1 // Copyright 2012 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef V8_PROPERTY_DETAILS_H_ 6 #define V8_PROPERTY_DETAILS_H_ 7 8 #include "include/v8.h" 9 #include "src/allocation.h" 10 #include "src/utils.h" 11 12 namespace v8 { 13 namespace internal { 14 15 // ES6 6.1.7.1 16 enum PropertyAttributes { 17 NONE = ::v8::None, 18 READ_ONLY = ::v8::ReadOnly, 19 DONT_ENUM = ::v8::DontEnum, 20 DONT_DELETE = ::v8::DontDelete, 21 22 ALL_ATTRIBUTES_MASK = READ_ONLY | DONT_ENUM | DONT_DELETE, 23 24 SEALED = DONT_DELETE, 25 FROZEN = SEALED | READ_ONLY, 26 27 ABSENT = 64, // Used in runtime to indicate a property is absent. 28 // ABSENT can never be stored in or returned from a descriptor's attributes 29 // bitfield. It is only used as a return value meaning the attributes of 30 // a non-existent property. 31 }; 32 33 34 enum PropertyFilter { 35 ALL_PROPERTIES = 0, 36 ONLY_WRITABLE = 1, 37 ONLY_ENUMERABLE = 2, 38 ONLY_CONFIGURABLE = 4, 39 SKIP_STRINGS = 8, 40 SKIP_SYMBOLS = 16, 41 ONLY_ALL_CAN_READ = 32, 42 ENUMERABLE_STRINGS = ONLY_ENUMERABLE | SKIP_SYMBOLS, 43 }; 44 // Enable fast comparisons of PropertyAttributes against PropertyFilters. 45 STATIC_ASSERT(ALL_PROPERTIES == static_cast<PropertyFilter>(NONE)); 46 STATIC_ASSERT(ONLY_WRITABLE == static_cast<PropertyFilter>(READ_ONLY)); 47 STATIC_ASSERT(ONLY_ENUMERABLE == static_cast<PropertyFilter>(DONT_ENUM)); 48 STATIC_ASSERT(ONLY_CONFIGURABLE == static_cast<PropertyFilter>(DONT_DELETE)); 49 STATIC_ASSERT(((SKIP_STRINGS | SKIP_SYMBOLS | ONLY_ALL_CAN_READ) & 50 ALL_ATTRIBUTES_MASK) == 0); 51 STATIC_ASSERT(ALL_PROPERTIES == 52 static_cast<PropertyFilter>(v8::PropertyFilter::ALL_PROPERTIES)); 53 STATIC_ASSERT(ONLY_WRITABLE == 54 static_cast<PropertyFilter>(v8::PropertyFilter::ONLY_WRITABLE)); 55 STATIC_ASSERT(ONLY_ENUMERABLE == 56 static_cast<PropertyFilter>(v8::PropertyFilter::ONLY_ENUMERABLE)); 57 STATIC_ASSERT(ONLY_CONFIGURABLE == static_cast<PropertyFilter>( 58 v8::PropertyFilter::ONLY_CONFIGURABLE)); 59 STATIC_ASSERT(SKIP_STRINGS == 60 static_cast<PropertyFilter>(v8::PropertyFilter::SKIP_STRINGS)); 61 STATIC_ASSERT(SKIP_SYMBOLS == 62 static_cast<PropertyFilter>(v8::PropertyFilter::SKIP_SYMBOLS)); 63 64 class Smi; 65 class TypeInfo; 66 67 // Type of properties. 68 // Order of kinds is significant. 69 // Must fit in the BitField PropertyDetails::KindField. 70 enum PropertyKind { kData = 0, kAccessor = 1 }; 71 72 73 // Order of modes is significant. 74 // Must fit in the BitField PropertyDetails::StoreModeField. 75 enum PropertyLocation { kField = 0, kDescriptor = 1 }; 76 77 78 // Order of properties is significant. 79 // Must fit in the BitField PropertyDetails::TypeField. 80 // A copy of this is in debug/mirrors.js. 81 enum PropertyType { 82 DATA = (kField << 1) | kData, 83 DATA_CONSTANT = (kDescriptor << 1) | kData, 84 ACCESSOR = (kField << 1) | kAccessor, 85 ACCESSOR_CONSTANT = (kDescriptor << 1) | kAccessor 86 }; 87 88 89 class Representation { 90 public: 91 enum Kind { 92 kNone, 93 kInteger8, 94 kUInteger8, 95 kInteger16, 96 kUInteger16, 97 kSmi, 98 kInteger32, 99 kDouble, 100 kHeapObject, 101 kTagged, 102 kExternal, 103 kNumRepresentations 104 }; 105 Representation()106 Representation() : kind_(kNone) { } 107 None()108 static Representation None() { return Representation(kNone); } Tagged()109 static Representation Tagged() { return Representation(kTagged); } Integer8()110 static Representation Integer8() { return Representation(kInteger8); } UInteger8()111 static Representation UInteger8() { return Representation(kUInteger8); } Integer16()112 static Representation Integer16() { return Representation(kInteger16); } UInteger16()113 static Representation UInteger16() { return Representation(kUInteger16); } Smi()114 static Representation Smi() { return Representation(kSmi); } Integer32()115 static Representation Integer32() { return Representation(kInteger32); } Double()116 static Representation Double() { return Representation(kDouble); } HeapObject()117 static Representation HeapObject() { return Representation(kHeapObject); } External()118 static Representation External() { return Representation(kExternal); } 119 FromKind(Kind kind)120 static Representation FromKind(Kind kind) { return Representation(kind); } 121 Equals(const Representation & other)122 bool Equals(const Representation& other) const { 123 return kind_ == other.kind_; 124 } 125 IsCompatibleForLoad(const Representation & other)126 bool IsCompatibleForLoad(const Representation& other) const { 127 return (IsDouble() && other.IsDouble()) || 128 (!IsDouble() && !other.IsDouble()); 129 } 130 IsCompatibleForStore(const Representation & other)131 bool IsCompatibleForStore(const Representation& other) const { 132 return Equals(other); 133 } 134 is_more_general_than(const Representation & other)135 bool is_more_general_than(const Representation& other) const { 136 if (kind_ == kExternal && other.kind_ == kNone) return true; 137 if (kind_ == kExternal && other.kind_ == kExternal) return false; 138 if (kind_ == kNone && other.kind_ == kExternal) return false; 139 140 DCHECK(kind_ != kExternal); 141 DCHECK(other.kind_ != kExternal); 142 if (IsHeapObject()) return other.IsNone(); 143 if (kind_ == kUInteger8 && other.kind_ == kInteger8) return false; 144 if (kind_ == kUInteger16 && other.kind_ == kInteger16) return false; 145 return kind_ > other.kind_; 146 } 147 fits_into(const Representation & other)148 bool fits_into(const Representation& other) const { 149 return other.is_more_general_than(*this) || other.Equals(*this); 150 } 151 generalize(Representation other)152 Representation generalize(Representation other) { 153 if (other.fits_into(*this)) return *this; 154 if (other.is_more_general_than(*this)) return other; 155 return Representation::Tagged(); 156 } 157 size()158 int size() const { 159 DCHECK(!IsNone()); 160 if (IsInteger8() || IsUInteger8()) { 161 return sizeof(uint8_t); 162 } 163 if (IsInteger16() || IsUInteger16()) { 164 return sizeof(uint16_t); 165 } 166 if (IsInteger32()) { 167 return sizeof(uint32_t); 168 } 169 return kPointerSize; 170 } 171 kind()172 Kind kind() const { return static_cast<Kind>(kind_); } IsNone()173 bool IsNone() const { return kind_ == kNone; } IsInteger8()174 bool IsInteger8() const { return kind_ == kInteger8; } IsUInteger8()175 bool IsUInteger8() const { return kind_ == kUInteger8; } IsInteger16()176 bool IsInteger16() const { return kind_ == kInteger16; } IsUInteger16()177 bool IsUInteger16() const { return kind_ == kUInteger16; } IsTagged()178 bool IsTagged() const { return kind_ == kTagged; } IsSmi()179 bool IsSmi() const { return kind_ == kSmi; } IsSmiOrTagged()180 bool IsSmiOrTagged() const { return IsSmi() || IsTagged(); } IsInteger32()181 bool IsInteger32() const { return kind_ == kInteger32; } IsSmiOrInteger32()182 bool IsSmiOrInteger32() const { return IsSmi() || IsInteger32(); } IsDouble()183 bool IsDouble() const { return kind_ == kDouble; } IsHeapObject()184 bool IsHeapObject() const { return kind_ == kHeapObject; } IsExternal()185 bool IsExternal() const { return kind_ == kExternal; } IsSpecialization()186 bool IsSpecialization() const { 187 return IsInteger8() || IsUInteger8() || 188 IsInteger16() || IsUInteger16() || 189 IsSmi() || IsInteger32() || IsDouble(); 190 } 191 const char* Mnemonic() const; 192 193 private: Representation(Kind k)194 explicit Representation(Kind k) : kind_(k) { } 195 196 // Make sure kind fits in int8. 197 STATIC_ASSERT(kNumRepresentations <= (1 << kBitsPerByte)); 198 199 int8_t kind_; 200 }; 201 202 203 static const int kDescriptorIndexBitCount = 10; 204 // The maximum number of descriptors we want in a descriptor array (should 205 // fit in a page). 206 static const int kMaxNumberOfDescriptors = 207 (1 << kDescriptorIndexBitCount) - 2; 208 static const int kInvalidEnumCacheSentinel = 209 (1 << kDescriptorIndexBitCount) - 1; 210 211 enum class PropertyCellType { 212 // Meaningful when a property cell does not contain the hole. 213 kUndefined, // The PREMONOMORPHIC of property cells. 214 kConstant, // Cell has been assigned only once. 215 kConstantType, // Cell has been assigned only one type. 216 kMutable, // Cell will no longer be tracked as constant. 217 218 // Meaningful when a property cell contains the hole. 219 kUninitialized = kUndefined, // Cell has never been initialized. 220 kInvalidated = kConstant, // Cell has been deleted, invalidated or never 221 // existed. 222 223 // For dictionaries not holding cells. 224 kNoCell = kMutable, 225 }; 226 227 enum class PropertyCellConstantType { 228 kSmi, 229 kStableMap, 230 }; 231 232 233 // PropertyDetails captures type and attributes for a property. 234 // They are used both in property dictionaries and instance descriptors. 235 class PropertyDetails BASE_EMBEDDED { 236 public: PropertyDetails(PropertyAttributes attributes,PropertyType type,int index,PropertyCellType cell_type)237 PropertyDetails(PropertyAttributes attributes, PropertyType type, int index, 238 PropertyCellType cell_type) { 239 value_ = TypeField::encode(type) | AttributesField::encode(attributes) | 240 DictionaryStorageField::encode(index) | 241 PropertyCellTypeField::encode(cell_type); 242 243 DCHECK(type == this->type()); 244 DCHECK(attributes == this->attributes()); 245 } 246 247 PropertyDetails(PropertyAttributes attributes, 248 PropertyType type, 249 Representation representation, 250 int field_index = 0) { 251 value_ = TypeField::encode(type) 252 | AttributesField::encode(attributes) 253 | RepresentationField::encode(EncodeRepresentation(representation)) 254 | FieldIndexField::encode(field_index); 255 } 256 257 PropertyDetails(PropertyAttributes attributes, PropertyKind kind, 258 PropertyLocation location, Representation representation, 259 int field_index = 0) { 260 value_ = KindField::encode(kind) | LocationField::encode(location) | 261 AttributesField::encode(attributes) | 262 RepresentationField::encode(EncodeRepresentation(representation)) | 263 FieldIndexField::encode(field_index); 264 } 265 266 static PropertyDetails Empty( 267 PropertyCellType cell_type = PropertyCellType::kNoCell) { 268 return PropertyDetails(NONE, DATA, 0, cell_type); 269 } 270 pointer()271 int pointer() const { return DescriptorPointer::decode(value_); } 272 set_pointer(int i)273 PropertyDetails set_pointer(int i) const { 274 return PropertyDetails(value_, i); 275 } 276 set_cell_type(PropertyCellType type)277 PropertyDetails set_cell_type(PropertyCellType type) const { 278 PropertyDetails details = *this; 279 details.value_ = PropertyCellTypeField::update(details.value_, type); 280 return details; 281 } 282 set_index(int index)283 PropertyDetails set_index(int index) const { 284 PropertyDetails details = *this; 285 details.value_ = DictionaryStorageField::update(details.value_, index); 286 return details; 287 } 288 CopyWithRepresentation(Representation representation)289 PropertyDetails CopyWithRepresentation(Representation representation) const { 290 return PropertyDetails(value_, representation); 291 } CopyAddAttributes(PropertyAttributes new_attributes)292 PropertyDetails CopyAddAttributes(PropertyAttributes new_attributes) const { 293 new_attributes = 294 static_cast<PropertyAttributes>(attributes() | new_attributes); 295 return PropertyDetails(value_, new_attributes); 296 } 297 298 // Conversion for storing details as Object*. 299 explicit inline PropertyDetails(Smi* smi); 300 inline Smi* AsSmi() const; 301 EncodeRepresentation(Representation representation)302 static uint8_t EncodeRepresentation(Representation representation) { 303 return representation.kind(); 304 } 305 DecodeRepresentation(uint32_t bits)306 static Representation DecodeRepresentation(uint32_t bits) { 307 return Representation::FromKind(static_cast<Representation::Kind>(bits)); 308 } 309 kind()310 PropertyKind kind() const { return KindField::decode(value_); } location()311 PropertyLocation location() const { return LocationField::decode(value_); } 312 type()313 PropertyType type() const { return TypeField::decode(value_); } 314 attributes()315 PropertyAttributes attributes() const { 316 return AttributesField::decode(value_); 317 } 318 dictionary_index()319 int dictionary_index() const { 320 return DictionaryStorageField::decode(value_); 321 } 322 representation()323 Representation representation() const { 324 return DecodeRepresentation(RepresentationField::decode(value_)); 325 } 326 field_index()327 int field_index() const { return FieldIndexField::decode(value_); } 328 329 inline int field_width_in_words() const; 330 IsValidIndex(int index)331 static bool IsValidIndex(int index) { 332 return DictionaryStorageField::is_valid(index); 333 } 334 IsReadOnly()335 bool IsReadOnly() const { return (attributes() & READ_ONLY) != 0; } IsConfigurable()336 bool IsConfigurable() const { return (attributes() & DONT_DELETE) == 0; } IsDontEnum()337 bool IsDontEnum() const { return (attributes() & DONT_ENUM) != 0; } IsEnumerable()338 bool IsEnumerable() const { return !IsDontEnum(); } cell_type()339 PropertyCellType cell_type() const { 340 return PropertyCellTypeField::decode(value_); 341 } 342 343 // Bit fields in value_ (type, shift, size). Must be public so the 344 // constants can be embedded in generated code. 345 class KindField : public BitField<PropertyKind, 0, 1> {}; 346 class LocationField : public BitField<PropertyLocation, 1, 1> {}; 347 class AttributesField : public BitField<PropertyAttributes, 2, 3> {}; 348 static const int kAttributesReadOnlyMask = 349 (READ_ONLY << AttributesField::kShift); 350 351 // Bit fields for normalized objects. 352 class PropertyCellTypeField : public BitField<PropertyCellType, 5, 2> {}; 353 class DictionaryStorageField : public BitField<uint32_t, 7, 24> {}; 354 355 // Bit fields for fast objects. 356 class RepresentationField : public BitField<uint32_t, 5, 4> {}; 357 class DescriptorPointer 358 : public BitField<uint32_t, 9, kDescriptorIndexBitCount> {}; // NOLINT 359 class FieldIndexField 360 : public BitField<uint32_t, 9 + kDescriptorIndexBitCount, 361 kDescriptorIndexBitCount> {}; // NOLINT 362 363 // NOTE: TypeField overlaps with KindField and LocationField. 364 class TypeField : public BitField<PropertyType, 0, 2> {}; 365 STATIC_ASSERT(KindField::kNext == LocationField::kShift); 366 STATIC_ASSERT(TypeField::kShift == KindField::kShift); 367 STATIC_ASSERT(TypeField::kNext == LocationField::kNext); 368 369 // All bits for both fast and slow objects must fit in a smi. 370 STATIC_ASSERT(DictionaryStorageField::kNext <= 31); 371 STATIC_ASSERT(FieldIndexField::kNext <= 31); 372 373 static const int kInitialIndex = 1; 374 375 #ifdef OBJECT_PRINT 376 // For our gdb macros, we should perhaps change these in the future. 377 void Print(bool dictionary_mode); 378 #endif 379 380 private: PropertyDetails(int value,int pointer)381 PropertyDetails(int value, int pointer) { 382 value_ = DescriptorPointer::update(value, pointer); 383 } PropertyDetails(int value,Representation representation)384 PropertyDetails(int value, Representation representation) { 385 value_ = RepresentationField::update( 386 value, EncodeRepresentation(representation)); 387 } PropertyDetails(int value,PropertyAttributes attributes)388 PropertyDetails(int value, PropertyAttributes attributes) { 389 value_ = AttributesField::update(value, attributes); 390 } 391 392 uint32_t value_; 393 }; 394 395 396 std::ostream& operator<<(std::ostream& os, 397 const PropertyAttributes& attributes); 398 std::ostream& operator<<(std::ostream& os, const PropertyDetails& details); 399 } // namespace internal 400 } // namespace v8 401 402 #endif // V8_PROPERTY_DETAILS_H_ 403