1 //===- ProfilingUtils.cpp - Helper functions shared by profilers ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a few helper functions which are used by profile
11 // instrumentation code to instrument the code.  This allows the profiler pass
12 // to worry about *what* to insert, and these functions take care of *how* to do
13 // it.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "ProfilingUtils.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/LLVMContext.h"
22 #include "llvm/Module.h"
23 
InsertProfilingInitCall(Function * MainFn,const char * FnName,GlobalValue * Array,PointerType * arrayType)24 void llvm::InsertProfilingInitCall(Function *MainFn, const char *FnName,
25                                    GlobalValue *Array,
26                                    PointerType *arrayType) {
27   LLVMContext &Context = MainFn->getContext();
28   Type *ArgVTy =
29     PointerType::getUnqual(Type::getInt8PtrTy(Context));
30   PointerType *UIntPtr = arrayType ? arrayType :
31     Type::getInt32PtrTy(Context);
32   Module &M = *MainFn->getParent();
33   Constant *InitFn = M.getOrInsertFunction(FnName, Type::getInt32Ty(Context),
34                                            Type::getInt32Ty(Context),
35                                            ArgVTy, UIntPtr,
36                                            Type::getInt32Ty(Context),
37                                            (Type *)0);
38 
39   // This could force argc and argv into programs that wouldn't otherwise have
40   // them, but instead we just pass null values in.
41   std::vector<Value*> Args(4);
42   Args[0] = Constant::getNullValue(Type::getInt32Ty(Context));
43   Args[1] = Constant::getNullValue(ArgVTy);
44 
45   // Skip over any allocas in the entry block.
46   BasicBlock *Entry = MainFn->begin();
47   BasicBlock::iterator InsertPos = Entry->begin();
48   while (isa<AllocaInst>(InsertPos)) ++InsertPos;
49 
50   std::vector<Constant*> GEPIndices(2,
51                              Constant::getNullValue(Type::getInt32Ty(Context)));
52   unsigned NumElements = 0;
53   if (Array) {
54     Args[2] = ConstantExpr::getGetElementPtr(Array, GEPIndices);
55     NumElements =
56       cast<ArrayType>(Array->getType()->getElementType())->getNumElements();
57   } else {
58     // If this profiling instrumentation doesn't have a constant array, just
59     // pass null.
60     Args[2] = ConstantPointerNull::get(UIntPtr);
61   }
62   Args[3] = ConstantInt::get(Type::getInt32Ty(Context), NumElements);
63 
64   CallInst *InitCall = CallInst::Create(InitFn, Args, "newargc", InsertPos);
65 
66   // If argc or argv are not available in main, just pass null values in.
67   Function::arg_iterator AI;
68   switch (MainFn->arg_size()) {
69   default:
70   case 2:
71     AI = MainFn->arg_begin(); ++AI;
72     if (AI->getType() != ArgVTy) {
73       Instruction::CastOps opcode = CastInst::getCastOpcode(AI, false, ArgVTy,
74                                                             false);
75       InitCall->setArgOperand(1,
76           CastInst::Create(opcode, AI, ArgVTy, "argv.cast", InitCall));
77     } else {
78       InitCall->setArgOperand(1, AI);
79     }
80     /* FALL THROUGH */
81 
82   case 1:
83     AI = MainFn->arg_begin();
84     // If the program looked at argc, have it look at the return value of the
85     // init call instead.
86     if (!AI->getType()->isIntegerTy(32)) {
87       Instruction::CastOps opcode;
88       if (!AI->use_empty()) {
89         opcode = CastInst::getCastOpcode(InitCall, true, AI->getType(), true);
90         AI->replaceAllUsesWith(
91           CastInst::Create(opcode, InitCall, AI->getType(), "", InsertPos));
92       }
93       opcode = CastInst::getCastOpcode(AI, true,
94                                        Type::getInt32Ty(Context), true);
95       InitCall->setArgOperand(0,
96           CastInst::Create(opcode, AI, Type::getInt32Ty(Context),
97                            "argc.cast", InitCall));
98     } else {
99       AI->replaceAllUsesWith(InitCall);
100       InitCall->setArgOperand(0, AI);
101     }
102 
103   case 0: break;
104   }
105 }
106 
IncrementCounterInBlock(BasicBlock * BB,unsigned CounterNum,GlobalValue * CounterArray,bool beginning)107 void llvm::IncrementCounterInBlock(BasicBlock *BB, unsigned CounterNum,
108                                    GlobalValue *CounterArray, bool beginning) {
109   // Insert the increment after any alloca or PHI instructions...
110   BasicBlock::iterator InsertPos = beginning ? BB->getFirstInsertionPt() :
111                                    BB->getTerminator();
112   while (isa<AllocaInst>(InsertPos))
113     ++InsertPos;
114 
115   LLVMContext &Context = BB->getContext();
116 
117   // Create the getelementptr constant expression
118   std::vector<Constant*> Indices(2);
119   Indices[0] = Constant::getNullValue(Type::getInt32Ty(Context));
120   Indices[1] = ConstantInt::get(Type::getInt32Ty(Context), CounterNum);
121   Constant *ElementPtr =
122     ConstantExpr::getGetElementPtr(CounterArray, Indices);
123 
124   // Load, increment and store the value back.
125   Value *OldVal = new LoadInst(ElementPtr, "OldFuncCounter", InsertPos);
126   Value *NewVal = BinaryOperator::Create(Instruction::Add, OldVal,
127                                  ConstantInt::get(Type::getInt32Ty(Context), 1),
128                                          "NewFuncCounter", InsertPos);
129   new StoreInst(NewVal, ElementPtr, InsertPos);
130 }
131 
InsertProfilingShutdownCall(Function * Callee,Module * Mod)132 void llvm::InsertProfilingShutdownCall(Function *Callee, Module *Mod) {
133   // llvm.global_dtors is an array of type { i32, void ()* }. Prepare those
134   // types.
135   Type *GlobalDtorElems[2] = {
136     Type::getInt32Ty(Mod->getContext()),
137     FunctionType::get(Type::getVoidTy(Mod->getContext()), false)->getPointerTo()
138   };
139   StructType *GlobalDtorElemTy =
140       StructType::get(Mod->getContext(), GlobalDtorElems, false);
141 
142   // Construct the new element we'll be adding.
143   Constant *Elem[2] = {
144     ConstantInt::get(Type::getInt32Ty(Mod->getContext()), 65535),
145     ConstantExpr::getBitCast(Callee, GlobalDtorElems[1])
146   };
147 
148   // If llvm.global_dtors exists, make a copy of the things in its list and
149   // delete it, to replace it with one that has a larger array type.
150   std::vector<Constant *> dtors;
151   if (GlobalVariable *GlobalDtors = Mod->getNamedGlobal("llvm.global_dtors")) {
152     if (ConstantArray *InitList =
153         dyn_cast<ConstantArray>(GlobalDtors->getInitializer())) {
154       for (unsigned i = 0, e = InitList->getType()->getNumElements();
155            i != e; ++i)
156         dtors.push_back(cast<Constant>(InitList->getOperand(i)));
157     }
158     GlobalDtors->eraseFromParent();
159   }
160 
161   // Build up llvm.global_dtors with our new item in it.
162   GlobalVariable *GlobalDtors = new GlobalVariable(
163       *Mod, ArrayType::get(GlobalDtorElemTy, 1), false,
164       GlobalValue::AppendingLinkage, NULL, "llvm.global_dtors");
165 
166   dtors.push_back(ConstantStruct::get(GlobalDtorElemTy, Elem));
167   GlobalDtors->setInitializer(ConstantArray::get(
168       cast<ArrayType>(GlobalDtors->getType()->getElementType()), dtors));
169 }
170