1 /*
2  * Copyright (C) 2015 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "induction_var_analysis.h"
18 #include "induction_var_range.h"
19 
20 namespace art {
21 
22 /**
23  * Since graph traversal may enter a SCC at any position, an initial representation may be rotated,
24  * along dependences, viz. any of (a, b, c, d), (d, a, b, c)  (c, d, a, b), (b, c, d, a) assuming
25  * a chain of dependences (mutual independent items may occur in arbitrary order). For proper
26  * classification, the lexicographically first loop-phi is rotated to the front.
27  */
RotateEntryPhiFirst(HLoopInformation * loop,ArenaVector<HInstruction * > * scc,ArenaVector<HInstruction * > * new_scc)28 static void RotateEntryPhiFirst(HLoopInformation* loop,
29                                 ArenaVector<HInstruction*>* scc,
30                                 ArenaVector<HInstruction*>* new_scc) {
31   // Find very first loop-phi.
32   const HInstructionList& phis = loop->GetHeader()->GetPhis();
33   HInstruction* phi = nullptr;
34   size_t phi_pos = -1;
35   const size_t size = scc->size();
36   for (size_t i = 0; i < size; i++) {
37     HInstruction* other = (*scc)[i];
38     if (other->IsLoopHeaderPhi() && (phi == nullptr || phis.FoundBefore(other, phi))) {
39       phi = other;
40       phi_pos = i;
41     }
42   }
43 
44   // If found, bring that loop-phi to front.
45   if (phi != nullptr) {
46     new_scc->clear();
47     for (size_t i = 0; i < size; i++) {
48       new_scc->push_back((*scc)[phi_pos]);
49       if (++phi_pos >= size) phi_pos = 0;
50     }
51     DCHECK_EQ(size, new_scc->size());
52     scc->swap(*new_scc);
53   }
54 }
55 
56 /**
57  * Returns true if the from/to types denote a narrowing, integral conversion (precision loss).
58  */
IsNarrowingIntegralConversion(Primitive::Type from,Primitive::Type to)59 static bool IsNarrowingIntegralConversion(Primitive::Type from, Primitive::Type to) {
60   switch (from) {
61     case Primitive::kPrimLong:
62       return to == Primitive::kPrimByte || to == Primitive::kPrimShort
63           || to == Primitive::kPrimChar || to == Primitive::kPrimInt;
64     case Primitive::kPrimInt:
65       return to == Primitive::kPrimByte || to == Primitive::kPrimShort
66           || to == Primitive::kPrimChar;
67     case Primitive::kPrimChar:
68     case Primitive::kPrimShort:
69       return to == Primitive::kPrimByte;
70     default:
71       return false;
72   }
73 }
74 
75 /**
76  * Returns result of implicit widening type conversion done in HIR.
77  */
ImplicitConversion(Primitive::Type type)78 static Primitive::Type ImplicitConversion(Primitive::Type type) {
79   switch (type) {
80     case Primitive::kPrimShort:
81     case Primitive::kPrimChar:
82     case Primitive::kPrimByte:
83     case Primitive::kPrimBoolean:
84       return Primitive::kPrimInt;
85     default:
86       return type;
87   }
88 }
89 
90 //
91 // Class methods.
92 //
93 
HInductionVarAnalysis(HGraph * graph)94 HInductionVarAnalysis::HInductionVarAnalysis(HGraph* graph)
95     : HOptimization(graph, kInductionPassName),
96       global_depth_(0),
97       stack_(graph->GetArena()->Adapter(kArenaAllocInductionVarAnalysis)),
98       map_(std::less<HInstruction*>(),
99            graph->GetArena()->Adapter(kArenaAllocInductionVarAnalysis)),
100       scc_(graph->GetArena()->Adapter(kArenaAllocInductionVarAnalysis)),
101       cycle_(std::less<HInstruction*>(),
102              graph->GetArena()->Adapter(kArenaAllocInductionVarAnalysis)),
103       type_(Primitive::kPrimVoid),
104       induction_(std::less<HLoopInformation*>(),
105                  graph->GetArena()->Adapter(kArenaAllocInductionVarAnalysis)),
106       cycles_(std::less<HPhi*>(),
107               graph->GetArena()->Adapter(kArenaAllocInductionVarAnalysis)) {
108 }
109 
Run()110 void HInductionVarAnalysis::Run() {
111   // Detects sequence variables (generalized induction variables) during an outer to inner
112   // traversal of all loops using Gerlek's algorithm. The order is important to enable
113   // range analysis on outer loop while visiting inner loops.
114   for (HBasicBlock* graph_block : graph_->GetReversePostOrder()) {
115     // Don't analyze irreducible loops.
116     if (graph_block->IsLoopHeader() && !graph_block->GetLoopInformation()->IsIrreducible()) {
117       VisitLoop(graph_block->GetLoopInformation());
118     }
119   }
120 }
121 
VisitLoop(HLoopInformation * loop)122 void HInductionVarAnalysis::VisitLoop(HLoopInformation* loop) {
123   // Find strongly connected components (SSCs) in the SSA graph of this loop using Tarjan's
124   // algorithm. Due to the descendant-first nature, classification happens "on-demand".
125   global_depth_ = 0;
126   DCHECK(stack_.empty());
127   map_.clear();
128 
129   for (HBlocksInLoopIterator it_loop(*loop); !it_loop.Done(); it_loop.Advance()) {
130     HBasicBlock* loop_block = it_loop.Current();
131     DCHECK(loop_block->IsInLoop());
132     if (loop_block->GetLoopInformation() != loop) {
133       continue;  // Inner loops visited later.
134     }
135     // Visit phi-operations and instructions.
136     for (HInstructionIterator it(loop_block->GetPhis()); !it.Done(); it.Advance()) {
137       HInstruction* instruction = it.Current();
138       if (!IsVisitedNode(instruction)) {
139         VisitNode(loop, instruction);
140       }
141     }
142     for (HInstructionIterator it(loop_block->GetInstructions()); !it.Done(); it.Advance()) {
143       HInstruction* instruction = it.Current();
144       if (!IsVisitedNode(instruction)) {
145         VisitNode(loop, instruction);
146       }
147     }
148   }
149 
150   DCHECK(stack_.empty());
151   map_.clear();
152 
153   // Determine the loop's trip-count.
154   VisitControl(loop);
155 }
156 
VisitNode(HLoopInformation * loop,HInstruction * instruction)157 void HInductionVarAnalysis::VisitNode(HLoopInformation* loop, HInstruction* instruction) {
158   const uint32_t d1 = ++global_depth_;
159   map_.Put(instruction, NodeInfo(d1));
160   stack_.push_back(instruction);
161 
162   // Visit all descendants.
163   uint32_t low = d1;
164   for (HInstruction* input : instruction->GetInputs()) {
165     low = std::min(low, VisitDescendant(loop, input));
166   }
167 
168   // Lower or found SCC?
169   if (low < d1) {
170     map_.find(instruction)->second.depth = low;
171   } else {
172     scc_.clear();
173     cycle_.clear();
174 
175     // Pop the stack to build the SCC for classification.
176     while (!stack_.empty()) {
177       HInstruction* x = stack_.back();
178       scc_.push_back(x);
179       stack_.pop_back();
180       map_.find(x)->second.done = true;
181       if (x == instruction) {
182         break;
183       }
184     }
185 
186     // Type of induction.
187     type_ = scc_[0]->GetType();
188 
189     // Classify the SCC.
190     if (scc_.size() == 1 && !scc_[0]->IsLoopHeaderPhi()) {
191       ClassifyTrivial(loop, scc_[0]);
192     } else {
193       ClassifyNonTrivial(loop);
194     }
195 
196     scc_.clear();
197     cycle_.clear();
198   }
199 }
200 
VisitDescendant(HLoopInformation * loop,HInstruction * instruction)201 uint32_t HInductionVarAnalysis::VisitDescendant(HLoopInformation* loop, HInstruction* instruction) {
202   // If the definition is either outside the loop (loop invariant entry value)
203   // or assigned in inner loop (inner exit value), the traversal stops.
204   HLoopInformation* otherLoop = instruction->GetBlock()->GetLoopInformation();
205   if (otherLoop != loop) {
206     return global_depth_;
207   }
208 
209   // Inspect descendant node.
210   if (!IsVisitedNode(instruction)) {
211     VisitNode(loop, instruction);
212     return map_.find(instruction)->second.depth;
213   } else {
214     auto it = map_.find(instruction);
215     return it->second.done ? global_depth_ : it->second.depth;
216   }
217 }
218 
ClassifyTrivial(HLoopInformation * loop,HInstruction * instruction)219 void HInductionVarAnalysis::ClassifyTrivial(HLoopInformation* loop, HInstruction* instruction) {
220   InductionInfo* info = nullptr;
221   if (instruction->IsPhi()) {
222     info = TransferPhi(loop, instruction, /*input_index*/ 0, /*adjust_input_size*/ 0);
223   } else if (instruction->IsAdd()) {
224     info = TransferAddSub(LookupInfo(loop, instruction->InputAt(0)),
225                           LookupInfo(loop, instruction->InputAt(1)), kAdd);
226   } else if (instruction->IsSub()) {
227     info = TransferAddSub(LookupInfo(loop, instruction->InputAt(0)),
228                           LookupInfo(loop, instruction->InputAt(1)), kSub);
229   } else if (instruction->IsNeg()) {
230     info = TransferNeg(LookupInfo(loop, instruction->InputAt(0)));
231   } else if (instruction->IsMul()) {
232     info = TransferMul(LookupInfo(loop, instruction->InputAt(0)),
233                        LookupInfo(loop, instruction->InputAt(1)));
234   } else if (instruction->IsShl()) {
235     HInstruction* mulc = GetShiftConstant(loop, instruction, /*initial*/ nullptr);
236     if (mulc != nullptr) {
237       info = TransferMul(LookupInfo(loop, instruction->InputAt(0)),
238                          LookupInfo(loop, mulc));
239     }
240   } else if (instruction->IsSelect()) {
241     info = TransferPhi(loop, instruction, /*input_index*/ 0, /*adjust_input_size*/ 1);
242   } else if (instruction->IsTypeConversion()) {
243     info = TransferConversion(LookupInfo(loop, instruction->InputAt(0)),
244                               instruction->AsTypeConversion()->GetInputType(),
245                               instruction->AsTypeConversion()->GetResultType());
246   } else if (instruction->IsBoundsCheck()) {
247     info = LookupInfo(loop, instruction->InputAt(0));  // Pass-through.
248   }
249 
250   // Successfully classified?
251   if (info != nullptr) {
252     AssignInfo(loop, instruction, info);
253   }
254 }
255 
ClassifyNonTrivial(HLoopInformation * loop)256 void HInductionVarAnalysis::ClassifyNonTrivial(HLoopInformation* loop) {
257   const size_t size = scc_.size();
258   DCHECK_GE(size, 1u);
259 
260   // Rotate proper loop-phi to front.
261   if (size > 1) {
262     ArenaVector<HInstruction*> other(graph_->GetArena()->Adapter(kArenaAllocInductionVarAnalysis));
263     RotateEntryPhiFirst(loop, &scc_, &other);
264   }
265 
266   // Analyze from loop-phi onwards.
267   HInstruction* phi = scc_[0];
268   if (!phi->IsLoopHeaderPhi()) {
269     return;
270   }
271 
272   // External link should be loop invariant.
273   InductionInfo* initial = LookupInfo(loop, phi->InputAt(0));
274   if (initial == nullptr || initial->induction_class != kInvariant) {
275     return;
276   }
277 
278   // Store interesting cycle in each loop phi.
279   for (size_t i = 0; i < size; i++) {
280     if (scc_[i]->IsLoopHeaderPhi()) {
281       AssignCycle(scc_[i]->AsPhi());
282     }
283   }
284 
285   // Singleton is wrap-around induction if all internal links have the same meaning.
286   if (size == 1) {
287     InductionInfo* update = TransferPhi(loop, phi, /*input_index*/ 1, /*adjust_input_size*/ 0);
288     if (update != nullptr) {
289       AssignInfo(loop, phi, CreateInduction(kWrapAround,
290                                             kNop,
291                                             initial,
292                                             update,
293                                             /*fetch*/ nullptr,
294                                             type_));
295     }
296     return;
297   }
298 
299   // Inspect remainder of the cycle that resides in scc_. The cycle_ mapping assigns
300   // temporary meaning to its nodes, seeded from the phi instruction and back.
301   for (size_t i = 1; i < size; i++) {
302     HInstruction* instruction = scc_[i];
303     InductionInfo* update = nullptr;
304     if (instruction->IsPhi()) {
305       update = SolvePhiAllInputs(loop, phi, instruction);
306     } else if (instruction->IsAdd()) {
307       update = SolveAddSub(
308           loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1), kAdd, true);
309     } else if (instruction->IsSub()) {
310       update = SolveAddSub(
311           loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1), kSub, true);
312     } else if (instruction->IsMul()) {
313       update = SolveOp(
314           loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1), kMul);
315     } else if (instruction->IsDiv()) {
316       update = SolveOp(
317           loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1), kDiv);
318     } else if (instruction->IsRem()) {
319       update = SolveOp(
320           loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1), kRem);
321     } else if (instruction->IsShl()) {
322       HInstruction* mulc = GetShiftConstant(loop, instruction, /*initial*/ nullptr);
323       if (mulc != nullptr) {
324         update = SolveOp(loop, phi, instruction, instruction->InputAt(0), mulc, kMul);
325       }
326     } else if (instruction->IsShr() || instruction->IsUShr()) {
327       HInstruction* divc = GetShiftConstant(loop, instruction, initial);
328       if (divc != nullptr) {
329         update = SolveOp(loop, phi, instruction, instruction->InputAt(0), divc, kDiv);
330       }
331     } else if (instruction->IsXor()) {
332       update = SolveOp(
333           loop, phi, instruction, instruction->InputAt(0), instruction->InputAt(1), kXor);
334     } else if (instruction->IsEqual()) {
335       update = SolveTest(loop, phi, instruction, 0);
336     } else if (instruction->IsNotEqual()) {
337       update = SolveTest(loop, phi, instruction, 1);
338     } else if (instruction->IsSelect()) {
339       update = SolvePhi(instruction, /*input_index*/ 0, /*adjust_input_size*/ 1);  // acts like Phi
340     } else if (instruction->IsTypeConversion()) {
341       update = SolveConversion(loop, phi, instruction->AsTypeConversion());
342     }
343     if (update == nullptr) {
344       return;
345     }
346     cycle_.Put(instruction, update);
347   }
348 
349   // Success if all internal links received the same temporary meaning.
350   InductionInfo* induction = SolvePhi(phi, /*input_index*/ 1, /*adjust_input_size*/ 0);
351   if (induction != nullptr) {
352     switch (induction->induction_class) {
353       case kInvariant:
354         // Construct combined stride of the linear induction.
355         induction = CreateInduction(kLinear, kNop, induction, initial, /*fetch*/ nullptr, type_);
356         FALLTHROUGH_INTENDED;
357       case kPolynomial:
358       case kGeometric:
359       case kWrapAround:
360         // Classify first phi and then the rest of the cycle "on-demand".
361         // Statements are scanned in order.
362         AssignInfo(loop, phi, induction);
363         for (size_t i = 1; i < size; i++) {
364           ClassifyTrivial(loop, scc_[i]);
365         }
366         break;
367       case kPeriodic:
368         // Classify all elements in the cycle with the found periodic induction while
369         // rotating each first element to the end. Lastly, phi is classified.
370         // Statements are scanned in reverse order.
371         for (size_t i = size - 1; i >= 1; i--) {
372           AssignInfo(loop, scc_[i], induction);
373           induction = RotatePeriodicInduction(induction->op_b, induction->op_a);
374         }
375         AssignInfo(loop, phi, induction);
376         break;
377       default:
378         break;
379     }
380   }
381 }
382 
RotatePeriodicInduction(InductionInfo * induction,InductionInfo * last)383 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::RotatePeriodicInduction(
384     InductionInfo* induction,
385     InductionInfo* last) {
386   // Rotates a periodic induction of the form
387   //   (a, b, c, d, e)
388   // into
389   //   (b, c, d, e, a)
390   // in preparation of assigning this to the previous variable in the sequence.
391   if (induction->induction_class == kInvariant) {
392     return CreateInduction(kPeriodic,
393                            kNop,
394                            induction,
395                            last,
396                            /*fetch*/ nullptr,
397                            type_);
398   }
399   return CreateInduction(kPeriodic,
400                          kNop,
401                          induction->op_a,
402                          RotatePeriodicInduction(induction->op_b, last),
403                          /*fetch*/ nullptr,
404                          type_);
405 }
406 
TransferPhi(HLoopInformation * loop,HInstruction * phi,size_t input_index,size_t adjust_input_size)407 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferPhi(HLoopInformation* loop,
408                                                                          HInstruction* phi,
409                                                                          size_t input_index,
410                                                                          size_t adjust_input_size) {
411   // Match all phi inputs from input_index onwards exactly.
412   HInputsRef inputs = phi->GetInputs();
413   DCHECK_LT(input_index, inputs.size());
414   InductionInfo* a = LookupInfo(loop, inputs[input_index]);
415   for (size_t i = input_index + 1, n = inputs.size() - adjust_input_size; i < n; i++) {
416     InductionInfo* b = LookupInfo(loop, inputs[i]);
417     if (!InductionEqual(a, b)) {
418       return nullptr;
419     }
420   }
421   return a;
422 }
423 
TransferAddSub(InductionInfo * a,InductionInfo * b,InductionOp op)424 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferAddSub(InductionInfo* a,
425                                                                             InductionInfo* b,
426                                                                             InductionOp op) {
427   // Transfer over an addition or subtraction: any invariant, linear, polynomial, geometric,
428   // wrap-around, or periodic can be combined with an invariant to yield a similar result.
429   // Two linear or two polynomial inputs can be combined too. Other combinations fail.
430   if (a != nullptr && b != nullptr) {
431     if (IsNarrowingLinear(a) || IsNarrowingLinear(b)) {
432       return nullptr;  // no transfer
433     } else if (a->induction_class == kInvariant && b->induction_class == kInvariant) {
434       return CreateInvariantOp(op, a, b);  // direct invariant
435     } else if ((a->induction_class == kLinear && b->induction_class == kLinear) ||
436                (a->induction_class == kPolynomial && b->induction_class == kPolynomial)) {
437       // Rule induc(a, b) + induc(a', b') -> induc(a + a', b + b').
438       InductionInfo* new_a = TransferAddSub(a->op_a, b->op_a, op);
439       InductionInfo* new_b = TransferAddSub(a->op_b, b->op_b, op);
440       if (new_a != nullptr && new_b != nullptr)  {
441         return CreateInduction(a->induction_class, a->operation, new_a, new_b, a->fetch, type_);
442       }
443     } else if (a->induction_class == kInvariant) {
444       // Rule a + induc(a', b') -> induc(a', a + b') or induc(a + a', a + b').
445       InductionInfo* new_a = b->op_a;
446       InductionInfo* new_b = TransferAddSub(a, b->op_b, op);
447       if (b->induction_class == kWrapAround || b->induction_class == kPeriodic) {
448         new_a = TransferAddSub(a, new_a, op);
449       } else if (op == kSub) {  // Negation required.
450         new_a = TransferNeg(new_a);
451       }
452       if (new_a != nullptr && new_b != nullptr)  {
453         return CreateInduction(b->induction_class, b->operation, new_a, new_b, b->fetch, type_);
454       }
455     } else if (b->induction_class == kInvariant) {
456       // Rule induc(a, b) + b' -> induc(a, b + b') or induc(a + b', b + b').
457       InductionInfo* new_a = a->op_a;
458       InductionInfo* new_b = TransferAddSub(a->op_b, b, op);
459       if (a->induction_class == kWrapAround || a->induction_class == kPeriodic) {
460         new_a = TransferAddSub(new_a, b, op);
461       }
462       if (new_a != nullptr && new_b != nullptr)  {
463         return CreateInduction(a->induction_class, a->operation, new_a, new_b, a->fetch, type_);
464       }
465     }
466   }
467   return nullptr;
468 }
469 
TransferNeg(InductionInfo * a)470 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferNeg(InductionInfo* a) {
471   // Transfer over a unary negation: an invariant, linear, polynomial, geometric (mul),
472   // wrap-around, or periodic input yields a similar but negated induction as result.
473   if (a != nullptr) {
474     if (IsNarrowingLinear(a)) {
475       return nullptr;  // no transfer
476     } else if (a->induction_class == kInvariant) {
477       return CreateInvariantOp(kNeg, nullptr, a);  // direct invariant
478     } else if (a->induction_class != kGeometric || a->operation == kMul) {
479       // Rule - induc(a, b) -> induc(-a, -b).
480       InductionInfo* new_a = TransferNeg(a->op_a);
481       InductionInfo* new_b = TransferNeg(a->op_b);
482       if (new_a != nullptr && new_b != nullptr) {
483         return CreateInduction(a->induction_class, a->operation, new_a, new_b, a->fetch, type_);
484       }
485     }
486   }
487   return nullptr;
488 }
489 
TransferMul(InductionInfo * a,InductionInfo * b)490 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferMul(InductionInfo* a,
491                                                                          InductionInfo* b) {
492   // Transfer over a multiplication: any invariant, linear, polynomial, geometric (mul),
493   // wrap-around, or periodic can be multiplied with an invariant to yield a similar
494   // but multiplied result. Two non-invariant inputs cannot be multiplied, however.
495   if (a != nullptr && b != nullptr) {
496     if (IsNarrowingLinear(a) || IsNarrowingLinear(b)) {
497       return nullptr;  // no transfer
498     } else if (a->induction_class == kInvariant && b->induction_class == kInvariant) {
499       return CreateInvariantOp(kMul, a, b);  // direct invariant
500     } else if (a->induction_class == kInvariant && (b->induction_class != kGeometric ||
501                                                     b->operation == kMul)) {
502       // Rule a * induc(a', b') -> induc(a * a', b * b').
503       InductionInfo* new_a = TransferMul(a, b->op_a);
504       InductionInfo* new_b = TransferMul(a, b->op_b);
505       if (new_a != nullptr && new_b != nullptr) {
506         return CreateInduction(b->induction_class, b->operation, new_a, new_b, b->fetch, type_);
507       }
508     } else if (b->induction_class == kInvariant && (a->induction_class != kGeometric ||
509                                                     a->operation == kMul)) {
510       // Rule induc(a, b) * b' -> induc(a * b', b * b').
511       InductionInfo* new_a = TransferMul(a->op_a, b);
512       InductionInfo* new_b = TransferMul(a->op_b, b);
513       if (new_a != nullptr && new_b != nullptr) {
514         return CreateInduction(a->induction_class, a->operation, new_a, new_b, a->fetch, type_);
515       }
516     }
517   }
518   return nullptr;
519 }
520 
TransferConversion(InductionInfo * a,Primitive::Type from,Primitive::Type to)521 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferConversion(
522     InductionInfo* a,
523     Primitive::Type from,
524     Primitive::Type to) {
525   if (a != nullptr) {
526     // Allow narrowing conversion on linear induction in certain cases:
527     // induction is already at narrow type, or can be made narrower.
528     if (IsNarrowingIntegralConversion(from, to) &&
529         a->induction_class == kLinear &&
530         (a->type == to || IsNarrowingIntegralConversion(a->type, to))) {
531       return CreateInduction(kLinear, kNop, a->op_a, a->op_b, a->fetch, to);
532     }
533   }
534   return nullptr;
535 }
536 
SolvePhi(HInstruction * phi,size_t input_index,size_t adjust_input_size)537 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolvePhi(HInstruction* phi,
538                                                                       size_t input_index,
539                                                                       size_t adjust_input_size) {
540   // Match all phi inputs from input_index onwards exactly.
541   HInputsRef inputs = phi->GetInputs();
542   DCHECK_LT(input_index, inputs.size());
543   auto ita = cycle_.find(inputs[input_index]);
544   if (ita != cycle_.end()) {
545     for (size_t i = input_index + 1, n = inputs.size() - adjust_input_size; i < n; i++) {
546       auto itb = cycle_.find(inputs[i]);
547       if (itb == cycle_.end() ||
548           !HInductionVarAnalysis::InductionEqual(ita->second, itb->second)) {
549         return nullptr;
550       }
551     }
552     return ita->second;
553   }
554   return nullptr;
555 }
556 
SolvePhiAllInputs(HLoopInformation * loop,HInstruction * entry_phi,HInstruction * phi)557 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolvePhiAllInputs(
558     HLoopInformation* loop,
559     HInstruction* entry_phi,
560     HInstruction* phi) {
561   // Match all phi inputs.
562   InductionInfo* match = SolvePhi(phi, /*input_index*/ 0, /*adjust_input_size*/ 0);
563   if (match != nullptr) {
564     return match;
565   }
566 
567   // Otherwise, try to solve for a periodic seeded from phi onward.
568   // Only tight multi-statement cycles are considered in order to
569   // simplify rotating the periodic during the final classification.
570   if (phi->IsLoopHeaderPhi() && phi->InputCount() == 2) {
571     InductionInfo* a = LookupInfo(loop, phi->InputAt(0));
572     if (a != nullptr && a->induction_class == kInvariant) {
573       if (phi->InputAt(1) == entry_phi) {
574         InductionInfo* initial = LookupInfo(loop, entry_phi->InputAt(0));
575         return CreateInduction(kPeriodic, kNop, a, initial, /*fetch*/ nullptr, type_);
576       }
577       InductionInfo* b = SolvePhi(phi, /*input_index*/ 1, /*adjust_input_size*/ 0);
578       if (b != nullptr && b->induction_class == kPeriodic) {
579         return CreateInduction(kPeriodic, kNop, a, b, /*fetch*/ nullptr, type_);
580       }
581     }
582   }
583   return nullptr;
584 }
585 
SolveAddSub(HLoopInformation * loop,HInstruction * entry_phi,HInstruction * instruction,HInstruction * x,HInstruction * y,InductionOp op,bool is_first_call)586 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolveAddSub(HLoopInformation* loop,
587                                                                          HInstruction* entry_phi,
588                                                                          HInstruction* instruction,
589                                                                          HInstruction* x,
590                                                                          HInstruction* y,
591                                                                          InductionOp op,
592                                                                          bool is_first_call) {
593   // Solve within a cycle over an addition or subtraction.
594   InductionInfo* b = LookupInfo(loop, y);
595   if (b != nullptr) {
596     if (b->induction_class == kInvariant) {
597       // Adding or subtracting an invariant value, seeded from phi,
598       // keeps adding to the stride of the linear induction.
599       if (x == entry_phi) {
600         return (op == kAdd) ? b : CreateInvariantOp(kNeg, nullptr, b);
601       }
602       auto it = cycle_.find(x);
603       if (it != cycle_.end()) {
604         InductionInfo* a = it->second;
605         if (a->induction_class == kInvariant) {
606           return CreateInvariantOp(op, a, b);
607         }
608       }
609     } else if (b->induction_class == kLinear && b->type == type_) {
610       // Solve within a tight cycle that adds a term that is already classified as a linear
611       // induction for a polynomial induction k = k + i (represented as sum over linear terms).
612       if (x == entry_phi && entry_phi->InputCount() == 2 && instruction == entry_phi->InputAt(1)) {
613         InductionInfo* initial = LookupInfo(loop, entry_phi->InputAt(0));
614         InductionInfo* new_a = op == kAdd ? b : TransferNeg(b);
615         if (new_a != nullptr) {
616           return CreateInduction(kPolynomial, kNop, new_a, initial, /*fetch*/ nullptr, type_);
617         }
618       }
619     }
620   }
621 
622   // Try some alternatives before failing.
623   if (op == kAdd) {
624     // Try the other way around for an addition if considered for first time.
625     if (is_first_call) {
626       return SolveAddSub(loop, entry_phi, instruction, y, x, op, false);
627     }
628   } else if (op == kSub) {
629     // Solve within a tight cycle that is formed by exactly two instructions,
630     // one phi and one update, for a periodic idiom of the form k = c - k.
631     if (y == entry_phi && entry_phi->InputCount() == 2 && instruction == entry_phi->InputAt(1)) {
632       InductionInfo* a = LookupInfo(loop, x);
633       if (a != nullptr && a->induction_class == kInvariant) {
634         InductionInfo* initial = LookupInfo(loop, entry_phi->InputAt(0));
635         return CreateInduction(kPeriodic,
636                                kNop,
637                                CreateInvariantOp(kSub, a, initial),
638                                initial,
639                                /*fetch*/ nullptr,
640                                type_);
641       }
642     }
643   }
644   return nullptr;
645 }
646 
SolveOp(HLoopInformation * loop,HInstruction * entry_phi,HInstruction * instruction,HInstruction * x,HInstruction * y,InductionOp op)647 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolveOp(HLoopInformation* loop,
648                                                                       HInstruction* entry_phi,
649                                                                       HInstruction* instruction,
650                                                                       HInstruction* x,
651                                                                       HInstruction* y,
652                                                                       InductionOp op) {
653   // Solve within a tight cycle for a binary operation k = k op c or, for some op, k = c op k.
654   if (entry_phi->InputCount() == 2 && instruction == entry_phi->InputAt(1)) {
655     InductionInfo* c = nullptr;
656     InductionInfo* b = LookupInfo(loop, y);
657     if (b != nullptr && b->induction_class == kInvariant && entry_phi == x) {
658       c = b;
659     } else if (op != kDiv && op != kRem) {
660       InductionInfo* a = LookupInfo(loop, x);
661       if (a != nullptr && a->induction_class == kInvariant && entry_phi == y) {
662         c = a;
663       }
664     }
665     // Found suitable operand left or right?
666     if (c != nullptr) {
667       InductionInfo* initial = LookupInfo(loop, entry_phi->InputAt(0));
668       switch (op) {
669         case kMul:
670         case kDiv:
671           // Restrict base of geometric induction to direct fetch.
672           if (c->operation == kFetch) {
673             return CreateInduction(kGeometric,
674                                    op,
675                                    initial,
676                                    CreateConstant(0, type_),
677                                    c->fetch,
678                                    type_);
679           };
680           break;
681         case kRem:
682           // Idiomatic MOD wrap-around induction.
683           return CreateInduction(kWrapAround,
684                                  kNop,
685                                  initial,
686                                  CreateInvariantOp(kRem, initial, c),
687                                  /*fetch*/ nullptr,
688                                  type_);
689         case kXor:
690           // Idiomatic XOR periodic induction.
691           return CreateInduction(kPeriodic,
692                                  kNop,
693                                  CreateInvariantOp(kXor, initial, c),
694                                  initial,
695                                  /*fetch*/ nullptr,
696                                  type_);
697         default:
698           CHECK(false) << op;
699           break;
700       }
701     }
702   }
703   return nullptr;
704 }
705 
SolveTest(HLoopInformation * loop,HInstruction * entry_phi,HInstruction * instruction,int64_t opposite_value)706 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolveTest(HLoopInformation* loop,
707                                                                        HInstruction* entry_phi,
708                                                                        HInstruction* instruction,
709                                                                        int64_t opposite_value) {
710   // Detect hidden XOR construction in x = (x == false) or x = (x != true).
711   int64_t value = -1;
712   HInstruction* x = instruction->InputAt(0);
713   HInstruction* y = instruction->InputAt(1);
714   if (IsExact(LookupInfo(loop, x), &value) && value == opposite_value) {
715     return SolveOp(loop, entry_phi, instruction, graph_->GetIntConstant(1), y, kXor);
716   } else if (IsExact(LookupInfo(loop, y), &value) && value == opposite_value) {
717     return SolveOp(loop, entry_phi, instruction, x, graph_->GetIntConstant(1), kXor);
718   }
719   return nullptr;
720 }
721 
SolveConversion(HLoopInformation * loop,HInstruction * entry_phi,HTypeConversion * conversion)722 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::SolveConversion(
723     HLoopInformation* loop,
724     HInstruction* entry_phi,
725     HTypeConversion* conversion) {
726   Primitive::Type from = conversion->GetInputType();
727   Primitive::Type to = conversion->GetResultType();
728   // A narrowing conversion is allowed as *last* operation of the cycle of a linear induction
729   // with an initial value that fits the type, provided that the narrowest encountered type is
730   // recorded with the induction to account for the precision loss. The narrower induction does
731   // *not* transfer to any wider operations, however, since these may yield out-of-type values
732   if (entry_phi->InputCount() == 2 && conversion == entry_phi->InputAt(1)) {
733     int64_t min = Primitive::MinValueOfIntegralType(to);
734     int64_t max = Primitive::MaxValueOfIntegralType(to);
735     int64_t value = 0;
736     InductionInfo* initial = LookupInfo(loop, entry_phi->InputAt(0));
737     if (IsNarrowingIntegralConversion(from, to) &&
738         IsAtLeast(initial, &value) && value >= min &&
739         IsAtMost(initial, &value)  && value <= max) {
740       auto it = cycle_.find(conversion->GetInput());
741       if (it != cycle_.end() && it->second->induction_class == kInvariant) {
742         type_ = to;
743         return it->second;
744       }
745     }
746   }
747   return nullptr;
748 }
749 
VisitControl(HLoopInformation * loop)750 void HInductionVarAnalysis::VisitControl(HLoopInformation* loop) {
751   HInstruction* control = loop->GetHeader()->GetLastInstruction();
752   if (control->IsIf()) {
753     HIf* ifs = control->AsIf();
754     HBasicBlock* if_true = ifs->IfTrueSuccessor();
755     HBasicBlock* if_false = ifs->IfFalseSuccessor();
756     HInstruction* if_expr = ifs->InputAt(0);
757     // Determine if loop has following structure in header.
758     // loop-header: ....
759     //              if (condition) goto X
760     if (if_expr->IsCondition()) {
761       HCondition* condition = if_expr->AsCondition();
762       InductionInfo* a = LookupInfo(loop, condition->InputAt(0));
763       InductionInfo* b = LookupInfo(loop, condition->InputAt(1));
764       Primitive::Type type = ImplicitConversion(condition->InputAt(0)->GetType());
765       // Determine if the loop control uses a known sequence on an if-exit (X outside) or on
766       // an if-iterate (X inside), expressed as if-iterate when passed into VisitCondition().
767       if (a == nullptr || b == nullptr) {
768         return;  // Loop control is not a sequence.
769       } else if (if_true->GetLoopInformation() != loop && if_false->GetLoopInformation() == loop) {
770         VisitCondition(loop, a, b, type, condition->GetOppositeCondition());
771       } else if (if_true->GetLoopInformation() == loop && if_false->GetLoopInformation() != loop) {
772         VisitCondition(loop, a, b, type, condition->GetCondition());
773       }
774     }
775   }
776 }
777 
VisitCondition(HLoopInformation * loop,InductionInfo * a,InductionInfo * b,Primitive::Type type,IfCondition cmp)778 void HInductionVarAnalysis::VisitCondition(HLoopInformation* loop,
779                                            InductionInfo* a,
780                                            InductionInfo* b,
781                                            Primitive::Type type,
782                                            IfCondition cmp) {
783   if (a->induction_class == kInvariant && b->induction_class == kLinear) {
784     // Swap condition if induction is at right-hand-side (e.g. U > i is same as i < U).
785     switch (cmp) {
786       case kCondLT: VisitCondition(loop, b, a, type, kCondGT); break;
787       case kCondLE: VisitCondition(loop, b, a, type, kCondGE); break;
788       case kCondGT: VisitCondition(loop, b, a, type, kCondLT); break;
789       case kCondGE: VisitCondition(loop, b, a, type, kCondLE); break;
790       case kCondNE: VisitCondition(loop, b, a, type, kCondNE); break;
791       default: break;
792     }
793   } else if (a->induction_class == kLinear && b->induction_class == kInvariant) {
794     // Analyze condition with induction at left-hand-side (e.g. i < U).
795     InductionInfo* lower_expr = a->op_b;
796     InductionInfo* upper_expr = b;
797     InductionInfo* stride_expr = a->op_a;
798     // Constant stride?
799     int64_t stride_value = 0;
800     if (!IsExact(stride_expr, &stride_value)) {
801       return;
802     }
803     // Rewrite condition i != U into strict end condition i < U or i > U if this end condition
804     // is reached exactly (tested by verifying if the loop has a unit stride and the non-strict
805     // condition would be always taken).
806     if (cmp == kCondNE && ((stride_value == +1 && IsTaken(lower_expr, upper_expr, kCondLE)) ||
807                            (stride_value == -1 && IsTaken(lower_expr, upper_expr, kCondGE)))) {
808       cmp = stride_value > 0 ? kCondLT : kCondGT;
809     }
810     // Only accept integral condition. A mismatch between the type of condition and the induction
811     // is only allowed if the, necessarily narrower, induction range fits the narrower control.
812     if (type != Primitive::kPrimInt && type != Primitive::kPrimLong) {
813       return;  // not integral
814     } else if (type != a->type &&
815                !FitsNarrowerControl(lower_expr, upper_expr, stride_value, a->type, cmp)) {
816       return;  // mismatched type
817     }
818     // Normalize a linear loop control with a nonzero stride:
819     //   stride > 0, either i < U or i <= U
820     //   stride < 0, either i > U or i >= U
821     if ((stride_value > 0 && (cmp == kCondLT || cmp == kCondLE)) ||
822         (stride_value < 0 && (cmp == kCondGT || cmp == kCondGE))) {
823       VisitTripCount(loop, lower_expr, upper_expr, stride_expr, stride_value, type, cmp);
824     }
825   }
826 }
827 
VisitTripCount(HLoopInformation * loop,InductionInfo * lower_expr,InductionInfo * upper_expr,InductionInfo * stride_expr,int64_t stride_value,Primitive::Type type,IfCondition cmp)828 void HInductionVarAnalysis::VisitTripCount(HLoopInformation* loop,
829                                            InductionInfo* lower_expr,
830                                            InductionInfo* upper_expr,
831                                            InductionInfo* stride_expr,
832                                            int64_t stride_value,
833                                            Primitive::Type type,
834                                            IfCondition cmp) {
835   // Any loop of the general form:
836   //
837   //    for (i = L; i <= U; i += S) // S > 0
838   // or for (i = L; i >= U; i += S) // S < 0
839   //      .. i ..
840   //
841   // can be normalized into:
842   //
843   //    for (n = 0; n < TC; n++) // where TC = (U + S - L) / S
844   //      .. L + S * n ..
845   //
846   // taking the following into consideration:
847   //
848   // (1) Using the same precision, the TC (trip-count) expression should be interpreted as
849   //     an unsigned entity, for example, as in the following loop that uses the full range:
850   //     for (int i = INT_MIN; i < INT_MAX; i++) // TC = UINT_MAX
851   // (2) The TC is only valid if the loop is taken, otherwise TC = 0, as in:
852   //     for (int i = 12; i < U; i++) // TC = 0 when U <= 12
853   //     If this cannot be determined at compile-time, the TC is only valid within the
854   //     loop-body proper, not the loop-header unless enforced with an explicit taken-test.
855   // (3) The TC is only valid if the loop is finite, otherwise TC has no value, as in:
856   //     for (int i = 0; i <= U; i++) // TC = Inf when U = INT_MAX
857   //     If this cannot be determined at compile-time, the TC is only valid when enforced
858   //     with an explicit finite-test.
859   // (4) For loops which early-exits, the TC forms an upper bound, as in:
860   //     for (int i = 0; i < 10 && ....; i++) // TC <= 10
861   InductionInfo* trip_count = upper_expr;
862   const bool is_taken = IsTaken(lower_expr, upper_expr, cmp);
863   const bool is_finite = IsFinite(upper_expr, stride_value, type, cmp);
864   const bool cancels = (cmp == kCondLT || cmp == kCondGT) && std::abs(stride_value) == 1;
865   if (!cancels) {
866     // Convert exclusive integral inequality into inclusive integral inequality,
867     // viz. condition i < U is i <= U - 1 and condition i > U is i >= U + 1.
868     if (cmp == kCondLT) {
869       trip_count = CreateInvariantOp(kSub, trip_count, CreateConstant(1, type));
870     } else if (cmp == kCondGT) {
871       trip_count = CreateInvariantOp(kAdd, trip_count, CreateConstant(1, type));
872     }
873     // Compensate for stride.
874     trip_count = CreateInvariantOp(kAdd, trip_count, stride_expr);
875   }
876   trip_count = CreateInvariantOp(
877       kDiv, CreateInvariantOp(kSub, trip_count, lower_expr), stride_expr);
878   // Assign the trip-count expression to the loop control. Clients that use the information
879   // should be aware that the expression is only valid under the conditions listed above.
880   InductionOp tcKind = kTripCountInBodyUnsafe;  // needs both tests
881   if (is_taken && is_finite) {
882     tcKind = kTripCountInLoop;  // needs neither test
883   } else if (is_finite) {
884     tcKind = kTripCountInBody;  // needs taken-test
885   } else if (is_taken) {
886     tcKind = kTripCountInLoopUnsafe;  // needs finite-test
887   }
888   InductionOp op = kNop;
889   switch (cmp) {
890     case kCondLT: op = kLT; break;
891     case kCondLE: op = kLE; break;
892     case kCondGT: op = kGT; break;
893     case kCondGE: op = kGE; break;
894     default:      LOG(FATAL) << "CONDITION UNREACHABLE";
895   }
896   // Associate trip count with control instruction, rather than the condition (even
897   // though it's its use) since former provides a convenient use-free placeholder.
898   HInstruction* control = loop->GetHeader()->GetLastInstruction();
899   InductionInfo* taken_test = CreateInvariantOp(op, lower_expr, upper_expr);
900   DCHECK(control->IsIf());
901   AssignInfo(loop, control, CreateTripCount(tcKind, trip_count, taken_test, type));
902 }
903 
IsTaken(InductionInfo * lower_expr,InductionInfo * upper_expr,IfCondition cmp)904 bool HInductionVarAnalysis::IsTaken(InductionInfo* lower_expr,
905                                     InductionInfo* upper_expr,
906                                     IfCondition cmp) {
907   int64_t lower_value;
908   int64_t upper_value;
909   switch (cmp) {
910     case kCondLT:
911       return IsAtMost(lower_expr, &lower_value)
912           && IsAtLeast(upper_expr, &upper_value)
913           && lower_value < upper_value;
914     case kCondLE:
915       return IsAtMost(lower_expr, &lower_value)
916           && IsAtLeast(upper_expr, &upper_value)
917           && lower_value <= upper_value;
918     case kCondGT:
919       return IsAtLeast(lower_expr, &lower_value)
920           && IsAtMost(upper_expr, &upper_value)
921           && lower_value > upper_value;
922     case kCondGE:
923       return IsAtLeast(lower_expr, &lower_value)
924           && IsAtMost(upper_expr, &upper_value)
925           && lower_value >= upper_value;
926     default:
927       LOG(FATAL) << "CONDITION UNREACHABLE";
928   }
929   return false;  // not certain, may be untaken
930 }
931 
IsFinite(InductionInfo * upper_expr,int64_t stride_value,Primitive::Type type,IfCondition cmp)932 bool HInductionVarAnalysis::IsFinite(InductionInfo* upper_expr,
933                                      int64_t stride_value,
934                                      Primitive::Type type,
935                                      IfCondition cmp) {
936   int64_t min = Primitive::MinValueOfIntegralType(type);
937   int64_t max = Primitive::MaxValueOfIntegralType(type);
938   // Some rules under which it is certain at compile-time that the loop is finite.
939   int64_t value;
940   switch (cmp) {
941     case kCondLT:
942       return stride_value == 1 ||
943           (IsAtMost(upper_expr, &value) && value <= (max - stride_value + 1));
944     case kCondLE:
945       return (IsAtMost(upper_expr, &value) && value <= (max - stride_value));
946     case kCondGT:
947       return stride_value == -1 ||
948           (IsAtLeast(upper_expr, &value) && value >= (min - stride_value - 1));
949     case kCondGE:
950       return (IsAtLeast(upper_expr, &value) && value >= (min - stride_value));
951     default:
952       LOG(FATAL) << "CONDITION UNREACHABLE";
953   }
954   return false;  // not certain, may be infinite
955 }
956 
FitsNarrowerControl(InductionInfo * lower_expr,InductionInfo * upper_expr,int64_t stride_value,Primitive::Type type,IfCondition cmp)957 bool HInductionVarAnalysis::FitsNarrowerControl(InductionInfo* lower_expr,
958                                                 InductionInfo* upper_expr,
959                                                 int64_t stride_value,
960                                                 Primitive::Type type,
961                                                 IfCondition cmp) {
962   int64_t min = Primitive::MinValueOfIntegralType(type);
963   int64_t max = Primitive::MaxValueOfIntegralType(type);
964   // Inclusive test need one extra.
965   if (stride_value != 1 && stride_value != -1) {
966     return false;  // non-unit stride
967   } else if (cmp == kCondLE) {
968     max--;
969   } else if (cmp == kCondGE) {
970     min++;
971   }
972   // Do both bounds fit the range?
973   int64_t value = 0;
974   return IsAtLeast(lower_expr, &value) && value >= min &&
975          IsAtMost(lower_expr, &value)  && value <= max &&
976          IsAtLeast(upper_expr, &value) && value >= min &&
977          IsAtMost(upper_expr, &value)  && value <= max;
978 }
979 
AssignInfo(HLoopInformation * loop,HInstruction * instruction,InductionInfo * info)980 void HInductionVarAnalysis::AssignInfo(HLoopInformation* loop,
981                                        HInstruction* instruction,
982                                        InductionInfo* info) {
983   auto it = induction_.find(loop);
984   if (it == induction_.end()) {
985     it = induction_.Put(loop,
986                         ArenaSafeMap<HInstruction*, InductionInfo*>(
987                             std::less<HInstruction*>(),
988                             graph_->GetArena()->Adapter(kArenaAllocInductionVarAnalysis)));
989   }
990   it->second.Put(instruction, info);
991 }
992 
LookupInfo(HLoopInformation * loop,HInstruction * instruction)993 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::LookupInfo(HLoopInformation* loop,
994                                                                         HInstruction* instruction) {
995   auto it = induction_.find(loop);
996   if (it != induction_.end()) {
997     auto loop_it = it->second.find(instruction);
998     if (loop_it != it->second.end()) {
999       return loop_it->second;
1000     }
1001   }
1002   if (loop->IsDefinedOutOfTheLoop(instruction)) {
1003     InductionInfo* info = CreateInvariantFetch(instruction);
1004     AssignInfo(loop, instruction, info);
1005     return info;
1006   }
1007   return nullptr;
1008 }
1009 
CreateConstant(int64_t value,Primitive::Type type)1010 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::CreateConstant(int64_t value,
1011                                                                             Primitive::Type type) {
1012   HInstruction* constant;
1013   switch (type) {
1014     case Primitive::kPrimDouble: constant = graph_->GetDoubleConstant(value); break;
1015     case Primitive::kPrimFloat:  constant = graph_->GetFloatConstant(value);  break;
1016     case Primitive::kPrimLong:   constant = graph_->GetLongConstant(value);   break;
1017     default:                     constant = graph_->GetIntConstant(value);    break;
1018   }
1019   return CreateInvariantFetch(constant);
1020 }
1021 
CreateSimplifiedInvariant(InductionOp op,InductionInfo * a,InductionInfo * b)1022 HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::CreateSimplifiedInvariant(
1023     InductionOp op,
1024     InductionInfo* a,
1025     InductionInfo* b) {
1026   // Perform some light-weight simplifications during construction of a new invariant.
1027   // This often safes memory and yields a more concise representation of the induction.
1028   // More exhaustive simplifications are done by later phases once induction nodes are
1029   // translated back into HIR code (e.g. by loop optimizations or BCE).
1030   int64_t value = -1;
1031   if (IsExact(a, &value)) {
1032     if (value == 0) {
1033       // Simplify 0 + b = b, 0 ^ b = b, 0 * b = 0.
1034       if (op == kAdd || op == kXor) {
1035         return b;
1036       } else if (op == kMul) {
1037         return a;
1038       }
1039     } else if (op == kMul) {
1040       // Simplify 1 * b = b, -1 * b = -b
1041       if (value == 1) {
1042         return b;
1043       } else if (value == -1) {
1044         return CreateSimplifiedInvariant(kNeg, nullptr, b);
1045       }
1046     }
1047   }
1048   if (IsExact(b, &value)) {
1049     if (value == 0) {
1050       // Simplify a + 0 = a, a - 0 = a, a ^ 0 = a, a * 0 = 0, -0 = 0.
1051       if (op == kAdd || op == kSub || op == kXor) {
1052         return a;
1053       } else if (op == kMul || op == kNeg) {
1054         return b;
1055       }
1056     } else if (op == kMul || op == kDiv) {
1057       // Simplify a * 1 = a, a / 1 = a, a * -1 = -a, a / -1 = -a
1058       if (value == 1) {
1059         return a;
1060       } else if (value == -1) {
1061         return CreateSimplifiedInvariant(kNeg, nullptr, a);
1062       }
1063     }
1064   } else if (b->operation == kNeg) {
1065     // Simplify a + (-b) = a - b, a - (-b) = a + b, -(-b) = b.
1066     if (op == kAdd) {
1067       return CreateSimplifiedInvariant(kSub, a, b->op_b);
1068     } else if (op == kSub) {
1069       return CreateSimplifiedInvariant(kAdd, a, b->op_b);
1070     } else if (op == kNeg) {
1071       return b->op_b;
1072     }
1073   } else if (b->operation == kSub) {
1074     // Simplify - (a - b) = b - a.
1075     if (op == kNeg) {
1076       return CreateSimplifiedInvariant(kSub, b->op_b, b->op_a);
1077     }
1078   }
1079   return new (graph_->GetArena()) InductionInfo(
1080       kInvariant, op, a, b, nullptr, ImplicitConversion(b->type));
1081 }
1082 
GetShiftConstant(HLoopInformation * loop,HInstruction * instruction,InductionInfo * initial)1083 HInstruction* HInductionVarAnalysis::GetShiftConstant(HLoopInformation* loop,
1084                                                       HInstruction* instruction,
1085                                                       InductionInfo* initial) {
1086   DCHECK(instruction->IsShl() || instruction->IsShr() || instruction->IsUShr());
1087   // Shift-rights are only the same as division for non-negative initial inputs.
1088   // Otherwise we would round incorrectly.
1089   if (initial != nullptr) {
1090     int64_t value = -1;
1091     if (!IsAtLeast(initial, &value) || value < 0) {
1092       return nullptr;
1093     }
1094   }
1095   // Obtain the constant needed to treat shift as equivalent multiplication or division.
1096   // This yields an existing instruction if the constant is already there. Otherwise, this
1097   // has a side effect on the HIR. The restriction on the shift factor avoids generating a
1098   // negative constant (viz. 1 << 31 and 1L << 63 set the sign bit). The code assumes that
1099   // generalization for shift factors outside [0,32) and [0,64) ranges is done earlier.
1100   InductionInfo* b = LookupInfo(loop, instruction->InputAt(1));
1101   int64_t value = -1;
1102   if (IsExact(b, &value)) {
1103     Primitive::Type type = instruction->InputAt(0)->GetType();
1104     if (type == Primitive::kPrimInt && 0 <= value && value < 31) {
1105       return graph_->GetIntConstant(1 << value);
1106     }
1107     if (type == Primitive::kPrimLong && 0 <= value && value < 63) {
1108       return graph_->GetLongConstant(1L << value);
1109     }
1110   }
1111   return nullptr;
1112 }
1113 
AssignCycle(HPhi * phi)1114 void HInductionVarAnalysis::AssignCycle(HPhi* phi) {
1115   ArenaSet<HInstruction*>* set = &cycles_.Put(phi, ArenaSet<HInstruction*>(
1116       graph_->GetArena()->Adapter(kArenaAllocInductionVarAnalysis)))->second;
1117   for (HInstruction* i : scc_) {
1118     set->insert(i);
1119   }
1120 }
1121 
LookupCycle(HPhi * phi)1122 ArenaSet<HInstruction*>* HInductionVarAnalysis::LookupCycle(HPhi* phi) {
1123   auto it = cycles_.find(phi);
1124   if (it != cycles_.end()) {
1125     return &it->second;
1126   }
1127   return nullptr;
1128 }
1129 
IsExact(InductionInfo * info,int64_t * value)1130 bool HInductionVarAnalysis::IsExact(InductionInfo* info, int64_t* value) {
1131   return InductionVarRange(this).IsConstant(info, InductionVarRange::kExact, value);
1132 }
1133 
IsAtMost(InductionInfo * info,int64_t * value)1134 bool HInductionVarAnalysis::IsAtMost(InductionInfo* info, int64_t* value) {
1135   return InductionVarRange(this).IsConstant(info, InductionVarRange::kAtMost, value);
1136 }
1137 
IsAtLeast(InductionInfo * info,int64_t * value)1138 bool HInductionVarAnalysis::IsAtLeast(InductionInfo* info, int64_t* value) {
1139   return InductionVarRange(this).IsConstant(info, InductionVarRange::kAtLeast, value);
1140 }
1141 
IsNarrowingLinear(InductionInfo * info)1142 bool HInductionVarAnalysis::IsNarrowingLinear(InductionInfo* info) {
1143   return info != nullptr &&
1144       info->induction_class == kLinear &&
1145       (info->type == Primitive::kPrimByte ||
1146        info->type == Primitive::kPrimShort ||
1147        info->type == Primitive::kPrimChar ||
1148        (info->type == Primitive::kPrimInt && (info->op_a->type == Primitive::kPrimLong ||
1149                                               info->op_b->type == Primitive::kPrimLong)));
1150 }
1151 
InductionEqual(InductionInfo * info1,InductionInfo * info2)1152 bool HInductionVarAnalysis::InductionEqual(InductionInfo* info1,
1153                                            InductionInfo* info2) {
1154   // Test structural equality only, without accounting for simplifications.
1155   if (info1 != nullptr && info2 != nullptr) {
1156     return
1157         info1->induction_class == info2->induction_class &&
1158         info1->operation       == info2->operation       &&
1159         info1->fetch           == info2->fetch           &&
1160         info1->type            == info2->type            &&
1161         InductionEqual(info1->op_a, info2->op_a)         &&
1162         InductionEqual(info1->op_b, info2->op_b);
1163   }
1164   // Otherwise only two nullptrs are considered equal.
1165   return info1 == info2;
1166 }
1167 
FetchToString(HInstruction * fetch)1168 std::string HInductionVarAnalysis::FetchToString(HInstruction* fetch) {
1169   DCHECK(fetch != nullptr);
1170   if (fetch->IsIntConstant()) {
1171     return std::to_string(fetch->AsIntConstant()->GetValue());
1172   } else if (fetch->IsLongConstant()) {
1173     return std::to_string(fetch->AsLongConstant()->GetValue());
1174   }
1175   return std::to_string(fetch->GetId()) + ":" + fetch->DebugName();
1176 }
1177 
InductionToString(InductionInfo * info)1178 std::string HInductionVarAnalysis::InductionToString(InductionInfo* info) {
1179   if (info != nullptr) {
1180     if (info->induction_class == kInvariant) {
1181       std::string inv = "(";
1182       inv += InductionToString(info->op_a);
1183       switch (info->operation) {
1184         case kNop:   inv += " @ ";  break;
1185         case kAdd:   inv += " + ";  break;
1186         case kSub:
1187         case kNeg:   inv += " - ";  break;
1188         case kMul:   inv += " * ";  break;
1189         case kDiv:   inv += " / ";  break;
1190         case kRem:   inv += " % ";  break;
1191         case kXor:   inv += " ^ ";  break;
1192         case kLT:    inv += " < ";  break;
1193         case kLE:    inv += " <= "; break;
1194         case kGT:    inv += " > ";  break;
1195         case kGE:    inv += " >= "; break;
1196         case kFetch: inv += FetchToString(info->fetch); break;
1197         case kTripCountInLoop:       inv += " (TC-loop) ";        break;
1198         case kTripCountInBody:       inv += " (TC-body) ";        break;
1199         case kTripCountInLoopUnsafe: inv += " (TC-loop-unsafe) "; break;
1200         case kTripCountInBodyUnsafe: inv += " (TC-body-unsafe) "; break;
1201       }
1202       inv += InductionToString(info->op_b);
1203       inv += ")";
1204       return inv;
1205     } else {
1206       if (info->induction_class == kLinear) {
1207         DCHECK(info->operation == kNop);
1208         return "(" + InductionToString(info->op_a) + " * i + " +
1209                      InductionToString(info->op_b) + "):" +
1210                      Primitive::PrettyDescriptor(info->type);
1211       } else if (info->induction_class == kPolynomial) {
1212         DCHECK(info->operation == kNop);
1213         return "poly(sum_lt(" + InductionToString(info->op_a) + ") + " +
1214                                 InductionToString(info->op_b) + "):" +
1215                                 Primitive::PrettyDescriptor(info->type);
1216       } else if (info->induction_class == kGeometric) {
1217         DCHECK(info->operation == kMul || info->operation == kDiv);
1218         DCHECK(info->fetch != nullptr);
1219         return "geo(" + InductionToString(info->op_a) + " * " +
1220                         FetchToString(info->fetch) +
1221                         (info->operation == kMul ? " ^ i + " : " ^ -i + ") +
1222                         InductionToString(info->op_b) + "):" +
1223                         Primitive::PrettyDescriptor(info->type);
1224       } else if (info->induction_class == kWrapAround) {
1225         DCHECK(info->operation == kNop);
1226         return "wrap(" + InductionToString(info->op_a) + ", " +
1227                          InductionToString(info->op_b) + "):" +
1228                          Primitive::PrettyDescriptor(info->type);
1229       } else if (info->induction_class == kPeriodic) {
1230         DCHECK(info->operation == kNop);
1231         return "periodic(" + InductionToString(info->op_a) + ", " +
1232                              InductionToString(info->op_b) + "):" +
1233                              Primitive::PrettyDescriptor(info->type);
1234       }
1235     }
1236   }
1237   return "";
1238 }
1239 
1240 }  // namespace art
1241