1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "mutex.h"
18
19 #include <errno.h>
20 #include <sys/time.h>
21
22 #include "android-base/stringprintf.h"
23
24 #include "atomic.h"
25 #include "base/logging.h"
26 #include "base/time_utils.h"
27 #include "base/systrace.h"
28 #include "base/value_object.h"
29 #include "mutex-inl.h"
30 #include "scoped_thread_state_change-inl.h"
31 #include "thread-inl.h"
32
33 namespace art {
34
35 using android::base::StringPrintf;
36
37 static Atomic<Locks::ClientCallback*> safe_to_call_abort_callback(nullptr);
38
39 Mutex* Locks::abort_lock_ = nullptr;
40 Mutex* Locks::alloc_tracker_lock_ = nullptr;
41 Mutex* Locks::allocated_monitor_ids_lock_ = nullptr;
42 Mutex* Locks::allocated_thread_ids_lock_ = nullptr;
43 ReaderWriterMutex* Locks::breakpoint_lock_ = nullptr;
44 ReaderWriterMutex* Locks::classlinker_classes_lock_ = nullptr;
45 Mutex* Locks::deoptimization_lock_ = nullptr;
46 ReaderWriterMutex* Locks::heap_bitmap_lock_ = nullptr;
47 Mutex* Locks::instrument_entrypoints_lock_ = nullptr;
48 Mutex* Locks::intern_table_lock_ = nullptr;
49 Mutex* Locks::jni_function_table_lock_ = nullptr;
50 Mutex* Locks::jni_libraries_lock_ = nullptr;
51 Mutex* Locks::logging_lock_ = nullptr;
52 Mutex* Locks::modify_ldt_lock_ = nullptr;
53 MutatorMutex* Locks::mutator_lock_ = nullptr;
54 Mutex* Locks::profiler_lock_ = nullptr;
55 ReaderWriterMutex* Locks::verifier_deps_lock_ = nullptr;
56 ReaderWriterMutex* Locks::oat_file_manager_lock_ = nullptr;
57 Mutex* Locks::host_dlopen_handles_lock_ = nullptr;
58 Mutex* Locks::reference_processor_lock_ = nullptr;
59 Mutex* Locks::reference_queue_cleared_references_lock_ = nullptr;
60 Mutex* Locks::reference_queue_finalizer_references_lock_ = nullptr;
61 Mutex* Locks::reference_queue_phantom_references_lock_ = nullptr;
62 Mutex* Locks::reference_queue_soft_references_lock_ = nullptr;
63 Mutex* Locks::reference_queue_weak_references_lock_ = nullptr;
64 Mutex* Locks::runtime_shutdown_lock_ = nullptr;
65 Mutex* Locks::cha_lock_ = nullptr;
66 Mutex* Locks::thread_list_lock_ = nullptr;
67 ConditionVariable* Locks::thread_exit_cond_ = nullptr;
68 Mutex* Locks::thread_suspend_count_lock_ = nullptr;
69 Mutex* Locks::trace_lock_ = nullptr;
70 Mutex* Locks::unexpected_signal_lock_ = nullptr;
71 Uninterruptible Roles::uninterruptible_;
72 ReaderWriterMutex* Locks::jni_globals_lock_ = nullptr;
73 Mutex* Locks::jni_weak_globals_lock_ = nullptr;
74 ReaderWriterMutex* Locks::dex_lock_ = nullptr;
75 std::vector<BaseMutex*> Locks::expected_mutexes_on_weak_ref_access_;
76 Atomic<const BaseMutex*> Locks::expected_mutexes_on_weak_ref_access_guard_;
77
78 struct AllMutexData {
79 // A guard for all_mutexes_ that's not a mutex (Mutexes must CAS to acquire and busy wait).
80 Atomic<const BaseMutex*> all_mutexes_guard;
81 // All created mutexes guarded by all_mutexes_guard_.
82 std::set<BaseMutex*>* all_mutexes;
AllMutexDataart::AllMutexData83 AllMutexData() : all_mutexes(nullptr) {}
84 };
85 static struct AllMutexData gAllMutexData[kAllMutexDataSize];
86
87 #if ART_USE_FUTEXES
ComputeRelativeTimeSpec(timespec * result_ts,const timespec & lhs,const timespec & rhs)88 static bool ComputeRelativeTimeSpec(timespec* result_ts, const timespec& lhs, const timespec& rhs) {
89 const int32_t one_sec = 1000 * 1000 * 1000; // one second in nanoseconds.
90 result_ts->tv_sec = lhs.tv_sec - rhs.tv_sec;
91 result_ts->tv_nsec = lhs.tv_nsec - rhs.tv_nsec;
92 if (result_ts->tv_nsec < 0) {
93 result_ts->tv_sec--;
94 result_ts->tv_nsec += one_sec;
95 } else if (result_ts->tv_nsec > one_sec) {
96 result_ts->tv_sec++;
97 result_ts->tv_nsec -= one_sec;
98 }
99 return result_ts->tv_sec < 0;
100 }
101 #endif
102
103 class ScopedAllMutexesLock FINAL {
104 public:
ScopedAllMutexesLock(const BaseMutex * mutex)105 explicit ScopedAllMutexesLock(const BaseMutex* mutex) : mutex_(mutex) {
106 while (!gAllMutexData->all_mutexes_guard.CompareExchangeWeakAcquire(0, mutex)) {
107 NanoSleep(100);
108 }
109 }
110
~ScopedAllMutexesLock()111 ~ScopedAllMutexesLock() {
112 while (!gAllMutexData->all_mutexes_guard.CompareExchangeWeakRelease(mutex_, 0)) {
113 NanoSleep(100);
114 }
115 }
116
117 private:
118 const BaseMutex* const mutex_;
119 };
120
121 class Locks::ScopedExpectedMutexesOnWeakRefAccessLock FINAL {
122 public:
ScopedExpectedMutexesOnWeakRefAccessLock(const BaseMutex * mutex)123 explicit ScopedExpectedMutexesOnWeakRefAccessLock(const BaseMutex* mutex) : mutex_(mutex) {
124 while (!Locks::expected_mutexes_on_weak_ref_access_guard_.CompareExchangeWeakAcquire(0,
125 mutex)) {
126 NanoSleep(100);
127 }
128 }
129
~ScopedExpectedMutexesOnWeakRefAccessLock()130 ~ScopedExpectedMutexesOnWeakRefAccessLock() {
131 while (!Locks::expected_mutexes_on_weak_ref_access_guard_.CompareExchangeWeakRelease(mutex_,
132 0)) {
133 NanoSleep(100);
134 }
135 }
136
137 private:
138 const BaseMutex* const mutex_;
139 };
140
141 // Scoped class that generates events at the beginning and end of lock contention.
142 class ScopedContentionRecorder FINAL : public ValueObject {
143 public:
ScopedContentionRecorder(BaseMutex * mutex,uint64_t blocked_tid,uint64_t owner_tid)144 ScopedContentionRecorder(BaseMutex* mutex, uint64_t blocked_tid, uint64_t owner_tid)
145 : mutex_(kLogLockContentions ? mutex : nullptr),
146 blocked_tid_(kLogLockContentions ? blocked_tid : 0),
147 owner_tid_(kLogLockContentions ? owner_tid : 0),
148 start_nano_time_(kLogLockContentions ? NanoTime() : 0) {
149 if (ATRACE_ENABLED()) {
150 std::string msg = StringPrintf("Lock contention on %s (owner tid: %" PRIu64 ")",
151 mutex->GetName(), owner_tid);
152 ATRACE_BEGIN(msg.c_str());
153 }
154 }
155
~ScopedContentionRecorder()156 ~ScopedContentionRecorder() {
157 ATRACE_END();
158 if (kLogLockContentions) {
159 uint64_t end_nano_time = NanoTime();
160 mutex_->RecordContention(blocked_tid_, owner_tid_, end_nano_time - start_nano_time_);
161 }
162 }
163
164 private:
165 BaseMutex* const mutex_;
166 const uint64_t blocked_tid_;
167 const uint64_t owner_tid_;
168 const uint64_t start_nano_time_;
169 };
170
BaseMutex(const char * name,LockLevel level)171 BaseMutex::BaseMutex(const char* name, LockLevel level)
172 : level_(level),
173 name_(name),
174 should_respond_to_empty_checkpoint_request_(false) {
175 if (kLogLockContentions) {
176 ScopedAllMutexesLock mu(this);
177 std::set<BaseMutex*>** all_mutexes_ptr = &gAllMutexData->all_mutexes;
178 if (*all_mutexes_ptr == nullptr) {
179 // We leak the global set of all mutexes to avoid ordering issues in global variable
180 // construction/destruction.
181 *all_mutexes_ptr = new std::set<BaseMutex*>();
182 }
183 (*all_mutexes_ptr)->insert(this);
184 }
185 }
186
~BaseMutex()187 BaseMutex::~BaseMutex() {
188 if (kLogLockContentions) {
189 ScopedAllMutexesLock mu(this);
190 gAllMutexData->all_mutexes->erase(this);
191 }
192 }
193
DumpAll(std::ostream & os)194 void BaseMutex::DumpAll(std::ostream& os) {
195 if (kLogLockContentions) {
196 os << "Mutex logging:\n";
197 ScopedAllMutexesLock mu(reinterpret_cast<const BaseMutex*>(-1));
198 std::set<BaseMutex*>* all_mutexes = gAllMutexData->all_mutexes;
199 if (all_mutexes == nullptr) {
200 // No mutexes have been created yet during at startup.
201 return;
202 }
203 typedef std::set<BaseMutex*>::const_iterator It;
204 os << "(Contended)\n";
205 for (It it = all_mutexes->begin(); it != all_mutexes->end(); ++it) {
206 BaseMutex* mutex = *it;
207 if (mutex->HasEverContended()) {
208 mutex->Dump(os);
209 os << "\n";
210 }
211 }
212 os << "(Never contented)\n";
213 for (It it = all_mutexes->begin(); it != all_mutexes->end(); ++it) {
214 BaseMutex* mutex = *it;
215 if (!mutex->HasEverContended()) {
216 mutex->Dump(os);
217 os << "\n";
218 }
219 }
220 }
221 }
222
CheckSafeToWait(Thread * self)223 void BaseMutex::CheckSafeToWait(Thread* self) {
224 if (self == nullptr) {
225 CheckUnattachedThread(level_);
226 return;
227 }
228 if (kDebugLocking) {
229 CHECK(self->GetHeldMutex(level_) == this || level_ == kMonitorLock)
230 << "Waiting on unacquired mutex: " << name_;
231 bool bad_mutexes_held = false;
232 for (int i = kLockLevelCount - 1; i >= 0; --i) {
233 if (i != level_) {
234 BaseMutex* held_mutex = self->GetHeldMutex(static_cast<LockLevel>(i));
235 // We expect waits to happen while holding the thread list suspend thread lock.
236 if (held_mutex != nullptr) {
237 LOG(ERROR) << "Holding \"" << held_mutex->name_ << "\" "
238 << "(level " << LockLevel(i) << ") while performing wait on "
239 << "\"" << name_ << "\" (level " << level_ << ")";
240 bad_mutexes_held = true;
241 }
242 }
243 }
244 if (gAborting == 0) { // Avoid recursive aborts.
245 CHECK(!bad_mutexes_held);
246 }
247 }
248 }
249
AddToWaitTime(uint64_t value)250 void BaseMutex::ContentionLogData::AddToWaitTime(uint64_t value) {
251 if (kLogLockContentions) {
252 // Atomically add value to wait_time.
253 wait_time.FetchAndAddSequentiallyConsistent(value);
254 }
255 }
256
RecordContention(uint64_t blocked_tid,uint64_t owner_tid,uint64_t nano_time_blocked)257 void BaseMutex::RecordContention(uint64_t blocked_tid,
258 uint64_t owner_tid,
259 uint64_t nano_time_blocked) {
260 if (kLogLockContentions) {
261 ContentionLogData* data = contention_log_data_;
262 ++(data->contention_count);
263 data->AddToWaitTime(nano_time_blocked);
264 ContentionLogEntry* log = data->contention_log;
265 // This code is intentionally racy as it is only used for diagnostics.
266 uint32_t slot = data->cur_content_log_entry.LoadRelaxed();
267 if (log[slot].blocked_tid == blocked_tid &&
268 log[slot].owner_tid == blocked_tid) {
269 ++log[slot].count;
270 } else {
271 uint32_t new_slot;
272 do {
273 slot = data->cur_content_log_entry.LoadRelaxed();
274 new_slot = (slot + 1) % kContentionLogSize;
275 } while (!data->cur_content_log_entry.CompareExchangeWeakRelaxed(slot, new_slot));
276 log[new_slot].blocked_tid = blocked_tid;
277 log[new_slot].owner_tid = owner_tid;
278 log[new_slot].count.StoreRelaxed(1);
279 }
280 }
281 }
282
DumpContention(std::ostream & os) const283 void BaseMutex::DumpContention(std::ostream& os) const {
284 if (kLogLockContentions) {
285 const ContentionLogData* data = contention_log_data_;
286 const ContentionLogEntry* log = data->contention_log;
287 uint64_t wait_time = data->wait_time.LoadRelaxed();
288 uint32_t contention_count = data->contention_count.LoadRelaxed();
289 if (contention_count == 0) {
290 os << "never contended";
291 } else {
292 os << "contended " << contention_count
293 << " total wait of contender " << PrettyDuration(wait_time)
294 << " average " << PrettyDuration(wait_time / contention_count);
295 SafeMap<uint64_t, size_t> most_common_blocker;
296 SafeMap<uint64_t, size_t> most_common_blocked;
297 for (size_t i = 0; i < kContentionLogSize; ++i) {
298 uint64_t blocked_tid = log[i].blocked_tid;
299 uint64_t owner_tid = log[i].owner_tid;
300 uint32_t count = log[i].count.LoadRelaxed();
301 if (count > 0) {
302 auto it = most_common_blocked.find(blocked_tid);
303 if (it != most_common_blocked.end()) {
304 most_common_blocked.Overwrite(blocked_tid, it->second + count);
305 } else {
306 most_common_blocked.Put(blocked_tid, count);
307 }
308 it = most_common_blocker.find(owner_tid);
309 if (it != most_common_blocker.end()) {
310 most_common_blocker.Overwrite(owner_tid, it->second + count);
311 } else {
312 most_common_blocker.Put(owner_tid, count);
313 }
314 }
315 }
316 uint64_t max_tid = 0;
317 size_t max_tid_count = 0;
318 for (const auto& pair : most_common_blocked) {
319 if (pair.second > max_tid_count) {
320 max_tid = pair.first;
321 max_tid_count = pair.second;
322 }
323 }
324 if (max_tid != 0) {
325 os << " sample shows most blocked tid=" << max_tid;
326 }
327 max_tid = 0;
328 max_tid_count = 0;
329 for (const auto& pair : most_common_blocker) {
330 if (pair.second > max_tid_count) {
331 max_tid = pair.first;
332 max_tid_count = pair.second;
333 }
334 }
335 if (max_tid != 0) {
336 os << " sample shows tid=" << max_tid << " owning during this time";
337 }
338 }
339 }
340 }
341
342
Mutex(const char * name,LockLevel level,bool recursive)343 Mutex::Mutex(const char* name, LockLevel level, bool recursive)
344 : BaseMutex(name, level), recursive_(recursive), recursion_count_(0) {
345 #if ART_USE_FUTEXES
346 DCHECK_EQ(0, state_.LoadRelaxed());
347 DCHECK_EQ(0, num_contenders_.LoadRelaxed());
348 #else
349 CHECK_MUTEX_CALL(pthread_mutex_init, (&mutex_, nullptr));
350 #endif
351 exclusive_owner_ = 0;
352 }
353
354 // Helper to allow checking shutdown while locking for thread safety.
IsSafeToCallAbortSafe()355 static bool IsSafeToCallAbortSafe() {
356 MutexLock mu(Thread::Current(), *Locks::runtime_shutdown_lock_);
357 return Locks::IsSafeToCallAbortRacy();
358 }
359
~Mutex()360 Mutex::~Mutex() {
361 bool safe_to_call_abort = Locks::IsSafeToCallAbortRacy();
362 #if ART_USE_FUTEXES
363 if (state_.LoadRelaxed() != 0) {
364 LOG(safe_to_call_abort ? FATAL : WARNING)
365 << "destroying mutex with owner: " << exclusive_owner_;
366 } else {
367 if (exclusive_owner_ != 0) {
368 LOG(safe_to_call_abort ? FATAL : WARNING)
369 << "unexpectedly found an owner on unlocked mutex " << name_;
370 }
371 if (num_contenders_.LoadSequentiallyConsistent() != 0) {
372 LOG(safe_to_call_abort ? FATAL : WARNING)
373 << "unexpectedly found a contender on mutex " << name_;
374 }
375 }
376 #else
377 // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
378 // may still be using locks.
379 int rc = pthread_mutex_destroy(&mutex_);
380 if (rc != 0) {
381 errno = rc;
382 PLOG(safe_to_call_abort ? FATAL : WARNING)
383 << "pthread_mutex_destroy failed for " << name_;
384 }
385 #endif
386 }
387
ExclusiveLock(Thread * self)388 void Mutex::ExclusiveLock(Thread* self) {
389 DCHECK(self == nullptr || self == Thread::Current());
390 if (kDebugLocking && !recursive_) {
391 AssertNotHeld(self);
392 }
393 if (!recursive_ || !IsExclusiveHeld(self)) {
394 #if ART_USE_FUTEXES
395 bool done = false;
396 do {
397 int32_t cur_state = state_.LoadRelaxed();
398 if (LIKELY(cur_state == 0)) {
399 // Change state from 0 to 1 and impose load/store ordering appropriate for lock acquisition.
400 done = state_.CompareExchangeWeakAcquire(0 /* cur_state */, 1 /* new state */);
401 } else {
402 // Failed to acquire, hang up.
403 ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
404 num_contenders_++;
405 if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
406 self->CheckEmptyCheckpointFromMutex();
407 }
408 if (futex(state_.Address(), FUTEX_WAIT, 1, nullptr, nullptr, 0) != 0) {
409 // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
410 // We don't use TEMP_FAILURE_RETRY so we can intentionally retry to acquire the lock.
411 if ((errno != EAGAIN) && (errno != EINTR)) {
412 PLOG(FATAL) << "futex wait failed for " << name_;
413 }
414 }
415 num_contenders_--;
416 }
417 } while (!done);
418 DCHECK_EQ(state_.LoadRelaxed(), 1);
419 #else
420 CHECK_MUTEX_CALL(pthread_mutex_lock, (&mutex_));
421 #endif
422 DCHECK_EQ(exclusive_owner_, 0U);
423 exclusive_owner_ = SafeGetTid(self);
424 RegisterAsLocked(self);
425 }
426 recursion_count_++;
427 if (kDebugLocking) {
428 CHECK(recursion_count_ == 1 || recursive_) << "Unexpected recursion count on mutex: "
429 << name_ << " " << recursion_count_;
430 AssertHeld(self);
431 }
432 }
433
ExclusiveTryLock(Thread * self)434 bool Mutex::ExclusiveTryLock(Thread* self) {
435 DCHECK(self == nullptr || self == Thread::Current());
436 if (kDebugLocking && !recursive_) {
437 AssertNotHeld(self);
438 }
439 if (!recursive_ || !IsExclusiveHeld(self)) {
440 #if ART_USE_FUTEXES
441 bool done = false;
442 do {
443 int32_t cur_state = state_.LoadRelaxed();
444 if (cur_state == 0) {
445 // Change state from 0 to 1 and impose load/store ordering appropriate for lock acquisition.
446 done = state_.CompareExchangeWeakAcquire(0 /* cur_state */, 1 /* new state */);
447 } else {
448 return false;
449 }
450 } while (!done);
451 DCHECK_EQ(state_.LoadRelaxed(), 1);
452 #else
453 int result = pthread_mutex_trylock(&mutex_);
454 if (result == EBUSY) {
455 return false;
456 }
457 if (result != 0) {
458 errno = result;
459 PLOG(FATAL) << "pthread_mutex_trylock failed for " << name_;
460 }
461 #endif
462 DCHECK_EQ(exclusive_owner_, 0U);
463 exclusive_owner_ = SafeGetTid(self);
464 RegisterAsLocked(self);
465 }
466 recursion_count_++;
467 if (kDebugLocking) {
468 CHECK(recursion_count_ == 1 || recursive_) << "Unexpected recursion count on mutex: "
469 << name_ << " " << recursion_count_;
470 AssertHeld(self);
471 }
472 return true;
473 }
474
ExclusiveUnlock(Thread * self)475 void Mutex::ExclusiveUnlock(Thread* self) {
476 if (kIsDebugBuild && self != nullptr && self != Thread::Current()) {
477 std::string name1 = "<null>";
478 std::string name2 = "<null>";
479 if (self != nullptr) {
480 self->GetThreadName(name1);
481 }
482 if (Thread::Current() != nullptr) {
483 Thread::Current()->GetThreadName(name2);
484 }
485 LOG(FATAL) << GetName() << " level=" << level_ << " self=" << name1
486 << " Thread::Current()=" << name2;
487 }
488 AssertHeld(self);
489 DCHECK_NE(exclusive_owner_, 0U);
490 recursion_count_--;
491 if (!recursive_ || recursion_count_ == 0) {
492 if (kDebugLocking) {
493 CHECK(recursion_count_ == 0 || recursive_) << "Unexpected recursion count on mutex: "
494 << name_ << " " << recursion_count_;
495 }
496 RegisterAsUnlocked(self);
497 #if ART_USE_FUTEXES
498 bool done = false;
499 do {
500 int32_t cur_state = state_.LoadRelaxed();
501 if (LIKELY(cur_state == 1)) {
502 // We're no longer the owner.
503 exclusive_owner_ = 0;
504 // Change state to 0 and impose load/store ordering appropriate for lock release.
505 // Note, the relaxed loads below musn't reorder before the CompareExchange.
506 // TODO: the ordering here is non-trivial as state is split across 3 fields, fix by placing
507 // a status bit into the state on contention.
508 done = state_.CompareExchangeWeakSequentiallyConsistent(cur_state, 0 /* new state */);
509 if (LIKELY(done)) { // Spurious fail?
510 // Wake a contender.
511 if (UNLIKELY(num_contenders_.LoadRelaxed() > 0)) {
512 futex(state_.Address(), FUTEX_WAKE, 1, nullptr, nullptr, 0);
513 }
514 }
515 } else {
516 // Logging acquires the logging lock, avoid infinite recursion in that case.
517 if (this != Locks::logging_lock_) {
518 LOG(FATAL) << "Unexpected state_ in unlock " << cur_state << " for " << name_;
519 } else {
520 LogHelper::LogLineLowStack(__FILE__,
521 __LINE__,
522 ::android::base::FATAL_WITHOUT_ABORT,
523 StringPrintf("Unexpected state_ %d in unlock for %s",
524 cur_state, name_).c_str());
525 _exit(1);
526 }
527 }
528 } while (!done);
529 #else
530 exclusive_owner_ = 0;
531 CHECK_MUTEX_CALL(pthread_mutex_unlock, (&mutex_));
532 #endif
533 }
534 }
535
Dump(std::ostream & os) const536 void Mutex::Dump(std::ostream& os) const {
537 os << (recursive_ ? "recursive " : "non-recursive ")
538 << name_
539 << " level=" << static_cast<int>(level_)
540 << " rec=" << recursion_count_
541 << " owner=" << GetExclusiveOwnerTid() << " ";
542 DumpContention(os);
543 }
544
operator <<(std::ostream & os,const Mutex & mu)545 std::ostream& operator<<(std::ostream& os, const Mutex& mu) {
546 mu.Dump(os);
547 return os;
548 }
549
WakeupToRespondToEmptyCheckpoint()550 void Mutex::WakeupToRespondToEmptyCheckpoint() {
551 #if ART_USE_FUTEXES
552 // Wake up all the waiters so they will respond to the emtpy checkpoint.
553 DCHECK(should_respond_to_empty_checkpoint_request_);
554 if (UNLIKELY(num_contenders_.LoadRelaxed() > 0)) {
555 futex(state_.Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
556 }
557 #else
558 LOG(FATAL) << "Non futex case isn't supported.";
559 #endif
560 }
561
ReaderWriterMutex(const char * name,LockLevel level)562 ReaderWriterMutex::ReaderWriterMutex(const char* name, LockLevel level)
563 : BaseMutex(name, level)
564 #if ART_USE_FUTEXES
565 , state_(0), num_pending_readers_(0), num_pending_writers_(0)
566 #endif
567 { // NOLINT(whitespace/braces)
568 #if !ART_USE_FUTEXES
569 CHECK_MUTEX_CALL(pthread_rwlock_init, (&rwlock_, nullptr));
570 #endif
571 exclusive_owner_ = 0;
572 }
573
~ReaderWriterMutex()574 ReaderWriterMutex::~ReaderWriterMutex() {
575 #if ART_USE_FUTEXES
576 CHECK_EQ(state_.LoadRelaxed(), 0);
577 CHECK_EQ(exclusive_owner_, 0U);
578 CHECK_EQ(num_pending_readers_.LoadRelaxed(), 0);
579 CHECK_EQ(num_pending_writers_.LoadRelaxed(), 0);
580 #else
581 // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
582 // may still be using locks.
583 int rc = pthread_rwlock_destroy(&rwlock_);
584 if (rc != 0) {
585 errno = rc;
586 bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
587 PLOG(is_safe_to_call_abort ? FATAL : WARNING) << "pthread_rwlock_destroy failed for " << name_;
588 }
589 #endif
590 }
591
ExclusiveLock(Thread * self)592 void ReaderWriterMutex::ExclusiveLock(Thread* self) {
593 DCHECK(self == nullptr || self == Thread::Current());
594 AssertNotExclusiveHeld(self);
595 #if ART_USE_FUTEXES
596 bool done = false;
597 do {
598 int32_t cur_state = state_.LoadRelaxed();
599 if (LIKELY(cur_state == 0)) {
600 // Change state from 0 to -1 and impose load/store ordering appropriate for lock acquisition.
601 done = state_.CompareExchangeWeakAcquire(0 /* cur_state*/, -1 /* new state */);
602 } else {
603 // Failed to acquire, hang up.
604 ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
605 ++num_pending_writers_;
606 if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
607 self->CheckEmptyCheckpointFromMutex();
608 }
609 if (futex(state_.Address(), FUTEX_WAIT, cur_state, nullptr, nullptr, 0) != 0) {
610 // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
611 // We don't use TEMP_FAILURE_RETRY so we can intentionally retry to acquire the lock.
612 if ((errno != EAGAIN) && (errno != EINTR)) {
613 PLOG(FATAL) << "futex wait failed for " << name_;
614 }
615 }
616 --num_pending_writers_;
617 }
618 } while (!done);
619 DCHECK_EQ(state_.LoadRelaxed(), -1);
620 #else
621 CHECK_MUTEX_CALL(pthread_rwlock_wrlock, (&rwlock_));
622 #endif
623 DCHECK_EQ(exclusive_owner_, 0U);
624 exclusive_owner_ = SafeGetTid(self);
625 RegisterAsLocked(self);
626 AssertExclusiveHeld(self);
627 }
628
ExclusiveUnlock(Thread * self)629 void ReaderWriterMutex::ExclusiveUnlock(Thread* self) {
630 DCHECK(self == nullptr || self == Thread::Current());
631 AssertExclusiveHeld(self);
632 RegisterAsUnlocked(self);
633 DCHECK_NE(exclusive_owner_, 0U);
634 #if ART_USE_FUTEXES
635 bool done = false;
636 do {
637 int32_t cur_state = state_.LoadRelaxed();
638 if (LIKELY(cur_state == -1)) {
639 // We're no longer the owner.
640 exclusive_owner_ = 0;
641 // Change state from -1 to 0 and impose load/store ordering appropriate for lock release.
642 // Note, the relaxed loads below musn't reorder before the CompareExchange.
643 // TODO: the ordering here is non-trivial as state is split across 3 fields, fix by placing
644 // a status bit into the state on contention.
645 done = state_.CompareExchangeWeakSequentiallyConsistent(-1 /* cur_state*/, 0 /* new state */);
646 if (LIKELY(done)) { // Weak CAS may fail spuriously.
647 // Wake any waiters.
648 if (UNLIKELY(num_pending_readers_.LoadRelaxed() > 0 ||
649 num_pending_writers_.LoadRelaxed() > 0)) {
650 futex(state_.Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
651 }
652 }
653 } else {
654 LOG(FATAL) << "Unexpected state_:" << cur_state << " for " << name_;
655 }
656 } while (!done);
657 #else
658 exclusive_owner_ = 0;
659 CHECK_MUTEX_CALL(pthread_rwlock_unlock, (&rwlock_));
660 #endif
661 }
662
663 #if HAVE_TIMED_RWLOCK
ExclusiveLockWithTimeout(Thread * self,int64_t ms,int32_t ns)664 bool ReaderWriterMutex::ExclusiveLockWithTimeout(Thread* self, int64_t ms, int32_t ns) {
665 DCHECK(self == nullptr || self == Thread::Current());
666 #if ART_USE_FUTEXES
667 bool done = false;
668 timespec end_abs_ts;
669 InitTimeSpec(true, CLOCK_MONOTONIC, ms, ns, &end_abs_ts);
670 do {
671 int32_t cur_state = state_.LoadRelaxed();
672 if (cur_state == 0) {
673 // Change state from 0 to -1 and impose load/store ordering appropriate for lock acquisition.
674 done = state_.CompareExchangeWeakAcquire(0 /* cur_state */, -1 /* new state */);
675 } else {
676 // Failed to acquire, hang up.
677 timespec now_abs_ts;
678 InitTimeSpec(true, CLOCK_MONOTONIC, 0, 0, &now_abs_ts);
679 timespec rel_ts;
680 if (ComputeRelativeTimeSpec(&rel_ts, end_abs_ts, now_abs_ts)) {
681 return false; // Timed out.
682 }
683 ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
684 ++num_pending_writers_;
685 if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
686 self->CheckEmptyCheckpointFromMutex();
687 }
688 if (futex(state_.Address(), FUTEX_WAIT, cur_state, &rel_ts, nullptr, 0) != 0) {
689 if (errno == ETIMEDOUT) {
690 --num_pending_writers_;
691 return false; // Timed out.
692 } else if ((errno != EAGAIN) && (errno != EINTR)) {
693 // EAGAIN and EINTR both indicate a spurious failure,
694 // recompute the relative time out from now and try again.
695 // We don't use TEMP_FAILURE_RETRY so we can recompute rel_ts;
696 PLOG(FATAL) << "timed futex wait failed for " << name_;
697 }
698 }
699 --num_pending_writers_;
700 }
701 } while (!done);
702 #else
703 timespec ts;
704 InitTimeSpec(true, CLOCK_REALTIME, ms, ns, &ts);
705 int result = pthread_rwlock_timedwrlock(&rwlock_, &ts);
706 if (result == ETIMEDOUT) {
707 return false;
708 }
709 if (result != 0) {
710 errno = result;
711 PLOG(FATAL) << "pthread_rwlock_timedwrlock failed for " << name_;
712 }
713 #endif
714 exclusive_owner_ = SafeGetTid(self);
715 RegisterAsLocked(self);
716 AssertSharedHeld(self);
717 return true;
718 }
719 #endif
720
721 #if ART_USE_FUTEXES
HandleSharedLockContention(Thread * self,int32_t cur_state)722 void ReaderWriterMutex::HandleSharedLockContention(Thread* self, int32_t cur_state) {
723 // Owner holds it exclusively, hang up.
724 ScopedContentionRecorder scr(this, GetExclusiveOwnerTid(), SafeGetTid(self));
725 ++num_pending_readers_;
726 if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
727 self->CheckEmptyCheckpointFromMutex();
728 }
729 if (futex(state_.Address(), FUTEX_WAIT, cur_state, nullptr, nullptr, 0) != 0) {
730 if (errno != EAGAIN && errno != EINTR) {
731 PLOG(FATAL) << "futex wait failed for " << name_;
732 }
733 }
734 --num_pending_readers_;
735 }
736 #endif
737
SharedTryLock(Thread * self)738 bool ReaderWriterMutex::SharedTryLock(Thread* self) {
739 DCHECK(self == nullptr || self == Thread::Current());
740 #if ART_USE_FUTEXES
741 bool done = false;
742 do {
743 int32_t cur_state = state_.LoadRelaxed();
744 if (cur_state >= 0) {
745 // Add as an extra reader and impose load/store ordering appropriate for lock acquisition.
746 done = state_.CompareExchangeWeakAcquire(cur_state, cur_state + 1);
747 } else {
748 // Owner holds it exclusively.
749 return false;
750 }
751 } while (!done);
752 #else
753 int result = pthread_rwlock_tryrdlock(&rwlock_);
754 if (result == EBUSY) {
755 return false;
756 }
757 if (result != 0) {
758 errno = result;
759 PLOG(FATAL) << "pthread_mutex_trylock failed for " << name_;
760 }
761 #endif
762 RegisterAsLocked(self);
763 AssertSharedHeld(self);
764 return true;
765 }
766
IsSharedHeld(const Thread * self) const767 bool ReaderWriterMutex::IsSharedHeld(const Thread* self) const {
768 DCHECK(self == nullptr || self == Thread::Current());
769 bool result;
770 if (UNLIKELY(self == nullptr)) { // Handle unattached threads.
771 result = IsExclusiveHeld(self); // TODO: a better best effort here.
772 } else {
773 result = (self->GetHeldMutex(level_) == this);
774 }
775 return result;
776 }
777
Dump(std::ostream & os) const778 void ReaderWriterMutex::Dump(std::ostream& os) const {
779 os << name_
780 << " level=" << static_cast<int>(level_)
781 << " owner=" << GetExclusiveOwnerTid()
782 #if ART_USE_FUTEXES
783 << " state=" << state_.LoadSequentiallyConsistent()
784 << " num_pending_writers=" << num_pending_writers_.LoadSequentiallyConsistent()
785 << " num_pending_readers=" << num_pending_readers_.LoadSequentiallyConsistent()
786 #endif
787 << " ";
788 DumpContention(os);
789 }
790
operator <<(std::ostream & os,const ReaderWriterMutex & mu)791 std::ostream& operator<<(std::ostream& os, const ReaderWriterMutex& mu) {
792 mu.Dump(os);
793 return os;
794 }
795
operator <<(std::ostream & os,const MutatorMutex & mu)796 std::ostream& operator<<(std::ostream& os, const MutatorMutex& mu) {
797 mu.Dump(os);
798 return os;
799 }
800
WakeupToRespondToEmptyCheckpoint()801 void ReaderWriterMutex::WakeupToRespondToEmptyCheckpoint() {
802 #if ART_USE_FUTEXES
803 // Wake up all the waiters so they will respond to the emtpy checkpoint.
804 DCHECK(should_respond_to_empty_checkpoint_request_);
805 if (UNLIKELY(num_pending_readers_.LoadRelaxed() > 0 ||
806 num_pending_writers_.LoadRelaxed() > 0)) {
807 futex(state_.Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
808 }
809 #else
810 LOG(FATAL) << "Non futex case isn't supported.";
811 #endif
812 }
813
ConditionVariable(const char * name,Mutex & guard)814 ConditionVariable::ConditionVariable(const char* name, Mutex& guard)
815 : name_(name), guard_(guard) {
816 #if ART_USE_FUTEXES
817 DCHECK_EQ(0, sequence_.LoadRelaxed());
818 num_waiters_ = 0;
819 #else
820 pthread_condattr_t cond_attrs;
821 CHECK_MUTEX_CALL(pthread_condattr_init, (&cond_attrs));
822 #if !defined(__APPLE__)
823 // Apple doesn't have CLOCK_MONOTONIC or pthread_condattr_setclock.
824 CHECK_MUTEX_CALL(pthread_condattr_setclock, (&cond_attrs, CLOCK_MONOTONIC));
825 #endif
826 CHECK_MUTEX_CALL(pthread_cond_init, (&cond_, &cond_attrs));
827 #endif
828 }
829
~ConditionVariable()830 ConditionVariable::~ConditionVariable() {
831 #if ART_USE_FUTEXES
832 if (num_waiters_!= 0) {
833 bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
834 LOG(is_safe_to_call_abort ? FATAL : WARNING)
835 << "ConditionVariable::~ConditionVariable for " << name_
836 << " called with " << num_waiters_ << " waiters.";
837 }
838 #else
839 // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
840 // may still be using condition variables.
841 int rc = pthread_cond_destroy(&cond_);
842 if (rc != 0) {
843 errno = rc;
844 bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
845 PLOG(is_safe_to_call_abort ? FATAL : WARNING) << "pthread_cond_destroy failed for " << name_;
846 }
847 #endif
848 }
849
Broadcast(Thread * self)850 void ConditionVariable::Broadcast(Thread* self) {
851 DCHECK(self == nullptr || self == Thread::Current());
852 // TODO: enable below, there's a race in thread creation that causes false failures currently.
853 // guard_.AssertExclusiveHeld(self);
854 DCHECK_EQ(guard_.GetExclusiveOwnerTid(), SafeGetTid(self));
855 #if ART_USE_FUTEXES
856 if (num_waiters_ > 0) {
857 sequence_++; // Indicate the broadcast occurred.
858 bool done = false;
859 do {
860 int32_t cur_sequence = sequence_.LoadRelaxed();
861 // Requeue waiters onto mutex. The waiter holds the contender count on the mutex high ensuring
862 // mutex unlocks will awaken the requeued waiter thread.
863 done = futex(sequence_.Address(), FUTEX_CMP_REQUEUE, 0,
864 reinterpret_cast<const timespec*>(std::numeric_limits<int32_t>::max()),
865 guard_.state_.Address(), cur_sequence) != -1;
866 if (!done) {
867 if (errno != EAGAIN && errno != EINTR) {
868 PLOG(FATAL) << "futex cmp requeue failed for " << name_;
869 }
870 }
871 } while (!done);
872 }
873 #else
874 CHECK_MUTEX_CALL(pthread_cond_broadcast, (&cond_));
875 #endif
876 }
877
Signal(Thread * self)878 void ConditionVariable::Signal(Thread* self) {
879 DCHECK(self == nullptr || self == Thread::Current());
880 guard_.AssertExclusiveHeld(self);
881 #if ART_USE_FUTEXES
882 if (num_waiters_ > 0) {
883 sequence_++; // Indicate a signal occurred.
884 // Futex wake 1 waiter who will then come and in contend on mutex. It'd be nice to requeue them
885 // to avoid this, however, requeueing can only move all waiters.
886 int num_woken = futex(sequence_.Address(), FUTEX_WAKE, 1, nullptr, nullptr, 0);
887 // Check something was woken or else we changed sequence_ before they had chance to wait.
888 CHECK((num_woken == 0) || (num_woken == 1));
889 }
890 #else
891 CHECK_MUTEX_CALL(pthread_cond_signal, (&cond_));
892 #endif
893 }
894
Wait(Thread * self)895 void ConditionVariable::Wait(Thread* self) {
896 guard_.CheckSafeToWait(self);
897 WaitHoldingLocks(self);
898 }
899
WaitHoldingLocks(Thread * self)900 void ConditionVariable::WaitHoldingLocks(Thread* self) {
901 DCHECK(self == nullptr || self == Thread::Current());
902 guard_.AssertExclusiveHeld(self);
903 unsigned int old_recursion_count = guard_.recursion_count_;
904 #if ART_USE_FUTEXES
905 num_waiters_++;
906 // Ensure the Mutex is contended so that requeued threads are awoken.
907 guard_.num_contenders_++;
908 guard_.recursion_count_ = 1;
909 int32_t cur_sequence = sequence_.LoadRelaxed();
910 guard_.ExclusiveUnlock(self);
911 if (futex(sequence_.Address(), FUTEX_WAIT, cur_sequence, nullptr, nullptr, 0) != 0) {
912 // Futex failed, check it is an expected error.
913 // EAGAIN == EWOULDBLK, so we let the caller try again.
914 // EINTR implies a signal was sent to this thread.
915 if ((errno != EINTR) && (errno != EAGAIN)) {
916 PLOG(FATAL) << "futex wait failed for " << name_;
917 }
918 }
919 if (self != nullptr) {
920 JNIEnvExt* const env = self->GetJniEnv();
921 if (UNLIKELY(env != nullptr && env->runtime_deleted)) {
922 CHECK(self->IsDaemon());
923 // If the runtime has been deleted, then we cannot proceed. Just sleep forever. This may
924 // occur for user daemon threads that get a spurious wakeup. This occurs for test 132 with
925 // --host and --gdb.
926 // After we wake up, the runtime may have been shutdown, which means that this condition may
927 // have been deleted. It is not safe to retry the wait.
928 SleepForever();
929 }
930 }
931 guard_.ExclusiveLock(self);
932 CHECK_GE(num_waiters_, 0);
933 num_waiters_--;
934 // We awoke and so no longer require awakes from the guard_'s unlock.
935 CHECK_GE(guard_.num_contenders_.LoadRelaxed(), 0);
936 guard_.num_contenders_--;
937 #else
938 uint64_t old_owner = guard_.exclusive_owner_;
939 guard_.exclusive_owner_ = 0;
940 guard_.recursion_count_ = 0;
941 CHECK_MUTEX_CALL(pthread_cond_wait, (&cond_, &guard_.mutex_));
942 guard_.exclusive_owner_ = old_owner;
943 #endif
944 guard_.recursion_count_ = old_recursion_count;
945 }
946
TimedWait(Thread * self,int64_t ms,int32_t ns)947 bool ConditionVariable::TimedWait(Thread* self, int64_t ms, int32_t ns) {
948 DCHECK(self == nullptr || self == Thread::Current());
949 bool timed_out = false;
950 guard_.AssertExclusiveHeld(self);
951 guard_.CheckSafeToWait(self);
952 unsigned int old_recursion_count = guard_.recursion_count_;
953 #if ART_USE_FUTEXES
954 timespec rel_ts;
955 InitTimeSpec(false, CLOCK_REALTIME, ms, ns, &rel_ts);
956 num_waiters_++;
957 // Ensure the Mutex is contended so that requeued threads are awoken.
958 guard_.num_contenders_++;
959 guard_.recursion_count_ = 1;
960 int32_t cur_sequence = sequence_.LoadRelaxed();
961 guard_.ExclusiveUnlock(self);
962 if (futex(sequence_.Address(), FUTEX_WAIT, cur_sequence, &rel_ts, nullptr, 0) != 0) {
963 if (errno == ETIMEDOUT) {
964 // Timed out we're done.
965 timed_out = true;
966 } else if ((errno == EAGAIN) || (errno == EINTR)) {
967 // A signal or ConditionVariable::Signal/Broadcast has come in.
968 } else {
969 PLOG(FATAL) << "timed futex wait failed for " << name_;
970 }
971 }
972 guard_.ExclusiveLock(self);
973 CHECK_GE(num_waiters_, 0);
974 num_waiters_--;
975 // We awoke and so no longer require awakes from the guard_'s unlock.
976 CHECK_GE(guard_.num_contenders_.LoadRelaxed(), 0);
977 guard_.num_contenders_--;
978 #else
979 #if !defined(__APPLE__)
980 int clock = CLOCK_MONOTONIC;
981 #else
982 int clock = CLOCK_REALTIME;
983 #endif
984 uint64_t old_owner = guard_.exclusive_owner_;
985 guard_.exclusive_owner_ = 0;
986 guard_.recursion_count_ = 0;
987 timespec ts;
988 InitTimeSpec(true, clock, ms, ns, &ts);
989 int rc = TEMP_FAILURE_RETRY(pthread_cond_timedwait(&cond_, &guard_.mutex_, &ts));
990 if (rc == ETIMEDOUT) {
991 timed_out = true;
992 } else if (rc != 0) {
993 errno = rc;
994 PLOG(FATAL) << "TimedWait failed for " << name_;
995 }
996 guard_.exclusive_owner_ = old_owner;
997 #endif
998 guard_.recursion_count_ = old_recursion_count;
999 return timed_out;
1000 }
1001
Init()1002 void Locks::Init() {
1003 if (logging_lock_ != nullptr) {
1004 // Already initialized.
1005 if (kRuntimeISA == kX86 || kRuntimeISA == kX86_64) {
1006 DCHECK(modify_ldt_lock_ != nullptr);
1007 } else {
1008 DCHECK(modify_ldt_lock_ == nullptr);
1009 }
1010 DCHECK(abort_lock_ != nullptr);
1011 DCHECK(alloc_tracker_lock_ != nullptr);
1012 DCHECK(allocated_monitor_ids_lock_ != nullptr);
1013 DCHECK(allocated_thread_ids_lock_ != nullptr);
1014 DCHECK(breakpoint_lock_ != nullptr);
1015 DCHECK(classlinker_classes_lock_ != nullptr);
1016 DCHECK(deoptimization_lock_ != nullptr);
1017 DCHECK(heap_bitmap_lock_ != nullptr);
1018 DCHECK(oat_file_manager_lock_ != nullptr);
1019 DCHECK(verifier_deps_lock_ != nullptr);
1020 DCHECK(host_dlopen_handles_lock_ != nullptr);
1021 DCHECK(intern_table_lock_ != nullptr);
1022 DCHECK(jni_function_table_lock_ != nullptr);
1023 DCHECK(jni_libraries_lock_ != nullptr);
1024 DCHECK(logging_lock_ != nullptr);
1025 DCHECK(mutator_lock_ != nullptr);
1026 DCHECK(profiler_lock_ != nullptr);
1027 DCHECK(cha_lock_ != nullptr);
1028 DCHECK(thread_list_lock_ != nullptr);
1029 DCHECK(thread_suspend_count_lock_ != nullptr);
1030 DCHECK(trace_lock_ != nullptr);
1031 DCHECK(unexpected_signal_lock_ != nullptr);
1032 DCHECK(dex_lock_ != nullptr);
1033 } else {
1034 // Create global locks in level order from highest lock level to lowest.
1035 LockLevel current_lock_level = kInstrumentEntrypointsLock;
1036 DCHECK(instrument_entrypoints_lock_ == nullptr);
1037 instrument_entrypoints_lock_ = new Mutex("instrument entrypoint lock", current_lock_level);
1038
1039 #define UPDATE_CURRENT_LOCK_LEVEL(new_level) \
1040 if ((new_level) >= current_lock_level) { \
1041 /* Do not use CHECKs or FATAL here, abort_lock_ is not setup yet. */ \
1042 fprintf(stderr, "New local level %d is not less than current level %d\n", \
1043 new_level, current_lock_level); \
1044 exit(1); \
1045 } \
1046 current_lock_level = new_level;
1047
1048 UPDATE_CURRENT_LOCK_LEVEL(kMutatorLock);
1049 DCHECK(mutator_lock_ == nullptr);
1050 mutator_lock_ = new MutatorMutex("mutator lock", current_lock_level);
1051
1052 UPDATE_CURRENT_LOCK_LEVEL(kHeapBitmapLock);
1053 DCHECK(heap_bitmap_lock_ == nullptr);
1054 heap_bitmap_lock_ = new ReaderWriterMutex("heap bitmap lock", current_lock_level);
1055
1056 UPDATE_CURRENT_LOCK_LEVEL(kTraceLock);
1057 DCHECK(trace_lock_ == nullptr);
1058 trace_lock_ = new Mutex("trace lock", current_lock_level);
1059
1060 UPDATE_CURRENT_LOCK_LEVEL(kRuntimeShutdownLock);
1061 DCHECK(runtime_shutdown_lock_ == nullptr);
1062 runtime_shutdown_lock_ = new Mutex("runtime shutdown lock", current_lock_level);
1063
1064 UPDATE_CURRENT_LOCK_LEVEL(kProfilerLock);
1065 DCHECK(profiler_lock_ == nullptr);
1066 profiler_lock_ = new Mutex("profiler lock", current_lock_level);
1067
1068 UPDATE_CURRENT_LOCK_LEVEL(kDeoptimizationLock);
1069 DCHECK(deoptimization_lock_ == nullptr);
1070 deoptimization_lock_ = new Mutex("Deoptimization lock", current_lock_level);
1071
1072 UPDATE_CURRENT_LOCK_LEVEL(kAllocTrackerLock);
1073 DCHECK(alloc_tracker_lock_ == nullptr);
1074 alloc_tracker_lock_ = new Mutex("AllocTracker lock", current_lock_level);
1075
1076 UPDATE_CURRENT_LOCK_LEVEL(kThreadListLock);
1077 DCHECK(thread_list_lock_ == nullptr);
1078 thread_list_lock_ = new Mutex("thread list lock", current_lock_level);
1079
1080 UPDATE_CURRENT_LOCK_LEVEL(kJniLoadLibraryLock);
1081 DCHECK(jni_libraries_lock_ == nullptr);
1082 jni_libraries_lock_ = new Mutex("JNI shared libraries map lock", current_lock_level);
1083
1084 UPDATE_CURRENT_LOCK_LEVEL(kBreakpointLock);
1085 DCHECK(breakpoint_lock_ == nullptr);
1086 breakpoint_lock_ = new ReaderWriterMutex("breakpoint lock", current_lock_level);
1087
1088 UPDATE_CURRENT_LOCK_LEVEL(kCHALock);
1089 DCHECK(cha_lock_ == nullptr);
1090 cha_lock_ = new Mutex("CHA lock", current_lock_level);
1091
1092 UPDATE_CURRENT_LOCK_LEVEL(kClassLinkerClassesLock);
1093 DCHECK(classlinker_classes_lock_ == nullptr);
1094 classlinker_classes_lock_ = new ReaderWriterMutex("ClassLinker classes lock",
1095 current_lock_level);
1096
1097 UPDATE_CURRENT_LOCK_LEVEL(kMonitorPoolLock);
1098 DCHECK(allocated_monitor_ids_lock_ == nullptr);
1099 allocated_monitor_ids_lock_ = new Mutex("allocated monitor ids lock", current_lock_level);
1100
1101 UPDATE_CURRENT_LOCK_LEVEL(kAllocatedThreadIdsLock);
1102 DCHECK(allocated_thread_ids_lock_ == nullptr);
1103 allocated_thread_ids_lock_ = new Mutex("allocated thread ids lock", current_lock_level);
1104
1105 if (kRuntimeISA == kX86 || kRuntimeISA == kX86_64) {
1106 UPDATE_CURRENT_LOCK_LEVEL(kModifyLdtLock);
1107 DCHECK(modify_ldt_lock_ == nullptr);
1108 modify_ldt_lock_ = new Mutex("modify_ldt lock", current_lock_level);
1109 }
1110
1111 UPDATE_CURRENT_LOCK_LEVEL(kDexLock);
1112 DCHECK(dex_lock_ == nullptr);
1113 dex_lock_ = new ReaderWriterMutex("ClassLinker dex lock", current_lock_level);
1114
1115 UPDATE_CURRENT_LOCK_LEVEL(kOatFileManagerLock);
1116 DCHECK(oat_file_manager_lock_ == nullptr);
1117 oat_file_manager_lock_ = new ReaderWriterMutex("OatFile manager lock", current_lock_level);
1118
1119 UPDATE_CURRENT_LOCK_LEVEL(kVerifierDepsLock);
1120 DCHECK(verifier_deps_lock_ == nullptr);
1121 verifier_deps_lock_ = new ReaderWriterMutex("verifier deps lock", current_lock_level);
1122
1123 UPDATE_CURRENT_LOCK_LEVEL(kHostDlOpenHandlesLock);
1124 DCHECK(host_dlopen_handles_lock_ == nullptr);
1125 host_dlopen_handles_lock_ = new Mutex("host dlopen handles lock", current_lock_level);
1126
1127 UPDATE_CURRENT_LOCK_LEVEL(kInternTableLock);
1128 DCHECK(intern_table_lock_ == nullptr);
1129 intern_table_lock_ = new Mutex("InternTable lock", current_lock_level);
1130
1131 UPDATE_CURRENT_LOCK_LEVEL(kReferenceProcessorLock);
1132 DCHECK(reference_processor_lock_ == nullptr);
1133 reference_processor_lock_ = new Mutex("ReferenceProcessor lock", current_lock_level);
1134
1135 UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueClearedReferencesLock);
1136 DCHECK(reference_queue_cleared_references_lock_ == nullptr);
1137 reference_queue_cleared_references_lock_ = new Mutex("ReferenceQueue cleared references lock", current_lock_level);
1138
1139 UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueWeakReferencesLock);
1140 DCHECK(reference_queue_weak_references_lock_ == nullptr);
1141 reference_queue_weak_references_lock_ = new Mutex("ReferenceQueue cleared references lock", current_lock_level);
1142
1143 UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueFinalizerReferencesLock);
1144 DCHECK(reference_queue_finalizer_references_lock_ == nullptr);
1145 reference_queue_finalizer_references_lock_ = new Mutex("ReferenceQueue finalizer references lock", current_lock_level);
1146
1147 UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueuePhantomReferencesLock);
1148 DCHECK(reference_queue_phantom_references_lock_ == nullptr);
1149 reference_queue_phantom_references_lock_ = new Mutex("ReferenceQueue phantom references lock", current_lock_level);
1150
1151 UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueSoftReferencesLock);
1152 DCHECK(reference_queue_soft_references_lock_ == nullptr);
1153 reference_queue_soft_references_lock_ = new Mutex("ReferenceQueue soft references lock", current_lock_level);
1154
1155 UPDATE_CURRENT_LOCK_LEVEL(kJniGlobalsLock);
1156 DCHECK(jni_globals_lock_ == nullptr);
1157 jni_globals_lock_ =
1158 new ReaderWriterMutex("JNI global reference table lock", current_lock_level);
1159
1160 UPDATE_CURRENT_LOCK_LEVEL(kJniWeakGlobalsLock);
1161 DCHECK(jni_weak_globals_lock_ == nullptr);
1162 jni_weak_globals_lock_ = new Mutex("JNI weak global reference table lock", current_lock_level);
1163
1164 UPDATE_CURRENT_LOCK_LEVEL(kJniFunctionTableLock);
1165 DCHECK(jni_function_table_lock_ == nullptr);
1166 jni_function_table_lock_ = new Mutex("JNI function table lock", current_lock_level);
1167
1168 UPDATE_CURRENT_LOCK_LEVEL(kAbortLock);
1169 DCHECK(abort_lock_ == nullptr);
1170 abort_lock_ = new Mutex("abort lock", current_lock_level, true);
1171
1172 UPDATE_CURRENT_LOCK_LEVEL(kThreadSuspendCountLock);
1173 DCHECK(thread_suspend_count_lock_ == nullptr);
1174 thread_suspend_count_lock_ = new Mutex("thread suspend count lock", current_lock_level);
1175
1176 UPDATE_CURRENT_LOCK_LEVEL(kUnexpectedSignalLock);
1177 DCHECK(unexpected_signal_lock_ == nullptr);
1178 unexpected_signal_lock_ = new Mutex("unexpected signal lock", current_lock_level, true);
1179
1180 UPDATE_CURRENT_LOCK_LEVEL(kLoggingLock);
1181 DCHECK(logging_lock_ == nullptr);
1182 logging_lock_ = new Mutex("logging lock", current_lock_level, true);
1183
1184 #undef UPDATE_CURRENT_LOCK_LEVEL
1185
1186 // List of mutexes that we may hold when accessing a weak ref.
1187 AddToExpectedMutexesOnWeakRefAccess(dex_lock_, /*need_lock*/ false);
1188 AddToExpectedMutexesOnWeakRefAccess(classlinker_classes_lock_, /*need_lock*/ false);
1189 AddToExpectedMutexesOnWeakRefAccess(jni_libraries_lock_, /*need_lock*/ false);
1190
1191 InitConditions();
1192 }
1193 }
1194
InitConditions()1195 void Locks::InitConditions() {
1196 thread_exit_cond_ = new ConditionVariable("thread exit condition variable", *thread_list_lock_);
1197 }
1198
SetClientCallback(ClientCallback * safe_to_call_abort_cb)1199 void Locks::SetClientCallback(ClientCallback* safe_to_call_abort_cb) {
1200 safe_to_call_abort_callback.StoreRelease(safe_to_call_abort_cb);
1201 }
1202
1203 // Helper to allow checking shutdown while ignoring locking requirements.
IsSafeToCallAbortRacy()1204 bool Locks::IsSafeToCallAbortRacy() {
1205 Locks::ClientCallback* safe_to_call_abort_cb = safe_to_call_abort_callback.LoadAcquire();
1206 return safe_to_call_abort_cb != nullptr && safe_to_call_abort_cb();
1207 }
1208
AddToExpectedMutexesOnWeakRefAccess(BaseMutex * mutex,bool need_lock)1209 void Locks::AddToExpectedMutexesOnWeakRefAccess(BaseMutex* mutex, bool need_lock) {
1210 if (need_lock) {
1211 ScopedExpectedMutexesOnWeakRefAccessLock mu(mutex);
1212 mutex->SetShouldRespondToEmptyCheckpointRequest(true);
1213 expected_mutexes_on_weak_ref_access_.push_back(mutex);
1214 } else {
1215 mutex->SetShouldRespondToEmptyCheckpointRequest(true);
1216 expected_mutexes_on_weak_ref_access_.push_back(mutex);
1217 }
1218 }
1219
RemoveFromExpectedMutexesOnWeakRefAccess(BaseMutex * mutex,bool need_lock)1220 void Locks::RemoveFromExpectedMutexesOnWeakRefAccess(BaseMutex* mutex, bool need_lock) {
1221 if (need_lock) {
1222 ScopedExpectedMutexesOnWeakRefAccessLock mu(mutex);
1223 mutex->SetShouldRespondToEmptyCheckpointRequest(false);
1224 std::vector<BaseMutex*>& list = expected_mutexes_on_weak_ref_access_;
1225 auto it = std::find(list.begin(), list.end(), mutex);
1226 DCHECK(it != list.end());
1227 list.erase(it);
1228 } else {
1229 mutex->SetShouldRespondToEmptyCheckpointRequest(false);
1230 std::vector<BaseMutex*>& list = expected_mutexes_on_weak_ref_access_;
1231 auto it = std::find(list.begin(), list.end(), mutex);
1232 DCHECK(it != list.end());
1233 list.erase(it);
1234 }
1235 }
1236
IsExpectedOnWeakRefAccess(BaseMutex * mutex)1237 bool Locks::IsExpectedOnWeakRefAccess(BaseMutex* mutex) {
1238 ScopedExpectedMutexesOnWeakRefAccessLock mu(mutex);
1239 std::vector<BaseMutex*>& list = expected_mutexes_on_weak_ref_access_;
1240 return std::find(list.begin(), list.end(), mutex) != list.end();
1241 }
1242
1243 } // namespace art
1244