convenience allocator.
3972      *
3973      * Caller takes ownership.
3974      */
3975     static Allocator* NewDefaultAllocator();
3976   };
3977 
3978   /**
3979    * The contents of an |ArrayBuffer|. Externalization of |ArrayBuffer|
3980    * returns an instance of this class, populated, with a pointer to data
3981    * and byte length.
3982    *
3983    * The Data pointer of ArrayBuffer::Contents is always allocated with
3984    * Allocator::Allocate that is set via Isolate::CreateParams.
3985    *
3986    * This API is experimental and may change significantly.
3987    */
3988   class V8_EXPORT Contents { // NOLINT
3989    public:
Contents()3990     Contents() : data_(NULL), byte_length_(0) {}
3991 
Data()3992     void* Data() const { return data_; }
ByteLength()3993     size_t ByteLength() const { return byte_length_; }
3994 
3995    private:
3996     void* data_;
3997     size_t byte_length_;
3998 
3999     friend class ArrayBuffer;
4000   };
4001 
4002 
4003   /**
4004    * Data length in bytes.
4005    */
4006   size_t ByteLength() const;
4007 
4008   /**
4009    * Create a new ArrayBuffer. Allocate |byte_length| bytes.
4010    * Allocated memory will be owned by a created ArrayBuffer and
4011    * will be deallocated when it is garbage-collected,
4012    * unless the object is externalized.
4013    */
4014   static Local<ArrayBuffer> New(Isolate* isolate, size_t byte_length);
4015 
4016   /**
4017    * Create a new ArrayBuffer over an existing memory block.
4018    * The created array buffer is by default immediately in externalized state.
4019    * The memory block will not be reclaimed when a created ArrayBuffer
4020    * is garbage-collected.
4021    */
4022   static Local<ArrayBuffer> New(
4023       Isolate* isolate, void* data, size_t byte_length,
4024       ArrayBufferCreationMode mode = ArrayBufferCreationMode::kExternalized);
4025 
4026   /**
4027    * Returns true if ArrayBuffer is externalized, that is, does not
4028    * own its memory block.
4029    */
4030   bool IsExternal() const;
4031 
4032   /**
4033    * Returns true if this ArrayBuffer may be neutered.
4034    */
4035   bool IsNeuterable() const;
4036 
4037   /**
4038    * Neuters this ArrayBuffer and all its views (typed arrays).
4039    * Neutering sets the byte length of the buffer and all typed arrays to zero,
4040    * preventing JavaScript from ever accessing underlying backing store.
4041    * ArrayBuffer should have been externalized and must be neuterable.
4042    */
4043   void Neuter();
4044 
4045   /**
4046    * Make this ArrayBuffer external. The pointer to underlying memory block
4047    * and byte length are returned as |Contents| structure. After ArrayBuffer
4048    * had been externalized, it does no longer own the memory block. The caller
4049    * should take steps to free memory when it is no longer needed.
4050    *
4051    * The memory block is guaranteed to be allocated with |Allocator::Allocate|
4052    * that has been set via Isolate::CreateParams.
4053    */
4054   Contents Externalize();
4055 
4056   /**
4057    * Get a pointer to the ArrayBuffer's underlying memory block without
4058    * externalizing it. If the ArrayBuffer is not externalized, this pointer
4059    * will become invalid as soon as the ArrayBuffer gets garbage collected.
4060    *
4061    * The embedder should make sure to hold a strong reference to the
4062    * ArrayBuffer while accessing this pointer.
4063    *
4064    * The memory block is guaranteed to be allocated with |Allocator::Allocate|.
4065    */
4066   Contents GetContents();
4067 
4068   V8_INLINE static ArrayBuffer* Cast(Value* obj);
4069 
4070   static const int kInternalFieldCount = V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT;
4071 
4072  private:
4073   ArrayBuffer();
4074   static void CheckCast(Value* obj);
4075 };
4076 
4077 
4078 #ifndef V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT
4079 // The number of required internal fields can be defined by embedder.
4080 #define V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT 2
4081 #endif
4082 
4083 
4084 /**
4085  * A base class for an instance of one of "views" over ArrayBuffer,
4086  * including TypedArrays and DataView (ES6 draft 15.13).
4087  *
4088  * This API is experimental and may change significantly.
4089  */
4090 class V8_EXPORT ArrayBufferView : public Object {
4091  public:
4092   /**
4093    * Returns underlying ArrayBuffer.
4094    */
4095   Local<ArrayBuffer> Buffer();
4096   /**
4097    * Byte offset in |Buffer|.
4098    */
4099   size_t ByteOffset();
4100   /**
4101    * Size of a view in bytes.
4102    */
4103   size_t ByteLength();
4104 
4105   /**
4106    * Copy the contents of the ArrayBufferView's buffer to an embedder defined
4107    * memory without additional overhead that calling ArrayBufferView::Buffer
4108    * might incur.
4109    *
4110    * Will write at most min(|byte_length|, ByteLength) bytes starting at
4111    * ByteOffset of the underlying buffer to the memory starting at |dest|.
4112    * Returns the number of bytes actually written.
4113    */
4114   size_t CopyContents(void* dest, size_t byte_length);
4115 
4116   /**
4117    * Returns true if ArrayBufferView's backing ArrayBuffer has already been
4118    * allocated.
4119    */
4120   bool HasBuffer() const;
4121 
4122   V8_INLINE static ArrayBufferView* Cast(Value* obj);
4123 
4124   static const int kInternalFieldCount =
4125       V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT;
4126 
4127  private:
4128   ArrayBufferView();
4129   static void CheckCast(Value* obj);
4130 };
4131 
4132 
4133 /**
4134  * A base class for an instance of TypedArray series of constructors
4135  * (ES6 draft 15.13.6).
4136  * This API is experimental and may change significantly.
4137  */
4138 class V8_EXPORT TypedArray : public ArrayBufferView {
4139  public:
4140   /**
4141    * Number of elements in this typed array
4142    * (e.g. for Int16Array, |ByteLength|/2).
4143    */
4144   size_t Length();
4145 
4146   V8_INLINE static TypedArray* Cast(Value* obj);
4147 
4148  private:
4149   TypedArray();
4150   static void CheckCast(Value* obj);
4151 };
4152 
4153 
4154 /**
4155  * An instance of Uint8Array constructor (ES6 draft 15.13.6).
4156  * This API is experimental and may change significantly.
4157  */
4158 class V8_EXPORT Uint8Array : public TypedArray {
4159  public:
4160   static Local<Uint8Array> New(Local<ArrayBuffer> array_buffer,
4161                                size_t byte_offset, size_t length);
4162   static Local<Uint8Array> New(Local<SharedArrayBuffer> shared_array_buffer,
4163                                size_t byte_offset, size_t length);
4164   V8_INLINE static Uint8Array* Cast(Value* obj);
4165 
4166  private:
4167   Uint8Array();
4168   static void CheckCast(Value* obj);
4169 };
4170 
4171 
4172 /**
4173  * An instance of Uint8ClampedArray constructor (ES6 draft 15.13.6).
4174  * This API is experimental and may change significantly.
4175  */
4176 class V8_EXPORT Uint8ClampedArray : public TypedArray {
4177  public:
4178   static Local<Uint8ClampedArray> New(Local<ArrayBuffer> array_buffer,
4179                                       size_t byte_offset, size_t length);
4180   static Local<Uint8ClampedArray> New(
4181       Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset,
4182       size_t length);
4183   V8_INLINE static Uint8ClampedArray* Cast(Value* obj);
4184 
4185  private:
4186   Uint8ClampedArray();
4187   static void CheckCast(Value* obj);
4188 };
4189 
4190 /**
4191  * An instance of Int8Array constructor (ES6 draft 15.13.6).
4192  * This API is experimental and may change significantly.
4193  */
4194 class V8_EXPORT Int8Array : public TypedArray {
4195  public:
4196   static Local<Int8Array> New(Local<ArrayBuffer> array_buffer,
4197                               size_t byte_offset, size_t length);
4198   static Local<Int8Array> New(Local<SharedArrayBuffer> shared_array_buffer,
4199                               size_t byte_offset, size_t length);
4200   V8_INLINE static Int8Array* Cast(Value* obj);
4201 
4202  private:
4203   Int8Array();
4204   static void CheckCast(Value* obj);
4205 };
4206 
4207 
4208 /**
4209  * An instance of Uint16Array constructor (ES6 draft 15.13.6).
4210  * This API is experimental and may change significantly.
4211  */
4212 class V8_EXPORT Uint16Array : public TypedArray {
4213  public:
4214   static Local<Uint16Array> New(Local<ArrayBuffer> array_buffer,
4215                                 size_t byte_offset, size_t length);
4216   static Local<Uint16Array> New(Local<SharedArrayBuffer> shared_array_buffer,
4217                                 size_t byte_offset, size_t length);
4218   V8_INLINE static Uint16Array* Cast(Value* obj);
4219 
4220  private:
4221   Uint16Array();
4222   static void CheckCast(Value* obj);
4223 };
4224 
4225 
4226 /**
4227  * An instance of Int16Array constructor (ES6 draft 15.13.6).
4228  * This API is experimental and may change significantly.
4229  */
4230 class V8_EXPORT Int16Array : public TypedArray {
4231  public:
4232   static Local<Int16Array> New(Local<ArrayBuffer> array_buffer,
4233                                size_t byte_offset, size_t length);
4234   static Local<Int16Array> New(Local<SharedArrayBuffer> shared_array_buffer,
4235                                size_t byte_offset, size_t length);
4236   V8_INLINE static Int16Array* Cast(Value* obj);
4237 
4238  private:
4239   Int16Array();
4240   static void CheckCast(Value* obj);
4241 };
4242 
4243 
4244 /**
4245  * An instance of Uint32Array constructor (ES6 draft 15.13.6).
4246  * This API is experimental and may change significantly.
4247  */
4248 class V8_EXPORT Uint32Array : public TypedArray {
4249  public:
4250   static Local<Uint32Array> New(Local<ArrayBuffer> array_buffer,
4251                                 size_t byte_offset, size_t length);
4252   static Local<Uint32Array> New(Local<SharedArrayBuffer> shared_array_buffer,
4253                                 size_t byte_offset, size_t length);
4254   V8_INLINE static Uint32Array* Cast(Value* obj);
4255 
4256  private:
4257   Uint32Array();
4258   static void CheckCast(Value* obj);
4259 };
4260 
4261 
4262 /**
4263  * An instance of Int32Array constructor (ES6 draft 15.13.6).
4264  * This API is experimental and may change significantly.
4265  */
4266 class V8_EXPORT Int32Array : public TypedArray {
4267  public:
4268   static Local<Int32Array> New(Local<ArrayBuffer> array_buffer,
4269                                size_t byte_offset, size_t length);
4270   static Local<Int32Array> New(Local<SharedArrayBuffer> shared_array_buffer,
4271                                size_t byte_offset, size_t length);
4272   V8_INLINE static Int32Array* Cast(Value* obj);
4273 
4274  private:
4275   Int32Array();
4276   static void CheckCast(Value* obj);
4277 };
4278 
4279 
4280 /**
4281  * An instance of Float32Array constructor (ES6 draft 15.13.6).
4282  * This API is experimental and may change significantly.
4283  */
4284 class V8_EXPORT Float32Array : public TypedArray {
4285  public:
4286   static Local<Float32Array> New(Local<ArrayBuffer> array_buffer,
4287                                  size_t byte_offset, size_t length);
4288   static Local<Float32Array> New(Local<SharedArrayBuffer> shared_array_buffer,
4289                                  size_t byte_offset, size_t length);
4290   V8_INLINE static Float32Array* Cast(Value* obj);
4291 
4292  private:
4293   Float32Array();
4294   static void CheckCast(Value* obj);
4295 };
4296 
4297 
4298 /**
4299  * An instance of Float64Array constructor (ES6 draft 15.13.6).
4300  * This API is experimental and may change significantly.
4301  */
4302 class V8_EXPORT Float64Array : public TypedArray {
4303  public:
4304   static Local<Float64Array> New(Local<ArrayBuffer> array_buffer,
4305                                  size_t byte_offset, size_t length);
4306   static Local<Float64Array> New(Local<SharedArrayBuffer> shared_array_buffer,
4307                                  size_t byte_offset, size_t length);
4308   V8_INLINE static Float64Array* Cast(Value* obj);
4309 
4310  private:
4311   Float64Array();
4312   static void CheckCast(Value* obj);
4313 };
4314 
4315 
4316 /**
4317  * An instance of DataView constructor (ES6 draft 15.13.7).
4318  * This API is experimental and may change significantly.
4319  */
4320 class V8_EXPORT DataView : public ArrayBufferView {
4321  public:
4322   static Local<DataView> New(Local<ArrayBuffer> array_buffer,
4323                              size_t byte_offset, size_t length);
4324   static Local<DataView> New(Local<SharedArrayBuffer> shared_array_buffer,
4325                              size_t byte_offset, size_t length);
4326   V8_INLINE static DataView* Cast(Value* obj);
4327 
4328  private:
4329   DataView();
4330   static void CheckCast(Value* obj);
4331 };
4332 
4333 
4334 /**
4335  * An instance of the built-in SharedArrayBuffer constructor.
4336  * This API is experimental and may change significantly.
4337  */
4338 class V8_EXPORT SharedArrayBuffer : public Object {
4339  public:
4340   /**
4341    * The contents of an |SharedArrayBuffer|. Externalization of
4342    * |SharedArrayBuffer| returns an instance of this class, populated, with a
4343    * pointer to data and byte length.
4344    *
4345    * The Data pointer of SharedArrayBuffer::Contents is always allocated with
4346    * |ArrayBuffer::Allocator::Allocate| by the allocator specified in
4347    * v8::Isolate::CreateParams::array_buffer_allocator.
4348    *
4349    * This API is experimental and may change significantly.
4350    */
4351   class V8_EXPORT Contents {  // NOLINT
4352    public:
Contents()4353     Contents() : data_(NULL), byte_length_(0) {}
4354 
Data()4355     void* Data() const { return data_; }
ByteLength()4356     size_t ByteLength() const { return byte_length_; }
4357 
4358    private:
4359     void* data_;
4360     size_t byte_length_;
4361 
4362     friend class SharedArrayBuffer;
4363   };
4364 
4365 
4366   /**
4367    * Data length in bytes.
4368    */
4369   size_t ByteLength() const;
4370 
4371   /**
4372    * Create a new SharedArrayBuffer. Allocate |byte_length| bytes.
4373    * Allocated memory will be owned by a created SharedArrayBuffer and
4374    * will be deallocated when it is garbage-collected,
4375    * unless the object is externalized.
4376    */
4377   static Local<SharedArrayBuffer> New(Isolate* isolate, size_t byte_length);
4378 
4379   /**
4380    * Create a new SharedArrayBuffer over an existing memory block.  The created
4381    * array buffer is immediately in externalized state unless otherwise
4382    * specified. The memory block will not be reclaimed when a created
4383    * SharedArrayBuffer is garbage-collected.
4384    */
4385   static Local<SharedArrayBuffer> New(
4386       Isolate* isolate, void* data, size_t byte_length,
4387       ArrayBufferCreationMode mode = ArrayBufferCreationMode::kExternalized);
4388 
4389   /**
4390    * Returns true if SharedArrayBuffer is externalized, that is, does not
4391    * own its memory block.
4392    */
4393   bool IsExternal() const;
4394 
4395   /**
4396    * Make this SharedArrayBuffer external. The pointer to underlying memory
4397    * block and byte length are returned as |Contents| structure. After
4398    * SharedArrayBuffer had been externalized, it does no longer own the memory
4399    * block. The caller should take steps to free memory when it is no longer
4400    * needed.
4401    *
4402    * The memory block is guaranteed to be allocated with |Allocator::Allocate|
4403    * by the allocator specified in
4404    * v8::Isolate::CreateParams::array_buffer_allocator.
4405    *
4406    */
4407   Contents Externalize();
4408 
4409   /**
4410    * Get a pointer to the ArrayBuffer's underlying memory block without
4411    * externalizing it. If the ArrayBuffer is not externalized, this pointer
4412    * will become invalid as soon as the ArrayBuffer became garbage collected.
4413    *
4414    * The embedder should make sure to hold a strong reference to the
4415    * ArrayBuffer while accessing this pointer.
4416    *
4417    * The memory block is guaranteed to be allocated with |Allocator::Allocate|
4418    * by the allocator specified in
4419    * v8::Isolate::CreateParams::array_buffer_allocator.
4420    */
4421   Contents GetContents();
4422 
4423   V8_INLINE static SharedArrayBuffer* Cast(Value* obj);
4424 
4425   static const int kInternalFieldCount = V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT;
4426 
4427  private:
4428   SharedArrayBuffer();
4429   static void CheckCast(Value* obj);
4430 };
4431 
4432 
4433 /**
4434  * An instance of the built-in Date constructor (ECMA-262, 15.9).
4435  */
4436 class V8_EXPORT Date : public Object {
4437  public:
4438   static V8_DEPRECATE_SOON("Use maybe version.",
4439                            Local<Value> New(Isolate* isolate, double time));
4440   static V8_WARN_UNUSED_RESULT MaybeLocal<Value> New(Local<Context> context,
4441                                                      double time);
4442 
4443   /**
4444    * A specialization of Value::NumberValue that is more efficient
4445    * because we know the structure of this object.
4446    */
4447   double ValueOf() const;
4448 
4449   V8_INLINE static Date* Cast(v8::Value* obj);
4450 
4451   /**
4452    * Notification that the embedder has changed the time zone,
4453    * daylight savings time, or other date / time configuration
4454    * parameters.  V8 keeps a cache of various values used for
4455    * date / time computation.  This notification will reset
4456    * those cached values for the current context so that date /
4457    * time configuration changes would be reflected in the Date
4458    * object.
4459    *
4460    * This API should not be called more than needed as it will
4461    * negatively impact the performance of date operations.
4462    */
4463   static void DateTimeConfigurationChangeNotification(Isolate* isolate);
4464 
4465  private:
4466   static void CheckCast(v8::Value* obj);
4467 };
4468 
4469 
4470 /**
4471  * A Number object (ECMA-262, 4.3.21).
4472  */
4473 class V8_EXPORT NumberObject : public Object {
4474  public:
4475   static Local<Value> New(Isolate* isolate, double value);
4476 
4477   double ValueOf() const;
4478 
4479   V8_INLINE static NumberObject* Cast(v8::Value* obj);
4480 
4481  private:
4482   static void CheckCast(v8::Value* obj);
4483 };
4484 
4485 
4486 /**
4487  * A Boolean object (ECMA-262, 4.3.15).
4488  */
4489 class V8_EXPORT BooleanObject : public Object {
4490  public:
4491   static Local<Value> New(Isolate* isolate, bool value);
4492   V8_DEPRECATED("Pass an isolate", static Local<Value> New(bool value));
4493 
4494   bool ValueOf() const;
4495 
4496   V8_INLINE static BooleanObject* Cast(v8::Value* obj);
4497 
4498  private:
4499   static void CheckCast(v8::Value* obj);
4500 };
4501 
4502 
4503 /**
4504  * A String object (ECMA-262, 4.3.18).
4505  */
4506 class V8_EXPORT StringObject : public Object {
4507  public:
4508   static Local<Value> New(Local<String> value);
4509 
4510   Local<String> ValueOf() const;
4511 
4512   V8_INLINE static StringObject* Cast(v8::Value* obj);
4513 
4514  private:
4515   static void CheckCast(v8::Value* obj);
4516 };
4517 
4518 
4519 /**
4520  * A Symbol object (ECMA-262 edition 6).
4521  *
4522  * This is an experimental feature. Use at your own risk.
4523  */
4524 class V8_EXPORT SymbolObject : public Object {
4525  public:
4526   static Local<Value> New(Isolate* isolate, Local<Symbol> value);
4527 
4528   Local<Symbol> ValueOf() const;
4529 
4530   V8_INLINE static SymbolObject* Cast(v8::Value* obj);
4531 
4532  private:
4533   static void CheckCast(v8::Value* obj);
4534 };
4535 
4536 
4537 /**
4538  * An instance of the built-in RegExp constructor (ECMA-262, 15.10).
4539  */
4540 class V8_EXPORT RegExp : public Object {
4541  public:
4542   /**
4543    * Regular expression flag bits. They can be or'ed to enable a set
4544    * of flags.
4545    */
4546   enum Flags {
4547     kNone = 0,
4548     kGlobal = 1,
4549     kIgnoreCase = 2,
4550     kMultiline = 4,
4551     kSticky = 8,
4552     kUnicode = 16
4553   };
4554 
4555   /**
4556    * Creates a regular expression from the given pattern string and
4557    * the flags bit field. May throw a JavaScript exception as
4558    * described in ECMA-262, 15.10.4.1.
4559    *
4560    * For example,
4561    *   RegExp::New(v8::String::New("foo"),
4562    *               static_cast<RegExp::Flags>(kGlobal | kMultiline))
4563    * is equivalent to evaluating "/foo/gm".
4564    */
4565   static V8_DEPRECATE_SOON("Use maybe version",
4566                            Local<RegExp> New(Local<String> pattern,
4567                                              Flags flags));
4568   static V8_WARN_UNUSED_RESULT MaybeLocal<RegExp> New(Local<Context> context,
4569                                                       Local<String> pattern,
4570                                                       Flags flags);
4571 
4572   /**
4573    * Returns the value of the source property: a string representing
4574    * the regular expression.
4575    */
4576   Local<String> GetSource() const;
4577 
4578   /**
4579    * Returns the flags bit field.
4580    */
4581   Flags GetFlags() const;
4582 
4583   V8_INLINE static RegExp* Cast(v8::Value* obj);
4584 
4585  private:
4586   static void CheckCast(v8::Value* obj);
4587 };
4588 
4589 
4590 /**
4591  * A JavaScript value that wraps a C++ void*. This type of value is mainly used
4592  * to associate C++ data structures with JavaScript objects.
4593  */
4594 class V8_EXPORT External : public Value {
4595  public:
4596   static Local<External> New(Isolate* isolate, void* value);
4597   V8_INLINE static External* Cast(Value* obj);
4598   void* Value() const;
4599  private:
4600   static void CheckCast(v8::Value* obj);
4601 };
4602 
4603 
4604 #define V8_INTRINSICS_LIST(F) F(ArrayProto_values, array_values_iterator)
4605 
4606 enum Intrinsic {
4607 #define V8_DECL_INTRINSIC(name, iname) k##name,
4608   V8_INTRINSICS_LIST(V8_DECL_INTRINSIC)
4609 #undef V8_DECL_INTRINSIC
4610 };
4611 
4612 
4613 // --- Templates ---
4614 
4615 
4616 /**
4617  * The superclass of object and function templates.
4618  */
4619 class V8_EXPORT Template : public Data {
4620  public:
4621   /**
4622    * Adds a property to each instance created by this template.
4623    *
4624    * The property must be defined either as a primitive value, or a template.
4625    */
4626   void Set(Local<Name> name, Local<Data> value,
4627            PropertyAttribute attributes = None);
4628   void SetPrivate(Local<Private> name, Local<Data> value,
4629                   PropertyAttribute attributes = None);
4630   V8_INLINE void Set(Isolate* isolate, const char* name, Local<Data> value);
4631 
4632   void SetAccessorProperty(
4633      Local<Name> name,
4634      Local<FunctionTemplate> getter = Local<FunctionTemplate>(),
4635      Local<FunctionTemplate> setter = Local<FunctionTemplate>(),
4636      PropertyAttribute attribute = None,
4637      AccessControl settings = DEFAULT);
4638 
4639   /**
4640    * Whenever the property with the given name is accessed on objects
4641    * created from this Template the getter and setter callbacks
4642    * are called instead of getting and setting the property directly
4643    * on the JavaScript object.
4644    *
4645    * \param name The name of the property for which an accessor is added.
4646    * \param getter The callback to invoke when getting the property.
4647    * \param setter The callback to invoke when setting the property.
4648    * \param data A piece of data that will be passed to the getter and setter
4649    *   callbacks whenever they are invoked.
4650    * \param settings Access control settings for the accessor. This is a bit
4651    *   field consisting of one of more of
4652    *   DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2.
4653    *   The default is to not allow cross-context access.
4654    *   ALL_CAN_READ means that all cross-context reads are allowed.
4655    *   ALL_CAN_WRITE means that all cross-context writes are allowed.
4656    *   The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all
4657    *   cross-context access.
4658    * \param attribute The attributes of the property for which an accessor
4659    *   is added.
4660    * \param signature The signature describes valid receivers for the accessor
4661    *   and is used to perform implicit instance checks against them. If the
4662    *   receiver is incompatible (i.e. is not an instance of the constructor as
4663    *   defined by FunctionTemplate::HasInstance()), an implicit TypeError is
4664    *   thrown and no callback is invoked.
4665    */
4666   void SetNativeDataProperty(
4667       Local<String> name, AccessorGetterCallback getter,
4668       AccessorSetterCallback setter = 0,
4669       // TODO(dcarney): gcc can't handle Local below
4670       Local<Value> data = Local<Value>(), PropertyAttribute attribute = None,
4671       Local<AccessorSignature> signature = Local<AccessorSignature>(),
4672       AccessControl settings = DEFAULT);
4673   void SetNativeDataProperty(
4674       Local<Name> name, AccessorNameGetterCallback getter,
4675       AccessorNameSetterCallback setter = 0,
4676       // TODO(dcarney): gcc can't handle Local below
4677       Local<Value> data = Local<Value>(), PropertyAttribute attribute = None,
4678       Local<AccessorSignature> signature = Local<AccessorSignature>(),
4679       AccessControl settings = DEFAULT);
4680 
4681   /**
4682    * Like SetNativeDataProperty, but V8 will replace the native data property
4683    * with a real data property on first access.
4684    */
4685   void SetLazyDataProperty(Local<Name> name, AccessorNameGetterCallback getter,
4686                            Local<Value> data = Local<Value>(),
4687                            PropertyAttribute attribute = None);
4688 
4689   /**
4690    * During template instantiation, sets the value with the intrinsic property
4691    * from the correct context.
4692    */
4693   void SetIntrinsicDataProperty(Local<Name> name, Intrinsic intrinsic,
4694                                 PropertyAttribute attribute = None);
4695 
4696  private:
4697   Template();
4698 
4699   friend class ObjectTemplate;
4700   friend class FunctionTemplate;
4701 };
4702 
4703 
4704 /**
4705  * NamedProperty[Getter|Setter] are used as interceptors on object.
4706  * See ObjectTemplate::SetNamedPropertyHandler.
4707  */
4708 typedef void (*NamedPropertyGetterCallback)(
4709     Local<String> property,
4710     const PropertyCallbackInfo<Value>& info);
4711 
4712 
4713 /**
4714  * Returns the value if the setter intercepts the request.
4715  * Otherwise, returns an empty handle.
4716  */
4717 typedef void (*NamedPropertySetterCallback)(
4718     Local<String> property,
4719     Local<Value> value,
4720     const PropertyCallbackInfo<Value>& info);
4721 
4722 
4723 /**
4724  * Returns a non-empty handle if the interceptor intercepts the request.
4725  * The result is an integer encoding property attributes (like v8::None,
4726  * v8::DontEnum, etc.)
4727  */
4728 typedef void (*NamedPropertyQueryCallback)(
4729     Local<String> property,
4730     const PropertyCallbackInfo<Integer>& info);
4731 
4732 
4733 /**
4734  * Returns a non-empty handle if the deleter intercepts the request.
4735  * The return value is true if the property could be deleted and false
4736  * otherwise.
4737  */
4738 typedef void (*NamedPropertyDeleterCallback)(
4739     Local<String> property,
4740     const PropertyCallbackInfo<Boolean>& info);
4741 
4742 
4743 /**
4744  * Returns an array containing the names of the properties the named
4745  * property getter intercepts.
4746  */
4747 typedef void (*NamedPropertyEnumeratorCallback)(
4748     const PropertyCallbackInfo<Array>& info);
4749 
4750 
4751 // TODO(dcarney): Deprecate and remove previous typedefs, and replace
4752 // GenericNamedPropertyFooCallback with just NamedPropertyFooCallback.
4753 
4754 /**
4755  * Interceptor for get requests on an object.
4756  *
4757  * Use `info.GetReturnValue().Set()` to set the return value of the
4758  * intercepted get request.
4759  *
4760  * \param property The name of the property for which the request was
4761  * intercepted.
4762  * \param info Information about the intercepted request, such as
4763  * isolate, receiver, return value, or whether running in `'use strict`' mode.
4764  * See `PropertyCallbackInfo`.
4765  *
4766  * \code
4767  *  void GetterCallback(
4768  *    Local<Name> name,
4769  *    const v8::PropertyCallbackInfo<v8::Value>& info) {
4770  *      info.GetReturnValue().Set(v8_num(42));
4771  *  }
4772  *
4773  *  v8::Local<v8::FunctionTemplate> templ =
4774  *      v8::FunctionTemplate::New(isolate);
4775  *  templ->InstanceTemplate()->SetHandler(
4776  *      v8::NamedPropertyHandlerConfiguration(GetterCallback));
4777  *  LocalContext env;
4778  *  env->Global()
4779  *      ->Set(env.local(), v8_str("obj"), templ->GetFunction(env.local())
4780  *                                             .ToLocalChecked()
4781  *                                             ->NewInstance(env.local())
4782  *                                             .ToLocalChecked())
4783  *      .FromJust();
4784  *  v8::Local<v8::Value> result = CompileRun("obj.a = 17; obj.a");
4785  *  CHECK(v8_num(42)->Equals(env.local(), result).FromJust());
4786  * \endcode
4787  *
4788  * See also `ObjectTemplate::SetHandler`.
4789  */
4790 typedef void (*GenericNamedPropertyGetterCallback)(
4791     Local<Name> property, const PropertyCallbackInfo<Value>& info);
4792 
4793 /**
4794  * Interceptor for set requests on an object.
4795  *
4796  * Use `info.GetReturnValue()` to indicate whether the request was intercepted
4797  * or not. If the setter successfully intercepts the request, i.e., if the
4798  * request should not be further executed, call
4799  * `info.GetReturnValue().Set(value)`. If the setter
4800  * did not intercept the request, i.e., if the request should be handled as
4801  * if no interceptor is present, do not not call `Set()`.
4802  *
4803  * \param property The name of the property for which the request was
4804  * intercepted.
4805  * \param value The value which the property will have if the request
4806  * is not intercepted.
4807  * \param info Information about the intercepted request, such as
4808  * isolate, receiver, return value, or whether running in `'use strict'` mode.
4809  * See `PropertyCallbackInfo`.
4810  *
4811  * See also
4812  * `ObjectTemplate::SetHandler.`
4813  */
4814 typedef void (*GenericNamedPropertySetterCallback)(
4815     Local<Name> property, Local<Value> value,
4816     const PropertyCallbackInfo<Value>& info);
4817 
4818 /**
4819  * Intercepts all requests that query the attributes of the
4820  * property, e.g., getOwnPropertyDescriptor(), propertyIsEnumerable(), and
4821  * defineProperty().
4822  *
4823  * Use `info.GetReturnValue().Set(value)` to set the property attributes. The
4824  * value is an interger encoding a `v8::PropertyAttribute`.
4825  *
4826  * \param property The name of the property for which the request was
4827  * intercepted.
4828  * \param info Information about the intercepted request, such as
4829  * isolate, receiver, return value, or whether running in `'use strict'` mode.
4830  * See `PropertyCallbackInfo`.
4831  *
4832  * \note Some functions query the property attributes internally, even though
4833  * they do not return the attributes. For example, `hasOwnProperty()` can
4834  * trigger this interceptor depending on the state of the object.
4835  *
4836  * See also
4837  * `ObjectTemplate::SetHandler.`
4838  */
4839 typedef void (*GenericNamedPropertyQueryCallback)(
4840     Local<Name> property, const PropertyCallbackInfo<Integer>& info);
4841 
4842 /**
4843  * Interceptor for delete requests on an object.
4844  *
4845  * Use `info.GetReturnValue()` to indicate whether the request was intercepted
4846  * or not. If the deleter successfully intercepts the request, i.e., if the
4847  * request should not be further executed, call
4848  * `info.GetReturnValue().Set(value)` with a boolean `value`. The `value` is
4849  * used as the return value of `delete`.
4850  *
4851  * \param property The name of the property for which the request was
4852  * intercepted.
4853  * \param info Information about the intercepted request, such as
4854  * isolate, receiver, return value, or whether running in `'use strict'` mode.
4855  * See `PropertyCallbackInfo`.
4856  *
4857  * \note If you need to mimic the behavior of `delete`, i.e., throw in strict
4858  * mode instead of returning false, use `info.ShouldThrowOnError()` to determine
4859  * if you are in strict mode.
4860  *
4861  * See also `ObjectTemplate::SetHandler.`
4862  */
4863 typedef void (*GenericNamedPropertyDeleterCallback)(
4864     Local<Name> property, const PropertyCallbackInfo<Boolean>& info);
4865 
4866 
4867 /**
4868  * Returns an array containing the names of the properties the named
4869  * property getter intercepts.
4870  */
4871 typedef void (*GenericNamedPropertyEnumeratorCallback)(
4872     const PropertyCallbackInfo<Array>& info);
4873 
4874 /**
4875  * Interceptor for defineProperty requests on an object.
4876  *
4877  * Use `info.GetReturnValue()` to indicate whether the request was intercepted
4878  * or not. If the definer successfully intercepts the request, i.e., if the
4879  * request should not be further executed, call
4880  * `info.GetReturnValue().Set(value)`. If the definer
4881  * did not intercept the request, i.e., if the request should be handled as
4882  * if no interceptor is present, do not not call `Set()`.
4883  *
4884  * \param property The name of the property for which the request was
4885  * intercepted.
4886  * \param desc The property descriptor which is used to define the
4887  * property if the request is not intercepted.
4888  * \param info Information about the intercepted request, such as
4889  * isolate, receiver, return value, or whether running in `'use strict'` mode.
4890  * See `PropertyCallbackInfo`.
4891  *
4892  * See also `ObjectTemplate::SetHandler`.
4893  */
4894 typedef void (*GenericNamedPropertyDefinerCallback)(
4895     Local<Name> property, const PropertyDescriptor& desc,
4896     const PropertyCallbackInfo<Value>& info);
4897 
4898 /**
4899  * Interceptor for getOwnPropertyDescriptor requests on an object.
4900  *
4901  * Use `info.GetReturnValue().Set()` to set the return value of the
4902  * intercepted request. The return value must be an object that
4903  * can be converted to a PropertyDescriptor, e.g., a `v8::value` returned from
4904  * `v8::Object::getOwnPropertyDescriptor`.
4905  *
4906  * \param property The name of the property for which the request was
4907  * intercepted.
4908  * \info Information about the intercepted request, such as
4909  * isolate, receiver, return value, or whether running in `'use strict'` mode.
4910  * See `PropertyCallbackInfo`.
4911  *
4912  * \note If GetOwnPropertyDescriptor is intercepted, it will
4913  * always return true, i.e., indicate that the property was found.
4914  *
4915  * See also `ObjectTemplate::SetHandler`.
4916  */
4917 typedef void (*GenericNamedPropertyDescriptorCallback)(
4918     Local<Name> property, const PropertyCallbackInfo<Value>& info);
4919 
4920 /**
4921  * See `v8::GenericNamedPropertyGetterCallback`.
4922  */
4923 typedef void (*IndexedPropertyGetterCallback)(
4924     uint32_t index,
4925     const PropertyCallbackInfo<Value>& info);
4926 
4927 /**
4928  * See `v8::GenericNamedPropertySetterCallback`.
4929  */
4930 typedef void (*IndexedPropertySetterCallback)(
4931     uint32_t index,
4932     Local<Value> value,
4933     const PropertyCallbackInfo<Value>& info);
4934 
4935 /**
4936  * See `v8::GenericNamedPropertyQueryCallback`.
4937  */
4938 typedef void (*IndexedPropertyQueryCallback)(
4939     uint32_t index,
4940     const PropertyCallbackInfo<Integer>& info);
4941 
4942 /**
4943  * See `v8::GenericNamedPropertyDeleterCallback`.
4944  */
4945 typedef void (*IndexedPropertyDeleterCallback)(
4946     uint32_t index,
4947     const PropertyCallbackInfo<Boolean>& info);
4948 
4949 /**
4950  * See `v8::GenericNamedPropertyEnumeratorCallback`.
4951  */
4952 typedef void (*IndexedPropertyEnumeratorCallback)(
4953     const PropertyCallbackInfo<Array>& info);
4954 
4955 /**
4956  * See `v8::GenericNamedPropertyDefinerCallback`.
4957  */
4958 typedef void (*IndexedPropertyDefinerCallback)(
4959     uint32_t index, const PropertyDescriptor& desc,
4960     const PropertyCallbackInfo<Value>& info);
4961 
4962 /**
4963  * See `v8::GenericNamedPropertyDescriptorCallback`.
4964  */
4965 typedef void (*IndexedPropertyDescriptorCallback)(
4966     uint32_t index, const PropertyCallbackInfo<Value>& info);
4967 
4968 /**
4969  * Access type specification.
4970  */
4971 enum AccessType {
4972   ACCESS_GET,
4973   ACCESS_SET,
4974   ACCESS_HAS,
4975   ACCESS_DELETE,
4976   ACCESS_KEYS
4977 };
4978 
4979 
4980 /**
4981  * Returns true if the given context should be allowed to access the given
4982  * object.
4983  */
4984 typedef bool (*AccessCheckCallback)(Local<Context> accessing_context,
4985                                     Local<Object> accessed_object,
4986                                     Local<Value> data);
4987 
4988 /**
4989  * A FunctionTemplate is used to create functions at runtime. There
4990  * can only be one function created from a FunctionTemplate in a
4991  * context.  The lifetime of the created function is equal to the
4992  * lifetime of the context.  So in case the embedder needs to create
4993  * temporary functions that can be collected using Scripts is
4994  * preferred.
4995  *
4996  * Any modification of a FunctionTemplate after first instantiation will trigger
4997  * a crash.
4998  *
4999  * A FunctionTemplate can have properties, these properties are added to the
5000  * function object when it is created.
5001  *
5002  * A FunctionTemplate has a corresponding instance template which is
5003  * used to create object instances when the function is used as a
5004  * constructor. Properties added to the instance template are added to
5005  * each object instance.
5006  *
5007  * A FunctionTemplate can have a prototype template. The prototype template
5008  * is used to create the prototype object of the function.
5009  *
5010  * The following example shows how to use a FunctionTemplate:
5011  *
5012  * \code
5013  *    v8::Local<v8::FunctionTemplate> t = v8::FunctionTemplate::New(isolate);
5014  *    t->Set(isolate, "func_property", v8::Number::New(isolate, 1));
5015  *
5016  *    v8::Local<v8::Template> proto_t = t->PrototypeTemplate();
5017  *    proto_t->Set(isolate,
5018  *                 "proto_method",
5019  *                 v8::FunctionTemplate::New(isolate, InvokeCallback));
5020  *    proto_t->Set(isolate, "proto_const", v8::Number::New(isolate, 2));
5021  *
5022  *    v8::Local<v8::ObjectTemplate> instance_t = t->InstanceTemplate();
5023  *    instance_t->SetAccessor(String::NewFromUtf8(isolate, "instance_accessor"),
5024  *                            InstanceAccessorCallback);
5025  *    instance_t->SetNamedPropertyHandler(PropertyHandlerCallback);
5026  *    instance_t->Set(String::NewFromUtf8(isolate, "instance_property"),
5027  *                    Number::New(isolate, 3));
5028  *
5029  *    v8::Local<v8::Function> function = t->GetFunction();
5030  *    v8::Local<v8::Object> instance = function->NewInstance();
5031  * \endcode
5032  *
5033  * Let's use "function" as the JS variable name of the function object
5034  * and "instance" for the instance object created above.  The function
5035  * and the instance will have the following properties:
5036  *
5037  * \code
5038  *   func_property in function == true;
5039  *   function.func_property == 1;
5040  *
5041  *   function.prototype.proto_method() invokes 'InvokeCallback'
5042  *   function.prototype.proto_const == 2;
5043  *
5044  *   instance instanceof function == true;
5045  *   instance.instance_accessor calls 'InstanceAccessorCallback'
5046  *   instance.instance_property == 3;
5047  * \endcode
5048  *
5049  * A FunctionTemplate can inherit from another one by calling the
5050  * FunctionTemplate::Inherit method.  The following graph illustrates
5051  * the semantics of inheritance:
5052  *
5053  * \code
5054  *   FunctionTemplate Parent  -> Parent() . prototype -> { }
5055  *     ^                                                  ^
5056  *     | Inherit(Parent)                                  | .__proto__
5057  *     |                                                  |
5058  *   FunctionTemplate Child   -> Child()  . prototype -> { }
5059  * \endcode
5060  *
5061  * A FunctionTemplate 'Child' inherits from 'Parent', the prototype
5062  * object of the Child() function has __proto__ pointing to the
5063  * Parent() function's prototype object. An instance of the Child
5064  * function has all properties on Parent's instance templates.
5065  *
5066  * Let Parent be the FunctionTemplate initialized in the previous
5067  * section and create a Child FunctionTemplate by:
5068  *
5069  * \code
5070  *   Local<FunctionTemplate> parent = t;
5071  *   Local<FunctionTemplate> child = FunctionTemplate::New();
5072  *   child->Inherit(parent);
5073  *
5074  *   Local<Function> child_function = child->GetFunction();
5075  *   Local<Object> child_instance = child_function->NewInstance();
5076  * \endcode
5077  *
5078  * The Child function and Child instance will have the following
5079  * properties:
5080  *
5081  * \code
5082  *   child_func.prototype.__proto__ == function.prototype;
5083  *   child_instance.instance_accessor calls 'InstanceAccessorCallback'
5084  *   child_instance.instance_property == 3;
5085  * \endcode
5086  */
5087 class V8_EXPORT FunctionTemplate : public Template {
5088  public:
5089   /** Creates a function template.*/
5090   static Local<FunctionTemplate> New(
5091       Isolate* isolate, FunctionCallback callback = 0,
5092       Local<Value> data = Local<Value>(),
5093       Local<Signature> signature = Local<Signature>(), int length = 0,
5094       ConstructorBehavior behavior = ConstructorBehavior::kAllow);
5095 
5096   /** Get a template included in the snapshot by index. */
5097   static MaybeLocal<FunctionTemplate> FromSnapshot(Isolate* isolate,
5098                                                    size_t index);
5099 
5100   /**
5101    * Creates a function template with a fast handler. If a fast handler is set,
5102    * the callback cannot be null.
5103    */
5104   static Local<FunctionTemplate> NewWithFastHandler(
5105       Isolate* isolate, FunctionCallback callback,
5106       experimental::FastAccessorBuilder* fast_handler = nullptr,
5107       Local<Value> data = Local<Value>(),
5108       Local<Signature> signature = Local<Signature>(), int length = 0);
5109 
5110   /**
5111    * Creates a function template backed/cached by a private property.
5112    */
5113   static Local<FunctionTemplate> NewWithCache(
5114       Isolate* isolate, FunctionCallback callback,
5115       Local<Private> cache_property, Local<Value> data = Local<Value>(),
5116       Local<Signature> signature = Local<Signature>(), int length = 0);
5117 
5118   /** Returns the unique function instance in the current execution context.*/
5119   V8_DEPRECATE_SOON("Use maybe version", Local<Function> GetFunction());
5120   V8_WARN_UNUSED_RESULT MaybeLocal<Function> GetFunction(
5121       Local<Context> context);
5122 
5123   /**
5124    * Similar to Context::NewRemoteContext, this creates an instance that
5125    * isn't backed by an actual object.
5126    *
5127    * The InstanceTemplate of this FunctionTemplate must have access checks with
5128    * handlers installed.
5129    */
5130   V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewRemoteInstance();
5131 
5132   /**
5133    * Set the call-handler callback for a FunctionTemplate.  This
5134    * callback is called whenever the function created from this
5135    * FunctionTemplate is called.
5136    */
5137   void SetCallHandler(
5138       FunctionCallback callback, Local<Value> data = Local<Value>(),
5139       experimental::FastAccessorBuilder* fast_handler = nullptr);
5140 
5141   /** Set the predefined length property for the FunctionTemplate. */
5142   void SetLength(int length);
5143 
5144   /** Get the InstanceTemplate. */
5145   Local<ObjectTemplate> InstanceTemplate();
5146 
5147   /** Causes the function template to inherit from a parent function template.*/
5148   void Inherit(Local<FunctionTemplate> parent);
5149 
5150   /**
5151    * A PrototypeTemplate is the template used to create the prototype object
5152    * of the function created by this template.
5153    */
5154   Local<ObjectTemplate> PrototypeTemplate();
5155 
5156   /**
5157    * Set the class name of the FunctionTemplate.  This is used for
5158    * printing objects created with the function created from the
5159    * FunctionTemplate as its constructor.
5160    */
5161   void SetClassName(Local<String> name);
5162 
5163 
5164   /**
5165    * When set to true, no access check will be performed on the receiver of a
5166    * function call.  Currently defaults to true, but this is subject to change.
5167    */
5168   void SetAcceptAnyReceiver(bool value);
5169 
5170   /**
5171    * Determines whether the __proto__ accessor ignores instances of
5172    * the function template.  If instances of the function template are
5173    * ignored, __proto__ skips all instances and instead returns the
5174    * next object in the prototype chain.
5175    *
5176    * Call with a value of true to make the __proto__ accessor ignore
5177    * instances of the function template.  Call with a value of false
5178    * to make the __proto__ accessor not ignore instances of the
5179    * function template.  By default, instances of a function template
5180    * are not ignored.
5181    */
5182   void SetHiddenPrototype(bool value);
5183 
5184   /**
5185    * Sets the ReadOnly flag in the attributes of the 'prototype' property
5186    * of functions created from this FunctionTemplate to true.
5187    */
5188   void ReadOnlyPrototype();
5189 
5190   /**
5191    * Removes the prototype property from functions created from this
5192    * FunctionTemplate.
5193    */
5194   void RemovePrototype();
5195 
5196   /**
5197    * Returns true if the given object is an instance of this function
5198    * template.
5199    */
5200   bool HasInstance(Local<Value> object);
5201 
5202  private:
5203   FunctionTemplate();
5204   friend class Context;
5205   friend class ObjectTemplate;
5206 };
5207 
5208 /**
5209  * Configuration flags for v8::NamedPropertyHandlerConfiguration or
5210  * v8::IndexedPropertyHandlerConfiguration.
5211  */
5212 enum class PropertyHandlerFlags {
5213   /**
5214    * None.
5215    */
5216   kNone = 0,
5217 
5218   /**
5219    * See ALL_CAN_READ above.
5220    */
5221   kAllCanRead = 1,
5222 
5223   /** Will not call into interceptor for properties on the receiver or prototype
5224    * chain, i.e., only call into interceptor for properties that do not exist.
5225    * Currently only valid for named interceptors.
5226    */
5227   kNonMasking = 1 << 1,
5228 
5229   /**
5230    * Will not call into interceptor for symbol lookup.  Only meaningful for
5231    * named interceptors.
5232    */
5233   kOnlyInterceptStrings = 1 << 2,
5234 };
5235 
5236 struct NamedPropertyHandlerConfiguration {
5237   NamedPropertyHandlerConfiguration(
5238       /** Note: getter is required */
5239       GenericNamedPropertyGetterCallback getter = 0,
5240       GenericNamedPropertySetterCallback setter = 0,
5241       GenericNamedPropertyQueryCallback query = 0,
5242       GenericNamedPropertyDeleterCallback deleter = 0,
5243       GenericNamedPropertyEnumeratorCallback enumerator = 0,
5244       Local<Value> data = Local<Value>(),
5245       PropertyHandlerFlags flags = PropertyHandlerFlags::kNone)
getterNamedPropertyHandlerConfiguration5246       : getter(getter),
5247         setter(setter),
5248         query(query),
5249         deleter(deleter),
5250         enumerator(enumerator),
5251         definer(0),
5252         descriptor(0),
5253         data(data),
5254         flags(flags) {}
5255 
5256   NamedPropertyHandlerConfiguration(
5257       GenericNamedPropertyGetterCallback getter,
5258       GenericNamedPropertySetterCallback setter,
5259       GenericNamedPropertyDescriptorCallback descriptor,
5260       GenericNamedPropertyDeleterCallback deleter,
5261       GenericNamedPropertyEnumeratorCallback enumerator,
5262       GenericNamedPropertyDefinerCallback definer,
5263       Local<Value> data = Local<Value>(),
5264       PropertyHandlerFlags flags = PropertyHandlerFlags::kNone)
getterNamedPropertyHandlerConfiguration5265       : getter(getter),
5266         setter(setter),
5267         query(0),
5268         deleter(deleter),
5269         enumerator(enumerator),
5270         definer(definer),
5271         descriptor(descriptor),
5272         data(data),
5273         flags(flags) {}
5274 
5275   GenericNamedPropertyGetterCallback getter;
5276   GenericNamedPropertySetterCallback setter;
5277   GenericNamedPropertyQueryCallback query;
5278   GenericNamedPropertyDeleterCallback deleter;
5279   GenericNamedPropertyEnumeratorCallback enumerator;
5280   GenericNamedPropertyDefinerCallback definer;
5281   GenericNamedPropertyDescriptorCallback descriptor;
5282   Local<Value> data;
5283   PropertyHandlerFlags flags;
5284 };
5285 
5286 
5287 struct IndexedPropertyHandlerConfiguration {
5288   IndexedPropertyHandlerConfiguration(
5289       /** Note: getter is required */
5290       IndexedPropertyGetterCallback getter = 0,
5291       IndexedPropertySetterCallback setter = 0,
5292       IndexedPropertyQueryCallback query = 0,
5293       IndexedPropertyDeleterCallback deleter = 0,
5294       IndexedPropertyEnumeratorCallback enumerator = 0,
5295       Local<Value> data = Local<Value>(),
5296       PropertyHandlerFlags flags = PropertyHandlerFlags::kNone)
getterIndexedPropertyHandlerConfiguration5297       : getter(getter),
5298         setter(setter),
5299         query(query),
5300         deleter(deleter),
5301         enumerator(enumerator),
5302         definer(0),
5303         descriptor(0),
5304         data(data),
5305         flags(flags) {}
5306 
5307   IndexedPropertyHandlerConfiguration(
5308       IndexedPropertyGetterCallback getter,
5309       IndexedPropertySetterCallback setter,
5310       IndexedPropertyDescriptorCallback descriptor,
5311       IndexedPropertyDeleterCallback deleter,
5312       IndexedPropertyEnumeratorCallback enumerator,
5313       IndexedPropertyDefinerCallback definer,
5314       Local<Value> data = Local<Value>(),
5315       PropertyHandlerFlags flags = PropertyHandlerFlags::kNone)
getterIndexedPropertyHandlerConfiguration5316       : getter(getter),
5317         setter(setter),
5318         query(0),
5319         deleter(deleter),
5320         enumerator(enumerator),
5321         definer(definer),
5322         descriptor(descriptor),
5323         data(data),
5324         flags(flags) {}
5325 
5326   IndexedPropertyGetterCallback getter;
5327   IndexedPropertySetterCallback setter;
5328   IndexedPropertyQueryCallback query;
5329   IndexedPropertyDeleterCallback deleter;
5330   IndexedPropertyEnumeratorCallback enumerator;
5331   IndexedPropertyDefinerCallback definer;
5332   IndexedPropertyDescriptorCallback descriptor;
5333   Local<Value> data;
5334   PropertyHandlerFlags flags;
5335 };
5336 
5337 
5338 /**
5339  * An ObjectTemplate is used to create objects at runtime.
5340  *
5341  * Properties added to an ObjectTemplate are added to each object
5342  * created from the ObjectTemplate.
5343  */
5344 class V8_EXPORT ObjectTemplate : public Template {
5345  public:
5346   /** Creates an ObjectTemplate. */
5347   static Local<ObjectTemplate> New(
5348       Isolate* isolate,
5349       Local<FunctionTemplate> constructor = Local<FunctionTemplate>());
5350   static V8_DEPRECATED("Use isolate version", Local<ObjectTemplate> New());
5351 
5352   /** Get a template included in the snapshot by index. */
5353   static MaybeLocal<ObjectTemplate> FromSnapshot(Isolate* isolate,
5354                                                  size_t index);
5355 
5356   /** Creates a new instance of this template.*/
5357   V8_DEPRECATE_SOON("Use maybe version", Local<Object> NewInstance());
5358   V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewInstance(Local<Context> context);
5359 
5360   /**
5361    * Sets an accessor on the object template.
5362    *
5363    * Whenever the property with the given name is accessed on objects
5364    * created from this ObjectTemplate the getter and setter callbacks
5365    * are called instead of getting and setting the property directly
5366    * on the JavaScript object.
5367    *
5368    * \param name The name of the property for which an accessor is added.
5369    * \param getter The callback to invoke when getting the property.
5370    * \param setter The callback to invoke when setting the property.
5371    * \param data A piece of data that will be passed to the getter and setter
5372    *   callbacks whenever they are invoked.
5373    * \param settings Access control settings for the accessor. This is a bit
5374    *   field consisting of one of more of
5375    *   DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2.
5376    *   The default is to not allow cross-context access.
5377    *   ALL_CAN_READ means that all cross-context reads are allowed.
5378    *   ALL_CAN_WRITE means that all cross-context writes are allowed.
5379    *   The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all
5380    *   cross-context access.
5381    * \param attribute The attributes of the property for which an accessor
5382    *   is added.
5383    * \param signature The signature describes valid receivers for the accessor
5384    *   and is used to perform implicit instance checks against them. If the
5385    *   receiver is incompatible (i.e. is not an instance of the constructor as
5386    *   defined by FunctionTemplate::HasInstance()), an implicit TypeError is
5387    *   thrown and no callback is invoked.
5388    */
5389   void SetAccessor(
5390       Local<String> name, AccessorGetterCallback getter,
5391       AccessorSetterCallback setter = 0, Local<Value> data = Local<Value>(),
5392       AccessControl settings = DEFAULT, PropertyAttribute attribute = None,
5393       Local<AccessorSignature> signature = Local<AccessorSignature>());
5394   void SetAccessor(
5395       Local<Name> name, AccessorNameGetterCallback getter,
5396       AccessorNameSetterCallback setter = 0, Local<Value> data = Local<Value>(),
5397       AccessControl settings = DEFAULT, PropertyAttribute attribute = None,
5398       Local<AccessorSignature> signature = Local<AccessorSignature>());
5399 
5400   /**
5401    * Sets a named property handler on the object template.
5402    *
5403    * Whenever a property whose name is a string is accessed on objects created
5404    * from this object template, the provided callback is invoked instead of
5405    * accessing the property directly on the JavaScript object.
5406    *
5407    * SetNamedPropertyHandler() is different from SetHandler(), in
5408    * that the latter can intercept symbol-named properties as well as
5409    * string-named properties when called with a
5410    * NamedPropertyHandlerConfiguration. New code should use SetHandler().
5411    *
5412    * \param getter The callback to invoke when getting a property.
5413    * \param setter The callback to invoke when setting a property.
5414    * \param query The callback to invoke to check if a property is present,
5415    *   and if present, get its attributes.
5416    * \param deleter The callback to invoke when deleting a property.
5417    * \param enumerator The callback to invoke to enumerate all the named
5418    *   properties of an object.
5419    * \param data A piece of data that will be passed to the callbacks
5420    *   whenever they are invoked.
5421    */
5422   // TODO(dcarney): deprecate
5423   void SetNamedPropertyHandler(NamedPropertyGetterCallback getter,
5424                                NamedPropertySetterCallback setter = 0,
5425                                NamedPropertyQueryCallback query = 0,
5426                                NamedPropertyDeleterCallback deleter = 0,
5427                                NamedPropertyEnumeratorCallback enumerator = 0,
5428                                Local<Value> data = Local<Value>());
5429 
5430   /**
5431    * Sets a named property handler on the object template.
5432    *
5433    * Whenever a property whose name is a string or a symbol is accessed on
5434    * objects created from this object template, the provided callback is
5435    * invoked instead of accessing the property directly on the JavaScript
5436    * object.
5437    *
5438    * @param configuration The NamedPropertyHandlerConfiguration that defines the
5439    * callbacks to invoke when accessing a property.
5440    */
5441   void SetHandler(const NamedPropertyHandlerConfiguration& configuration);
5442 
5443   /**
5444    * Sets an indexed property handler on the object template.
5445    *
5446    * Whenever an indexed property is accessed on objects created from
5447    * this object template, the provided callback is invoked instead of
5448    * accessing the property directly on the JavaScript object.
5449    *
5450    * \param getter The callback to invoke when getting a property.
5451    * \param setter The callback to invoke when setting a property.
5452    * \param query The callback to invoke to check if an object has a property.
5453    * \param deleter The callback to invoke when deleting a property.
5454    * \param enumerator The callback to invoke to enumerate all the indexed
5455    *   properties of an object.
5456    * \param data A piece of data that will be passed to the callbacks
5457    *   whenever they are invoked.
5458    */
5459   // TODO(dcarney): deprecate
5460   void SetIndexedPropertyHandler(
5461       IndexedPropertyGetterCallback getter,
5462       IndexedPropertySetterCallback setter = 0,
5463       IndexedPropertyQueryCallback query = 0,
5464       IndexedPropertyDeleterCallback deleter = 0,
5465       IndexedPropertyEnumeratorCallback enumerator = 0,
5466       Local<Value> data = Local<Value>()) {
5467     SetHandler(IndexedPropertyHandlerConfiguration(getter, setter, query,
5468                                                    deleter, enumerator, data));
5469   }
5470 
5471   /**
5472    * Sets an indexed property handler on the object template.
5473    *
5474    * Whenever an indexed property is accessed on objects created from
5475    * this object template, the provided callback is invoked instead of
5476    * accessing the property directly on the JavaScript object.
5477    *
5478    * @param configuration The IndexedPropertyHandlerConfiguration that defines
5479    * the callbacks to invoke when accessing a property.
5480    */
5481   void SetHandler(const IndexedPropertyHandlerConfiguration& configuration);
5482 
5483   /**
5484    * Sets the callback to be used when calling instances created from
5485    * this template as a function.  If no callback is set, instances
5486    * behave like normal JavaScript objects that cannot be called as a
5487    * function.
5488    */
5489   void SetCallAsFunctionHandler(FunctionCallback callback,
5490                                 Local<Value> data = Local<Value>());
5491 
5492   /**
5493    * Mark object instances of the template as undetectable.
5494    *
5495    * In many ways, undetectable objects behave as though they are not
5496    * there.  They behave like 'undefined' in conditionals and when
5497    * printed.  However, properties can be accessed and called as on
5498    * normal objects.
5499    */
5500   void MarkAsUndetectable();
5501 
5502   /**
5503    * Sets access check callback on the object template and enables access
5504    * checks.
5505    *
5506    * When accessing properties on instances of this object template,
5507    * the access check callback will be called to determine whether or
5508    * not to allow cross-context access to the properties.
5509    */
5510   void SetAccessCheckCallback(AccessCheckCallback callback,
5511                               Local<Value> data = Local<Value>());
5512 
5513   /**
5514    * Like SetAccessCheckCallback but invokes an interceptor on failed access
5515    * checks instead of looking up all-can-read properties. You can only use
5516    * either this method or SetAccessCheckCallback, but not both at the same
5517    * time.
5518    */
5519   void SetAccessCheckCallbackAndHandler(
5520       AccessCheckCallback callback,
5521       const NamedPropertyHandlerConfiguration& named_handler,
5522       const IndexedPropertyHandlerConfiguration& indexed_handler,
5523       Local<Value> data = Local<Value>());
5524 
5525   /**
5526    * Gets the number of internal fields for objects generated from
5527    * this template.
5528    */
5529   int InternalFieldCount();
5530 
5531   /**
5532    * Sets the number of internal fields for objects generated from
5533    * this template.
5534    */
5535   void SetInternalFieldCount(int value);
5536 
5537   /**
5538    * Returns true if the object will be an immutable prototype exotic object.
5539    */
5540   bool IsImmutableProto();
5541 
5542   /**
5543    * Makes the ObjectTempate for an immutable prototype exotic object, with an
5544    * immutable __proto__.
5545    */
5546   void SetImmutableProto();
5547 
5548  private:
5549   ObjectTemplate();
5550   static Local<ObjectTemplate> New(internal::Isolate* isolate,
5551                                    Local<FunctionTemplate> constructor);
5552   friend class FunctionTemplate;
5553 };
5554 
5555 
5556 /**
5557  * A Signature specifies which receiver is valid for a function.
5558  */
5559 class V8_EXPORT Signature : public Data {
5560  public:
5561   static Local<Signature> New(
5562       Isolate* isolate,
5563       Local<FunctionTemplate> receiver = Local<FunctionTemplate>());
5564 
5565  private:
5566   Signature();
5567 };
5568 
5569 
5570 /**
5571  * An AccessorSignature specifies which receivers are valid parameters
5572  * to an accessor callback.
5573  */
5574 class V8_EXPORT AccessorSignature : public Data {
5575  public:
5576   static Local<AccessorSignature> New(
5577       Isolate* isolate,
5578       Local<FunctionTemplate> receiver = Local<FunctionTemplate>());
5579 
5580  private:
5581   AccessorSignature();
5582 };
5583 
5584 
5585 // --- Extensions ---
5586 
5587 class V8_EXPORT ExternalOneByteStringResourceImpl
5588     : public String::ExternalOneByteStringResource {
5589  public:
ExternalOneByteStringResourceImpl()5590   ExternalOneByteStringResourceImpl() : data_(0), length_(0) {}
ExternalOneByteStringResourceImpl(const char * data,size_t length)5591   ExternalOneByteStringResourceImpl(const char* data, size_t length)
5592       : data_(data), length_(length) {}
data()5593   const char* data() const { return data_; }
length()5594   size_t length() const { return length_; }
5595 
5596  private:
5597   const char* data_;
5598   size_t length_;
5599 };
5600 
5601 /**
5602  * Ignore
5603  */
5604 class V8_EXPORT Extension {  // NOLINT
5605  public:
5606   // Note that the strings passed into this constructor must live as long
5607   // as the Extension itself.
5608   Extension(const char* name,
5609             const char* source = 0,
5610             int dep_count = 0,
5611             const char** deps = 0,
5612             int source_length = -1);
~Extension()5613   virtual ~Extension() { }
GetNativeFunctionTemplate(v8::Isolate * isolate,v8::Local<v8::String> name)5614   virtual v8::Local<v8::FunctionTemplate> GetNativeFunctionTemplate(
5615       v8::Isolate* isolate, v8::Local<v8::String> name) {
5616     return v8::Local<v8::FunctionTemplate>();
5617   }
5618 
name()5619   const char* name() const { return name_; }
source_length()5620   size_t source_length() const { return source_length_; }
source()5621   const String::ExternalOneByteStringResource* source() const {
5622     return &source_; }
dependency_count()5623   int dependency_count() { return dep_count_; }
dependencies()5624   const char** dependencies() { return deps_; }
set_auto_enable(bool value)5625   void set_auto_enable(bool value) { auto_enable_ = value; }
auto_enable()5626   bool auto_enable() { return auto_enable_; }
5627 
5628   // Disallow copying and assigning.
5629   Extension(const Extension&) = delete;
5630   void operator=(const Extension&) = delete;
5631 
5632  private:
5633   const char* name_;
5634   size_t source_length_;  // expected to initialize before source_
5635   ExternalOneByteStringResourceImpl source_;
5636   int dep_count_;
5637   const char** deps_;
5638   bool auto_enable_;
5639 };
5640 
5641 
5642 void V8_EXPORT RegisterExtension(Extension* extension);
5643 
5644 
5645 // --- Statics ---
5646 
5647 V8_INLINE Local<Primitive> Undefined(Isolate* isolate);
5648 V8_INLINE Local<Primitive> Null(Isolate* isolate);
5649 V8_INLINE Local<Boolean> True(Isolate* isolate);
5650 V8_INLINE Local<Boolean> False(Isolate* isolate);
5651 
5652 /**
5653  * A set of constraints that specifies the limits of the runtime's memory use.
5654  * You must set the heap size before initializing the VM - the size cannot be
5655  * adjusted after the VM is initialized.
5656  *
5657  * If you are using threads then you should hold the V8::Locker lock while
5658  * setting the stack limit and you must set a non-default stack limit separately
5659  * for each thread.
5660  *
5661  * The arguments for set_max_semi_space_size, set_max_old_space_size,
5662  * set_max_executable_size, set_code_range_size specify limits in MB.
5663  */
5664 class V8_EXPORT ResourceConstraints {
5665  public:
5666   ResourceConstraints();
5667 
5668   /**
5669    * Configures the constraints with reasonable default values based on the
5670    * capabilities of the current device the VM is running on.
5671    *
5672    * \param physical_memory The total amount of physical memory on the current
5673    *   device, in bytes.
5674    * \param virtual_memory_limit The amount of virtual memory on the current
5675    *   device, in bytes, or zero, if there is no limit.
5676    */
5677   void ConfigureDefaults(uint64_t physical_memory,
5678                          uint64_t virtual_memory_limit);
5679 
max_semi_space_size()5680   int max_semi_space_size() const { return max_semi_space_size_; }
set_max_semi_space_size(int limit_in_mb)5681   void set_max_semi_space_size(int limit_in_mb) {
5682     max_semi_space_size_ = limit_in_mb;
5683   }
max_old_space_size()5684   int max_old_space_size() const { return max_old_space_size_; }
set_max_old_space_size(int limit_in_mb)5685   void set_max_old_space_size(int limit_in_mb) {
5686     max_old_space_size_ = limit_in_mb;
5687   }
max_executable_size()5688   int max_executable_size() const { return max_executable_size_; }
set_max_executable_size(int limit_in_mb)5689   void set_max_executable_size(int limit_in_mb) {
5690     max_executable_size_ = limit_in_mb;
5691   }
stack_limit()5692   uint32_t* stack_limit() const { return stack_limit_; }
5693   // Sets an address beyond which the VM's stack may not grow.
set_stack_limit(uint32_t * value)5694   void set_stack_limit(uint32_t* value) { stack_limit_ = value; }
code_range_size()5695   size_t code_range_size() const { return code_range_size_; }
set_code_range_size(size_t limit_in_mb)5696   void set_code_range_size(size_t limit_in_mb) {
5697     code_range_size_ = limit_in_mb;
5698   }
max_zone_pool_size()5699   size_t max_zone_pool_size() const { return max_zone_pool_size_; }
set_max_zone_pool_size(const size_t bytes)5700   void set_max_zone_pool_size(const size_t bytes) {
5701     max_zone_pool_size_ = bytes;
5702   }
5703 
5704  private:
5705   int max_semi_space_size_;
5706   int max_old_space_size_;
5707   int max_executable_size_;
5708   uint32_t* stack_limit_;
5709   size_t code_range_size_;
5710   size_t max_zone_pool_size_;
5711 };
5712 
5713 
5714 // --- Exceptions ---
5715 
5716 
5717 typedef void (*FatalErrorCallback)(const char* location, const char* message);
5718 
5719 typedef void (*OOMErrorCallback)(const char* location, bool is_heap_oom);
5720 
5721 typedef void (*MessageCallback)(Local<Message> message, Local<Value> error);
5722 
5723 // --- Tracing ---
5724 
5725 typedef void (*LogEventCallback)(const char* name, int event);
5726 
5727 /**
5728  * Create new error objects by calling the corresponding error object
5729  * constructor with the message.
5730  */
5731 class V8_EXPORT Exception {
5732  public:
5733   static Local<Value> RangeError(Local<String> message);
5734   static Local<Value> ReferenceError(Local<String> message);
5735   static Local<Value> SyntaxError(Local<String> message);
5736   static Local<Value> TypeError(Local<String> message);
5737   static Local<Value> Error(Local<String> message);
5738 
5739   /**
5740    * Creates an error message for the given exception.
5741    * Will try to reconstruct the original stack trace from the exception value,
5742    * or capture the current stack trace if not available.
5743    */
5744   static Local<Message> CreateMessage(Isolate* isolate, Local<Value> exception);
5745   V8_DEPRECATED("Use version with an Isolate*",
5746                 static Local<Message> CreateMessage(Local<Value> exception));
5747 
5748   /**
5749    * Returns the original stack trace that was captured at the creation time
5750    * of a given exception, or an empty handle if not available.
5751    */
5752   static Local<StackTrace> GetStackTrace(Local<Value> exception);
5753 };
5754 
5755 
5756 // --- Counters Callbacks ---
5757 
5758 typedef int* (*CounterLookupCallback)(const char* name);
5759 
5760 typedef void* (*CreateHistogramCallback)(const char* name,
5761                                          int min,
5762                                          int max,
5763                                          size_t buckets);
5764 
5765 typedef void (*AddHistogramSampleCallback)(void* histogram, int sample);
5766 
5767 // --- Memory Allocation Callback ---
5768 enum ObjectSpace {
5769   kObjectSpaceNewSpace = 1 << 0,
5770   kObjectSpaceOldSpace = 1 << 1,
5771   kObjectSpaceCodeSpace = 1 << 2,
5772   kObjectSpaceMapSpace = 1 << 3,
5773   kObjectSpaceLoSpace = 1 << 4,
5774   kObjectSpaceAll = kObjectSpaceNewSpace | kObjectSpaceOldSpace |
5775                     kObjectSpaceCodeSpace | kObjectSpaceMapSpace |
5776                     kObjectSpaceLoSpace
5777 };
5778 
5779   enum AllocationAction {
5780     kAllocationActionAllocate = 1 << 0,
5781     kAllocationActionFree = 1 << 1,
5782     kAllocationActionAll = kAllocationActionAllocate | kAllocationActionFree
5783   };
5784 
5785 // --- Enter/Leave Script Callback ---
5786 typedef void (*BeforeCallEnteredCallback)(Isolate*);
5787 typedef void (*CallCompletedCallback)(Isolate*);
5788 typedef void (*DeprecatedCallCompletedCallback)();
5789 
5790 // --- Promise Reject Callback ---
5791 enum PromiseRejectEvent {
5792   kPromiseRejectWithNoHandler = 0,
5793   kPromiseHandlerAddedAfterReject = 1
5794 };
5795 
5796 class PromiseRejectMessage {
5797  public:
PromiseRejectMessage(Local<Promise> promise,PromiseRejectEvent event,Local<Value> value,Local<StackTrace> stack_trace)5798   PromiseRejectMessage(Local<Promise> promise, PromiseRejectEvent event,
5799                        Local<Value> value, Local<StackTrace> stack_trace)
5800       : promise_(promise),
5801         event_(event),
5802         value_(value),
5803         stack_trace_(stack_trace) {}
5804 
GetPromise()5805   V8_INLINE Local<Promise> GetPromise() const { return promise_; }
GetEvent()5806   V8_INLINE PromiseRejectEvent GetEvent() const { return event_; }
GetValue()5807   V8_INLINE Local<Value> GetValue() const { return value_; }
5808 
5809   V8_DEPRECATED("Use v8::Exception::CreateMessage(GetValue())->GetStackTrace()",
5810                 V8_INLINE Local<StackTrace> GetStackTrace() const) {
5811     return stack_trace_;
5812   }
5813 
5814  private:
5815   Local<Promise> promise_;
5816   PromiseRejectEvent event_;
5817   Local<Value> value_;
5818   Local<StackTrace> stack_trace_;
5819 };
5820 
5821 typedef void (*PromiseRejectCallback)(PromiseRejectMessage message);
5822 
5823 // --- Microtasks Callbacks ---
5824 typedef void (*MicrotasksCompletedCallback)(Isolate*);
5825 typedef void (*MicrotaskCallback)(void* data);
5826 
5827 
5828 /**
5829  * Policy for running microtasks:
5830  *   - explicit: microtasks are invoked with Isolate::RunMicrotasks() method;
5831  *   - scoped: microtasks invocation is controlled by MicrotasksScope objects;
5832  *   - auto: microtasks are invoked when the script call depth decrements
5833  *           to zero.
5834  */
5835 enum class MicrotasksPolicy { kExplicit, kScoped, kAuto };
5836 
5837 
5838 /**
5839  * This scope is used to control microtasks when kScopeMicrotasksInvocation
5840  * is used on Isolate. In this mode every non-primitive call to V8 should be
5841  * done inside some MicrotasksScope.
5842  * Microtasks are executed when topmost MicrotasksScope marked as kRunMicrotasks
5843  * exits.
5844  * kDoNotRunMicrotasks should be used to annotate calls not intended to trigger
5845  * microtasks.
5846  */
5847 class V8_EXPORT MicrotasksScope {
5848  public:
5849   enum Type { kRunMicrotasks, kDoNotRunMicrotasks };
5850 
5851   MicrotasksScope(Isolate* isolate, Type type);
5852   ~MicrotasksScope();
5853 
5854   /**
5855    * Runs microtasks if no kRunMicrotasks scope is currently active.
5856    */
5857   static void PerformCheckpoint(Isolate* isolate);
5858 
5859   /**
5860    * Returns current depth of nested kRunMicrotasks scopes.
5861    */
5862   static int GetCurrentDepth(Isolate* isolate);
5863 
5864   /**
5865    * Returns true while microtasks are being executed.
5866    */
5867   static bool IsRunningMicrotasks(Isolate* isolate);
5868 
5869   // Prevent copying.
5870   MicrotasksScope(const MicrotasksScope&) = delete;
5871   MicrotasksScope& operator=(const MicrotasksScope&) = delete;
5872 
5873  private:
5874   internal::Isolate* const isolate_;
5875   bool run_;
5876 };
5877 
5878 
5879 // --- Failed Access Check Callback ---
5880 typedef void (*FailedAccessCheckCallback)(Local<Object> target,
5881                                           AccessType type,
5882                                           Local<Value> data);
5883 
5884 // --- AllowCodeGenerationFromStrings callbacks ---
5885 
5886 /**
5887  * Callback to check if code generation from strings is allowed. See
5888  * Context::AllowCodeGenerationFromStrings.
5889  */
5890 typedef bool (*AllowCodeGenerationFromStringsCallback)(Local<Context> context);
5891 
5892 // --- Garbage Collection Callbacks ---
5893 
5894 /**
5895  * Applications can register callback functions which will be called before and
5896  * after certain garbage collection operations.  Allocations are not allowed in
5897  * the callback functions, you therefore cannot manipulate objects (set or
5898  * delete properties for example) since it is possible such operations will
5899  * result in the allocation of objects.
5900  */
5901 enum GCType {
5902   kGCTypeScavenge = 1 << 0,
5903   kGCTypeMarkSweepCompact = 1 << 1,
5904   kGCTypeIncrementalMarking = 1 << 2,
5905   kGCTypeProcessWeakCallbacks = 1 << 3,
5906   kGCTypeAll = kGCTypeScavenge | kGCTypeMarkSweepCompact |
5907                kGCTypeIncrementalMarking | kGCTypeProcessWeakCallbacks
5908 };
5909 
5910 /**
5911  * GCCallbackFlags is used to notify additional information about the GC
5912  * callback.
5913  *   - kGCCallbackFlagConstructRetainedObjectInfos: The GC callback is for
5914  *     constructing retained object infos.
5915  *   - kGCCallbackFlagForced: The GC callback is for a forced GC for testing.
5916  *   - kGCCallbackFlagSynchronousPhantomCallbackProcessing: The GC callback
5917  *     is called synchronously without getting posted to an idle task.
5918  *   - kGCCallbackFlagCollectAllAvailableGarbage: The GC callback is called
5919  *     in a phase where V8 is trying to collect all available garbage
5920  *     (e.g., handling a low memory notification).
5921  */
5922 enum GCCallbackFlags {
5923   kNoGCCallbackFlags = 0,
5924   kGCCallbackFlagConstructRetainedObjectInfos = 1 << 1,
5925   kGCCallbackFlagForced = 1 << 2,
5926   kGCCallbackFlagSynchronousPhantomCallbackProcessing = 1 << 3,
5927   kGCCallbackFlagCollectAllAvailableGarbage = 1 << 4,
5928   kGCCallbackFlagCollectAllExternalMemory = 1 << 5,
5929 };
5930 
5931 typedef void (*GCCallback)(GCType type, GCCallbackFlags flags);
5932 
5933 typedef void (*InterruptCallback)(Isolate* isolate, void* data);
5934 
5935 
5936 /**
5937  * Collection of V8 heap information.
5938  *
5939  * Instances of this class can be passed to v8::V8::HeapStatistics to
5940  * get heap statistics from V8.
5941  */
5942 class V8_EXPORT HeapStatistics {
5943  public:
5944   HeapStatistics();
total_heap_size()5945   size_t total_heap_size() { return total_heap_size_; }
total_heap_size_executable()5946   size_t total_heap_size_executable() { return total_heap_size_executable_; }
total_physical_size()5947   size_t total_physical_size() { return total_physical_size_; }
total_available_size()5948   size_t total_available_size() { return total_available_size_; }
used_heap_size()5949   size_t used_heap_size() { return used_heap_size_; }
heap_size_limit()5950   size_t heap_size_limit() { return heap_size_limit_; }
malloced_memory()5951   size_t malloced_memory() { return malloced_memory_; }
peak_malloced_memory()5952   size_t peak_malloced_memory() { return peak_malloced_memory_; }
does_zap_garbage()5953   size_t does_zap_garbage() { return does_zap_garbage_; }
5954 
5955  private:
5956   size_t total_heap_size_;
5957   size_t total_heap_size_executable_;
5958   size_t total_physical_size_;
5959   size_t total_available_size_;
5960   size_t used_heap_size_;
5961   size_t heap_size_limit_;
5962   size_t malloced_memory_;
5963   size_t peak_malloced_memory_;
5964   bool does_zap_garbage_;
5965 
5966   friend class V8;
5967   friend class Isolate;
5968 };
5969 
5970 
5971 class V8_EXPORT HeapSpaceStatistics {
5972  public:
5973   HeapSpaceStatistics();
space_name()5974   const char* space_name() { return space_name_; }
space_size()5975   size_t space_size() { return space_size_; }
space_used_size()5976   size_t space_used_size() { return space_used_size_; }
space_available_size()5977   size_t space_available_size() { return space_available_size_; }
physical_space_size()5978   size_t physical_space_size() { return physical_space_size_; }
5979 
5980  private:
5981   const char* space_name_;
5982   size_t space_size_;
5983   size_t space_used_size_;
5984   size_t space_available_size_;
5985   size_t physical_space_size_;
5986 
5987   friend class Isolate;
5988 };
5989 
5990 
5991 class V8_EXPORT HeapObjectStatistics {
5992  public:
5993   HeapObjectStatistics();
object_type()5994   const char* object_type() { return object_type_; }
object_sub_type()5995   const char* object_sub_type() { return object_sub_type_; }
object_count()5996   size_t object_count() { return object_count_; }
object_size()5997   size_t object_size() { return object_size_; }
5998 
5999  private:
6000   const char* object_type_;
6001   const char* object_sub_type_;
6002   size_t object_count_;
6003   size_t object_size_;
6004 
6005   friend class Isolate;
6006 };
6007 
6008 class V8_EXPORT HeapCodeStatistics {
6009  public:
6010   HeapCodeStatistics();
code_and_metadata_size()6011   size_t code_and_metadata_size() { return code_and_metadata_size_; }
bytecode_and_metadata_size()6012   size_t bytecode_and_metadata_size() { return bytecode_and_metadata_size_; }
6013 
6014  private:
6015   size_t code_and_metadata_size_;
6016   size_t bytecode_and_metadata_size_;
6017 
6018   friend class Isolate;
6019 };
6020 
6021 class RetainedObjectInfo;
6022 
6023 
6024 /**
6025  * FunctionEntryHook is the type of the profile entry hook called at entry to
6026  * any generated function when function-level profiling is enabled.
6027  *
6028  * \param function the address of the function that's being entered.
6029  * \param return_addr_location points to a location on stack where the machine
6030  *    return address resides. This can be used to identify the caller of
6031  *    \p function, and/or modified to divert execution when \p function exits.
6032  *
6033  * \note the entry hook must not cause garbage collection.
6034  */
6035 typedef void (*FunctionEntryHook)(uintptr_t function,
6036                                   uintptr_t return_addr_location);
6037 
6038 /**
6039  * A JIT code event is issued each time code is added, moved or removed.
6040  *
6041  * \note removal events are not currently issued.
6042  */
6043 struct JitCodeEvent {
6044   enum EventType {
6045     CODE_ADDED,
6046     CODE_MOVED,
6047     CODE_REMOVED,
6048     CODE_ADD_LINE_POS_INFO,
6049     CODE_START_LINE_INFO_RECORDING,
6050     CODE_END_LINE_INFO_RECORDING
6051   };
6052   // Definition of the code position type. The "POSITION" type means the place
6053   // in the source code which are of interest when making stack traces to
6054   // pin-point the source location of a stack frame as close as possible.
6055   // The "STATEMENT_POSITION" means the place at the beginning of each
6056   // statement, and is used to indicate possible break locations.
6057   enum PositionType { POSITION, STATEMENT_POSITION };
6058 
6059   // Type of event.
6060   EventType type;
6061   // Start of the instructions.
6062   void* code_start;
6063   // Size of the instructions.
6064   size_t code_len;
6065   // Script info for CODE_ADDED event.
6066   Local<UnboundScript> script;
6067   // User-defined data for *_LINE_INFO_* event. It's used to hold the source
6068   // code line information which is returned from the
6069   // CODE_START_LINE_INFO_RECORDING event. And it's passed to subsequent
6070   // CODE_ADD_LINE_POS_INFO and CODE_END_LINE_INFO_RECORDING events.
6071   void* user_data;
6072 
6073   struct name_t {
6074     // Name of the object associated with the code, note that the string is not
6075     // zero-terminated.
6076     const char* str;
6077     // Number of chars in str.
6078     size_t len;
6079   };
6080 
6081   struct line_info_t {
6082     // PC offset
6083     size_t offset;
6084     // Code postion
6085     size_t pos;
6086     // The position type.
6087     PositionType position_type;
6088   };
6089 
6090   union {
6091     // Only valid for CODE_ADDED.
6092     struct name_t name;
6093 
6094     // Only valid for CODE_ADD_LINE_POS_INFO
6095     struct line_info_t line_info;
6096 
6097     // New location of instructions. Only valid for CODE_MOVED.
6098     void* new_code_start;
6099   };
6100 };
6101 
6102 /**
6103  * Option flags passed to the SetRAILMode function.
6104  * See documentation https://developers.google.com/web/tools/chrome-devtools/
6105  * profile/evaluate-performance/rail
6106  */
6107 enum RAILMode {
6108   // Response performance mode: In this mode very low virtual machine latency
6109   // is provided. V8 will try to avoid JavaScript execution interruptions.
6110   // Throughput may be throttled.
6111   PERFORMANCE_RESPONSE,
6112   // Animation performance mode: In this mode low virtual machine latency is
6113   // provided. V8 will try to avoid as many JavaScript execution interruptions
6114   // as possible. Throughput may be throttled. This is the default mode.
6115   PERFORMANCE_ANIMATION,
6116   // Idle performance mode: The embedder is idle. V8 can complete deferred work
6117   // in this mode.
6118   PERFORMANCE_IDLE,
6119   // Load performance mode: In this mode high throughput is provided. V8 may
6120   // turn off latency optimizations.
6121   PERFORMANCE_LOAD
6122 };
6123 
6124 /**
6125  * Option flags passed to the SetJitCodeEventHandler function.
6126  */
6127 enum JitCodeEventOptions {
6128   kJitCodeEventDefault = 0,
6129   // Generate callbacks for already existent code.
6130   kJitCodeEventEnumExisting = 1
6131 };
6132 
6133 
6134 /**
6135  * Callback function passed to SetJitCodeEventHandler.
6136  *
6137  * \param event code add, move or removal event.
6138  */
6139 typedef void (*JitCodeEventHandler)(const JitCodeEvent* event);
6140 
6141 
6142 /**
6143  * Interface for iterating through all external resources in the heap.
6144  */
6145 class V8_EXPORT ExternalResourceVisitor {  // NOLINT
6146  public:
~ExternalResourceVisitor()6147   virtual ~ExternalResourceVisitor() {}
VisitExternalString(Local<String> string)6148   virtual void VisitExternalString(Local<String> string) {}
6149 };
6150 
6151 
6152 /**
6153  * Interface for iterating through all the persistent handles in the heap.
6154  */
6155 class V8_EXPORT PersistentHandleVisitor {  // NOLINT
6156  public:
~PersistentHandleVisitor()6157   virtual ~PersistentHandleVisitor() {}
VisitPersistentHandle(Persistent<Value> * value,uint16_t class_id)6158   virtual void VisitPersistentHandle(Persistent<Value>* value,
6159                                      uint16_t class_id) {}
6160 };
6161 
6162 /**
6163  * Memory pressure level for the MemoryPressureNotification.
6164  * kNone hints V8 that there is no memory pressure.
6165  * kModerate hints V8 to speed up incremental garbage collection at the cost of
6166  * of higher latency due to garbage collection pauses.
6167  * kCritical hints V8 to free memory as soon as possible. Garbage collection
6168  * pauses at this level will be large.
6169  */
6170 enum class MemoryPressureLevel { kNone, kModerate, kCritical };
6171 
6172 /**
6173  * Interface for tracing through the embedder heap. During a v8 garbage
6174  * collection, v8 collects hidden fields of all potential wrappers, and at the
6175  * end of its marking phase iterates the collection and asks the embedder to
6176  * trace through its heap and use reporter to report each JavaScript object
6177  * reachable from any of the given wrappers.
6178  *
6179  * Before the first call to the TraceWrappersFrom function TracePrologue will be
6180  * called. When the garbage collection cycle is finished, TraceEpilogue will be
6181  * called.
6182  */
6183 class V8_EXPORT EmbedderHeapTracer {
6184  public:
6185   enum ForceCompletionAction { FORCE_COMPLETION, DO_NOT_FORCE_COMPLETION };
6186 
6187   struct AdvanceTracingActions {
AdvanceTracingActionsAdvanceTracingActions6188     explicit AdvanceTracingActions(ForceCompletionAction force_completion_)
6189         : force_completion(force_completion_) {}
6190 
6191     ForceCompletionAction force_completion;
6192   };
6193 
6194   /**
6195    * Called by v8 to register internal fields of found wrappers.
6196    *
6197    * The embedder is expected to store them somewhere and trace reachable
6198    * wrappers from them when called through |AdvanceTracing|.
6199    */
6200   virtual void RegisterV8References(
6201       const std::vector<std::pair<void*, void*> >& internal_fields) = 0;
6202 
6203   /**
6204    * Called at the beginning of a GC cycle.
6205    */
6206   virtual void TracePrologue() = 0;
6207 
6208   /**
6209    * Called to to make a tracing step in the embedder.
6210    *
6211    * The embedder is expected to trace its heap starting from wrappers reported
6212    * by RegisterV8References method, and report back all reachable wrappers.
6213    * Furthermore, the embedder is expected to stop tracing by the given
6214    * deadline.
6215    *
6216    * Returns true if there is still work to do.
6217    */
6218   virtual bool AdvanceTracing(double deadline_in_ms,
6219                               AdvanceTracingActions actions) = 0;
6220 
6221   /**
6222    * Called at the end of a GC cycle.
6223    *
6224    * Note that allocation is *not* allowed within |TraceEpilogue|.
6225    */
6226   virtual void TraceEpilogue() = 0;
6227 
6228   /**
6229    * Called upon entering the final marking pause. No more incremental marking
6230    * steps will follow this call.
6231    */
6232   virtual void EnterFinalPause() = 0;
6233 
6234   /**
6235    * Called when tracing is aborted.
6236    *
6237    * The embedder is expected to throw away all intermediate data and reset to
6238    * the initial state.
6239    */
6240   virtual void AbortTracing() = 0;
6241 
6242   /**
6243    * Returns the number of wrappers that are still to be traced by the embedder.
6244    */
NumberOfWrappersToTrace()6245   virtual size_t NumberOfWrappersToTrace() { return 0; }
6246 
6247  protected:
6248   virtual ~EmbedderHeapTracer() = default;
6249 };
6250 
6251 /**
6252  * Callback to the embedder used in SnapshotCreator to handle internal fields.
6253  */
6254 typedef StartupData (*SerializeInternalFieldsCallback)(Local<Object> holder,
6255                                                        int index);
6256 
6257 /**
6258  * Callback to the embedder used to deserialize internal fields.
6259  */
6260 typedef void (*DeserializeInternalFieldsCallback)(Local<Object> holder,
6261                                                   int index,
6262                                                   StartupData payload);
6263 
6264 /**
6265  * Isolate represents an isolated instance of the V8 engine.  V8 isolates have
6266  * completely separate states.  Objects from one isolate must not be used in
6267  * other isolates.  The embedder can create multiple isolates and use them in
6268  * parallel in multiple threads.  An isolate can be entered by at most one
6269  * thread at any given time.  The Locker/Unlocker API must be used to
6270  * synchronize.
6271  */
6272 class V8_EXPORT Isolate {
6273  public:
6274   /**
6275    * Initial configuration parameters for a new Isolate.
6276    */
6277   struct CreateParams {
CreateParamsCreateParams6278     CreateParams()
6279         : entry_hook(nullptr),
6280           code_event_handler(nullptr),
6281           snapshot_blob(nullptr),
6282           counter_lookup_callback(nullptr),
6283           create_histogram_callback(nullptr),
6284           add_histogram_sample_callback(nullptr),
6285           array_buffer_allocator(nullptr),
6286           external_references(nullptr),
6287           deserialize_internal_fields_callback(nullptr) {}
6288 
6289     /**
6290      * The optional entry_hook allows the host application to provide the
6291      * address of a function that's invoked on entry to every V8-generated
6292      * function.  Note that entry_hook is invoked at the very start of each
6293      * generated function. Furthermore, if an entry_hook is given, V8 will
6294      * not use a snapshot, including custom snapshots.
6295      */
6296     FunctionEntryHook entry_hook;
6297 
6298     /**
6299      * Allows the host application to provide the address of a function that is
6300      * notified each time code is added, moved or removed.
6301      */
6302     JitCodeEventHandler code_event_handler;
6303 
6304     /**
6305      * ResourceConstraints to use for the new Isolate.
6306      */
6307     ResourceConstraints constraints;
6308 
6309     /**
6310      * Explicitly specify a startup snapshot blob. The embedder owns the blob.
6311      */
6312     StartupData* snapshot_blob;
6313 
6314 
6315     /**
6316      * Enables the host application to provide a mechanism for recording
6317      * statistics counters.
6318      */
6319     CounterLookupCallback counter_lookup_callback;
6320 
6321     /**
6322      * Enables the host application to provide a mechanism for recording
6323      * histograms. The CreateHistogram function returns a
6324      * histogram which will later be passed to the AddHistogramSample
6325      * function.
6326      */
6327     CreateHistogramCallback create_histogram_callback;
6328     AddHistogramSampleCallback add_histogram_sample_callback;
6329 
6330     /**
6331      * The ArrayBuffer::Allocator to use for allocating and freeing the backing
6332      * store of ArrayBuffers.
6333      */
6334     ArrayBuffer::Allocator* array_buffer_allocator;
6335 
6336     /**
6337      * Specifies an optional nullptr-terminated array of raw addresses in the
6338      * embedder that V8 can match against during serialization and use for
6339      * deserialization. This array and its content must stay valid for the
6340      * entire lifetime of the isolate.
6341      */
6342     intptr_t* external_references;
6343 
6344     /**
6345      * Specifies an optional callback to deserialize internal fields. It
6346      * should match the SerializeInternalFieldCallback used to serialize.
6347      */
6348     DeserializeInternalFieldsCallback deserialize_internal_fields_callback;
6349   };
6350 
6351 
6352   /**
6353    * Stack-allocated class which sets the isolate for all operations
6354    * executed within a local scope.
6355    */
6356   class V8_EXPORT Scope {
6357    public:
Scope(Isolate * isolate)6358     explicit Scope(Isolate* isolate) : isolate_(isolate) {
6359       isolate->Enter();
6360     }
6361 
~Scope()6362     ~Scope() { isolate_->Exit(); }
6363 
6364     // Prevent copying of Scope objects.
6365     Scope(const Scope&) = delete;
6366     Scope& operator=(const Scope&) = delete;
6367 
6368    private:
6369     Isolate* const isolate_;
6370   };
6371 
6372 
6373   /**
6374    * Assert that no Javascript code is invoked.
6375    */
6376   class V8_EXPORT DisallowJavascriptExecutionScope {
6377    public:
6378     enum OnFailure { CRASH_ON_FAILURE, THROW_ON_FAILURE };
6379 
6380     DisallowJavascriptExecutionScope(Isolate* isolate, OnFailure on_failure);
6381     ~DisallowJavascriptExecutionScope();
6382 
6383     // Prevent copying of Scope objects.
6384     DisallowJavascriptExecutionScope(const DisallowJavascriptExecutionScope&) =
6385         delete;
6386     DisallowJavascriptExecutionScope& operator=(
6387         const DisallowJavascriptExecutionScope&) = delete;
6388 
6389    private:
6390     bool on_failure_;
6391     void* internal_;
6392   };
6393 
6394 
6395   /**
6396    * Introduce exception to DisallowJavascriptExecutionScope.
6397    */
6398   class V8_EXPORT AllowJavascriptExecutionScope {
6399    public:
6400     explicit AllowJavascriptExecutionScope(Isolate* isolate);
6401     ~AllowJavascriptExecutionScope();
6402 
6403     // Prevent copying of Scope objects.
6404     AllowJavascriptExecutionScope(const AllowJavascriptExecutionScope&) =
6405         delete;
6406     AllowJavascriptExecutionScope& operator=(
6407         const AllowJavascriptExecutionScope&) = delete;
6408 
6409    private:
6410     void* internal_throws_;
6411     void* internal_assert_;
6412   };
6413 
6414   /**
6415    * Do not run microtasks while this scope is active, even if microtasks are
6416    * automatically executed otherwise.
6417    */
6418   class V8_EXPORT SuppressMicrotaskExecutionScope {
6419    public:
6420     explicit SuppressMicrotaskExecutionScope(Isolate* isolate);
6421     ~SuppressMicrotaskExecutionScope();
6422 
6423     // Prevent copying of Scope objects.
6424     SuppressMicrotaskExecutionScope(const SuppressMicrotaskExecutionScope&) =
6425         delete;
6426     SuppressMicrotaskExecutionScope& operator=(
6427         const SuppressMicrotaskExecutionScope&) = delete;
6428 
6429    private:
6430     internal::Isolate* const isolate_;
6431   };
6432 
6433   /**
6434    * Types of garbage collections that can be requested via
6435    * RequestGarbageCollectionForTesting.
6436    */
6437   enum GarbageCollectionType {
6438     kFullGarbageCollection,
6439     kMinorGarbageCollection
6440   };
6441 
6442   /**
6443    * Features reported via the SetUseCounterCallback callback. Do not change
6444    * assigned numbers of existing items; add new features to the end of this
6445    * list.
6446    */
6447   enum UseCounterFeature {
6448     kUseAsm = 0,
6449     kBreakIterator = 1,
6450     kLegacyConst = 2,
6451     kMarkDequeOverflow = 3,
6452     kStoreBufferOverflow = 4,
6453     kSlotsBufferOverflow = 5,
6454     kObjectObserve = 6,
6455     kForcedGC = 7,
6456     kSloppyMode = 8,
6457     kStrictMode = 9,
6458     kStrongMode = 10,
6459     kRegExpPrototypeStickyGetter = 11,
6460     kRegExpPrototypeToString = 12,
6461     kRegExpPrototypeUnicodeGetter = 13,
6462     kIntlV8Parse = 14,
6463     kIntlPattern = 15,
6464     kIntlResolved = 16,
6465     kPromiseChain = 17,
6466     kPromiseAccept = 18,
6467     kPromiseDefer = 19,
6468     kHtmlCommentInExternalScript = 20,
6469     kHtmlComment = 21,
6470     kSloppyModeBlockScopedFunctionRedefinition = 22,
6471     kForInInitializer = 23,
6472     kArrayProtectorDirtied = 24,
6473     kArraySpeciesModified = 25,
6474     kArrayPrototypeConstructorModified = 26,
6475     kArrayInstanceProtoModified = 27,
6476     kArrayInstanceConstructorModified = 28,
6477     kLegacyFunctionDeclaration = 29,
6478     kRegExpPrototypeSourceGetter = 30,
6479     kRegExpPrototypeOldFlagGetter = 31,
6480     kDecimalWithLeadingZeroInStrictMode = 32,
6481     kLegacyDateParser = 33,
6482     kDefineGetterOrSetterWouldThrow = 34,
6483     kFunctionConstructorReturnedUndefined = 35,
6484 
6485     // If you add new values here, you'll also need to update Chromium's:
6486     // UseCounter.h, V8PerIsolateData.cpp, histograms.xml
6487     kUseCounterFeatureCount  // This enum value must be last.
6488   };
6489 
6490   typedef void (*UseCounterCallback)(Isolate* isolate,
6491                                      UseCounterFeature feature);
6492 
6493 
6494   /**
6495    * Creates a new isolate.  Does not change the currently entered
6496    * isolate.
6497    *
6498    * When an isolate is no longer used its resources should be freed
6499    * by calling Dispose().  Using the delete operator is not allowed.
6500    *
6501    * V8::Initialize() must have run prior to this.
6502    */
6503   static Isolate* New(const CreateParams& params);
6504 
6505   /**
6506    * Returns the entered isolate for the current thread or NULL in
6507    * case there is no current isolate.
6508    *
6509    * This method must not be invoked before V8::Initialize() was invoked.
6510    */
6511   static Isolate* GetCurrent();
6512 
6513   /**
6514    * Custom callback used by embedders to help V8 determine if it should abort
6515    * when it throws and no internal handler is predicted to catch the
6516    * exception. If --abort-on-uncaught-exception is used on the command line,
6517    * then V8 will abort if either:
6518    * - no custom callback is set.
6519    * - the custom callback set returns true.
6520    * Otherwise, the custom callback will not be called and V8 will not abort.
6521    */
6522   typedef bool (*AbortOnUncaughtExceptionCallback)(Isolate*);
6523   void SetAbortOnUncaughtExceptionCallback(
6524       AbortOnUncaughtExceptionCallback callback);
6525 
6526   /**
6527    * Optional notification that the system is running low on memory.
6528    * V8 uses these notifications to guide heuristics.
6529    * It is allowed to call this function from another thread while
6530    * the isolate is executing long running JavaScript code.
6531    */
6532   void MemoryPressureNotification(MemoryPressureLevel level);
6533 
6534   /**
6535    * Methods below this point require holding a lock (using Locker) in
6536    * a multi-threaded environment.
6537    */
6538 
6539   /**
6540    * Sets this isolate as the entered one for the current thread.
6541    * Saves the previously entered one (if any), so that it can be
6542    * restored when exiting.  Re-entering an isolate is allowed.
6543    */
6544   void Enter();
6545 
6546   /**
6547    * Exits this isolate by restoring the previously entered one in the
6548    * current thread.  The isolate may still stay the same, if it was
6549    * entered more than once.
6550    *
6551    * Requires: this == Isolate::GetCurrent().
6552    */
6553   void Exit();
6554 
6555   /**
6556    * Disposes the isolate.  The isolate must not be entered by any
6557    * thread to be disposable.
6558    */
6559   void Dispose();
6560 
6561   /**
6562    * Discards all V8 thread-specific data for the Isolate. Should be used
6563    * if a thread is terminating and it has used an Isolate that will outlive
6564    * the thread -- all thread-specific data for an Isolate is discarded when
6565    * an Isolate is disposed so this call is pointless if an Isolate is about
6566    * to be Disposed.
6567    */
6568   void DiscardThreadSpecificMetadata();
6569 
6570   /**
6571    * Associate embedder-specific data with the isolate. |slot| has to be
6572    * between 0 and GetNumberOfDataSlots() - 1.
6573    */
6574   V8_INLINE void SetData(uint32_t slot, void* data);
6575 
6576   /**
6577    * Retrieve embedder-specific data from the isolate.
6578    * Returns NULL if SetData has never been called for the given |slot|.
6579    */
6580   V8_INLINE void* GetData(uint32_t slot);
6581 
6582   /**
6583    * Returns the maximum number of available embedder data slots. Valid slots
6584    * are in the range of 0 - GetNumberOfDataSlots() - 1.
6585    */
6586   V8_INLINE static uint32_t GetNumberOfDataSlots();
6587 
6588   /**
6589    * Get statistics about the heap memory usage.
6590    */
6591   void GetHeapStatistics(HeapStatistics* heap_statistics);
6592 
6593   /**
6594    * Returns the number of spaces in the heap.
6595    */
6596   size_t NumberOfHeapSpaces();
6597 
6598   /**
6599    * Get the memory usage of a space in the heap.
6600    *
6601    * \param space_statistics The HeapSpaceStatistics object to fill in
6602    *   statistics.
6603    * \param index The index of the space to get statistics from, which ranges
6604    *   from 0 to NumberOfHeapSpaces() - 1.
6605    * \returns true on success.
6606    */
6607   bool GetHeapSpaceStatistics(HeapSpaceStatistics* space_statistics,
6608                               size_t index);
6609 
6610   /**
6611    * Returns the number of types of objects tracked in the heap at GC.
6612    */
6613   size_t NumberOfTrackedHeapObjectTypes();
6614 
6615   /**
6616    * Get statistics about objects in the heap.
6617    *
6618    * \param object_statistics The HeapObjectStatistics object to fill in
6619    *   statistics of objects of given type, which were live in the previous GC.
6620    * \param type_index The index of the type of object to fill details about,
6621    *   which ranges from 0 to NumberOfTrackedHeapObjectTypes() - 1.
6622    * \returns true on success.
6623    */
6624   bool GetHeapObjectStatisticsAtLastGC(HeapObjectStatistics* object_statistics,
6625                                        size_t type_index);
6626 
6627   /**
6628    * Get statistics about code and its metadata in the heap.
6629    *
6630    * \param object_statistics The HeapCodeStatistics object to fill in
6631    *   statistics of code, bytecode and their metadata.
6632    * \returns true on success.
6633    */
6634   bool GetHeapCodeAndMetadataStatistics(HeapCodeStatistics* object_statistics);
6635 
6636   /**
6637    * Get a call stack sample from the isolate.
6638    * \param state Execution state.
6639    * \param frames Caller allocated buffer to store stack frames.
6640    * \param frames_limit Maximum number of frames to capture. The buffer must
6641    *                     be large enough to hold the number of frames.
6642    * \param sample_info The sample info is filled up by the function
6643    *                    provides number of actual captured stack frames and
6644    *                    the current VM state.
6645    * \note GetStackSample should only be called when the JS thread is paused or
6646    *       interrupted. Otherwise the behavior is undefined.
6647    */
6648   void GetStackSample(const RegisterState& state, void** frames,
6649                       size_t frames_limit, SampleInfo* sample_info);
6650 
6651   /**
6652    * Adjusts the amount of registered external memory. Used to give V8 an
6653    * indication of the amount of externally allocated memory that is kept alive
6654    * by JavaScript objects. V8 uses this to decide when to perform global
6655    * garbage collections. Registering externally allocated memory will trigger
6656    * global garbage collections more often than it would otherwise in an attempt
6657    * to garbage collect the JavaScript objects that keep the externally
6658    * allocated memory alive.
6659    *
6660    * \param change_in_bytes the change in externally allocated memory that is
6661    *   kept alive by JavaScript objects.
6662    * \returns the adjusted value.
6663    */
6664   V8_INLINE int64_t
6665       AdjustAmountOfExternalAllocatedMemory(int64_t change_in_bytes);
6666 
6667   /**
6668    * Returns the number of phantom handles without callbacks that were reset
6669    * by the garbage collector since the last call to this function.
6670    */
6671   size_t NumberOfPhantomHandleResetsSinceLastCall();
6672 
6673   /**
6674    * Returns heap profiler for this isolate. Will return NULL until the isolate
6675    * is initialized.
6676    */
6677   HeapProfiler* GetHeapProfiler();
6678 
6679   /**
6680    * Returns CPU profiler for this isolate. Will return NULL unless the isolate
6681    * is initialized. It is the embedder's responsibility to stop all CPU
6682    * profiling activities if it has started any.
6683    */
6684   V8_DEPRECATE_SOON("CpuProfiler should be created with CpuProfiler::New call.",
6685                     CpuProfiler* GetCpuProfiler());
6686 
6687   /** Returns true if this isolate has a current context. */
6688   bool InContext();
6689 
6690   /**
6691    * Returns the context of the currently running JavaScript, or the context
6692    * on the top of the stack if no JavaScript is running.
6693    */
6694   Local<Context> GetCurrentContext();
6695 
6696   /**
6697    * Returns the context of the calling JavaScript code.  That is the
6698    * context of the top-most JavaScript frame.  If there are no
6699    * JavaScript frames an empty handle is returned.
6700    */
6701   V8_DEPRECATE_SOON(
6702       "Calling context concept is not compatible with tail calls, and will be "
6703       "removed.",
6704       Local<Context> GetCallingContext());
6705 
6706   /** Returns the last context entered through V8's C++ API. */
6707   Local<Context> GetEnteredContext();
6708 
6709   /**
6710    * Schedules an exception to be thrown when returning to JavaScript.  When an
6711    * exception has been scheduled it is illegal to invoke any JavaScript
6712    * operation; the caller must return immediately and only after the exception
6713    * has been handled does it become legal to invoke JavaScript operations.
6714    */
6715   Local<Value> ThrowException(Local<Value> exception);
6716 
6717   /**
6718    * Allows the host application to group objects together. If one
6719    * object in the group is alive, all objects in the group are alive.
6720    * After each garbage collection, object groups are removed. It is
6721    * intended to be used in the before-garbage-collection callback
6722    * function, for instance to simulate DOM tree connections among JS
6723    * wrapper objects. Object groups for all dependent handles need to
6724    * be provided for kGCTypeMarkSweepCompact collections, for all other
6725    * garbage collection types it is sufficient to provide object groups
6726    * for partially dependent handles only.
6727    */
6728   template<typename T> void SetObjectGroupId(const Persistent<T>& object,
6729                                              UniqueId id);
6730 
6731   /**
6732    * Allows the host application to declare implicit references from an object
6733    * group to an object. If the objects of the object group are alive, the child
6734    * object is alive too. After each garbage collection, all implicit references
6735    * are removed. It is intended to be used in the before-garbage-collection
6736    * callback function.
6737    */
6738   template<typename T> void SetReferenceFromGroup(UniqueId id,
6739                                                   const Persistent<T>& child);
6740 
6741   /**
6742    * Allows the host application to declare implicit references from an object
6743    * to another object. If the parent object is alive, the child object is alive
6744    * too. After each garbage collection, all implicit references are removed. It
6745    * is intended to be used in the before-garbage-collection callback function.
6746    */
6747   template<typename T, typename S>
6748   void SetReference(const Persistent<T>& parent, const Persistent<S>& child);
6749 
6750   typedef void (*GCCallback)(Isolate* isolate, GCType type,
6751                              GCCallbackFlags flags);
6752 
6753   /**
6754    * Enables the host application to receive a notification before a
6755    * garbage collection. Allocations are allowed in the callback function,
6756    * but the callback is not re-entrant: if the allocation inside it will
6757    * trigger the garbage collection, the callback won't be called again.
6758    * It is possible to specify the GCType filter for your callback. But it is
6759    * not possible to register the same callback function two times with
6760    * different GCType filters.
6761    */
6762   void AddGCPrologueCallback(GCCallback callback,
6763                              GCType gc_type_filter = kGCTypeAll);
6764 
6765   /**
6766    * This function removes callback which was installed by
6767    * AddGCPrologueCallback function.
6768    */
6769   void RemoveGCPrologueCallback(GCCallback callback);
6770 
6771   /**
6772    * Sets the embedder heap tracer for the isolate.
6773    */
6774   void SetEmbedderHeapTracer(EmbedderHeapTracer* tracer);
6775 
6776   /**
6777    * Enables the host application to receive a notification after a
6778    * garbage collection. Allocations are allowed in the callback function,
6779    * but the callback is not re-entrant: if the allocation inside it will
6780    * trigger the garbage collection, the callback won't be called again.
6781    * It is possible to specify the GCType filter for your callback. But it is
6782    * not possible to register the same callback function two times with
6783    * different GCType filters.
6784    */
6785   void AddGCEpilogueCallback(GCCallback callback,
6786                              GCType gc_type_filter = kGCTypeAll);
6787 
6788   /**
6789    * This function removes callback which was installed by
6790    * AddGCEpilogueCallback function.
6791    */
6792   void RemoveGCEpilogueCallback(GCCallback callback);
6793 
6794   /**
6795    * Forcefully terminate the current thread of JavaScript execution
6796    * in the given isolate.
6797    *
6798    * This method can be used by any thread even if that thread has not
6799    * acquired the V8 lock with a Locker object.
6800    */
6801   void TerminateExecution();
6802 
6803   /**
6804    * Is V8 terminating JavaScript execution.
6805    *
6806    * Returns true if JavaScript execution is currently terminating
6807    * because of a call to TerminateExecution.  In that case there are
6808    * still JavaScript frames on the stack and the termination
6809    * exception is still active.
6810    */
6811   bool IsExecutionTerminating();
6812 
6813   /**
6814    * Resume execution capability in the given isolate, whose execution
6815    * was previously forcefully terminated using TerminateExecution().
6816    *
6817    * When execution is forcefully terminated using TerminateExecution(),
6818    * the isolate can not resume execution until all JavaScript frames
6819    * have propagated the uncatchable exception which is generated.  This
6820    * method allows the program embedding the engine to handle the
6821    * termination event and resume execution capability, even if
6822    * JavaScript frames remain on the stack.
6823    *
6824    * This method can be used by any thread even if that thread has not
6825    * acquired the V8 lock with a Locker object.
6826    */
6827   void CancelTerminateExecution();
6828 
6829   /**
6830    * Request V8 to interrupt long running JavaScript code and invoke
6831    * the given |callback| passing the given |data| to it. After |callback|
6832    * returns control will be returned to the JavaScript code.
6833    * There may be a number of interrupt requests in flight.
6834    * Can be called from another thread without acquiring a |Locker|.
6835    * Registered |callback| must not reenter interrupted Isolate.
6836    */
6837   void RequestInterrupt(InterruptCallback callback, void* data);
6838 
6839   /**
6840    * Request garbage collection in this Isolate. It is only valid to call this
6841    * function if --expose_gc was specified.
6842    *
6843    * This should only be used for testing purposes and not to enforce a garbage
6844    * collection schedule. It has strong negative impact on the garbage
6845    * collection performance. Use IdleNotificationDeadline() or
6846    * LowMemoryNotification() instead to influence the garbage collection
6847    * schedule.
6848    */
6849   void RequestGarbageCollectionForTesting(GarbageCollectionType type);
6850 
6851   /**
6852    * Set the callback to invoke for logging event.
6853    */
6854   void SetEventLogger(LogEventCallback that);
6855 
6856   /**
6857    * Adds a callback to notify the host application right before a script
6858    * is about to run. If a script re-enters the runtime during executing, the
6859    * BeforeCallEnteredCallback is invoked for each re-entrance.
6860    * Executing scripts inside the callback will re-trigger the callback.
6861    */
6862   void AddBeforeCallEnteredCallback(BeforeCallEnteredCallback callback);
6863 
6864   /**
6865    * Removes callback that was installed by AddBeforeCallEnteredCallback.
6866    */
6867   void RemoveBeforeCallEnteredCallback(BeforeCallEnteredCallback callback);
6868 
6869   /**
6870    * Adds a callback to notify the host application when a script finished
6871    * running.  If a script re-enters the runtime during executing, the
6872    * CallCompletedCallback is only invoked when the outer-most script
6873    * execution ends.  Executing scripts inside the callback do not trigger
6874    * further callbacks.
6875    */
6876   void AddCallCompletedCallback(CallCompletedCallback callback);
6877   V8_DEPRECATE_SOON(
6878       "Use callback with parameter",
6879       void AddCallCompletedCallback(DeprecatedCallCompletedCallback callback));
6880 
6881   /**
6882    * Removes callback that was installed by AddCallCompletedCallback.
6883    */
6884   void RemoveCallCompletedCallback(CallCompletedCallback callback);
6885   V8_DEPRECATE_SOON(
6886       "Use callback with parameter",
6887       void RemoveCallCompletedCallback(
6888           DeprecatedCallCompletedCallback callback));
6889 
6890   /**
6891    * Set callback to notify about promise reject with no handler, or
6892    * revocation of such a previous notification once the handler is added.
6893    */
6894   void SetPromiseRejectCallback(PromiseRejectCallback callback);
6895 
6896   /**
6897    * Experimental: Runs the Microtask Work Queue until empty
6898    * Any exceptions thrown by microtask callbacks are swallowed.
6899    */
6900   void RunMicrotasks();
6901 
6902   /**
6903    * Experimental: Enqueues the callback to the Microtask Work Queue
6904    */
6905   void EnqueueMicrotask(Local<Function> microtask);
6906 
6907   /**
6908    * Experimental: Enqueues the callback to the Microtask Work Queue
6909    */
6910   void EnqueueMicrotask(MicrotaskCallback microtask, void* data = NULL);
6911 
6912   /**
6913    * Experimental: Controls how Microtasks are invoked. See MicrotasksPolicy
6914    * for details.
6915    */
6916   void SetMicrotasksPolicy(MicrotasksPolicy policy);
6917   V8_DEPRECATE_SOON("Use SetMicrotasksPolicy",
6918                     void SetAutorunMicrotasks(bool autorun));
6919 
6920   /**
6921    * Experimental: Returns the policy controlling how Microtasks are invoked.
6922    */
6923   MicrotasksPolicy GetMicrotasksPolicy() const;
6924   V8_DEPRECATE_SOON("Use GetMicrotasksPolicy",
6925                     bool WillAutorunMicrotasks() const);
6926 
6927   /**
6928    * Experimental: adds a callback to notify the host application after
6929    * microtasks were run. The callback is triggered by explicit RunMicrotasks
6930    * call or automatic microtasks execution (see SetAutorunMicrotasks).
6931    *
6932    * Callback will trigger even if microtasks were attempted to run,
6933    * but the microtasks queue was empty and no single microtask was actually
6934    * executed.
6935    *
6936    * Executing scriptsinside the callback will not re-trigger microtasks and
6937    * the callback.
6938    */
6939   void AddMicrotasksCompletedCallback(MicrotasksCompletedCallback callback);
6940 
6941   /**
6942    * Removes callback that was installed by AddMicrotasksCompletedCallback.
6943    */
6944   void RemoveMicrotasksCompletedCallback(MicrotasksCompletedCallback callback);
6945 
6946   /**
6947    * Sets a callback for counting the number of times a feature of V8 is used.
6948    */
6949   void SetUseCounterCallback(UseCounterCallback callback);
6950 
6951   /**
6952    * Enables the host application to provide a mechanism for recording
6953    * statistics counters.
6954    */
6955   void SetCounterFunction(CounterLookupCallback);
6956 
6957   /**
6958    * Enables the host application to provide a mechanism for recording
6959    * histograms. The CreateHistogram function returns a
6960    * histogram which will later be passed to the AddHistogramSample
6961    * function.
6962    */
6963   void SetCreateHistogramFunction(CreateHistogramCallback);
6964   void SetAddHistogramSampleFunction(AddHistogramSampleCallback);
6965 
6966   /**
6967    * Optional notification that the embedder is idle.
6968    * V8 uses the notification to perform garbage collection.
6969    * This call can be used repeatedly if the embedder remains idle.
6970    * Returns true if the embedder should stop calling IdleNotificationDeadline
6971    * until real work has been done.  This indicates that V8 has done
6972    * as much cleanup as it will be able to do.
6973    *
6974    * The deadline_in_seconds argument specifies the deadline V8 has to finish
6975    * garbage collection work. deadline_in_seconds is compared with
6976    * MonotonicallyIncreasingTime() and should be based on the same timebase as
6977    * that function. There is no guarantee that the actual work will be done
6978    * within the time limit.
6979    */
6980   bool IdleNotificationDeadline(double deadline_in_seconds);
6981 
6982   V8_DEPRECATED("use IdleNotificationDeadline()",
6983                 bool IdleNotification(int idle_time_in_ms));
6984 
6985   /**
6986    * Optional notification that the system is running low on memory.
6987    * V8 uses these notifications to attempt to free memory.
6988    */
6989   void LowMemoryNotification();
6990 
6991   /**
6992    * Optional notification that a context has been disposed. V8 uses
6993    * these notifications to guide the GC heuristic. Returns the number
6994    * of context disposals - including this one - since the last time
6995    * V8 had a chance to clean up.
6996    *
6997    * The optional parameter |dependant_context| specifies whether the disposed
6998    * context was depending on state from other contexts or not.
6999    */
7000   int ContextDisposedNotification(bool dependant_context = true);
7001 
7002   /**
7003    * Optional notification that the isolate switched to the foreground.
7004    * V8 uses these notifications to guide heuristics.
7005    */
7006   void IsolateInForegroundNotification();
7007 
7008   /**
7009    * Optional notification that the isolate switched to the background.
7010    * V8 uses these notifications to guide heuristics.
7011    */
7012   void IsolateInBackgroundNotification();
7013 
7014   /**
7015    * Optional notification to tell V8 the current performance requirements
7016    * of the embedder based on RAIL.
7017    * V8 uses these notifications to guide heuristics.
7018    * This is an unfinished experimental feature. Semantics and implementation
7019    * may change frequently.
7020    */
7021   void SetRAILMode(RAILMode rail_mode);
7022 
7023   /**
7024    * Allows the host application to provide the address of a function that is
7025    * notified each time code is added, moved or removed.
7026    *
7027    * \param options options for the JIT code event handler.
7028    * \param event_handler the JIT code event handler, which will be invoked
7029    *     each time code is added, moved or removed.
7030    * \note \p event_handler won't get notified of existent code.
7031    * \note since code removal notifications are not currently issued, the
7032    *     \p event_handler may get notifications of code that overlaps earlier
7033    *     code notifications. This happens when code areas are reused, and the
7034    *     earlier overlapping code areas should therefore be discarded.
7035    * \note the events passed to \p event_handler and the strings they point to
7036    *     are not guaranteed to live past each call. The \p event_handler must
7037    *     copy strings and other parameters it needs to keep around.
7038    * \note the set of events declared in JitCodeEvent::EventType is expected to
7039    *     grow over time, and the JitCodeEvent structure is expected to accrue
7040    *     new members. The \p event_handler function must ignore event codes
7041    *     it does not recognize to maintain future compatibility.
7042    * \note Use Isolate::CreateParams to get events for code executed during
7043    *     Isolate setup.
7044    */
7045   void SetJitCodeEventHandler(JitCodeEventOptions options,
7046                               JitCodeEventHandler event_handler);
7047 
7048   /**
7049    * Modifies the stack limit for this Isolate.
7050    *
7051    * \param stack_limit An address beyond which the Vm's stack may not grow.
7052    *
7053    * \note  If you are using threads then you should hold the V8::Locker lock
7054    *     while setting the stack limit and you must set a non-default stack
7055    *     limit separately for each thread.
7056    */
7057   void SetStackLimit(uintptr_t stack_limit);
7058 
7059   /**
7060    * Returns a memory range that can potentially contain jitted code.
7061    *
7062    * On Win64, embedders are advised to install function table callbacks for
7063    * these ranges, as default SEH won't be able to unwind through jitted code.
7064    *
7065    * The first page of the code range is reserved for the embedder and is
7066    * committed, writable, and executable.
7067    *
7068    * Might be empty on other platforms.
7069    *
7070    * https://code.google.com/p/v8/issues/detail?id=3598
7071    */
7072   void GetCodeRange(void** start, size_t* length_in_bytes);
7073 
7074   /** Set the callback to invoke in case of fatal errors. */
7075   void SetFatalErrorHandler(FatalErrorCallback that);
7076 
7077   /** Set the callback to invoke in case of OOM errors. */
7078   void SetOOMErrorHandler(OOMErrorCallback that);
7079 
7080   /**
7081    * Set the callback to invoke to check if code generation from
7082    * strings should be allowed.
7083    */
7084   void SetAllowCodeGenerationFromStringsCallback(
7085       AllowCodeGenerationFromStringsCallback callback);
7086 
7087   /**
7088   * Check if V8 is dead and therefore unusable.  This is the case after
7089   * fatal errors such as out-of-memory situations.
7090   */
7091   bool IsDead();
7092 
7093   /**
7094    * Adds a message listener.
7095    *
7096    * The same message listener can be added more than once and in that
7097    * case it will be called more than once for each message.
7098    *
7099    * If data is specified, it will be passed to the callback when it is called.
7100    * Otherwise, the exception object will be passed to the callback instead.
7101    */
7102   bool AddMessageListener(MessageCallback that,
7103                           Local<Value> data = Local<Value>());
7104 
7105   /**
7106    * Remove all message listeners from the specified callback function.
7107    */
7108   void RemoveMessageListeners(MessageCallback that);
7109 
7110   /** Callback function for reporting failed access checks.*/
7111   void SetFailedAccessCheckCallbackFunction(FailedAccessCheckCallback);
7112 
7113   /**
7114    * Tells V8 to capture current stack trace when uncaught exception occurs
7115    * and report it to the message listeners. The option is off by default.
7116    */
7117   void SetCaptureStackTraceForUncaughtExceptions(
7118       bool capture, int frame_limit = 10,
7119       StackTrace::StackTraceOptions options = StackTrace::kOverview);
7120 
7121   /**
7122    * Iterates through all external resources referenced from current isolate
7123    * heap.  GC is not invoked prior to iterating, therefore there is no
7124    * guarantee that visited objects are still alive.
7125    */
7126   void VisitExternalResources(ExternalResourceVisitor* visitor);
7127 
7128   /**
7129    * Iterates through all the persistent handles in the current isolate's heap
7130    * that have class_ids.
7131    */
7132   void VisitHandlesWithClassIds(PersistentHandleVisitor* visitor);
7133 
7134   /**
7135    * Iterates through all the persistent handles in the current isolate's heap
7136    * that have class_ids and are candidates to be marked as partially dependent
7137    * handles. This will visit handles to young objects created since the last
7138    * garbage collection but is free to visit an arbitrary superset of these
7139    * objects.
7140    */
7141   void VisitHandlesForPartialDependence(PersistentHandleVisitor* visitor);
7142 
7143   /**
7144    * Iterates through all the persistent handles in the current isolate's heap
7145    * that have class_ids and are weak to be marked as inactive if there is no
7146    * pending activity for the handle.
7147    */
7148   void VisitWeakHandles(PersistentHandleVisitor* visitor);
7149 
7150   /**
7151    * Check if this isolate is in use.
7152    * True if at least one thread Enter'ed this isolate.
7153    */
7154   bool IsInUse();
7155 
7156   Isolate() = delete;
7157   ~Isolate() = delete;
7158   Isolate(const Isolate&) = delete;
7159   Isolate& operator=(const Isolate&) = delete;
7160   void* operator new(size_t size) = delete;
7161   void operator delete(void*, size_t) = delete;
7162 
7163  private:
7164   template <class K, class V, class Traits>
7165   friend class PersistentValueMapBase;
7166 
7167   void SetObjectGroupId(internal::Object** object, UniqueId id);
7168   void SetReferenceFromGroup(UniqueId id, internal::Object** object);
7169   void SetReference(internal::Object** parent, internal::Object** child);
7170   void ReportExternalAllocationLimitReached();
7171 };
7172 
7173 class V8_EXPORT StartupData {
7174  public:
7175   const char* data;
7176   int raw_size;
7177 };
7178 
7179 
7180 /**
7181  * EntropySource is used as a callback function when v8 needs a source
7182  * of entropy.
7183  */
7184 typedef bool (*EntropySource)(unsigned char* buffer, size_t length);
7185 
7186 /**
7187  * ReturnAddressLocationResolver is used as a callback function when v8 is
7188  * resolving the location of a return address on the stack. Profilers that
7189  * change the return address on the stack can use this to resolve the stack
7190  * location to whereever the profiler stashed the original return address.
7191  *
7192  * \param return_addr_location A location on stack where a machine
7193  *    return address resides.
7194  * \returns Either return_addr_location, or else a pointer to the profiler's
7195  *    copy of the original return address.
7196  *
7197  * \note The resolver function must not cause garbage collection.
7198  */
7199 typedef uintptr_t (*ReturnAddressLocationResolver)(
7200     uintptr_t return_addr_location);
7201 
7202 
7203 /**
7204  * Container class for static utility functions.
7205  */
7206 class V8_EXPORT V8 {
7207  public:
7208   /** Set the callback to invoke in case of fatal errors. */
7209   V8_INLINE static V8_DEPRECATED(
7210       "Use isolate version",
7211       void SetFatalErrorHandler(FatalErrorCallback that));
7212 
7213   /**
7214    * Set the callback to invoke to check if code generation from
7215    * strings should be allowed.
7216    */
7217   V8_INLINE static V8_DEPRECATED(
7218       "Use isolate version", void SetAllowCodeGenerationFromStringsCallback(
7219                                  AllowCodeGenerationFromStringsCallback that));
7220 
7221   /**
7222   * Check if V8 is dead and therefore unusable.  This is the case after
7223   * fatal errors such as out-of-memory situations.
7224   */
7225   V8_INLINE static V8_DEPRECATED("Use isolate version", bool IsDead());
7226 
7227   /**
7228    * Hand startup data to V8, in case the embedder has chosen to build
7229    * V8 with external startup data.
7230    *
7231    * Note:
7232    * - By default the startup data is linked into the V8 library, in which
7233    *   case this function is not meaningful.
7234    * - If this needs to be called, it needs to be called before V8
7235    *   tries to make use of its built-ins.
7236    * - To avoid unnecessary copies of data, V8 will point directly into the
7237    *   given data blob, so pretty please keep it around until V8 exit.
7238    * - Compression of the startup blob might be useful, but needs to
7239    *   handled entirely on the embedders' side.
7240    * - The call will abort if the data is invalid.
7241    */
7242   static void SetNativesDataBlob(StartupData* startup_blob);
7243   static void SetSnapshotDataBlob(StartupData* startup_blob);
7244 
7245   /**
7246    * Bootstrap an isolate and a context from scratch to create a startup
7247    * snapshot. Include the side-effects of running the optional script.
7248    * Returns { NULL, 0 } on failure.
7249    * The caller acquires ownership of the data array in the return value.
7250    */
7251   static StartupData CreateSnapshotDataBlob(const char* embedded_source = NULL);
7252 
7253   /**
7254    * Bootstrap an isolate and a context from the cold startup blob, run the
7255    * warm-up script to trigger code compilation. The side effects are then
7256    * discarded. The resulting startup snapshot will include compiled code.
7257    * Returns { NULL, 0 } on failure.
7258    * The caller acquires ownership of the data array in the return value.
7259    * The argument startup blob is untouched.
7260    */
7261   static StartupData WarmUpSnapshotDataBlob(StartupData cold_startup_blob,
7262                                             const char* warmup_source);
7263 
7264   /**
7265    * Adds a message listener.
7266    *
7267    * The same message listener can be added more than once and in that
7268    * case it will be called more than once for each message.
7269    *
7270    * If data is specified, it will be passed to the callback when it is called.
7271    * Otherwise, the exception object will be passed to the callback instead.
7272    */
7273   V8_INLINE static V8_DEPRECATED(
7274       "Use isolate version",
7275       bool AddMessageListener(MessageCallback that,
7276                               Local<Value> data = Local<Value>()));
7277 
7278   /**
7279    * Remove all message listeners from the specified callback function.
7280    */
7281   V8_INLINE static V8_DEPRECATED(
7282       "Use isolate version", void RemoveMessageListeners(MessageCallback that));
7283 
7284   /**
7285    * Tells V8 to capture current stack trace when uncaught exception occurs
7286    * and report it to the message listeners. The option is off by default.
7287    */
7288   V8_INLINE static V8_DEPRECATED(
7289       "Use isolate version",
7290       void SetCaptureStackTraceForUncaughtExceptions(
7291           bool capture, int frame_limit = 10,
7292           StackTrace::StackTraceOptions options = StackTrace::kOverview));
7293 
7294   /**
7295    * Sets V8 flags from a string.
7296    */
7297   static void SetFlagsFromString(const char* str, int length);
7298 
7299   /**
7300    * Sets V8 flags from the command line.
7301    */
7302   static void SetFlagsFromCommandLine(int* argc,
7303                                       char** argv,
7304                                       bool remove_flags);
7305 
7306   /** Get the version string. */
7307   static const char* GetVersion();
7308 
7309   /** Callback function for reporting failed access checks.*/
7310   V8_INLINE static V8_DEPRECATED(
7311       "Use isolate version",
7312       void SetFailedAccessCheckCallbackFunction(FailedAccessCheckCallback));
7313 
7314   /**
7315    * Enables the host application to receive a notification before a
7316    * garbage collection.  Allocations are not allowed in the
7317    * callback function, you therefore cannot manipulate objects (set
7318    * or delete properties for example) since it is possible such
7319    * operations will result in the allocation of objects. It is possible
7320    * to specify the GCType filter for your callback. But it is not possible to
7321    * register the same callback function two times with different
7322    * GCType filters.
7323    */
7324   static V8_DEPRECATED(
7325       "Use isolate version",
7326       void AddGCPrologueCallback(GCCallback callback,
7327                                  GCType gc_type_filter = kGCTypeAll));
7328 
7329   /**
7330    * This function removes callback which was installed by
7331    * AddGCPrologueCallback function.
7332    */
7333   V8_INLINE static V8_DEPRECATED(
7334       "Use isolate version",
7335       void RemoveGCPrologueCallback(GCCallback callback));
7336 
7337   /**
7338    * Enables the host application to receive a notification after a
7339    * garbage collection.  Allocations are not allowed in the
7340    * callback function, you therefore cannot manipulate objects (set
7341    * or delete properties for example) since it is possible such
7342    * operations will result in the allocation of objects. It is possible
7343    * to specify the GCType filter for your callback. But it is not possible to
7344    * register the same callback function two times with different
7345    * GCType filters.
7346    */
7347   static V8_DEPRECATED(
7348       "Use isolate version",
7349       void AddGCEpilogueCallback(GCCallback callback,
7350                                  GCType gc_type_filter = kGCTypeAll));
7351 
7352   /**
7353    * This function removes callback which was installed by
7354    * AddGCEpilogueCallback function.
7355    */
7356   V8_INLINE static V8_DEPRECATED(
7357       "Use isolate version",
7358       void RemoveGCEpilogueCallback(GCCallback callback));
7359 
7360   /**
7361    * Initializes V8. This function needs to be called before the first Isolate
7362    * is created. It always returns true.
7363    */
7364   static bool Initialize();
7365 
7366   /**
7367    * Allows the host application to provide a callback which can be used
7368    * as a source of entropy for random number generators.
7369    */
7370   static void SetEntropySource(EntropySource source);
7371 
7372   /**
7373    * Allows the host application to provide a callback that allows v8 to
7374    * cooperate with a profiler that rewrites return addresses on stack.
7375    */
7376   static void SetReturnAddressLocationResolver(
7377       ReturnAddressLocationResolver return_address_resolver);
7378 
7379   /**
7380    * Forcefully terminate the current thread of JavaScript execution
7381    * in the given isolate.
7382    *
7383    * This method can be used by any thread even if that thread has not
7384    * acquired the V8 lock with a Locker object.
7385    *
7386    * \param isolate The isolate in which to terminate the current JS execution.
7387    */
7388   V8_INLINE static V8_DEPRECATED("Use isolate version",
7389                                  void TerminateExecution(Isolate* isolate));
7390 
7391   /**
7392    * Is V8 terminating JavaScript execution.
7393    *
7394    * Returns true if JavaScript execution is currently terminating
7395    * because of a call to TerminateExecution.  In that case there are
7396    * still JavaScript frames on the stack and the termination
7397    * exception is still active.
7398    *
7399    * \param isolate The isolate in which to check.
7400    */
7401   V8_INLINE static V8_DEPRECATED(
7402       "Use isolate version",
7403       bool IsExecutionTerminating(Isolate* isolate = NULL));
7404 
7405   /**
7406    * Resume execution capability in the given isolate, whose execution
7407    * was previously forcefully terminated using TerminateExecution().
7408    *
7409    * When execution is forcefully terminated using TerminateExecution(),
7410    * the isolate can not resume execution until all JavaScript frames
7411    * have propagated the uncatchable exception which is generated.  This
7412    * method allows the program embedding the engine to handle the
7413    * termination event and resume execution capability, even if
7414    * JavaScript frames remain on the stack.
7415    *
7416    * This method can be used by any thread even if that thread has not
7417    * acquired the V8 lock with a Locker object.
7418    *
7419    * \param isolate The isolate in which to resume execution capability.
7420    */
7421   V8_INLINE static V8_DEPRECATED(
7422       "Use isolate version", void CancelTerminateExecution(Isolate* isolate));
7423 
7424   /**
7425    * Releases any resources used by v8 and stops any utility threads
7426    * that may be running.  Note that disposing v8 is permanent, it
7427    * cannot be reinitialized.
7428    *
7429    * It should generally not be necessary to dispose v8 before exiting
7430    * a process, this should happen automatically.  It is only necessary
7431    * to use if the process needs the resources taken up by v8.
7432    */
7433   static bool Dispose();
7434 
7435   /**
7436    * Iterates through all external resources referenced from current isolate
7437    * heap.  GC is not invoked prior to iterating, therefore there is no
7438    * guarantee that visited objects are still alive.
7439    */
7440   V8_INLINE static V8_DEPRECATED(
7441       "Use isolate version",
7442       void VisitExternalResources(ExternalResourceVisitor* visitor));
7443 
7444   /**
7445    * Iterates through all the persistent handles in the current isolate's heap
7446    * that have class_ids.
7447    */
7448   V8_INLINE static V8_DEPRECATED(
7449       "Use isolate version",
7450       void VisitHandlesWithClassIds(PersistentHandleVisitor* visitor));
7451 
7452   /**
7453    * Iterates through all the persistent handles in isolate's heap that have
7454    * class_ids.
7455    */
7456   V8_INLINE static V8_DEPRECATED(
7457       "Use isolate version",
7458       void VisitHandlesWithClassIds(Isolate* isolate,
7459                                     PersistentHandleVisitor* visitor));
7460 
7461   /**
7462    * Iterates through all the persistent handles in the current isolate's heap
7463    * that have class_ids and are candidates to be marked as partially dependent
7464    * handles. This will visit handles to young objects created since the last
7465    * garbage collection but is free to visit an arbitrary superset of these
7466    * objects.
7467    */
7468   V8_INLINE static V8_DEPRECATED(
7469       "Use isolate version",
7470       void VisitHandlesForPartialDependence(Isolate* isolate,
7471                                             PersistentHandleVisitor* visitor));
7472 
7473   /**
7474    * Initialize the ICU library bundled with V8. The embedder should only
7475    * invoke this method when using the bundled ICU. Returns true on success.
7476    *
7477    * If V8 was compiled with the ICU data in an external file, the location
7478    * of the data file has to be provided.
7479    */
7480   V8_DEPRECATE_SOON(
7481       "Use version with default location.",
7482       static bool InitializeICU(const char* icu_data_file = nullptr));
7483 
7484   /**
7485    * Initialize the ICU library bundled with V8. The embedder should only
7486    * invoke this method when using the bundled ICU. If V8 was compiled with
7487    * the ICU data in an external file and when the default location of that
7488    * file should be used, a path to the executable must be provided.
7489    * Returns true on success.
7490    *
7491    * The default is a file called icudtl.dat side-by-side with the executable.
7492    *
7493    * Optionally, the location of the data file can be provided to override the
7494    * default.
7495    */
7496   static bool InitializeICUDefaultLocation(const char* exec_path,
7497                                            const char* icu_data_file = nullptr);
7498 
7499   /**
7500    * Initialize the external startup data. The embedder only needs to
7501    * invoke this method when external startup data was enabled in a build.
7502    *
7503    * If V8 was compiled with the startup data in an external file, then
7504    * V8 needs to be given those external files during startup. There are
7505    * three ways to do this:
7506    * - InitializeExternalStartupData(const char*)
7507    *   This will look in the given directory for files "natives_blob.bin"
7508    *   and "snapshot_blob.bin" - which is what the default build calls them.
7509    * - InitializeExternalStartupData(const char*, const char*)
7510    *   As above, but will directly use the two given file names.
7511    * - Call SetNativesDataBlob, SetNativesDataBlob.
7512    *   This will read the blobs from the given data structures and will
7513    *   not perform any file IO.
7514    */
7515   static void InitializeExternalStartupData(const char* directory_path);
7516   static void InitializeExternalStartupData(const char* natives_blob,
7517                                             const char* snapshot_blob);
7518   /**
7519    * Sets the v8::Platform to use. This should be invoked before V8 is
7520    * initialized.
7521    */
7522   static void InitializePlatform(Platform* platform);
7523 
7524   /**
7525    * Clears all references to the v8::Platform. This should be invoked after
7526    * V8 was disposed.
7527    */
7528   static void ShutdownPlatform();
7529 
7530  private:
7531   V8();
7532 
7533   static internal::Object** GlobalizeReference(internal::Isolate* isolate,
7534                                                internal::Object** handle);
7535   static internal::Object** CopyPersistent(internal::Object** handle);
7536   static void DisposeGlobal(internal::Object** global_handle);
7537   static void MakeWeak(internal::Object** location, void* data,
7538                        WeakCallbackInfo<void>::Callback weak_callback,
7539                        WeakCallbackType type);
7540   static void MakeWeak(internal::Object** location, void* data,
7541                        // Must be 0 or -1.
7542                        int internal_field_index1,
7543                        // Must be 1 or -1.
7544                        int internal_field_index2,
7545                        WeakCallbackInfo<void>::Callback weak_callback);
7546   static void MakeWeak(internal::Object*** location_addr);
7547   static void* ClearWeak(internal::Object** location);
7548   static void Eternalize(Isolate* isolate,
7549                          Value* handle,
7550                          int* index);
7551   static Local<Value> GetEternal(Isolate* isolate, int index);
7552 
7553   static void RegisterExternallyReferencedObject(internal::Object** object,
7554                                                  internal::Isolate* isolate);
7555 
7556   template <class K, class V, class T>
7557   friend class PersistentValueMapBase;
7558 
7559   static void FromJustIsNothing();
7560   static void ToLocalEmpty();
7561   static void InternalFieldOutOfBounds(int index);
7562   template <class T> friend class Local;
7563   template <class T>
7564   friend class MaybeLocal;
7565   template <class T>
7566   friend class Maybe;
7567   template <class T>
7568   friend class WeakCallbackInfo;
7569   template <class T> friend class Eternal;
7570   template <class T> friend class PersistentBase;
7571   template <class T, class M> friend class Persistent;
7572   friend class Context;
7573 };
7574 
7575 /**
7576  * Helper class to create a snapshot data blob.
7577  */
7578 class V8_EXPORT SnapshotCreator {
7579  public:
7580   enum class FunctionCodeHandling { kClear, kKeep };
7581 
7582   /**
7583    * Create and enter an isolate, and set it up for serialization.
7584    * The isolate is either created from scratch or from an existing snapshot.
7585    * The caller keeps ownership of the argument snapshot.
7586    * \param existing_blob existing snapshot from which to create this one.
7587    * \param external_references a null-terminated array of external references
7588    *        that must be equivalent to CreateParams::external_references.
7589    */
7590   SnapshotCreator(intptr_t* external_references = nullptr,
7591                   StartupData* existing_blob = nullptr);
7592 
7593   ~SnapshotCreator();
7594 
7595   /**
7596    * \returns the isolate prepared by the snapshot creator.
7597    */
7598   Isolate* GetIsolate();
7599 
7600   /**
7601    * Add a context to be included in the snapshot blob.
7602    * \returns the index of the context in the snapshot blob.
7603    */
7604   size_t AddContext(Local<Context> context);
7605 
7606   /**
7607    * Add a template to be included in the snapshot blob.
7608    * \returns the index of the template in the snapshot blob.
7609    */
7610   size_t AddTemplate(Local<Template> template_obj);
7611 
7612   /**
7613    * Created a snapshot data blob.
7614    * This must not be called from within a handle scope.
7615    * \param function_code_handling whether to include compiled function code
7616    *        in the snapshot.
7617    * \param callback to serialize embedder-set internal fields.
7618    * \returns { nullptr, 0 } on failure, and a startup snapshot on success. The
7619    *        caller acquires ownership of the data array in the return value.
7620    */
7621   StartupData CreateBlob(FunctionCodeHandling function_code_handling,
7622                          SerializeInternalFieldsCallback callback = nullptr);
7623 
7624   // Disallow copying and assigning.
7625   SnapshotCreator(const SnapshotCreator&) = delete;
7626   void operator=(const SnapshotCreator&) = delete;
7627 
7628  private:
7629   void* data_;
7630 };
7631 
7632 /**
7633  * A simple Maybe type, representing an object which may or may not have a
7634  * value, see https://hackage.haskell.org/package/base/docs/Data-Maybe.html.
7635  *
7636  * If an API method returns a Maybe<>, the API method can potentially fail
7637  * either because an exception is thrown, or because an exception is pending,
7638  * e.g. because a previous API call threw an exception that hasn't been caught
7639  * yet, or because a TerminateExecution exception was thrown. In that case, a
7640  * "Nothing" value is returned.
7641  */
7642 template <class T>
7643 class Maybe {
7644  public:
IsNothing()7645   V8_INLINE bool IsNothing() const { return !has_value_; }
IsJust()7646   V8_INLINE bool IsJust() const { return has_value_; }
7647 
7648   // Will crash if the Maybe<> is nothing.
ToChecked()7649   V8_INLINE T ToChecked() const { return FromJust(); }
7650 
To(T * out)7651   V8_WARN_UNUSED_RESULT V8_INLINE bool To(T* out) const {
7652     if (V8_LIKELY(IsJust())) *out = value_;
7653     return IsJust();
7654   }
7655 
7656   // Will crash if the Maybe<> is nothing.
FromJust()7657   V8_INLINE T FromJust() const {
7658     if (V8_UNLIKELY(!IsJust())) V8::FromJustIsNothing();
7659     return value_;
7660   }
7661 
FromMaybe(const T & default_value)7662   V8_INLINE T FromMaybe(const T& default_value) const {
7663     return has_value_ ? value_ : default_value;
7664   }
7665 
7666   V8_INLINE bool operator==(const Maybe& other) const {
7667     return (IsJust() == other.IsJust()) &&
7668            (!IsJust() || FromJust() == other.FromJust());
7669   }
7670 
7671   V8_INLINE bool operator!=(const Maybe& other) const {
7672     return !operator==(other);
7673   }
7674 
7675  private:
Maybe()7676   Maybe() : has_value_(false) {}
Maybe(const T & t)7677   explicit Maybe(const T& t) : has_value_(true), value_(t) {}
7678 
7679   bool has_value_;
7680   T value_;
7681 
7682   template <class U>
7683   friend Maybe<U> Nothing();
7684   template <class U>
7685   friend Maybe<U> Just(const U& u);
7686 };
7687 
7688 
7689 template <class T>
Nothing()7690 inline Maybe<T> Nothing() {
7691   return Maybe<T>();
7692 }
7693 
7694 
7695 template <class T>
Just(const T & t)7696 inline Maybe<T> Just(const T& t) {
7697   return Maybe<T>(t);
7698 }
7699 
7700 
7701 /**
7702  * An external exception handler.
7703  */
7704 class V8_EXPORT TryCatch {
7705  public:
7706   /**
7707    * Creates a new try/catch block and registers it with v8.  Note that
7708    * all TryCatch blocks should be stack allocated because the memory
7709    * location itself is compared against JavaScript try/catch blocks.
7710    */
7711   V8_DEPRECATED("Use isolate version", TryCatch());
7712 
7713   /**
7714    * Creates a new try/catch block and registers it with v8.  Note that
7715    * all TryCatch blocks should be stack allocated because the memory
7716    * location itself is compared against JavaScript try/catch blocks.
7717    */
7718   TryCatch(Isolate* isolate);
7719 
7720   /**
7721    * Unregisters and deletes this try/catch block.
7722    */
7723   ~TryCatch();
7724 
7725   /**
7726    * Returns true if an exception has been caught by this try/catch block.
7727    */
7728   bool HasCaught() const;
7729 
7730   /**
7731    * For certain types of exceptions, it makes no sense to continue execution.
7732    *
7733    * If CanContinue returns false, the correct action is to perform any C++
7734    * cleanup needed and then return.  If CanContinue returns false and
7735    * HasTerminated returns true, it is possible to call
7736    * CancelTerminateExecution in order to continue calling into the engine.
7737    */
7738   bool CanContinue() const;
7739 
7740   /**
7741    * Returns true if an exception has been caught due to script execution
7742    * being terminated.
7743    *
7744    * There is no JavaScript representation of an execution termination
7745    * exception.  Such exceptions are thrown when the TerminateExecution
7746    * methods are called to terminate a long-running script.
7747    *
7748    * If such an exception has been thrown, HasTerminated will return true,
7749    * indicating that it is possible to call CancelTerminateExecution in order
7750    * to continue calling into the engine.
7751    */
7752   bool HasTerminated() const;
7753 
7754   /**
7755    * Throws the exception caught by this TryCatch in a way that avoids
7756    * it being caught again by this same TryCatch.  As with ThrowException
7757    * it is illegal to execute any JavaScript operations after calling
7758    * ReThrow; the caller must return immediately to where the exception
7759    * is caught.
7760    */
7761   Local<Value> ReThrow();
7762 
7763   /**
7764    * Returns the exception caught by this try/catch block.  If no exception has
7765    * been caught an empty handle is returned.
7766    *
7767    * The returned handle is valid until this TryCatch block has been destroyed.
7768    */
7769   Local<Value> Exception() const;
7770 
7771   /**
7772    * Returns the .stack property of the thrown object.  If no .stack
7773    * property is present an empty handle is returned.
7774    */
7775   V8_DEPRECATE_SOON("Use maybe version.", Local<Value> StackTrace() const);
7776   V8_WARN_UNUSED_RESULT MaybeLocal<Value> StackTrace(
7777       Local<Context> context) const;
7778 
7779   /**
7780    * Returns the message associated with this exception.  If there is
7781    * no message associated an empty handle is returned.
7782    *
7783    * The returned handle is valid until this TryCatch block has been
7784    * destroyed.
7785    */
7786   Local<v8::Message> Message() const;
7787 
7788   /**
7789    * Clears any exceptions that may have been caught by this try/catch block.
7790    * After this method has been called, HasCaught() will return false. Cancels
7791    * the scheduled exception if it is caught and ReThrow() is not called before.
7792    *
7793    * It is not necessary to clear a try/catch block before using it again; if
7794    * another exception is thrown the previously caught exception will just be
7795    * overwritten.  However, it is often a good idea since it makes it easier
7796    * to determine which operation threw a given exception.
7797    */
7798   void Reset();
7799 
7800   /**
7801    * Set verbosity of the external exception handler.
7802    *
7803    * By default, exceptions that are caught by an external exception
7804    * handler are not reported.  Call SetVerbose with true on an
7805    * external exception handler to have exceptions caught by the
7806    * handler reported as if they were not caught.
7807    */
7808   void SetVerbose(bool value);
7809 
7810   /**
7811    * Set whether or not this TryCatch should capture a Message object
7812    * which holds source information about where the exception
7813    * occurred.  True by default.
7814    */
7815   void SetCaptureMessage(bool value);
7816 
7817   /**
7818    * There are cases when the raw address of C++ TryCatch object cannot be
7819    * used for comparisons with addresses into the JS stack. The cases are:
7820    * 1) ARM, ARM64 and MIPS simulators which have separate JS stack.
7821    * 2) Address sanitizer allocates local C++ object in the heap when
7822    *    UseAfterReturn mode is enabled.
7823    * This method returns address that can be used for comparisons with
7824    * addresses into the JS stack. When neither simulator nor ASAN's
7825    * UseAfterReturn is enabled, then the address returned will be the address
7826    * of the C++ try catch handler itself.
7827    */
JSStackComparableAddress(v8::TryCatch * handler)7828   static void* JSStackComparableAddress(v8::TryCatch* handler) {
7829     if (handler == NULL) return NULL;
7830     return handler->js_stack_comparable_address_;
7831   }
7832 
7833   TryCatch(const TryCatch&) = delete;
7834   void operator=(const TryCatch&) = delete;
7835   void* operator new(size_t size) = delete;
7836   void operator delete(void*, size_t) = delete;
7837 
7838  private:
7839   void ResetInternal();
7840 
7841   v8::internal::Isolate* isolate_;
7842   v8::TryCatch* next_;
7843   void* exception_;
7844   void* message_obj_;
7845   void* js_stack_comparable_address_;
7846   bool is_verbose_ : 1;
7847   bool can_continue_ : 1;
7848   bool capture_message_ : 1;
7849   bool rethrow_ : 1;
7850   bool has_terminated_ : 1;
7851 
7852   friend class v8::internal::Isolate;
7853 };
7854 
7855 
7856 // --- Context ---
7857 
7858 
7859 /**
7860  * A container for extension names.
7861  */
7862 class V8_EXPORT ExtensionConfiguration {
7863  public:
ExtensionConfiguration()7864   ExtensionConfiguration() : name_count_(0), names_(NULL) { }
ExtensionConfiguration(int name_count,const char * names[])7865   ExtensionConfiguration(int name_count, const char* names[])
7866       : name_count_(name_count), names_(names) { }
7867 
begin()7868   const char** begin() const { return &names_[0]; }
end()7869   const char** end()  const { return &names_[name_count_]; }
7870 
7871  private:
7872   const int name_count_;
7873   const char** names_;
7874 };
7875 
7876 /**
7877  * A sandboxed execution context with its own set of built-in objects
7878  * and functions.
7879  */
7880 class V8_EXPORT Context {
7881  public:
7882   /**
7883    * Returns the global proxy object.
7884    *
7885    * Global proxy object is a thin wrapper whose prototype points to actual
7886    * context's global object with the properties like Object, etc. This is done
7887    * that way for security reasons (for more details see
7888    * https://wiki.mozilla.org/Gecko:SplitWindow).
7889    *
7890    * Please note that changes to global proxy object prototype most probably
7891    * would break VM---v8 expects only global object as a prototype of global
7892    * proxy object.
7893    */
7894   Local<Object> Global();
7895 
7896   /**
7897    * Detaches the global object from its context before
7898    * the global object can be reused to create a new context.
7899    */
7900   void DetachGlobal();
7901 
7902   /**
7903    * Creates a new context and returns a handle to the newly allocated
7904    * context.
7905    *
7906    * \param isolate The isolate in which to create the context.
7907    *
7908    * \param extensions An optional extension configuration containing
7909    * the extensions to be installed in the newly created context.
7910    *
7911    * \param global_template An optional object template from which the
7912    * global object for the newly created context will be created.
7913    *
7914    * \param global_object An optional global object to be reused for
7915    * the newly created context. This global object must have been
7916    * created by a previous call to Context::New with the same global
7917    * template. The state of the global object will be completely reset
7918    * and only object identify will remain.
7919    */
7920   static Local<Context> New(
7921       Isolate* isolate, ExtensionConfiguration* extensions = NULL,
7922       MaybeLocal<ObjectTemplate> global_template = MaybeLocal<ObjectTemplate>(),
7923       MaybeLocal<Value> global_object = MaybeLocal<Value>());
7924 
7925   static MaybeLocal<Context> FromSnapshot(
7926       Isolate* isolate, size_t context_snapshot_index,
7927       ExtensionConfiguration* extensions = nullptr,
7928       MaybeLocal<ObjectTemplate> global_template = MaybeLocal<ObjectTemplate>(),
7929       MaybeLocal<Value> global_object = MaybeLocal<Value>());
7930 
7931   /**
7932    * Returns an global object that isn't backed by an actual context.
7933    *
7934    * The global template needs to have access checks with handlers installed.
7935    * If an existing global object is passed in, the global object is detached
7936    * from its context.
7937    *
7938    * Note that this is different from a detached context where all accesses to
7939    * the global proxy will fail. Instead, the access check handlers are invoked.
7940    *
7941    * It is also not possible to detach an object returned by this method.
7942    * Instead, the access check handlers need to return nothing to achieve the
7943    * same effect.
7944    *
7945    * It is possible, however, to create a new context from the global object
7946    * returned by this method.
7947    */
7948   static MaybeLocal<Object> NewRemoteContext(
7949       Isolate* isolate, Local<ObjectTemplate> global_template,
7950       MaybeLocal<Value> global_object = MaybeLocal<Value>());
7951 
7952   /**
7953    * Sets the security token for the context.  To access an object in
7954    * another context, the security tokens must match.
7955    */
7956   void SetSecurityToken(Local<Value> token);
7957 
7958   /** Restores the security token to the default value. */
7959   void UseDefaultSecurityToken();
7960 
7961   /** Returns the security token of this context.*/
7962   Local<Value> GetSecurityToken();
7963 
7964   /**
7965    * Enter this context.  After entering a context, all code compiled
7966    * and run is compiled and run in this context.  If another context
7967    * is already entered, this old context is saved so it can be
7968    * restored when the new context is exited.
7969    */
7970   void Enter();
7971 
7972   /**
7973    * Exit this context.  Exiting the current context restores the
7974    * context that was in place when entering the current context.
7975    */
7976   void Exit();
7977 
7978   /** Returns an isolate associated with a current context. */
7979   v8::Isolate* GetIsolate();
7980 
7981   /**
7982    * The field at kDebugIdIndex is reserved for V8 debugger implementation.
7983    * The value is propagated to the scripts compiled in given Context and
7984    * can be used for filtering scripts.
7985    */
7986   enum EmbedderDataFields { kDebugIdIndex = 0 };
7987 
7988   /**
7989    * Gets the embedder data with the given index, which must have been set by a
7990    * previous call to SetEmbedderData with the same index. Note that index 0
7991    * currently has a special meaning for Chrome's debugger.
7992    */
7993   V8_INLINE Local<Value> GetEmbedderData(int index);
7994 
7995   /**
7996    * Gets the binding object used by V8 extras. Extra natives get a reference
7997    * to this object and can use it to "export" functionality by adding
7998    * properties. Extra natives can also "import" functionality by accessing
7999    * properties added by the embedder using the V8 API.
8000    */
8001   Local<Object> GetExtrasBindingObject();
8002 
8003   /**
8004    * Sets the embedder data with the given index, growing the data as
8005    * needed. Note that index 0 currently has a special meaning for Chrome's
8006    * debugger.
8007    */
8008   void SetEmbedderData(int index, Local<Value> value);
8009 
8010   /**
8011    * Gets a 2-byte-aligned native pointer from the embedder data with the given
8012    * index, which must have been set by a previous call to
8013    * SetAlignedPointerInEmbedderData with the same index. Note that index 0
8014    * currently has a special meaning for Chrome's debugger.
8015    */
8016   V8_INLINE void* GetAlignedPointerFromEmbedderData(int index);
8017 
8018   /**
8019    * Sets a 2-byte-aligned native pointer in the embedder data with the given
8020    * index, growing the data as needed. Note that index 0 currently has a
8021    * special meaning for Chrome's debugger.
8022    */
8023   void SetAlignedPointerInEmbedderData(int index, void* value);
8024 
8025   /**
8026    * Control whether code generation from strings is allowed. Calling
8027    * this method with false will disable 'eval' and the 'Function'
8028    * constructor for code running in this context. If 'eval' or the
8029    * 'Function' constructor are used an exception will be thrown.
8030    *
8031    * If code generation from strings is not allowed the
8032    * V8::AllowCodeGenerationFromStrings callback will be invoked if
8033    * set before blocking the call to 'eval' or the 'Function'
8034    * constructor. If that callback returns true, the call will be
8035    * allowed, otherwise an exception will be thrown. If no callback is
8036    * set an exception will be thrown.
8037    */
8038   void AllowCodeGenerationFromStrings(bool allow);
8039 
8040   /**
8041    * Returns true if code generation from strings is allowed for the context.
8042    * For more details see AllowCodeGenerationFromStrings(bool) documentation.
8043    */
8044   bool IsCodeGenerationFromStringsAllowed();
8045 
8046   /**
8047    * Sets the error description for the exception that is thrown when
8048    * code generation from strings is not allowed and 'eval' or the 'Function'
8049    * constructor are called.
8050    */
8051   void SetErrorMessageForCodeGenerationFromStrings(Local<String> message);
8052 
8053   /**
8054    * Estimate the memory in bytes retained by this context.
8055    */
8056   size_t EstimatedSize();
8057 
8058   /**
8059    * Stack-allocated class which sets the execution context for all
8060    * operations executed within a local scope.
8061    */
8062   class Scope {
8063    public:
Scope(Local<Context> context)8064     explicit V8_INLINE Scope(Local<Context> context) : context_(context) {
8065       context_->Enter();
8066     }
~Scope()8067     V8_INLINE ~Scope() { context_->Exit(); }
8068 
8069    private:
8070     Local<Context> context_;
8071   };
8072 
8073  private:
8074   friend class Value;
8075   friend class Script;
8076   friend class Object;
8077   friend class Function;
8078 
8079   Local<Value> SlowGetEmbedderData(int index);
8080   void* SlowGetAlignedPointerFromEmbedderData(int index);
8081 };
8082 
8083 
8084 /**
8085  * Multiple threads in V8 are allowed, but only one thread at a time is allowed
8086  * to use any given V8 isolate, see the comments in the Isolate class. The
8087  * definition of 'using a V8 isolate' includes accessing handles or holding onto
8088  * object pointers obtained from V8 handles while in the particular V8 isolate.
8089  * It is up to the user of V8 to ensure, perhaps with locking, that this
8090  * constraint is not violated. In addition to any other synchronization
8091  * mechanism that may be used, the v8::Locker and v8::Unlocker classes must be
8092  * used to signal thread switches to V8.
8093  *
8094  * v8::Locker is a scoped lock object. While it's active, i.e. between its
8095  * construction and destruction, the current thread is allowed to use the locked
8096  * isolate. V8 guarantees that an isolate can be locked by at most one thread at
8097  * any time. In other words, the scope of a v8::Locker is a critical section.
8098  *
8099  * Sample usage:
8100 * \code
8101  * ...
8102  * {
8103  *   v8::Locker locker(isolate);
8104  *   v8::Isolate::Scope isolate_scope(isolate);
8105  *   ...
8106  *   // Code using V8 and isolate goes here.
8107  *   ...
8108  * } // Destructor called here
8109  * \endcode
8110  *
8111  * If you wish to stop using V8 in a thread A you can do this either by
8112  * destroying the v8::Locker object as above or by constructing a v8::Unlocker
8113  * object:
8114  *
8115  * \code
8116  * {
8117  *   isolate->Exit();
8118  *   v8::Unlocker unlocker(isolate);
8119  *   ...
8120  *   // Code not using V8 goes here while V8 can run in another thread.
8121  *   ...
8122  * } // Destructor called here.
8123  * isolate->Enter();
8124  * \endcode
8125  *
8126  * The Unlocker object is intended for use in a long-running callback from V8,
8127  * where you want to release the V8 lock for other threads to use.
8128  *
8129  * The v8::Locker is a recursive lock, i.e. you can lock more than once in a
8130  * given thread. This can be useful if you have code that can be called either
8131  * from code that holds the lock or from code that does not. The Unlocker is
8132  * not recursive so you can not have several Unlockers on the stack at once, and
8133  * you can not use an Unlocker in a thread that is not inside a Locker's scope.
8134  *
8135  * An unlocker will unlock several lockers if it has to and reinstate the
8136  * correct depth of locking on its destruction, e.g.:
8137  *
8138  * \code
8139  * // V8 not locked.
8140  * {
8141  *   v8::Locker locker(isolate);
8142  *   Isolate::Scope isolate_scope(isolate);
8143  *   // V8 locked.
8144  *   {
8145  *     v8::Locker another_locker(isolate);
8146  *     // V8 still locked (2 levels).
8147  *     {
8148  *       isolate->Exit();
8149  *       v8::Unlocker unlocker(isolate);
8150  *       // V8 not locked.
8151  *     }
8152  *     isolate->Enter();
8153  *     // V8 locked again (2 levels).
8154  *   }
8155  *   // V8 still locked (1 level).
8156  * }
8157  * // V8 Now no longer locked.
8158  * \endcode
8159  */
8160 class V8_EXPORT Unlocker {
8161  public:
8162   /**
8163    * Initialize Unlocker for a given Isolate.
8164    */
Unlocker(Isolate * isolate)8165   V8_INLINE explicit Unlocker(Isolate* isolate) { Initialize(isolate); }
8166 
8167   ~Unlocker();
8168  private:
8169   void Initialize(Isolate* isolate);
8170 
8171   internal::Isolate* isolate_;
8172 };
8173 
8174 
8175 class V8_EXPORT Locker {
8176  public:
8177   /**
8178    * Initialize Locker for a given Isolate.
8179    */
Locker(Isolate * isolate)8180   V8_INLINE explicit Locker(Isolate* isolate) { Initialize(isolate); }
8181 
8182   ~Locker();
8183 
8184   /**
8185    * Returns whether or not the locker for a given isolate, is locked by the
8186    * current thread.
8187    */
8188   static bool IsLocked(Isolate* isolate);
8189 
8190   /**
8191    * Returns whether v8::Locker is being used by this V8 instance.
8192    */
8193   static bool IsActive();
8194 
8195   // Disallow copying and assigning.
8196   Locker(const Locker&) = delete;
8197   void operator=(const Locker&) = delete;
8198 
8199  private:
8200   void Initialize(Isolate* isolate);
8201 
8202   bool has_lock_;
8203   bool top_level_;
8204   internal::Isolate* isolate_;
8205 };
8206 
8207 
8208 // --- Implementation ---
8209 
8210 
8211 namespace internal {
8212 
8213 const int kApiPointerSize = sizeof(void*);  // NOLINT
8214 const int kApiIntSize = sizeof(int);  // NOLINT
8215 const int kApiInt64Size = sizeof(int64_t);  // NOLINT
8216 
8217 // Tag information for HeapObject.
8218 const int kHeapObjectTag = 1;
8219 const int kHeapObjectTagSize = 2;
8220 const intptr_t kHeapObjectTagMask = (1 << kHeapObjectTagSize) - 1;
8221 
8222 // Tag information for Smi.
8223 const int kSmiTag = 0;
8224 const int kSmiTagSize = 1;
8225 const intptr_t kSmiTagMask = (1 << kSmiTagSize) - 1;
8226 
8227 template <size_t ptr_size> struct SmiTagging;
8228 
8229 template<int kSmiShiftSize>
IntToSmi(int value)8230 V8_INLINE internal::Object* IntToSmi(int value) {
8231   int smi_shift_bits = kSmiTagSize + kSmiShiftSize;
8232   uintptr_t tagged_value =
8233       (static_cast<uintptr_t>(value) << smi_shift_bits) | kSmiTag;
8234   return reinterpret_cast<internal::Object*>(tagged_value);
8235 }
8236 
8237 // Smi constants for 32-bit systems.
8238 template <> struct SmiTagging<4> {
8239   enum { kSmiShiftSize = 0, kSmiValueSize = 31 };
8240   static int SmiShiftSize() { return kSmiShiftSize; }
8241   static int SmiValueSize() { return kSmiValueSize; }
8242   V8_INLINE static int SmiToInt(const internal::Object* value) {
8243     int shift_bits = kSmiTagSize + kSmiShiftSize;
8244     // Throw away top 32 bits and shift down (requires >> to be sign extending).
8245     return static_cast<int>(reinterpret_cast<intptr_t>(value)) >> shift_bits;
8246   }
8247   V8_INLINE static internal::Object* IntToSmi(int value) {
8248     return internal::IntToSmi<kSmiShiftSize>(value);
8249   }
8250   V8_INLINE static bool IsValidSmi(intptr_t value) {
8251     // To be representable as an tagged small integer, the two
8252     // most-significant bits of 'value' must be either 00 or 11 due to
8253     // sign-extension. To check this we add 01 to the two
8254     // most-significant bits, and check if the most-significant bit is 0
8255     //
8256     // CAUTION: The original code below:
8257     // bool result = ((value + 0x40000000) & 0x80000000) == 0;
8258     // may lead to incorrect results according to the C language spec, and
8259     // in fact doesn't work correctly with gcc4.1.1 in some cases: The
8260     // compiler may produce undefined results in case of signed integer
8261     // overflow. The computation must be done w/ unsigned ints.
8262     return static_cast<uintptr_t>(value + 0x40000000U) < 0x80000000U;
8263   }
8264 };
8265 
8266 // Smi constants for 64-bit systems.
8267 template <> struct SmiTagging<8> {
8268   enum { kSmiShiftSize = 31, kSmiValueSize = 32 };
8269   static int SmiShiftSize() { return kSmiShiftSize; }
8270   static int SmiValueSize() { return kSmiValueSize; }
8271   V8_INLINE static int SmiToInt(const internal::Object* value) {
8272     int shift_bits = kSmiTagSize + kSmiShiftSize;
8273     // Shift down and throw away top 32 bits.
8274     return static_cast<int>(reinterpret_cast<intptr_t>(value) >> shift_bits);
8275   }
8276   V8_INLINE static internal::Object* IntToSmi(int value) {
8277     return internal::IntToSmi<kSmiShiftSize>(value);
8278   }
8279   V8_INLINE static bool IsValidSmi(intptr_t value) {
8280     // To be representable as a long smi, the value must be a 32-bit integer.
8281     return (value == static_cast<int32_t>(value));
8282   }
8283 };
8284 
8285 typedef SmiTagging<kApiPointerSize> PlatformSmiTagging;
8286 const int kSmiShiftSize = PlatformSmiTagging::kSmiShiftSize;
8287 const int kSmiValueSize = PlatformSmiTagging::kSmiValueSize;
8288 V8_INLINE static bool SmiValuesAre31Bits() { return kSmiValueSize == 31; }
8289 V8_INLINE static bool SmiValuesAre32Bits() { return kSmiValueSize == 32; }
8290 
8291 /**
8292  * This class exports constants and functionality from within v8 that
8293  * is necessary to implement inline functions in the v8 api.  Don't
8294  * depend on functions and constants defined here.
8295  */
8296 class Internals {
8297  public:
8298   // These values match non-compiler-dependent values defined within
8299   // the implementation of v8.
8300   static const int kHeapObjectMapOffset = 0;
8301   static const int kMapInstanceTypeAndBitFieldOffset =
8302       1 * kApiPointerSize + kApiIntSize;
8303   static const int kStringResourceOffset = 3 * kApiPointerSize;
8304 
8305   static const int kOddballKindOffset = 4 * kApiPointerSize + sizeof(double);
8306   static const int kForeignAddressOffset = kApiPointerSize;
8307   static const int kJSObjectHeaderSize = 3 * kApiPointerSize;
8308   static const int kFixedArrayHeaderSize = 2 * kApiPointerSize;
8309   static const int kContextHeaderSize = 2 * kApiPointerSize;
8310   static const int kContextEmbedderDataIndex = 5;
8311   static const int kFullStringRepresentationMask = 0x07;
8312   static const int kStringEncodingMask = 0x4;
8313   static const int kExternalTwoByteRepresentationTag = 0x02;
8314   static const int kExternalOneByteRepresentationTag = 0x06;
8315 
8316   static const int kIsolateEmbedderDataOffset = 0 * kApiPointerSize;
8317   static const int kExternalMemoryOffset = 4 * kApiPointerSize;
8318   static const int kExternalMemoryLimitOffset =
8319       kExternalMemoryOffset + kApiInt64Size;
8320   static const int kIsolateRootsOffset = kExternalMemoryLimitOffset +
8321                                          kApiInt64Size + kApiInt64Size +
8322                                          kApiPointerSize + kApiPointerSize;
8323   static const int kUndefinedValueRootIndex = 4;
8324   static const int kTheHoleValueRootIndex = 5;
8325   static const int kNullValueRootIndex = 6;
8326   static const int kTrueValueRootIndex = 7;
8327   static const int kFalseValueRootIndex = 8;
8328   static const int kEmptyStringRootIndex = 9;
8329 
8330   static const int kNodeClassIdOffset = 1 * kApiPointerSize;
8331   static const int kNodeFlagsOffset = 1 * kApiPointerSize + 3;
8332   static const int kNodeStateMask = 0x7;
8333   static const int kNodeStateIsWeakValue = 2;
8334   static const int kNodeStateIsPendingValue = 3;
8335   static const int kNodeStateIsNearDeathValue = 4;
8336   static const int kNodeIsIndependentShift = 3;
8337   static const int kNodeIsActiveShift = 4;
8338 
8339   static const int kJSObjectType = 0xbc;
8340   static const int kJSApiObjectType = 0xbb;
8341   static const int kFirstNonstringType = 0x80;
8342   static const int kOddballType = 0x83;
8343   static const int kForeignType = 0x87;
8344 
8345   static const int kUndefinedOddballKind = 5;
8346   static const int kNullOddballKind = 3;
8347 
8348   static const uint32_t kNumIsolateDataSlots = 4;
8349 
8350   V8_EXPORT static void CheckInitializedImpl(v8::Isolate* isolate);
8351   V8_INLINE static void CheckInitialized(v8::Isolate* isolate) {
8352 #ifdef V8_ENABLE_CHECKS
8353     CheckInitializedImpl(isolate);
8354 #endif
8355   }
8356 
8357   V8_INLINE static bool HasHeapObjectTag(const internal::Object* value) {
8358     return ((reinterpret_cast<intptr_t>(value) & kHeapObjectTagMask) ==
8359             kHeapObjectTag);
8360   }
8361 
8362   V8_INLINE static int SmiValue(const internal::Object* value) {
8363     return PlatformSmiTagging::SmiToInt(value);
8364   }
8365 
8366   V8_INLINE static internal::Object* IntToSmi(int value) {
8367     return PlatformSmiTagging::IntToSmi(value);
8368   }
8369 
8370   V8_INLINE static bool IsValidSmi(intptr_t value) {
8371     return PlatformSmiTagging::IsValidSmi(value);
8372   }
8373 
8374   V8_INLINE static int GetInstanceType(const internal::Object* obj) {
8375     typedef internal::Object O;
8376     O* map = ReadField<O*>(obj, kHeapObjectMapOffset);
8377     // Map::InstanceType is defined so that it will always be loaded into
8378     // the LS 8 bits of one 16-bit word, regardless of endianess.
8379     return ReadField<uint16_t>(map, kMapInstanceTypeAndBitFieldOffset) & 0xff;
8380   }
8381 
8382   V8_INLINE static int GetOddballKind(const internal::Object* obj) {
8383     typedef internal::Object O;
8384     return SmiValue(ReadField<O*>(obj, kOddballKindOffset));
8385   }
8386 
8387   V8_INLINE static bool IsExternalTwoByteString(int instance_type) {
8388     int representation = (instance_type & kFullStringRepresentationMask);
8389     return representation == kExternalTwoByteRepresentationTag;
8390   }
8391 
8392   V8_INLINE static uint8_t GetNodeFlag(internal::Object** obj, int shift) {
8393       uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
8394       return *addr & static_cast<uint8_t>(1U << shift);
8395   }
8396 
8397   V8_INLINE static void UpdateNodeFlag(internal::Object** obj,
8398                                        bool value, int shift) {
8399       uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
8400       uint8_t mask = static_cast<uint8_t>(1U << shift);
8401       *addr = static_cast<uint8_t>((*addr & ~mask) | (value << shift));
8402   }
8403 
8404   V8_INLINE static uint8_t GetNodeState(internal::Object** obj) {
8405     uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
8406     return *addr & kNodeStateMask;
8407   }
8408 
8409   V8_INLINE static void UpdateNodeState(internal::Object** obj,
8410                                         uint8_t value) {
8411     uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
8412     *addr = static_cast<uint8_t>((*addr & ~kNodeStateMask) | value);
8413   }
8414 
8415   V8_INLINE static void SetEmbedderData(v8::Isolate* isolate,
8416                                         uint32_t slot,
8417                                         void* data) {
8418     uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) +
8419                     kIsolateEmbedderDataOffset + slot * kApiPointerSize;
8420     *reinterpret_cast<void**>(addr) = data;
8421   }
8422 
8423   V8_INLINE static void* GetEmbedderData(const v8::Isolate* isolate,
8424                                          uint32_t slot) {
8425     const uint8_t* addr = reinterpret_cast<const uint8_t*>(isolate) +
8426         kIsolateEmbedderDataOffset + slot * kApiPointerSize;
8427     return *reinterpret_cast<void* const*>(addr);
8428   }
8429 
8430   V8_INLINE static internal::Object** GetRoot(v8::Isolate* isolate,
8431                                               int index) {
8432     uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) + kIsolateRootsOffset;
8433     return reinterpret_cast<internal::Object**>(addr + index * kApiPointerSize);
8434   }
8435 
8436   template <typename T>
8437   V8_INLINE static T ReadField(const internal::Object* ptr, int offset) {
8438     const uint8_t* addr =
8439         reinterpret_cast<const uint8_t*>(ptr) + offset - kHeapObjectTag;
8440     return *reinterpret_cast<const T*>(addr);
8441   }
8442 
8443   template <typename T>
8444   V8_INLINE static T ReadEmbedderData(const v8::Context* context, int index) {
8445     typedef internal::Object O;
8446     typedef internal::Internals I;
8447     O* ctx = *reinterpret_cast<O* const*>(context);
8448     int embedder_data_offset = I::kContextHeaderSize +
8449         (internal::kApiPointerSize * I::kContextEmbedderDataIndex);
8450     O* embedder_data = I::ReadField<O*>(ctx, embedder_data_offset);
8451     int value_offset =
8452         I::kFixedArrayHeaderSize + (internal::kApiPointerSize * index);
8453     return I::ReadField<T>(embedder_data, value_offset);
8454   }
8455 };
8456 
8457 }  // namespace internal
8458 
8459 
8460 template <class T>
8461 Local<T> Local<T>::New(Isolate* isolate, Local<T> that) {
8462   return New(isolate, that.val_);
8463 }
8464 
8465 template <class T>
8466 Local<T> Local<T>::New(Isolate* isolate, const PersistentBase<T>& that) {
8467   return New(isolate, that.val_);
8468 }
8469 
8470 
8471 template <class T>
8472 Local<T> Local<T>::New(Isolate* isolate, T* that) {
8473   if (that == NULL) return Local<T>();
8474   T* that_ptr = that;
8475   internal::Object** p = reinterpret_cast<internal::Object**>(that_ptr);
8476   return Local<T>(reinterpret_cast<T*>(HandleScope::CreateHandle(
8477       reinterpret_cast<internal::Isolate*>(isolate), *p)));
8478 }
8479 
8480 
8481 template<class T>
8482 template<class S>
8483 void Eternal<T>::Set(Isolate* isolate, Local<S> handle) {
8484   TYPE_CHECK(T, S);
8485   V8::Eternalize(isolate, reinterpret_cast<Value*>(*handle), &this->index_);
8486 }
8487 
8488 
8489 template<class T>
8490 Local<T> Eternal<T>::Get(Isolate* isolate) {
8491   return Local<T>(reinterpret_cast<T*>(*V8::GetEternal(isolate, index_)));
8492 }
8493 
8494 
8495 template <class T>
8496 Local<T> MaybeLocal<T>::ToLocalChecked() {
8497   if (V8_UNLIKELY(val_ == nullptr)) V8::ToLocalEmpty();
8498   return Local<T>(val_);
8499 }
8500 
8501 
8502 template <class T>
8503 void* WeakCallbackInfo<T>::GetInternalField(int index) const {
8504 #ifdef V8_ENABLE_CHECKS
8505   if (index < 0 || index >= kInternalFieldsInWeakCallback) {
8506     V8::InternalFieldOutOfBounds(index);
8507   }
8508 #endif
8509   return internal_fields_[index];
8510 }
8511 
8512 
8513 template <class T>
8514 T* PersistentBase<T>::New(Isolate* isolate, T* that) {
8515   if (that == NULL) return NULL;
8516   internal::Object** p = reinterpret_cast<internal::Object**>(that);
8517   return reinterpret_cast<T*>(
8518       V8::GlobalizeReference(reinterpret_cast<internal::Isolate*>(isolate),
8519                              p));
8520 }
8521 
8522 
8523 template <class T, class M>
8524 template <class S, class M2>
8525 void Persistent<T, M>::Copy(const Persistent<S, M2>& that) {
8526   TYPE_CHECK(T, S);
8527   this->Reset();
8528   if (that.IsEmpty()) return;
8529   internal::Object** p = reinterpret_cast<internal::Object**>(that.val_);
8530   this->val_ = reinterpret_cast<T*>(V8::CopyPersistent(p));
8531   M::Copy(that, this);
8532 }
8533 
8534 
8535 template <class T>
8536 bool PersistentBase<T>::IsIndependent() const {
8537   typedef internal::Internals I;
8538   if (this->IsEmpty()) return false;
8539   return I::GetNodeFlag(reinterpret_cast<internal::Object**>(this->val_),
8540                         I::kNodeIsIndependentShift);
8541 }
8542 
8543 
8544 template <class T>
8545 bool PersistentBase<T>::IsNearDeath() const {
8546   typedef internal::Internals I;
8547   if (this->IsEmpty()) return false;
8548   uint8_t node_state =
8549       I::GetNodeState(reinterpret_cast<internal::Object**>(this->val_));
8550   return node_state == I::kNodeStateIsNearDeathValue ||
8551       node_state == I::kNodeStateIsPendingValue;
8552 }
8553 
8554 
8555 template <class T>
8556 bool PersistentBase<T>::IsWeak() const {
8557   typedef internal::Internals I;
8558   if (this->IsEmpty()) return false;
8559   return I::GetNodeState(reinterpret_cast<internal::Object**>(this->val_)) ==
8560       I::kNodeStateIsWeakValue;
8561 }
8562 
8563 
8564 template <class T>
8565 void PersistentBase<T>::Reset() {
8566   if (this->IsEmpty()) return;
8567   V8::DisposeGlobal(reinterpret_cast<internal::Object**>(this->val_));
8568   val_ = 0;
8569 }
8570 
8571 
8572 template <class T>
8573 template <class S>
8574 void PersistentBase<T>::Reset(Isolate* isolate, const Local<S>& other) {
8575   TYPE_CHECK(T, S);
8576   Reset();
8577   if (other.IsEmpty()) return;
8578   this->val_ = New(isolate, other.val_);
8579 }
8580 
8581 
8582 template <class T>
8583 template <class S>
8584 void PersistentBase<T>::Reset(Isolate* isolate,
8585                               const PersistentBase<S>& other) {
8586   TYPE_CHECK(T, S);
8587   Reset();
8588   if (other.IsEmpty()) return;
8589   this->val_ = New(isolate, other.val_);
8590 }
8591 
8592 
8593 template <class T>
8594 template <typename P>
8595 V8_INLINE void PersistentBase<T>::SetWeak(
8596     P* parameter, typename WeakCallbackInfo<P>::Callback callback,
8597     WeakCallbackType type) {
8598   typedef typename WeakCallbackInfo<void>::Callback Callback;
8599   V8::MakeWeak(reinterpret_cast<internal::Object**>(this->val_), parameter,
8600                reinterpret_cast<Callback>(callback), type);
8601 }
8602 
8603 template <class T>
8604 void PersistentBase<T>::SetWeak() {
8605   V8::MakeWeak(reinterpret_cast<internal::Object***>(&this->val_));
8606 }
8607 
8608 template <class T>
8609 template <typename P>
8610 P* PersistentBase<T>::ClearWeak() {
8611   return reinterpret_cast<P*>(
8612     V8::ClearWeak(reinterpret_cast<internal::Object**>(this->val_)));
8613 }
8614 
8615 template <class T>
8616 void PersistentBase<T>::RegisterExternalReference(Isolate* isolate) const {
8617   if (IsEmpty()) return;
8618   V8::RegisterExternallyReferencedObject(
8619       reinterpret_cast<internal::Object**>(this->val_),
8620       reinterpret_cast<internal::Isolate*>(isolate));
8621 }
8622 
8623 template <class T>
8624 void PersistentBase<T>::MarkIndependent() {
8625   typedef internal::Internals I;
8626   if (this->IsEmpty()) return;
8627   I::UpdateNodeFlag(reinterpret_cast<internal::Object**>(this->val_),
8628                     true,
8629                     I::kNodeIsIndependentShift);
8630 }
8631 
8632 template <class T>
8633 void PersistentBase<T>::MarkActive() {
8634   typedef internal::Internals I;
8635   if (this->IsEmpty()) return;
8636   I::UpdateNodeFlag(reinterpret_cast<internal::Object**>(this->val_), true,
8637                     I::kNodeIsActiveShift);
8638 }
8639 
8640 
8641 template <class T>
8642 void PersistentBase<T>::SetWrapperClassId(uint16_t class_id) {
8643   typedef internal::Internals I;
8644   if (this->IsEmpty()) return;
8645   internal::Object** obj = reinterpret_cast<internal::Object**>(this->val_);
8646   uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset;
8647   *reinterpret_cast<uint16_t*>(addr) = class_id;
8648 }
8649 
8650 
8651 template <class T>
8652 uint16_t PersistentBase<T>::WrapperClassId() const {
8653   typedef internal::Internals I;
8654   if (this->IsEmpty()) return 0;
8655   internal::Object** obj = reinterpret_cast<internal::Object**>(this->val_);
8656   uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset;
8657   return *reinterpret_cast<uint16_t*>(addr);
8658 }
8659 
8660 
8661 template<typename T>
8662 ReturnValue<T>::ReturnValue(internal::Object** slot) : value_(slot) {}
8663 
8664 template<typename T>
8665 template<typename S>
8666 void ReturnValue<T>::Set(const Persistent<S>& handle) {
8667   TYPE_CHECK(T, S);
8668   if (V8_UNLIKELY(handle.IsEmpty())) {
8669     *value_ = GetDefaultValue();
8670   } else {
8671     *value_ = *reinterpret_cast<internal::Object**>(*handle);
8672   }
8673 }
8674 
8675 template <typename T>
8676 template <typename S>
8677 void ReturnValue<T>::Set(const Global<S>& handle) {
8678   TYPE_CHECK(T, S);
8679   if (V8_UNLIKELY(handle.IsEmpty())) {
8680     *value_ = GetDefaultValue();
8681   } else {
8682     *value_ = *reinterpret_cast<internal::Object**>(*handle);
8683   }
8684 }
8685 
8686 template <typename T>
8687 template <typename S>
8688 void ReturnValue<T>::Set(const Local<S> handle) {
8689   TYPE_CHECK(T, S);
8690   if (V8_UNLIKELY(handle.IsEmpty())) {
8691     *value_ = GetDefaultValue();
8692   } else {
8693     *value_ = *reinterpret_cast<internal::Object**>(*handle);
8694   }
8695 }
8696 
8697 template<typename T>
8698 void ReturnValue<T>::Set(double i) {
8699   TYPE_CHECK(T, Number);
8700   Set(Number::New(GetIsolate(), i));
8701 }
8702 
8703 template<typename T>
8704 void ReturnValue<T>::Set(int32_t i) {
8705   TYPE_CHECK(T, Integer);
8706   typedef internal::Internals I;
8707   if (V8_LIKELY(I::IsValidSmi(i))) {
8708     *value_ = I::IntToSmi(i);
8709     return;
8710   }
8711   Set(Integer::New(GetIsolate(), i));
8712 }
8713 
8714 template<typename T>
8715 void ReturnValue<T>::Set(uint32_t i) {
8716   TYPE_CHECK(T, Integer);
8717   // Can't simply use INT32_MAX here for whatever reason.
8718   bool fits_into_int32_t = (i & (1U << 31)) == 0;
8719   if (V8_LIKELY(fits_into_int32_t)) {
8720     Set(static_cast<int32_t>(i));
8721     return;
8722   }
8723   Set(Integer::NewFromUnsigned(GetIsolate(), i));
8724 }
8725 
8726 template<typename T>
8727 void ReturnValue<T>::Set(bool value) {
8728   TYPE_CHECK(T, Boolean);
8729   typedef internal::Internals I;
8730   int root_index;
8731   if (value) {
8732     root_index = I::kTrueValueRootIndex;
8733   } else {
8734     root_index = I::kFalseValueRootIndex;
8735   }
8736   *value_ = *I::GetRoot(GetIsolate(), root_index);
8737 }
8738 
8739 template<typename T>
8740 void ReturnValue<T>::SetNull() {
8741   TYPE_CHECK(T, Primitive);
8742   typedef internal::Internals I;
8743   *value_ = *I::GetRoot(GetIsolate(), I::kNullValueRootIndex);
8744 }
8745 
8746 template<typename T>
8747 void ReturnValue<T>::SetUndefined() {
8748   TYPE_CHECK(T, Primitive);
8749   typedef internal::Internals I;
8750   *value_ = *I::GetRoot(GetIsolate(), I::kUndefinedValueRootIndex);
8751 }
8752 
8753 template<typename T>
8754 void ReturnValue<T>::SetEmptyString() {
8755   TYPE_CHECK(T, String);
8756   typedef internal::Internals I;
8757   *value_ = *I::GetRoot(GetIsolate(), I::kEmptyStringRootIndex);
8758 }
8759 
8760 template <typename T>
8761 Isolate* ReturnValue<T>::GetIsolate() const {
8762   // Isolate is always the pointer below the default value on the stack.
8763   return *reinterpret_cast<Isolate**>(&value_[-2]);
8764 }
8765 
8766 template <typename T>
8767 Local<Value> ReturnValue<T>::Get() const {
8768   typedef internal::Internals I;
8769   if (*value_ == *I::GetRoot(GetIsolate(), I::kTheHoleValueRootIndex))
8770     return Local<Value>(*Undefined(GetIsolate()));
8771   return Local<Value>::New(GetIsolate(), reinterpret_cast<Value*>(value_));
8772 }
8773 
8774 template <typename T>
8775 template <typename S>
8776 void ReturnValue<T>::Set(S* whatever) {
8777   // Uncompilable to prevent inadvertent misuse.
8778   TYPE_CHECK(S*, Primitive);
8779 }
8780 
8781 template<typename T>
8782 internal::Object* ReturnValue<T>::GetDefaultValue() {
8783   // Default value is always the pointer below value_ on the stack.
8784   return value_[-1];
8785 }
8786 
8787 template <typename T>
8788 FunctionCallbackInfo<T>::FunctionCallbackInfo(internal::Object** implicit_args,
8789                                               internal::Object** values,
8790                                               int length)
8791     : implicit_args_(implicit_args), values_(values), length_(length) {}
8792 
8793 template<typename T>
8794 Local<Value> FunctionCallbackInfo<T>::operator[](int i) const {
8795   if (i < 0 || length_ <= i) return Local<Value>(*Undefined(GetIsolate()));
8796   return Local<Value>(reinterpret_cast<Value*>(values_ - i));
8797 }
8798 
8799 
8800 template<typename T>
8801 Local<Function> FunctionCallbackInfo<T>::Callee() const {
8802   return Local<Function>(reinterpret_cast<Function*>(
8803       &implicit_args_[kCalleeIndex]));
8804 }
8805 
8806 
8807 template<typename T>
8808 Local<Object> FunctionCallbackInfo<T>::This() const {
8809   return Local<Object>(reinterpret_cast<Object*>(values_ + 1));
8810 }
8811 
8812 
8813 template<typename T>
8814 Local<Object> FunctionCallbackInfo<T>::Holder() const {
8815   return Local<Object>(reinterpret_cast<Object*>(
8816       &implicit_args_[kHolderIndex]));
8817 }
8818 
8819 template <typename T>
8820 Local<Value> FunctionCallbackInfo<T>::NewTarget() const {
8821   return Local<Value>(
8822       reinterpret_cast<Value*>(&implicit_args_[kNewTargetIndex]));
8823 }
8824 
8825 template <typename T>
8826 Local<Value> FunctionCallbackInfo<T>::Data() const {
8827   return Local<Value>(reinterpret_cast<Value*>(&implicit_args_[kDataIndex]));
8828 }
8829 
8830 
8831 template<typename T>
8832 Isolate* FunctionCallbackInfo<T>::GetIsolate() const {
8833   return *reinterpret_cast<Isolate**>(&implicit_args_[kIsolateIndex]);
8834 }
8835 
8836 
8837 template<typename T>
8838 ReturnValue<T> FunctionCallbackInfo<T>::GetReturnValue() const {
8839   return ReturnValue<T>(&implicit_args_[kReturnValueIndex]);
8840 }
8841 
8842 
8843 template<typename T>
8844 bool FunctionCallbackInfo<T>::IsConstructCall() const {
8845   return !NewTarget()->IsUndefined();
8846 }
8847 
8848 
8849 template<typename T>
8850 int FunctionCallbackInfo<T>::Length() const {
8851   return length_;
8852 }
8853 
8854 ScriptOrigin::ScriptOrigin(Local<Value> resource_name,
8855                            Local<Integer> resource_line_offset,
8856                            Local<Integer> resource_column_offset,
8857                            Local<Boolean> resource_is_shared_cross_origin,
8858                            Local<Integer> script_id,
8859                            Local<Boolean> resource_is_embedder_debug_script,
8860                            Local<Value> source_map_url,
8861                            Local<Boolean> resource_is_opaque)
8862     : resource_name_(resource_name),
8863       resource_line_offset_(resource_line_offset),
8864       resource_column_offset_(resource_column_offset),
8865       options_(!resource_is_embedder_debug_script.IsEmpty() &&
8866                    resource_is_embedder_debug_script->IsTrue(),
8867                !resource_is_shared_cross_origin.IsEmpty() &&
8868                    resource_is_shared_cross_origin->IsTrue(),
8869                !resource_is_opaque.IsEmpty() && resource_is_opaque->IsTrue()),
8870       script_id_(script_id),
8871       source_map_url_(source_map_url) {}
8872 
8873 Local<Value> ScriptOrigin::ResourceName() const { return resource_name_; }
8874 
8875 
8876 Local<Integer> ScriptOrigin::ResourceLineOffset() const {
8877   return resource_line_offset_;
8878 }
8879 
8880 
8881 Local<Integer> ScriptOrigin::ResourceColumnOffset() const {
8882   return resource_column_offset_;
8883 }
8884 
8885 
8886 Local<Integer> ScriptOrigin::ScriptID() const { return script_id_; }
8887 
8888 
8889 Local<Value> ScriptOrigin::SourceMapUrl() const { return source_map_url_; }
8890 
8891 
8892 ScriptCompiler::Source::Source(Local<String> string, const ScriptOrigin& origin,
8893                                CachedData* data)
8894     : source_string(string),
8895       resource_name(origin.ResourceName()),
8896       resource_line_offset(origin.ResourceLineOffset()),
8897       resource_column_offset(origin.ResourceColumnOffset()),
8898       resource_options(origin.Options()),
8899       source_map_url(origin.SourceMapUrl()),
8900       cached_data(data) {}
8901 
8902 
8903 ScriptCompiler::Source::Source(Local<String> string,
8904                                CachedData* data)
8905     : source_string(string), cached_data(data) {}
8906 
8907 
8908 ScriptCompiler::Source::~Source() {
8909   delete cached_data;
8910 }
8911 
8912 
8913 const ScriptCompiler::CachedData* ScriptCompiler::Source::GetCachedData()
8914     const {
8915   return cached_data;
8916 }
8917 
8918 
8919 Local<Boolean> Boolean::New(Isolate* isolate, bool value) {
8920   return value ? True(isolate) : False(isolate);
8921 }
8922 
8923 
8924 void Template::Set(Isolate* isolate, const char* name, v8::Local<Data> value) {
8925   Set(v8::String::NewFromUtf8(isolate, name, NewStringType::kNormal)
8926           .ToLocalChecked(),
8927       value);
8928 }
8929 
8930 
8931 Local<Value> Object::GetInternalField(int index) {
8932 #ifndef V8_ENABLE_CHECKS
8933   typedef internal::Object O;
8934   typedef internal::HeapObject HO;
8935   typedef internal::Internals I;
8936   O* obj = *reinterpret_cast<O**>(this);
8937   // Fast path: If the object is a plain JSObject, which is the common case, we
8938   // know where to find the internal fields and can return the value directly.
8939   auto instance_type = I::GetInstanceType(obj);
8940   if (instance_type == I::kJSObjectType ||
8941       instance_type == I::kJSApiObjectType) {
8942     int offset = I::kJSObjectHeaderSize + (internal::kApiPointerSize * index);
8943     O* value = I::ReadField<O*>(obj, offset);
8944     O** result = HandleScope::CreateHandle(reinterpret_cast<HO*>(obj), value);
8945     return Local<Value>(reinterpret_cast<Value*>(result));
8946   }
8947 #endif
8948   return SlowGetInternalField(index);
8949 }
8950 
8951 
8952 void* Object::GetAlignedPointerFromInternalField(int index) {
8953 #ifndef V8_ENABLE_CHECKS
8954   typedef internal::Object O;
8955   typedef internal::Internals I;
8956   O* obj = *reinterpret_cast<O**>(this);
8957   // Fast path: If the object is a plain JSObject, which is the common case, we
8958   // know where to find the internal fields and can return the value directly.
8959   auto instance_type = I::GetInstanceType(obj);
8960   if (V8_LIKELY(instance_type == I::kJSObjectType ||
8961                 instance_type == I::kJSApiObjectType)) {
8962     int offset = I::kJSObjectHeaderSize + (internal::kApiPointerSize * index);
8963     return I::ReadField<void*>(obj, offset);
8964   }
8965 #endif
8966   return SlowGetAlignedPointerFromInternalField(index);
8967 }
8968 
8969 String* String::Cast(v8::Value* value) {
8970 #ifdef V8_ENABLE_CHECKS
8971   CheckCast(value);
8972 #endif
8973   return static_cast<String*>(value);
8974 }
8975 
8976 
8977 Local<String> String::Empty(Isolate* isolate) {
8978   typedef internal::Object* S;
8979   typedef internal::Internals I;
8980   I::CheckInitialized(isolate);
8981   S* slot = I::GetRoot(isolate, I::kEmptyStringRootIndex);
8982   return Local<String>(reinterpret_cast<String*>(slot));
8983 }
8984 
8985 
8986 String::ExternalStringResource* String::GetExternalStringResource() const {
8987   typedef internal::Object O;
8988   typedef internal::Internals I;
8989   O* obj = *reinterpret_cast<O* const*>(this);
8990   String::ExternalStringResource* result;
8991   if (I::IsExternalTwoByteString(I::GetInstanceType(obj))) {
8992     void* value = I::ReadField<void*>(obj, I::kStringResourceOffset);
8993     result = reinterpret_cast<String::ExternalStringResource*>(value);
8994   } else {
8995     result = NULL;
8996   }
8997 #ifdef V8_ENABLE_CHECKS
8998   VerifyExternalStringResource(result);
8999 #endif
9000   return result;
9001 }
9002 
9003 
9004 String::ExternalStringResourceBase* String::GetExternalStringResourceBase(
9005     String::Encoding* encoding_out) const {
9006   typedef internal::Object O;
9007   typedef internal::Internals I;
9008   O* obj = *reinterpret_cast<O* const*>(this);
9009   int type = I::GetInstanceType(obj) & I::kFullStringRepresentationMask;
9010   *encoding_out = static_cast<Encoding>(type & I::kStringEncodingMask);
9011   ExternalStringResourceBase* resource = NULL;
9012   if (type == I::kExternalOneByteRepresentationTag ||
9013       type == I::kExternalTwoByteRepresentationTag) {
9014     void* value = I::ReadField<void*>(obj, I::kStringResourceOffset);
9015     resource = static_cast<ExternalStringResourceBase*>(value);
9016   }
9017 #ifdef V8_ENABLE_CHECKS
9018     VerifyExternalStringResourceBase(resource, *encoding_out);
9019 #endif
9020   return resource;
9021 }
9022 
9023 
9024 bool Value::IsUndefined() const {
9025 #ifdef V8_ENABLE_CHECKS
9026   return FullIsUndefined();
9027 #else
9028   return QuickIsUndefined();
9029 #endif
9030 }
9031 
9032 bool Value::QuickIsUndefined() const {
9033   typedef internal::Object O;
9034   typedef internal::Internals I;
9035   O* obj = *reinterpret_cast<O* const*>(this);
9036   if (!I::HasHeapObjectTag(obj)) return false;
9037   if (I::GetInstanceType(obj) != I::kOddballType) return false;
9038   return (I::GetOddballKind(obj) == I::kUndefinedOddballKind);
9039 }
9040 
9041 
9042 bool Value::IsNull() const {
9043 #ifdef V8_ENABLE_CHECKS
9044   return FullIsNull();
9045 #else
9046   return QuickIsNull();
9047 #endif
9048 }
9049 
9050 bool Value::QuickIsNull() const {
9051   typedef internal::Object O;
9052   typedef internal::Internals I;
9053   O* obj = *reinterpret_cast<O* const*>(this);
9054   if (!I::HasHeapObjectTag(obj)) return false;
9055   if (I::GetInstanceType(obj) != I::kOddballType) return false;
9056   return (I::GetOddballKind(obj) == I::kNullOddballKind);
9057 }
9058 
9059 
9060 bool Value::IsString() const {
9061 #ifdef V8_ENABLE_CHECKS
9062   return FullIsString();
9063 #else
9064   return QuickIsString();
9065 #endif
9066 }
9067 
9068 bool Value::QuickIsString() const {
9069   typedef internal::Object O;
9070   typedef internal::Internals I;
9071   O* obj = *reinterpret_cast<O* const*>(this);
9072   if (!I::HasHeapObjectTag(obj)) return false;
9073   return (I::GetInstanceType(obj) < I::kFirstNonstringType);
9074 }
9075 
9076 
9077 template <class T> Value* Value::Cast(T* value) {
9078   return static_cast<Value*>(value);
9079 }
9080 
9081 
9082 Local<Boolean> Value::ToBoolean() const {
9083   return ToBoolean(Isolate::GetCurrent()->GetCurrentContext())
9084       .FromMaybe(Local<Boolean>());
9085 }
9086 
9087 
9088 Local<Number> Value::ToNumber() const {
9089   return ToNumber(Isolate::GetCurrent()->GetCurrentContext())
9090       .FromMaybe(Local<Number>());
9091 }
9092 
9093 
9094 Local<String> Value::ToString() const {
9095   return ToString(Isolate::GetCurrent()->GetCurrentContext())
9096       .FromMaybe(Local<String>());
9097 }
9098 
9099 
9100 Local<String> Value::ToDetailString() const {
9101   return ToDetailString(Isolate::GetCurrent()->GetCurrentContext())
9102       .FromMaybe(Local<String>());
9103 }
9104 
9105 
9106 Local<Object> Value::ToObject() const {
9107   return ToObject(Isolate::GetCurrent()->GetCurrentContext())
9108       .FromMaybe(Local<Object>());
9109 }
9110 
9111 
9112 Local<Integer> Value::ToInteger() const {
9113   return ToInteger(Isolate::GetCurrent()->GetCurrentContext())
9114       .FromMaybe(Local<Integer>());
9115 }
9116 
9117 
9118 Local<Uint32> Value::ToUint32() const {
9119   return ToUint32(Isolate::GetCurrent()->GetCurrentContext())
9120       .FromMaybe(Local<Uint32>());
9121 }
9122 
9123 
9124 Local<Int32> Value::ToInt32() const {
9125   return ToInt32(Isolate::GetCurrent()->GetCurrentContext())
9126       .FromMaybe(Local<Int32>());
9127 }
9128 
9129 
9130 Boolean* Boolean::Cast(v8::Value* value) {
9131 #ifdef V8_ENABLE_CHECKS
9132   CheckCast(value);
9133 #endif
9134   return static_cast<Boolean*>(value);
9135 }
9136 
9137 
9138 Name* Name::Cast(v8::Value* value) {
9139 #ifdef V8_ENABLE_CHECKS
9140   CheckCast(value);
9141 #endif
9142   return static_cast<Name*>(value);
9143 }
9144 
9145 
9146 Symbol* Symbol::Cast(v8::Value* value) {
9147 #ifdef V8_ENABLE_CHECKS
9148   CheckCast(value);
9149 #endif
9150   return static_cast<Symbol*>(value);
9151 }
9152 
9153 
9154 Number* Number::Cast(v8::Value* value) {
9155 #ifdef V8_ENABLE_CHECKS
9156   CheckCast(value);
9157 #endif
9158   return static_cast<Number*>(value);
9159 }
9160 
9161 
9162 Integer* Integer::Cast(v8::Value* value) {
9163 #ifdef V8_ENABLE_CHECKS
9164   CheckCast(value);
9165 #endif
9166   return static_cast<Integer*>(value);
9167 }
9168 
9169 
9170 Int32* Int32::Cast(v8::Value* value) {
9171 #ifdef V8_ENABLE_CHECKS
9172   CheckCast(value);
9173 #endif
9174   return static_cast<Int32*>(value);
9175 }
9176 
9177 
9178 Uint32* Uint32::Cast(v8::Value* value) {
9179 #ifdef V8_ENABLE_CHECKS
9180   CheckCast(value);
9181 #endif
9182   return static_cast<Uint32*>(value);
9183 }
9184 
9185 
9186 Date* Date::Cast(v8::Value* value) {
9187 #ifdef V8_ENABLE_CHECKS
9188   CheckCast(value);
9189 #endif
9190   return static_cast<Date*>(value);
9191 }
9192 
9193 
9194 StringObject* StringObject::Cast(v8::Value* value) {
9195 #ifdef V8_ENABLE_CHECKS
9196   CheckCast(value);
9197 #endif
9198   return static_cast<StringObject*>(value);
9199 }
9200 
9201 
9202 SymbolObject* SymbolObject::Cast(v8::Value* value) {
9203 #ifdef V8_ENABLE_CHECKS
9204   CheckCast(value);
9205 #endif
9206   return static_cast<SymbolObject*>(value);
9207 }
9208 
9209 
9210 NumberObject* NumberObject::Cast(v8::Value* value) {
9211 #ifdef V8_ENABLE_CHECKS
9212   CheckCast(value);
9213 #endif
9214   return static_cast<NumberObject*>(value);
9215 }
9216 
9217 
9218 BooleanObject* BooleanObject::Cast(v8::Value* value) {
9219 #ifdef V8_ENABLE_CHECKS
9220   CheckCast(value);
9221 #endif
9222   return static_cast<BooleanObject*>(value);
9223 }
9224 
9225 
9226 RegExp* RegExp::Cast(v8::Value* value) {
9227 #ifdef V8_ENABLE_CHECKS
9228   CheckCast(value);
9229 #endif
9230   return static_cast<RegExp*>(value);
9231 }
9232 
9233 
9234 Object* Object::Cast(v8::Value* value) {
9235 #ifdef V8_ENABLE_CHECKS
9236   CheckCast(value);
9237 #endif
9238   return static_cast<Object*>(value);
9239 }
9240 
9241 
9242 Array* Array::Cast(v8::Value* value) {
9243 #ifdef V8_ENABLE_CHECKS
9244   CheckCast(value);
9245 #endif
9246   return static_cast<Array*>(value);
9247 }
9248 
9249 
9250 Map* Map::Cast(v8::Value* value) {
9251 #ifdef V8_ENABLE_CHECKS
9252   CheckCast(value);
9253 #endif
9254   return static_cast<Map*>(value);
9255 }
9256 
9257 
9258 Set* Set::Cast(v8::Value* value) {
9259 #ifdef V8_ENABLE_CHECKS
9260   CheckCast(value);
9261 #endif
9262   return static_cast<Set*>(value);
9263 }
9264 
9265 
9266 Promise* Promise::Cast(v8::Value* value) {
9267 #ifdef V8_ENABLE_CHECKS
9268   CheckCast(value);
9269 #endif
9270   return static_cast<Promise*>(value);
9271 }
9272 
9273 
9274 Proxy* Proxy::Cast(v8::Value* value) {
9275 #ifdef V8_ENABLE_CHECKS
9276   CheckCast(value);
9277 #endif
9278   return static_cast<Proxy*>(value);
9279 }
9280 
9281 WasmCompiledModule* WasmCompiledModule::Cast(v8::Value* value) {
9282 #ifdef V8_ENABLE_CHECKS
9283   CheckCast(value);
9284 #endif
9285   return static_cast<WasmCompiledModule*>(value);
9286 }
9287 
9288 Promise::Resolver* Promise::Resolver::Cast(v8::Value* value) {
9289 #ifdef V8_ENABLE_CHECKS
9290   CheckCast(value);
9291 #endif
9292   return static_cast<Promise::Resolver*>(value);
9293 }
9294 
9295 
9296 ArrayBuffer* ArrayBuffer::Cast(v8::Value* value) {
9297 #ifdef V8_ENABLE_CHECKS
9298   CheckCast(value);
9299 #endif
9300   return static_cast<ArrayBuffer*>(value);
9301 }
9302 
9303 
9304 ArrayBufferView* ArrayBufferView::Cast(v8::Value* value) {
9305 #ifdef V8_ENABLE_CHECKS
9306   CheckCast(value);
9307 #endif
9308   return static_cast<ArrayBufferView*>(value);
9309 }
9310 
9311 
9312 TypedArray* TypedArray::Cast(v8::Value* value) {
9313 #ifdef V8_ENABLE_CHECKS
9314   CheckCast(value);
9315 #endif
9316   return static_cast<TypedArray*>(value);
9317 }
9318 
9319 
9320 Uint8Array* Uint8Array::Cast(v8::Value* value) {
9321 #ifdef V8_ENABLE_CHECKS
9322   CheckCast(value);
9323 #endif
9324   return static_cast<Uint8Array*>(value);
9325 }
9326 
9327 
9328 Int8Array* Int8Array::Cast(v8::Value* value) {
9329 #ifdef V8_ENABLE_CHECKS
9330   CheckCast(value);
9331 #endif
9332   return static_cast<Int8Array*>(value);
9333 }
9334 
9335 
9336 Uint16Array* Uint16Array::Cast(v8::Value* value) {
9337 #ifdef V8_ENABLE_CHECKS
9338   CheckCast(value);
9339 #endif
9340   return static_cast<Uint16Array*>(value);
9341 }
9342 
9343 
9344 Int16Array* Int16Array::Cast(v8::Value* value) {
9345 #ifdef V8_ENABLE_CHECKS
9346   CheckCast(value);
9347 #endif
9348   return static_cast<Int16Array*>(value);
9349 }
9350 
9351 
9352 Uint32Array* Uint32Array::Cast(v8::Value* value) {
9353 #ifdef V8_ENABLE_CHECKS
9354   CheckCast(value);
9355 #endif
9356   return static_cast<Uint32Array*>(value);
9357 }
9358 
9359 
9360 Int32Array* Int32Array::Cast(v8::Value* value) {
9361 #ifdef V8_ENABLE_CHECKS
9362   CheckCast(value);
9363 #endif
9364   return static_cast<Int32Array*>(value);
9365 }
9366 
9367 
9368 Float32Array* Float32Array::Cast(v8::Value* value) {
9369 #ifdef V8_ENABLE_CHECKS
9370   CheckCast(value);
9371 #endif
9372   return static_cast<Float32Array*>(value);
9373 }
9374 
9375 
9376 Float64Array* Float64Array::Cast(v8::Value* value) {
9377 #ifdef V8_ENABLE_CHECKS
9378   CheckCast(value);
9379 #endif
9380   return static_cast<Float64Array*>(value);
9381 }
9382 
9383 
9384 Uint8ClampedArray* Uint8ClampedArray::Cast(v8::Value* value) {
9385 #ifdef V8_ENABLE_CHECKS
9386   CheckCast(value);
9387 #endif
9388   return static_cast<Uint8ClampedArray*>(value);
9389 }
9390 
9391 
9392 DataView* DataView::Cast(v8::Value* value) {
9393 #ifdef V8_ENABLE_CHECKS
9394   CheckCast(value);
9395 #endif
9396   return static_cast<DataView*>(value);
9397 }
9398 
9399 
9400 SharedArrayBuffer* SharedArrayBuffer::Cast(v8::Value* value) {
9401 #ifdef V8_ENABLE_CHECKS
9402   CheckCast(value);
9403 #endif
9404   return static_cast<SharedArrayBuffer*>(value);
9405 }
9406 
9407 
9408 Function* Function::Cast(v8::Value* value) {
9409 #ifdef V8_ENABLE_CHECKS
9410   CheckCast(value);
9411 #endif
9412   return static_cast<Function*>(value);
9413 }
9414 
9415 
9416 External* External::Cast(v8::Value* value) {
9417 #ifdef V8_ENABLE_CHECKS
9418   CheckCast(value);
9419 #endif
9420   return static_cast<External*>(value);
9421 }
9422 
9423 
9424 template<typename T>
9425 Isolate* PropertyCallbackInfo<T>::GetIsolate() const {
9426   return *reinterpret_cast<Isolate**>(&args_[kIsolateIndex]);
9427 }
9428 
9429 
9430 template<typename T>
9431 Local<Value> PropertyCallbackInfo<T>::Data() const {
9432   return Local<Value>(reinterpret_cast<Value*>(&args_[kDataIndex]));
9433 }
9434 
9435 
9436 template<typename T>
9437 Local<Object> PropertyCallbackInfo<T>::This() const {
9438   return Local<Object>(reinterpret_cast<Object*>(&args_[kThisIndex]));
9439 }
9440 
9441 
9442 template<typename T>
9443 Local<Object> PropertyCallbackInfo<T>::Holder() const {
9444   return Local<Object>(reinterpret_cast<Object*>(&args_[kHolderIndex]));
9445 }
9446 
9447 
9448 template<typename T>
9449 ReturnValue<T> PropertyCallbackInfo<T>::GetReturnValue() const {
9450   return ReturnValue<T>(&args_[kReturnValueIndex]);
9451 }
9452 
9453 template <typename T>
9454 bool PropertyCallbackInfo<T>::ShouldThrowOnError() const {
9455   typedef internal::Internals I;
9456   return args_[kShouldThrowOnErrorIndex] != I::IntToSmi(0);
9457 }
9458 
9459 
9460 Local<Primitive> Undefined(Isolate* isolate) {
9461   typedef internal::Object* S;
9462   typedef internal::Internals I;
9463   I::CheckInitialized(isolate);
9464   S* slot = I::GetRoot(isolate, I::kUndefinedValueRootIndex);
9465   return Local<Primitive>(reinterpret_cast<Primitive*>(slot));
9466 }
9467 
9468 
9469 Local<Primitive> Null(Isolate* isolate) {
9470   typedef internal::Object* S;
9471   typedef internal::Internals I;
9472   I::CheckInitialized(isolate);
9473   S* slot = I::GetRoot(isolate, I::kNullValueRootIndex);
9474   return Local<Primitive>(reinterpret_cast<Primitive*>(slot));
9475 }
9476 
9477 
9478 Local<Boolean> True(Isolate* isolate) {
9479   typedef internal::Object* S;
9480   typedef internal::Internals I;
9481   I::CheckInitialized(isolate);
9482   S* slot = I::GetRoot(isolate, I::kTrueValueRootIndex);
9483   return Local<Boolean>(reinterpret_cast<Boolean*>(slot));
9484 }
9485 
9486 
9487 Local<Boolean> False(Isolate* isolate) {
9488   typedef internal::Object* S;
9489   typedef internal::Internals I;
9490   I::CheckInitialized(isolate);
9491   S* slot = I::GetRoot(isolate, I::kFalseValueRootIndex);
9492   return Local<Boolean>(reinterpret_cast<Boolean*>(slot));
9493 }
9494 
9495 
9496 void Isolate::SetData(uint32_t slot, void* data) {
9497   typedef internal::Internals I;
9498   I::SetEmbedderData(this, slot, data);
9499 }
9500 
9501 
9502 void* Isolate::GetData(uint32_t slot) {
9503   typedef internal::Internals I;
9504   return I::GetEmbedderData(this, slot);
9505 }
9506 
9507 
9508 uint32_t Isolate::GetNumberOfDataSlots() {
9509   typedef internal::Internals I;
9510   return I::kNumIsolateDataSlots;
9511 }
9512 
9513 
9514 int64_t Isolate::AdjustAmountOfExternalAllocatedMemory(
9515     int64_t change_in_bytes) {
9516   typedef internal::Internals I;
9517   int64_t* external_memory = reinterpret_cast<int64_t*>(
9518       reinterpret_cast<uint8_t*>(this) + I::kExternalMemoryOffset);
9519   const int64_t external_memory_limit = *reinterpret_cast<int64_t*>(
9520       reinterpret_cast<uint8_t*>(this) + I::kExternalMemoryLimitOffset);
9521   const int64_t amount = *external_memory + change_in_bytes;
9522   *external_memory = amount;
9523   if (change_in_bytes > 0 && amount > external_memory_limit) {
9524     ReportExternalAllocationLimitReached();
9525   }
9526   return *external_memory;
9527 }
9528 
9529 
9530 template<typename T>
9531 void Isolate::SetObjectGroupId(const Persistent<T>& object,
9532                                UniqueId id) {
9533   TYPE_CHECK(Value, T);
9534   SetObjectGroupId(reinterpret_cast<v8::internal::Object**>(object.val_), id);
9535 }
9536 
9537 
9538 template<typename T>
9539 void Isolate::SetReferenceFromGroup(UniqueId id,
9540                                     const Persistent<T>& object) {
9541   TYPE_CHECK(Value, T);
9542   SetReferenceFromGroup(id,
9543                         reinterpret_cast<v8::internal::Object**>(object.val_));
9544 }
9545 
9546 
9547 template<typename T, typename S>
9548 void Isolate::SetReference(const Persistent<T>& parent,
9549                            const Persistent<S>& child) {
9550   TYPE_CHECK(Object, T);
9551   TYPE_CHECK(Value, S);
9552   SetReference(reinterpret_cast<v8::internal::Object**>(parent.val_),
9553                reinterpret_cast<v8::internal::Object**>(child.val_));
9554 }
9555 
9556 
9557 Local<Value> Context::GetEmbedderData(int index) {
9558 #ifndef V8_ENABLE_CHECKS
9559   typedef internal::Object O;
9560   typedef internal::HeapObject HO;
9561   typedef internal::Internals I;
9562   HO* context = *reinterpret_cast<HO**>(this);
9563   O** result =
9564       HandleScope::CreateHandle(context, I::ReadEmbedderData<O*>(this, index));
9565   return Local<Value>(reinterpret_cast<Value*>(result));
9566 #else
9567   return SlowGetEmbedderData(index);
9568 #endif
9569 }
9570 
9571 
9572 void* Context::GetAlignedPointerFromEmbedderData(int index) {
9573 #ifndef V8_ENABLE_CHECKS
9574   typedef internal::Internals I;
9575   return I::ReadEmbedderData<void*>(this, index);
9576 #else
9577   return SlowGetAlignedPointerFromEmbedderData(index);
9578 #endif
9579 }
9580 
9581 
9582 void V8::SetAllowCodeGenerationFromStringsCallback(
9583     AllowCodeGenerationFromStringsCallback callback) {
9584   Isolate* isolate = Isolate::GetCurrent();
9585   isolate->SetAllowCodeGenerationFromStringsCallback(callback);
9586 }
9587 
9588 
9589 bool V8::IsDead() {
9590   Isolate* isolate = Isolate::GetCurrent();
9591   return isolate->IsDead();
9592 }
9593 
9594 
9595 bool V8::AddMessageListener(MessageCallback that, Local<Value> data) {
9596   Isolate* isolate = Isolate::GetCurrent();
9597   return isolate->AddMessageListener(that, data);
9598 }
9599 
9600 
9601 void V8::RemoveMessageListeners(MessageCallback that) {
9602   Isolate* isolate = Isolate::GetCurrent();
9603   isolate->RemoveMessageListeners(that);
9604 }
9605 
9606 
9607 void V8::SetFailedAccessCheckCallbackFunction(
9608     FailedAccessCheckCallback callback) {
9609   Isolate* isolate = Isolate::GetCurrent();
9610   isolate->SetFailedAccessCheckCallbackFunction(callback);
9611 }
9612 
9613 
9614 void V8::SetCaptureStackTraceForUncaughtExceptions(
9615     bool capture, int frame_limit, StackTrace::StackTraceOptions options) {
9616   Isolate* isolate = Isolate::GetCurrent();
9617   isolate->SetCaptureStackTraceForUncaughtExceptions(capture, frame_limit,
9618                                                      options);
9619 }
9620 
9621 
9622 void V8::SetFatalErrorHandler(FatalErrorCallback callback) {
9623   Isolate* isolate = Isolate::GetCurrent();
9624   isolate->SetFatalErrorHandler(callback);
9625 }
9626 
9627 void V8::RemoveGCPrologueCallback(GCCallback callback) {
9628   Isolate* isolate = Isolate::GetCurrent();
9629   isolate->RemoveGCPrologueCallback(
9630       reinterpret_cast<v8::Isolate::GCCallback>(callback));
9631 }
9632 
9633 
9634 void V8::RemoveGCEpilogueCallback(GCCallback callback) {
9635   Isolate* isolate = Isolate::GetCurrent();
9636   isolate->RemoveGCEpilogueCallback(
9637       reinterpret_cast<v8::Isolate::GCCallback>(callback));
9638 }
9639 
9640 void V8::TerminateExecution(Isolate* isolate) { isolate->TerminateExecution(); }
9641 
9642 
9643 bool V8::IsExecutionTerminating(Isolate* isolate) {
9644   if (isolate == NULL) {
9645     isolate = Isolate::GetCurrent();
9646   }
9647   return isolate->IsExecutionTerminating();
9648 }
9649 
9650 
9651 void V8::CancelTerminateExecution(Isolate* isolate) {
9652   isolate->CancelTerminateExecution();
9653 }
9654 
9655 
9656 void V8::VisitExternalResources(ExternalResourceVisitor* visitor) {
9657   Isolate* isolate = Isolate::GetCurrent();
9658   isolate->VisitExternalResources(visitor);
9659 }
9660 
9661 
9662 void V8::VisitHandlesWithClassIds(PersistentHandleVisitor* visitor) {
9663   Isolate* isolate = Isolate::GetCurrent();
9664   isolate->VisitHandlesWithClassIds(visitor);
9665 }
9666 
9667 
9668 void V8::VisitHandlesWithClassIds(Isolate* isolate,
9669                                   PersistentHandleVisitor* visitor) {
9670   isolate->VisitHandlesWithClassIds(visitor);
9671 }
9672 
9673 
9674 void V8::VisitHandlesForPartialDependence(Isolate* isolate,
9675                                           PersistentHandleVisitor* visitor) {
9676   isolate->VisitHandlesForPartialDependence(visitor);
9677 }
9678 
9679 /**
9680  * \example shell.cc
9681  * A simple shell that takes a list of expressions on the
9682  * command-line and executes them.
9683  */
9684 
9685 
9686 /**
9687  * \example process.cc
9688  */
9689 
9690 
9691 }  // namespace v8
9692 
9693 
9694 #undef TYPE_CHECK
9695 
9696 
9697 #endif  // INCLUDE_V8_H_
9698